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Department of Engineering
University of Cambridge

Cambridge, UK CB2 1PZ
{oa214,cipolla}@eng.cam.ac.uk

Abstract

Illumination invariance remains the most researched,
yet the most challenging aspect of automatic face recogni-
tion. In this paper we propose a novel, general recognition
framework for efficient matching of individual face images,
sets or sequences. The framework is based on simple image
processing filters that compete with unprocessed greyscale
input to yield a single matching score between individuals.
It is shown how the discrepancy between illumination con-
ditions between novel input and the training data set can be
estimated and used to weigh the contribution of two com-
peting representations. We describe an extensive empirical
evaluation of the proposed method on 171 individuals and
over 1300 video sequences with extreme illumination, pose
and head motion variation. On this challenging data set
our algorithm consistently demonstrated a dramatic perfor-
mance improvement over traditional filtering approaches.
We demonstrate a reduction of 50–75% in recognition error
rates, the best performing method-filter combination cor-
rectly recognizing 96% of the individuals.

1. Introduction

In this work we are interested in illumination invariance
for automatic face recognition (AFR), and, in particular, the
case when both training and novel data to be matched are
image sets or sequences. Invariance to changing lighting
is perhaps the most significant practical challenge for AFR.
The illumination setup in which recognition is performed
is in most cases impractical to control, its physics difficult
to accurately model and face appearance differences due to
changing illumination are often larger than differences be-
tween individuals [1]. Additionally, the nature of most real-
world AFR application is such that prompt, often real-time
system response is needed, demanding appropriately effi-
cient matching algorithms.

In this paper we propose a novel framework for rapid
recognition under varying illumination, based on simple im-
age filtering techniques. The framework is very general: we
demonstrate that it offers a dramatic performance improve-
ment to a wide range of filters and different baseline match-
ing algorithms, without sacrificing their online efficiency.

1.1. Previous Work – AFR across Illumination

Two of the most influential approaches to achieving ro-
bustness to changing lighting conditions are the illumina-
tion cones of Belhumeur et al. [4, 10] and the 3D morphable
model of Blanz and Vetter [5]. In [4] the authors showed
that the set of images of a convex, Lambertian object, il-
luminated by an arbitrary number of point light sources at
infinity, forms a convex polyhedral cone in the image space
with dimension equal to the number of distinct surface nor-
mals. In [10], Georghiades et al. successfully used this re-
sult for AFR by reilluminating images of frontal faces. In
the 3D morphable model method, parameters of a complex
generative model which includes the pose, shape and albedo
of a face are recovered in an analysis-by-synthesis fashion.

Both illumination cones and the 3D morphable model
have significant shortcomings for practical AFR use. The
former approach assumes very accurately registered face
images, illuminated from seven to nine different well-posed
directions for each head pose. This is difficult to achieve
in practical imaging conditions (see §3 for typical image
data quality). On the other hand, the 3D morphable model
requires a (in our case prohibitively) high resolution [7],
struggles with non-Lambertian effects and multiple light
sources, has convergence problems in the presence of back-
ground clutter and partial occlusion (glasses, facial hair),
and is very computationally demanding.

Most relevant to the material presented in this pa-
per are methods that can be broadly described as quasi
illumination-invariant image filters. These include high-
pass [3] and locally-scaled high-pass filters [17], directional
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derivatives [1, 7] and edge-maps [1], to name a few. These
are most commonly based on very simple image formation
models, for example modelling illumination as a spatially
low-frequency band of the Fourier spectrum and identity-
based information as high-frequency [3, 8]. Methods of this
group can be applied in a straightforward manner to either
single or multiple-image AFR and are often extremely ef-
ficient. However, due to the simplistic nature of the under-
lying models, in general they do not perform well in the
presence of extreme illumination changes.

