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Abstract

Orthogonal subspaces are effective models to represent object image sets
(generally any high-dimensional vector sets). Canonical correlation analysis
of the orthogonal subspaces provides a good solution to discriminate objects
with sets of images. In such a recognition task involving image sets, an ef-
ficient learning over a large volume of image sets, which may be increasing
over time, is important. In this paper, an incremental learning method of or-
thogonal subspaces is proposed by updating the principal components of the
class correlation and total correlation matrices separately, yielding the same
solution as the batch computation with far lower computational cost. A novel
concept of local orthogonality is further proposed to cope with non-linear
manifolds of data vectors and find a more optimal solution of orthogonal
subspaces for a certain neighbouring object image sets. In the experiments
using 700 face image sets, the locally orthogonal subspaces outperformed the
orthogonal subspaces as well as relevant state-of-the-art methods in accuracy.
Note that the locally orthogonal subspaces are also amenable to incremental
updating due to their linear property.

1 Introduction
The popularity of the methods of object recognition based image sets has been increasing
because of their greater accuracy and robustness as compared with the approaches exploit-
ing a single image as input [1, 2, 3, 4, 5, 7]. Of the methods that compare a set to a set,
canonical correlations 1 of linear subspaces have attracted much attention with the benefits
of robust and computationally efficient matching when dealing with changing conditions
of data acquisition and large volumes of data as input for decision making [4, 5, 7, 8].
The previous method called Constrained Mutual Subspace Method (CMSM) finds the
constrained subspace where the entire class populations exhibit small variance [8, 10].
Then, each class subspace is projected on this constrained subspace to create a model and
compared by canonical correlations with the new data. They have shown the constrained
subspace improves the accuracy of the simple canonical correlation method [4]. However,
CMSM does not have any principled way to select the dimensionality of the constrained
subspace despite the sensitivity of accuracy on this parameter. In [7], an optimal lin-
ear discriminant function is proposed to find the components to maximize the canonical

1It is also called canonical angles or principal angles.
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correlations of the within-class subspaces and minimize the canonical correlations of the
between-class subspaces with more desirable feature selection. However, the iterative
optimization in the method is computationally costly, making incremental update rather
difficult. In [5, 6] nonlinear extensions of canonical correlations have been proposed. The
non-linear extensions of CMSM have also been noted in [8, 10]. However, the benefits of
these methods in terms of high accuracy were compromised by the expensive computa-
tional cost in both on-line matching and model learning.

Oja and Kittler introduced the concept of orthogonal subspaces for effective class fea-
ture extraction [11]. In their methods the class-specific components which are orthogonal
to those of all the other classes, are extracted. Then a new vector is classified into the class
which has the minimum distance between the vector and the orthogonal subspaces. It will
be shown that these orthogonal subspaces can be effectively combined with the canonical
correlation analysis for set-based recognition. Whereas a single vector is a new input in
the classical study [11], the classification of a set of image vectors is better handled by
the canonical correlation analysis of the orthogonal subspaces. Interestingly, the principle
of the Orthogonal Subspace Method (OSM) is very close to that of CMSM. Both meth-
ods find the components which maximally represent the class data while minimizing the
variances of all the other classes. However, OSM provides the optimal way to choose the
number of such components based on the eigenvalues, while CMSM requires an empiri-
cal setting for the number of the components, which is practically unfavorable.

