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Abstract. We address the problem of comparing sets of images for ob-
ject recognition, where the sets may represent arbitrary variations in an
object’s appearance due to changing camera pose and lighting condi-
tions. The concept of Canonical Correlations (also known as principal
angles) can be viewed as the angles between two subspaces. As a way
of comparing sets of vectors or images, canonical correlations offer many
benefits in accuracy, efficiency, and robustness compared to the classical
parametric distribution-based and non-parametric sample-based meth-
ods. Here, this is demonstrated experimentally for reasonably sized data
sets using existing methods exploiting canonical correlations. Motivated
by their proven effectiveness, a novel discriminative learning over sets is
proposed for object recognition. Specifically, inspired by classical Linear
Discriminant Analysis (LDA), we develop a linear discriminant func-
tion that maximizes the canonical correlations of within-class sets and
minimizes the canonical correlations of between-class sets. The proposed
method significantly outperforms the state-of-the-art methods on two
different object recognition problems using face image sets with arbi-
trary motion captured under different illuminations and image sets of
five hundred general object categories taken at different views.

1 Introduction

Whereas most previous works for object recognition have focused on the prob-
lems of single-to-single or single-to-many vector matching, many tasks can
be cast as matching problems of vector sets (i.e. many-to-many) for robust
object recognition. In object recognition, e.g., a set of vectors may represent a
variation in an object’s appearance – be it due to camera pose changes, non-rigid
deformations or variation in illumination conditions. The objective of this work
is to efficiently classify a novel set of vectors to one of the training classes, each
also represented by one or several vector sets. In this study, sets may be derived
from sparse and unordered observations acquired by e.g. multiple still shots of
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Fig. 1. Examples of image sets. (a) Two sets (top and bottom) contain images of an
3D object taken from different views but with a certain overlap in their views. (b) Face
image sets collected from videos taken under different illumination settings. Face pat-
terns of the two sets (top and bottom) vary in both lighting and pose.

a three dimensional object or a long term surveillance systems, where a subject
would not face the camera all the time. Without temporal coherence, training
sets can be conveniently augmented. See Figure 1 for examples of pattern sets of
objects. The previous works exploiting temporal coherence between consecutive
images [1, 2] are irrelevant to this study. Furthermore, this work does not ex-
plicitly exploit any data-semantics in images, but is purely based on automatic
learning of given labelled image sets. Therefore, we expect that the proposed
method can be applied to many other problems requiring a set comparison.

Relevant previous approaches for set matching can be broadly partitioned
into model-based and sample-based methods. In the parametric model-based
approaches [3, 4], each set is represented by a parametric distribution function,
typically Gaussian. The closeness of the two distributions is then measured by
the Kullback-Leibler Divergence (KLD) [3]. Due to the difficulty of parameter
estimation under limited training data, these methods easily fail when the train-
ing and test sets do not have strong statistical correlations.

More suitable methods for comparing sets are based on the matching of pair-
wise samples of sets, e.g. Nearest Neighbour (NN) or Hausdorff distance match-
ing [5]. The methods are based on the premise that similarity of a pair of sets
is reflected by the similarity of the modes (or NNs) of the two respective sets.
This is useful in many computer vision applications, where the data acquisition
conditions and the semantics of sets may change dramatically over time. How-
ever, they do not take into account the effect of outliers as well as the natural
variability of the sensory data due to the 3D nature of the observed objects.
Note also that such methods are very computationally expensive as they require
a comparison of every pairwise samples of any two sets.

Another model-based approaches are based on the concept of canonical
correlations, which has attracted increasing attention for image set matching
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in [8]-[11], following the early works [12, 13]. Each set is represented by a linear
subspace and the angles between two subspaces are exploited as a similarity
measure of two sets. As a method of comparing sets, the benefits of canoni-
cal correlations, as compared with both, distribution based and sample based
matching, have been noted in [4, 10]. A nonlinear extension of canonical correla-
tion has been proposed in [9, 10]. The previous work called Constrained Mutual
Subspace Method (CMSM) [11] is the most related with this paper. In CMSM,
a constrained subspace is defined as the subspace in which the entire class pop-
ulation exhibits small variance. The authors showed that the sets of different
classes in the constrained subspace had small canonical correlations. However,
the principle of CMSM is rather heuristic, especially the process of selecting the
dimensionality of the constrained subspace. If the dimensionality is too low, the
subspace will be a null space. In the opposite case, the subspace simply passes all
the energy of the original data and thus could not play a role as a discriminant
function.