2. Adapting to Data Acquisition Conditions

The framework proposed in this paper is most closely
motivated by the findings first reported in [2]. In that work
several AFR algorithms were evaluated on a large database
using (i) raw greyscale input, (ii) a high-pass (HP) filter and
(iii) the Self-Quotient Image (QI) [17]. Both the high-pass
and even further Self Quotient Image representations pro-
duced an improvement in recognition for all methods over
raw grayscale, which is consistent with previous findings
in the literature [1, 3, 8, 17]. Of importance to this pa-
per is that it was also examined in which cases these filters
help and how much depending on the data acquisition con-
ditions. It was found, consistently over different algorithms,
that recognition rates using greyscale and either the HP or
the QI filter negatively correlated (with ρ ≈ −0.7).

This is an interesting result: it means that while on aver-
age both representations increase the recognition rate, they
actually worsen it in “easy” recognition conditions when no
normalization is needed. The observed phenomenon is well
understood in the context of energy of intrinsic and extrinsic
image differences and noise (see [18] for a thorough discus-
sion). Higher than average recognition rates for raw input
correspond to small changes in imaging conditions between
training and test, and hence lower energy of extrinsic varia-
tion. In this case, the two filters decrease the SNR, worsen-
ing the performance. On the other hand, when the imaging
conditions between training and test are very different, nor-
malization of extrinsic variation is the dominant factor and
performance is improved.

This is an important observation: it suggests that the per-
formance of a method that uses either of the representations
can be increased further by detecting the difficulty of recog-
nition conditions. In this paper we propose a novel learning
framework to do this.

2.1. Adaptive Framework

Our goal is to implicitly learn how similar the novel and
training (or gallery) illumination conditions are, to appro-
priately emphasize either the raw input guided face com-
parisons or of its filtered output. Fig. 1 shows the difficulty
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Figure 1. Distances (0 − 1) between sets of faces – interpersonal
and intrapersonal comparisons are shown respectively as large
red and small blue dots. Individuals are poorly separated.

of this task: different classes (i.e. persons) are not well sepa-
rated in the space of 2D feature vectors obtained by stacking
raw and filtered similarity scores.

Let {X1, . . . ,XN} be a database of known individuals,
X novel input corresponding to one of the gallery classes
and ρ() and F (), respectively, a given similarity function
and a quasi illumination-invariant filter. We then express
the degree of belief η that two face sets X and Xi belong to
the same person as a weighted combination of similarities
between the corresponding unprocessed and filtered image
sets:

η = (1 − α∗)ρ(X ,Xi) + α∗ρ(F (X ), F (Xi)) (1)

In the light of the previous discussion, we want α∗ to
be small (closer to 0.0) when novel and the corresponding
gallery data have been acquired in similar illuminations, and
large (closer to 1.0) when in very different ones. We show
that α∗ can be learnt as a function:

α∗ = α∗(µ), (2)

where µ is the confusion margin – the difference between
the similarities of the two Xi most similar to X . We com-
pute an estimate of α∗(µ) in a maximum a posteriori sense:

α∗(µ) = arg max
α

p(α,µ), (3)

where p(α, x) is the probability that α is the optimal value
of the mixing coefficient.

2.2. Learning the α-Function

To learn the α-function defined in (3), we first need an
estimate of the joint probability density p(α, µ). The main
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difficulty of this problem is of practical nature: in order to
obtain an accurate estimate, a prohibitively large training
database is needed. Instead, we propose a heuristic alter-
native, computed offline, from a small training corpus of
individuals in different illumination conditions.

Our algorithm is based on an iterative incremental update
of the density, initialized as a uniform density over the do-
main α, µ ∈ [0, 1]. We iteratively simulate matching of an
unknown person against a set gallery individuals. In each it-
eration of the algorithm, these are randomly drawn from the
offline training database. Since the ground truth identities
of all persons in the offline database is known, we can com-
pute the confusion margin µ(α) for each α = k∆α, using
the inter-personal similarity score defined in (1). Density
p(α, µ) is then incremented at each (k∆α, µ(0)) propor-
tionally to µ(k∆α).

The proposed offline learning algorithm is summarized
in Fig. 2. A typical estimate of the probability density
p(α, µ) is shown in Fig. 3, with the corresponding α-
function in Fig. 4.