In this paper, an incremental method of learning orthogonal subspaces is presented.
Practically, the assumptions are that a complete set of training samples is not given in
advance and the execution of the batch-computation 2, whenever new data is presented,
is too expensive in both time and space. An efficient algorithm for updating the orthog-
onal subspaces is greatly needed to accumulate the information conveyed by new data so
that the method’s future accuracy is enhanced. The orthogonal subspace method seeks
the class-specific components which maximize the ratio of the variances of the i-th class
correlation matrix over the total correlation matrix. The incremental learning algorithm
of OSM is proposed by separately updating the principal components of the both cor-
relation matrices then computing the orthogonal components only by the updated few
principal components. Each update is benefited in both time and space by the concept of
the sufficient spanning set used for the incremental Principal Component Analysis (PCA)
in [14]. The proposed incremental OSM solution is identical to that of the batch-mode
computation of orthogonal subspaces but at a far lower computational and space cost. The
proposed method also allows sets of vectors to be added in a single update, thus avoid-
ing too frequent updates of the orthogonal subspaces. The Locally Orthogonal Subspace
Method (LOSM) has been further proposed to deal with non-linear manifolds of data for
accuracy improvement of OSM. Each class subspace is better distinguished from its rival
classes by constructing the subspace more orthogonal to its neighboring subspaces 3. The
methodology for efficient matching and incremental updating of LOSM is also presented.

The next section summarizes the orthogonal subspaces and canonical correlation meth-
ods. The incremental learning of the orthogonal subspaces is proposed in Section 3 and
the locally orthogonal subspaces in Section 4. The section 5 presents a comparative eval-
uation for both accuracy and time-efficiency using the 700 face image sequences.

2All existing data is re-used with new data for computing a new model.
3In practice, it is hard to achieve orthogonality of a class to all different classes.
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Notations Descriptions

C,N number of classes, dimension of input data
Mi,MT number of data points of the i-th class and total data
Ri,RT correlation matrix of the i-th class and total data

Ui orthogonal component matrix of i-th class
Pi,Λi eigenvector and eigenvalue matrices of Ri

PT ,ΛT eigenvector and eigenvalue matrices of RT

di,dT number of sufficient components of the i-th class and total data
U i

j locally orthogonal component matrix of j-th class to i-th class

Table 1: Notations.

2 Orthogonal Subspaces and Canonical Correlations
See Table 1 for the important notations used throughout the paper.

Orthogonal subspaces. Denote the correlation matrices of the C classes by Ri, i =
1, ...,C, where Ri = 1/Mi ∑xxT and Mi is the number of data vectors in the i-th class. Let
wi denote the respective priori probabilities. Then, matrix RT = ∑C

i=1 wiRi is the correla-
tion matrix of the mixture of all the classes. The total correlation matrix is decomposed
s.t. PT

T RT PT = ΛT . Letting Z = PT Λ−1/2
T , we have ZT RT Z = I. This means that matrices

wiZT RiZ and ∑ j 6=i w jZT R jZ have the same eigenvectors but the respective eigenvalues λi

and λi are related by λi = 1−λi. Let the matrix, Ui, be constructed from eigenvectors of
the i-th class having the eigenvalues equal to unity s.t.

wiUT
i ZT RiZUi = Ii, (1)

then
∑
j 6=i

w jUT
i ZT R jZUi = O and w jUT

i ZT R jZUi = O, for all j 6= i, (2)

where O is a zero matrix since every matrix w jUT
i ZT R jZUi is positive semi-definite. As-

sume that the j-th class is also represented by the eigenvectors of w jZT R jZ having the
eigenvalues equal to one s.t. w jZT R jZ 'U jUT

j . From (2), we have w jUT
i U jUT

j Ui = O,
i.e. UT

i U j = O. This is the definition of the mutually orthogonal subspaces where all the
vectors of each subspace are orthogonal to those of the other subspace [11].

Canonical correlations. Of many solutions to compute canonical correlations, which are
all equivalent, the Singular Value Decomposition (SVD) solution [12] is presented. As-
sume that Ui ∈RN×d and U j ∈RN×d form unitary orthogonal bases for two linear sub-
spaces, where N,d are the dimensions of the input vector and the subspaces respectively.
Canonical correlations, which are mutually defined as the maximal correlations of any
two vectors on the two subspaces, are computed as the singular values of UT

i U j ∈Rd×d

s.t.
UT

i U j = QLΛQT
R → QT

LUT
i U jQR = Λ = diag(σ1, ...,σd) (3)

where QT
L QL = QLQT

L = QT
RQR = QRQT

R = Id . Canonical correlations of any orthogonal
subspaces are always zeros as UT

i U j = O → QT
LUT

i U jQR = O, where O is a zero ma-
trix. Thus, class discrimination can be performed by analyzing the canonical correlations
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of the class-wise orthogonal subspaces. The similarity of the subspaces is given as the
aggregation of the canonical correlations by

S (Ui,U j) = tr(Λ), (4)

and Nearest Neighbor (NN) classification is performed based on the similarity measure.