Given a similarity function of two sets, an important problem in set classi-
fication is how to learn discriminative information (or a discriminant function)
from data associated with the given similarity function. To our knowledge, the
topic of discriminative learning over sets has not been given a proper attention
in literature. This paper presents a novel method for an optimal linear discrimi-
nant function of image sets based on canonical correlations. A linear discriminant
function that maximizes the canonical correlations of within-class sets and min-
imizes the canonical correlations of between-class sets is devised, by analogy to
the optimization concept of Linear Discriminant Analysis (LDA) [6]. The linear
mapping is found by a novel iterative optimization algorithm. The discriminative
capability of the proposed method is shown to be significantly better than the
method [8] that simply aggregates canonical correlations and the k-NN meth-
ods in LDA subspace [5]. Compared with CMSM [11], the proposed method is
more practical by easiness of feature selection as well as it is more theoretically
appealing.

2 Discriminative Canonical Correlations (DCC)

2.1 Canonical Correlations

Canonical correlations, which are cosines of principal angles 0 ≤ θ1 ≤ . . . ≤ θd ≤
(π/2) between any two d-dimensional linear subspaces L1 and L2 are uniquely
defined as:

cos θi = max
ui∈L1

max
vi∈L2

uT
i vi (1)

subject to uT
i ui = vT

i vi = 1, uT
i uj = vT

i vj = 0, for i 6= j. Of the various ways
to solve this problem, the Singular Value Decomposition (SVD) solution [13] is
more numerically stable. The SVD solution is as follows: Assume that P1 ∈ Rn×d

and P2 ∈ Rn×d form unitary orthogonal basis matrices for two linear subspaces,
L1 and L2. Let the SVD of PT

1 P2 be

PT
1 P2 = Q12ΛQT

21 s.t. Λ = diag(σ1, ..., σd) (2)
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Fig. 2. Principal components vs. canonical vectors. (a) The first 5 principal
components computed from the four image sets shown in Figure 1. The principal com-
ponents of the different image sets (see each column) show significantly different varia-
tions even for the same objects. (b) The first 5 canonical vectors of the four image sets.
Every pair of canonical vectors (each column) well captures the common modes (views
and illuminations) of the two sets, i.e. the pairwise canonical vectors are almost similar.
The canonical vectors of different dimensions represent different pattern variations e.g.
in pose or lighting.

where Q12,Q21 are orthogonal matrices, i.e. QT
ijQij = QijQT

ij = Id. Canoni-
cal correlations are {σ1, ..., σd} and the associated canonical vectors are U =
P1Q12 = [u1, ...,ud], V = P2Q21 = [v1, ...,vd]. The canonical correlations tell
us how close are the closest vectors of two subspaces. Different canonical corre-
lations tell about the proximity of vectors in other dimensions (perpendicular to
the previous ones) of the two subspaces. See Figure 2 for the canonical vectors
computed from the sample image sets given in Figure 1. Whereas the principal
components vary for different imaging conditions of the sets, the canonical vec-
tors well capture the common modes of the two different sets.

Compared with the parametric distribution-based matching, this concept is
much more flexible as it effectively places a uniform prior over the subspace of
possible pattern variations. Compared with the NN matching of samples, this
approach is much more stable as patterns are confined to certain subspaces. The
low computational complexity of matching by canonical correlations is also much
favorable.

3 Learning a Discriminant Function of Canonical
Correlations

3.1 Problem Formulation

Assume m sets of vectors are given as {X1, ...,Xm}, where Xi describes a data
matrix of the i th set containing observation vectors (or images) in its columns.
Each set belongs to one of object classes denoted by Ci. A d-dimensional linear
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subspace of the i th set is represented by an orthonormal basis matrix Pi ∈ Rn×d

s.t. XiXT
i ' PiΛiPT

i , where Λi,Pi are the eigenvalue and eigenvector matrices
of the d largest eigenvalues respectively and n denotes the vector dimension. We
define a transformation matrix T s.t. T : Xi → Yi = TT Xi. The matrix T
is to transform images so that the transformed image sets are more class-wise
discriminative using canonical correlations.