3 Empirical Evaluation

Methods in this paper were evaluated on three databases:

• FaceDB100, with 100 individuals of varying age and
ethnicity, and equally represented genders. For each
person in the database we collected 7 video sequences
of the person in arbitrary motion (significant transla-
tion, yaw and pitch, negligible roll), each in a different
illumination setting, see Fig. 5 (a) and 6, at 10fps and
320 × 240 pixel resolution (face size ≈ 60 pixels).

• FaceDB60, kindly provided to us by Toshiba Corp.
This database contains 60 individuals of varying age,
mostly male Japanese, and 10 sequences per person.
Each sequence corresponds to a different illumination
setting, at 10fps and 320 × 240 pixel resolution (face
size ≈ 60 pixels), see Fig. 5 (b).

• FaceVideoDB, freely available and described in [11].
Briefly, it contains 11 individuals and 2 sequences per
person, little variation in illumination, but extreme and
uncontrolled variations in pose and motion, acquired at
25fps and 160 × 120 pixel resolution (face size ≈ 45
pixels), see Fig. 5 (c).

Data acquisition: The discussion so far focused on
recognition using fixed-scale face images. Our system uses
a cascaded detector [16] for localization of faces in cluttered
images, which are then rescaled to the unform resolution of
50 × 50 pixels (approximately the average size of detected
faces in our data set).

Input: training data D(person, illumination),
filtered data F (person, illumination),
similarity function ρ,
filter F .

Output: estimate p̂(α, µ).

1: Init
p̂(α, µ) = 0,

2: Iteration
for all illuminations i, j and persons p

3: Initial separation
δ0 = minq �=p [ρ(D(p, i), D(q, j)) − ρ(D(p, i), D(p, j))]

4: Iteration
for all k = 0, . . . , 1/∆α, α = k∆α

5: Separation given α
δ(k∆α) = minq �=p[αρ(F (p, i), F (q, j))

−αρ(F (p, i), F (p, j))
+(1 − α)ρ(D(p, i), D(q, j))
−(1 − α)ρ(D(p, i), D(p, j))]

6: Update density estimate
p̂(k∆α, δ0) = p̂(k∆α, δ0) + δ(k∆α)

7: Smooth the output
p̂(α, µ) = p̂(α, µ) ∗Gσ=0.05

8: Normalize to unit integral
p̂(α, µ) = p̂(α, µ)/

∫
α

∫
x

p̂(α, x)dxdα

Figure 2. Offline training algorithm.
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Figure 3. Learnt probability density p(α,µ) (greyscale surface)
and a superimposed raw estimate of the α-function (solid red line)
for a high-pass filter.
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(a) Raw α∗(µ) estimate
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(b) Smooth and monotonic α∗(µ)

Figure 4. Typical estimates of the α-function plotted against confusion margin µ. The estimate shown was computed using 40 individuals
in 5 illumination conditions for a Gaussian high-pass filter. As expected, α∗ assumes low values for small confusion margins and high
values for large confusion margins (see (1)).

(a) FaceDB100

(b) FaceDB60

(c) FaceVideoDB

Figure 5. Frames from typical video sequences from the 3
databases used for evaluation.

Methods and representations: The proposed framework
was evaluated using the following filters (illustrated in
Fig. 7):

• Gaussian high-pass filtered images [3, 8] (HP):

XH = X − (X ∗ Gσ=1.5), (4)

• local intensity-normalized high-pass filtered images –
similar to the Self-Quotient Image [17] (QI):

XQ = XH/(X −XH), (5)

the division being element-wise,

• distance-transformed edge map [2, 6] (ED):

XE = DistTrans(Canny(X)), (6)

(a) FaceDB100

(b) FaceDB60

Figure 6. Different illumination conditions in databases
FaceDB100 and FaceDB60.

Figure 7. Face representations evaluated.