3 Incremental Learning of Orthogonal Subspaces
In practice, the eigenvectors having the eigenvalues which are exactly equal to one in (1),
do not often exist. Instead, the eigenvectors corresponding to the largest few eigenvalues
can be exploited. Note that in the space projected by matrix Z in Section 2, the most
important basis vectors for each class which are the eigenvectors corresponding to the
largest eigenvalues, are at the same time the least significant basis vectors for the ensemble
of the rest of the classes. Thus, the classical orthogonal subspaces (1) can be generalized
into the subspaces spanned by the components Ui s.t.

wiUT
i ZT RiZUi = ∆i, ∑

j 6=i
w jUT

i ZT R jZUi = I−∆i, (5)

where ∆i is the diagonal matrix corresponding to the largest few eigenvalues. There
are many previous studies about incremental PCA, e.g. [14], but the involvement of the
successive eigenvalue problems of the correlation matrices in the Orthogonal Subspace
Method (OSM) in Section 2 makes the incremental learning difficult. We propose the
incremental OSM solution by the three steps: update of the principal components of each
class correlation matrix, update of those of the total correlation matrix and the computa-
tion of the orthogonal components only using both updated principal component sets. The
concept of the sufficient spanning set [14] is conveniently exploited in each step to reduce
the dimension of the eigenvalue problems. The proposed method provides the same solu-
tion as the batch-mode OSM with far lower computational cost. When new data is added
to the existing data set, all existing orthogonal subspace models Ui, i = 1, ...,C (C is the
number of classes) are incrementally updated to get new orthogonal subspaces described
by U ′

i as follows. Here, we assume the equal priori probabilities for all classes for sim-
plicity.

1) Update of principal components of class correlation matrix. Let the number of
samples, eigenvector and eigenvalue matrices corresponding to the first few eigenvalues
of the i-th class correlation matrix Ri in the existing data be (Mi,Pi,Λi) respectively. The
set (Mn

i ,Pn
i ,Λn

i ) similarly denotes those of the new data. The update is defined as the
functional form by

F1(Mi,Pi,Λi,Mn
i ,Pn

i ,Λn
i ) = (M′

i ,P
′
i ,Λ

′
i). (6)

Note this is applied only to the classes having the new data. As the updated class correla-
tion matrix is R′i ' Mi

M′
i
PiΛiPT

i + Mn
i

M′
i
Pn

i Λn
i Pn

i
T where M′

i = Mi +Mn
i , the sufficient spanning

set of R′i can be given as ϒi = H ([Pi, Pn
i ]), where H is an orthonormalisation function

of column vectors (e.g. QR decomposition). The function H also eliminates any zero
vectors after the orthonormalisation to further reduce the number of the sufficient compo-
nents. Then, the updated principal components can be written by P′i = ϒiQi, where Qi is a
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rotation matrix. By this representation, the eigenproblem of the updated class correlation
matrix is changed into a new low dimensional eigenproblem by

R′i ' P′i Λ′iP
′T
i = ϒiQiΛ′iQ

T
i ϒT

i → ϒT
i (

Mi

M′
i
PiΛiPT

i +
Mn

i
M′

i
Pn

i Λn
i Pn

i
T )ϒi ' QiΛ′iQ

T
i . (7)

Note that the new eigenvalue problem requires only O(di
3) computations, where di is the

number of columns of ϒi. The total computational cost of this stage takes O(Cn× (d3
i +

min(N,Mn
i )3)), where N is the dimension of input space and Cn is the number of classes

in the new data given. The latter term is for computing (Mn
i ,Pn

i ,Λn
i ) from the new data.