Representation. Orthonormal basis matrices of the subspaces for the trans-
formed data are obtained from the previous matrix factorization of XiXT

i :

YiYT
i = (TT Xi)(TT Xi)T ' (TT Pi)Λi(TT Pi)T (3)

Except when T is an orthogonal matrix, TT Pi is not generally an orthonormal
basis matrix. Note that canonical correlations are only defined for orthonormal
basis matrices of subspaces. Any orthonormal components of TT Pi now defined
by TT P′i can represent an orthonormal basis matrix of the transformed data.
See Section 3.2 for details.

Set Similarity. The similarity of any two transformed data sets are defined
as the sum of canonical correlations by

Fij = max
Qij ,Qji

tr(Mij), (4)

Mij = QT
ijP

′T
i TTT P′jQji or TT P′jQjiQT

ijP
′T
i T, (5)

as tr(AB) = tr(BA) for any matrix A,B. Qij ,Qji are the rotation matrices
defined in the solution of canonical correlations (2).

Discriminant Function. The discriminative function T is found to maximize
the similarities of any pairs of sets of within-classes while minimizing the simi-
larities of pairwise sets of between-classes. Matrix T is defined by

T = arg max
T

∑m
i=1

∑
k∈Wi

Fik∑m
i=1

∑
l∈Bi

Fil
(6)

where Wi = {j |Xj ∈ Ci} and Bi = {j |Xj /∈ Ci}. That is, the two sets Wi, Bi

denote the within-class and between-class sets of a given set class i respectively,
which are similarly defined with [7].

3.2 Iterative Optimization

The optimization problem of T involves the variables of Q,P′ as well as T. As
the other variables are not explicitly represented by T, a closed form solution
for T is hard to find. We propose an iterative optimization algorithm. Specifi-
cally, we compute an optimal solution for one of the three variables at a time
by fixing the other two and repeating this for a certain number of iterations.
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Algorithm 1. Discriminative Canonical Correlations (DCC)

Input: All Pi ∈ Rn×d Output: T ∈ Rn×n

1.T ← In

2.Do iterate the followings:
3. For all i, do QR-decomposition: TT Pi = Φi∆i → P′i = Pi∆

−1
i

4. For every pair i, j, do SVD: P′Ti TTT P′j = QijΛQT
ji

5. Compute S′b =
∑m

i=1

∑
l∈Bi

(P′lQli −P′iQil)(P
′
lQli −P′iQil)

T ,

S′w =
∑m

i=1

∑
k∈Wi

(P′kQki −P′iQik)(P′kQki −P′iQik)T .

6. Compute eigenvectors {ti}n
i=1 of (S′w)−1S′b, T ← [t1, ..., tn]

7.End

Thus, the proposed iterative optimization is comprised of the three main steps:
normalization of P, optimization of matrices Q, and T. Each step is explained
below:

Normalization. The matrix Pi is normalized to P′i for a fixed T so that the
columns of TT P′i are orthonormal. QR-decomposition of TT Pi is performed
s.t. TT Pi = Φi∆i, where Φi ∈ Rn×d is the orthonormal matrix with the first
d columns and ∆i ∈ Rd×d is the invertible upper-triangular matrix with the
first d rows. From (3), Yi = TT Pi

√
Λi = Φi∆i

√
Λi. As ∆i

√
Λi is still an

upper-triangular matrix, Φi can represent an orthonormal basis matrix of the
transformed data Yi. As ∆i is invertible,

Φi = TT (Pi∆−1
i ) → P′i = Pi∆−1

i . (7)

Computation of rotation matrices Q. Rotation matrices Qij for every
i, j are obtained for a fixed T and P′i. The correlation matrix Mij in the left
of (5) can be conveniently used for the optimization of Qij , as it has Qij outside
of the matrix product. Let the SVD of P′Ti TTT P′j be

P′Ti TTT P′j = QijΛQT
ji (8)

where Λ is a singular matrix and Qij ,Qji are orthogonal rotation matrices.