• Laplacian-of-Gaussian [1] (LG):

XL = X ∗ ∇Gσ=3, (7)

and

• directional grey-scale derivatives [1, 7] (DX, DY):

Xx = X ∗ ∂

∂x
Gσx=6, Xy = X ∗ ∂

∂y
Gσy=6. (8)

As a baseline, to establish the difficulty of the evaluation
data set, we compared the performance of our recognition
algorithm to that of:

• State-of-the-art commercial system FaceIt� by Identix
[12] (the best performing software in the most recent
Face Recognition Vendor Test [13]),

• Constrained MSM (CMSM) [9] used in a state-of-the-
art commercial system FacePass� [15],

• Mutual Subspace Method (MSM) [9], and
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• KL divergence-based algorithm of Shakhnarovich et
al. (KLD) [14].

In all tests, both training data for each person in the gallery,
as well as test data, consisted of only a single sequence.
Offline training of the proposed algorithm was performed
using 40 individuals in 5 illuminations from the FaceDB100
– we emphasize that these were not used as test input for the
evaluations reported in this section.

3.1. Results

We first evaluated the performance of the four estab-
lished methods used for comparison purposes using raw
greyscale input. A summary of the results is shown in
Tab. 3.1. Firstly, note the poor performance of the KLD
method. KLD can be considered as a proxy for gauging the
difficulty of the recognition task, seeing that this algorithm
can be expected to perform relatively well if the imaging
conditions are not greatly different between training and test
data sets [14]. This is further corroborated by observing that
even the two best-performing methods, Identix’s FaceIt and
Toshiba’s CMSM, incorrectly recognized about a quarter of
individuals in our database. Interestingly, while performing
marginally better, CMSM showed significantly less robust-
ness to the particular data acquisition conditions used, as
witnessed by its more than twice higher deviation of recog-
nition scores across training/test combinations used.

Next, we evaluated the performance of CMSM and
MSM using each of the 7 face image representations (raw
input and 6 filter outputs). Recognition results for the 3
databases are shown in blue in Fig. 8 (the results on Face-
VideoDB are tabulated in Fig. 8 (c), for the ease of visual-
ization). Confirming the first premise of this work as well
as previous research findings, all of the filters produced an
improvement in average recognition rates. Little interaction
between method/filter combinations was found, Laplacian-
of-Gaussian and the horizontal intensity derivative produc-
ing the best results and bringing the best and average recog-
nition errors down to 12% and 9% respectively.

In the last set of experiments, we employed each of the
6 filters in the proposed data-adaptive framework. Recog-
nition results for the 3 databases are shown in red in Fig. 8.
The proposed method produced a dramatic performance
improvement in the case of all filters, reducing the av-
erage recognition error rate to only 4% in the case of
CMSM/Laplacian-of-Gaussian combination.This is a very
high recognition rate for such unconstrained conditions (see
Fig. 5), small amount of training data per gallery individ-
ual and the degree of illumination, pose and motion pattern
variation between different sequences. An improvement in
the robustness to illumination changes can also be seen in
the significantly reduced standard deviation of the recogni-
tion. Finally, it should be emphasized that the demonstrated

Table 1. Recognition rates (mean/STD, %).
FaceIt CMSM MSM KLD

FaceDB100 64.1/9.2 73.6/22.5 58.3/24.3 17.0/ 8.8
FaceDB60 81.8/9.6 79.3/18.6 46.6/28.3 23.0/15.7
FaceVideoDB 91.9 91.9 81.8 59.1
Average 72.1 76.8 55.7 21.8

improvement is obtained with a negligible increase in the
computational cost as all time-demanding learning is per-
formed offline.

4. Conclusions

We described a novel framework for automatic face
recognition in the presence of varying illumination, appli-
cable to matching face sets or sequences, as well as to sin-
gle shot-based recognition. Evaluated on a large, real-world
data corpus, the proposed framework was shown to be suc-
cessful in video-based recognition across a wide range of
illumination, pose and face motion pattern changes.
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(b) FaceDB60

RW HP QI ED LG DX DY
MSM 0.00 0.00 0.00 0.00 9.09 0.00 0.00

MSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CMSM 0.00 9.09 0.00 0.00 0.00 0.00 0.00

CMSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(c) FaceVideoDB, mean error (%)

Figure 8. Error rate statistics. The proposed framework (-AD suffix) dramatically improved recognition performance on all method/filter
combinations, as witnessed by the reduction in both error rate averages and their standard deviations.
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