2) Update of principal components of total correlation matrix. The subsequent update
is described as

F2(MT ,PT ,ΛT , Mn
i ,Pn

i ,Λn
i ) = (M′

T ,P′T ,Λ′T ) i = 1, ...,Cn, (8)

where MT = ∑C
i=1 Mi, PT ,ΛT are the first few eigenvector and eigenvalue matrices of the

total correlation matrix of the existing data. Cn represents the class number of the new
data. The updated total correlation matrix is

R′T '
MT

M′
T

PT ΛT PT
T +

Mn
T

M′
T

Cn

∑
i=1

Pn
i Λn

i PnT
i (9)

where M′
T = MT +Mn

T , Mn
T = ∑Mn

i . The sufficient spanning set of R′T can be given as

ϒT = H ([PT ,Pn
1 , ...,Pn

Cn ]) (10)

and P′T = ϒT QT ,where QT is a rotation matrix. Accordingly, the new small dimensional
eigenproblem is obtained by

R′T ' P′T Λ′T P′TT → ϒT
T (

MT

M′
T

PT ΛT PT
T +

Mn
T

M′
T

Cn

∑
i=1

Pn
i Λn

i PnT
i )ϒT ' QT Λ′T QT

T (11)

The computation requires O(d3
T ), where d3

T is the sufficient number of components of ϒT .
Note that all Pn

i have already been produced at the previous step.

3) Update of orthogonal components of all classes. The final step only exploits the
updated principal components of the previous steps, which is defined as

F3(P′i ,Λ
′
i, P′T ,Λ′T ) = U ′

i , i = 1, ...,C. (12)

where U ′
i denotes the updated orthogonal components of the i-th class data. Let Z =

P′T Λ′T
−1/2, then, ZT R′T Z = I. The remaining problem is to find the components which

maximize the variance of the projected data ZT R′iZ. The sufficient spanning set of the
projection data can be given by Φi = H (P′T

T P′i ). Then, the eigenproblem to solve is

ZT R′iZ = ΦiQi∆iQT
i ΦT

i → ΦT
i ZT P′i Λ′iP

′T
i ZΦi = Qi∆iQT

i , (13)

where Qi,∆i are a rotation matrix and eigenvalue matrix respectively. The final orthogo-
nal components are given as U ′

i = ΦiQi, i = 1, ...,C. This computation only takes O(di
3),
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where di is the number of columns of P′i . Note usually di < dT , where dT is the number
of columns of P′T .

Batch OSM vs. incremental OSM for time and space complexity. The batch computa-
tion of OSM for the combined data costs O(min(N,M′

T )3 +C×min(N,M′
i)

3), where the
former term is for the diagonalization of the total correlation matrix and the latter for the
projected data of the C classes (Refer to Section 2 for the batch-mode computation). The
batch computation also requires all data vectors or N×N correlation matrices to be kept
track of. By contrast, the proposed incremental solution is much more time-efficient with
the costs of O(Cn×(d3

i +min(N,Mn
i )3)), O(d3

T ) and O(C×di
3) for the three steps respec-

tively. Note di ¿M′
i , dT ¿M′

T , Mn
i ¿M′

i . The proposed incremental algorithm is also
very economical in space costs, which corresponds to the data (Pi,Λi,PT ,ΛT ), i = 1, ...,C.

4 Locally Orthogonal Subspace Method (LOSM)
In the generalized orthogonal subspaces (5), the priori probabilities of classes w j can be
better set up to improve the discriminatory powers of the classes with their rival classes.
Rather than equal priors for all classes, higher priors are given to the neighboring classes
of the i-th class by

w j → wi
j

{
∝ S (Ui,U j) for j = 1, ...,C, j 6= i,
= 0 for j = i

where S is the canonical correlation function defined in Section 2. Then, the i-th class
locally orthogonal subspace U i

i is similarly computed as Ui in Section 2 by replacing
the total correlation matrix RT with the class-specific total correlation matrix by Ri

T =
∑C

j=1 wi
jR j and diagonalizing ZT RiZ. The weights wi

j can also be binary-valued in the
same concept s.t. wi

j = 1, if S (U j,Ui) > thres, wi
j = 0 otherwise. In this way, the local

orthogonality of classes is more emphasized.

Normalization. When a new test set is given, the locally orthogonal components of the
new test set are class-wise extracted with Ri

T for i = 1, ...,C. If we let U i
q as the locally

orthogonal components of the new test set for the i-th model class, NN recognition is
performed with the normalized scores

(S (U i
i ,U

i
q)−mi)/σi, (14)

where mi,σi are the mean and standard deviation of matching scores of a validation set
with the i-th model class. As each class model exploits a different total correlation matrix,
the score normalization process is important.

Time-efficient matching. Batch computation of the C locally orthogonal subspaces of a
given new test set is time-consuming, which takes O(C×min(N,Mq)3), where Mq is the
number of vectors in the new test set. This computational cost can be significantly reduced
using the update function F3(Pq,Λq,Pi

T ,Λi
T ) in Section 3, where Pq,Λq are the eigen-

vector and eigenvalue matrices of the correlation matrix of the new test set and Pi
T ,Λi

T
for the class specific total correlation matrix respectively. Note that this only requires
O(C× d3

q), dq is the number of columns of Pq. The subsequent canonical correlation
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Figure 1: Database: (top) Frames from a typical video sequence from the database used for eval-
uation. The motion of the user was not controlled, leading to different poses. (bottom) 7 different
illumination conditions in databases.

matching with C orthogonal subspace models is not computationally expensive as it costs
O(C×d3) (Refer to Section 2), where d is the dimension of the orthogonal subspaces.

Incremental update of LOSM. The computational cost of the incremental locally OSM
is increased by that of the update of the components of the C class-specific total correlation
matrices, but it is still much cheaper than the batch OSM. First, the principal components
of class correlation matrices are updated by F1 in the previous section. The update of the
principal components of the weighted total correlation matrices defined s.t.

F ′
2(MT ,Pi

T ,Λi
T ,wi

j,M
n
j ,P

n
j ,Λ

n
j) = (M′

T ,Pi ′
T ,Λi ′

T ) i = 1, ...,C, j = 1, ...,Cn. (15)

is achieved as follows. The updated weighted total correlation matrix is given as

Ri ′
T =

MT

M′
T

Pi
T Λi

T Pi T
T +

Mn
T

M′
T

Cn

∑
j=1

wi
jP

n
j Λn

jP
nT
j . (16)

Regardless of the extra weight terms, the sufficient spanning set of Ri ′
T is similarly given

by ϒi
T = H ([Pi

T ,Pn
1 , ...,Pn

Cn ]), then the new eigen-problems and the updated components
are similarly given as the second step in Section 3. If we assume that the NN recognition
has already been performed for the given new test sets by the scores of S (U i

i ,U
i
j), i =

1, ...,C, j = 1, ...Cn, the weights wi
j can be set up proportionally to these scores. The final

locally orthogonal components are also similarly updated by F3, replacing P′T ,Λ′T with
Pi ′

T ,Λi ′
T .

5 Evaluation
We used the face video database with 100 subjects. For each person, 7 video sequences
of the individual in arbitrary motion were collected. Each sequence was recorded in a
different illumination setting for 10s at 10fps and 320×240 pixel resolution (see Figure 1).
Following automatic localization using a cascaded face detector [13] and cropping to
the uniform scale, images of faces were histogram equalized. Each sequence is then
represented by a set of raster-scanned vectors of the normalized images.

5.1 Accuracy and time complexity of the incremental OSM
The incremental OSM yielded the same solution as the batch-mode OSM for the data
merging scenario, where the 100 sequences of 100 face classes of a single illumination
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Figure 2: Batch vs. Incremental OSM-1: (a) Example orthogonal components, which are com-
puted by the incremental and the batch-mode, are very alike. (b) Insensitiveness of the incremental
OSM to the dimensionality of the subspace of the total correlation matrix. The incremental so-
lution yields the same solution as the batch-mode, just provided the enough dimensionality of the
subspaces.

setting were initially used for learning the orthogonal subspaces. Then, the sets of the 100
face classes of other illumination settings were additionally given for the update. We set
the total number of updates including the initial batch computation to be 6 and the num-
ber of images to add at each iteration around 10,000. The dimensionality of the uniformly
scaled images was 2,500 and the number of orthogonal components was around 10, which
varies for more than 99% of the energy from the eigenvalue plot. See Figure 2 (a) for the
example orthogonal component computed by the proposed incremental algorithm and the
batch-mode. Figure 2 (b) shows the insensitivity of the incremental OSM to the dimen-
sionality of the subspace of the total correlation matrix. The incremental OSM yields the
same accuracy as the batch-mode OSM, just provided the enough dimensionality of the
subspace. The subspace dimensionality was automatically chosen from the eigenvalues
plots of the correlation matrices at each update. Figure 3 (a) shows the accuracy improve-
ment of the incremental OSM according to the number of updates. It efficiently updates
the existing orthogonal subspace models over new evidences contained in the additional
data sets, giving gradual accuracy improvements. The computational costs of the batch
OSM and the incremental OSM are compared in Figure 3 (b). Whereas the computational
cost of the bath-mode is largely increased as the data is repeatedly added, the incremental
OSM keeps the cost of the update low.

5.2 Accuracy of Locally OSM
Another experiment was designed for comparing accuracy of several methods with the
locally orthogonal subspaces. The training of all the algorithms was performed with the
data acquired in a single illumination setting and testing with a single other setting. An
independent illumination set with both training and test sets was exploited for the val-
idation. We compared the performance of Mutual Subspace Method (MSM) [4] as a
gauging method, where the dimensionality of each subspace is 10 representing more
than 99% energy of the data, CMSM [8] used in a state-of-the-art commercial system
FacePass [9], where the dimension of the constrained subspace was determined to be
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Figure 3: Batch vs. Incremental OSM-2: (a) Accuracy improvement of the incremental OSM for
the number of updates. (b) Computational costs of the batch and incremental OSM.
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Figure 4: Accuracy comparison.

360, which yielded the best accuracy for the validation set, canonical correlations of Or-
thogonal Subspace Method (OSM), and canonical correlations of the Locally Orthogonal
Subspace Method (LOSM), where the class priori probabilities were set to be binary-
valued by a certain threshold. The threshold typically gave a half of the total classes
as the neighboring classes. The component numbers of the total correlation matrix and
the orthogonal subspaces of OSM and LOSM were 200 and 10 respectively. Figure 4
compares the recognition accuracy of all methods, where the experiment numbers corre-
spond to the combinations of the training/test lighting sets, which were chosen as the most
difficult scenarios for MSM. In Figure 4, the OSM was superior to CMSM and the pro-
posed locally orthogonal subspace method (LOSM) outperformed all the other methods.
Theoretically, the proposed incremental solution of LOSM provides the same solution of
the batch computation of LOSM with slightly more computational costs than that of the
incremental OSM.

6 Conclusions
In the object recognition task involving image sets, the development of an efficient in-
cremental learning method for handling increasing volumes of image sets is important.
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Image data emanating from environments dramatically changing from time to time is con-
tinuously accumulated. The proposed incremental solution of the orthogonal subspaces
and the locally orthogonal subspaces facilitates a highly efficient learning to adapt to new
data sets. The same solution as the bath-computation is obtained with far lower complex-
ity in both time and space. In the recognition experiments using 700 face image sets, the
proposed LOSM delivered the best accuracy over all other relevant methods.
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