Computation of T. The optimal discriminant transformation T is computed
for given P′i and Qij by using the definition of Mij in the right of (5) and (6).
With T being on the outside of the matrix product, it is convenient to solve for.
The discriminative function is found by

T = maxargT tr(TTSwT)/tr(TTSbT) (9)

Sw =
∑m

i=1

∑
k∈Wi

P′kQkiQT
ikP

′T
i , Sb =

∑m
i=1

∑
l∈Bi

P′lQliQT
ilP

′T
i (10)

where Wi = {j |Xj ∈ Ci} and Bi = {j |Xj /∈ Ci}. For a more stable solution,
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Fig. 3. Example of learning. (a) The cost function for the number of iterations.
Confusion matrices of the training set (b) before the learning (T = I) and (c) after the
learning. The discriminability of canonical correlations was significantly improved by
the proposed learning.

an alternative optimization is finally proposed by

T = maxargT tr(TT S′bT)/tr(TT S′wT) (11)

S′b =
∑m

i=1

∑
l∈Bi

(P′lQli −P′iQil)(P′lQli −P′iQil)T , (12)

S′w =
∑m

i=1

∑
k∈Wi

(P′kQki −P′iQik)(P′kQki −P′iQik)T . (13)

Note that no loss of generality is incurred by this modification of the objective
function as

AT B = I− 1/2 · (A−B)T (A−B),

where A = TT P′iQij , B = TT P′jQji. The solution {ti}n
i=1 is obtained by

solving the following generalized eigenvalue problem: S′bt = λS′wt. When S′w is
non singular, the optimal T is computed by eigen-decomposition on (S′w)−1S′b.
Note also that the proposed learning can avoid a singular case of S′w by pre-
applying PCA to data similarly with the Fisherface method [6] and speed up by
using a small number of nearest neighboring sets for Bi,Wi in (6) like [7].

With the identity matrix I ∈ Rn×n as the initial value of T, the algorithm
is iterated until it converges to a stable point. A Pseudo-code for the learning
is given in Algorithm 1. See Figure 3 for an example of learning. It converges
fast and stably and dramatically improves the discriminability of the simple
aggregation method of canonical correlations (i.e. T = I). After T is found to
maximize the canonical correlations of within-class sets and minimize those of
between-class sets, a comparisons of any two sets is achieved using the similarity
value defined in (4).

4 Experimental Results and Discussion

4.1 Experimental Setting for Face Recognition

Database and Protocol. We have acquired a database called the Cambridge-
Toshiba Face Video Database with 100 individuals of varying age and eth-
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(a)
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Fig. 4. Face data sets. (a) Frames of a typical face video sequence. (b) Face proto-
types of 7 different lighting sequences.

nicity, and equally represented genders. For each person, 7 video sequences of
the person in arbitrary motion were collected. Each sequence was recorded in a
different illumination setting for 10s at 10fps and 320×240 pixel resolution (see
Figure 4). Following automatic localization using a cascaded face detector [14]
and cropping to the uniform scale of 20×20 pixels, images of faces were histogram
equalized. Training of all the algorithms was performed with data acquired in a
single illumination setting and testing with a single other setting. We used 18
randomly selected training/test combinations for reporting identification rates.

Comparative Methods. We compared the performance of our learning algo-
rithm (DCC) to that of:

– K-L Divergence algorithm (KLD) [3],
– k-Nearest Neighbours (k-NN) and Hausdorff distance 3 in (i) PCA, and (ii)

LDA [6] subspaces estimated from training data [5],
– Mutual Subspace Method (MSM) [8], which is equivalent to the simple ag-

gregation of canonical correlations,
– Constrained MSM (CMSM) [11] used in a state-of-the-art commercial system

FacePass [16].

Dimensionality Selection. In KLD, 96% of data energy was explained by the
principal subspace of training data used. In NN-PCA, the optimal number of
principal components was 150 without the first three. In NN-LDA, PCA with
150 dimensions (removal of the first 3 principal components did not improve
the LDA performance) was applied first to avoid singularity problems and the
best dimension of LDA subspace was 150 again. In both MSM and CMSM, the
PCA dimension of each image set was fixed to 10, which represents more than
98% of data energy of the set. All 10 canonical correlations were exploited. In
CMSM, the best dimension of the constrained subspace was found to be 360 in
terms of the test identification rates as shown in Figure 5. The CMSM exhibits
a peaking and does not have a principled way of choosing dimensionality of the
constrained subspace in practice. By contrast, the proposed method provided
constant identification rates regardless of dimensionality of T beyond a certain
point, as shown in Figure 5. Thus we could fix the dimensionality at 400 for all
3 d(X1, X2) = minx1∈X1 maxx2∈X2 d(x1, x2)
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Fig. 5. Dimensionality selection for the proposed method and CMSM. The
proposed method is more favorable than CMSM in dimensionality selection. CMSM
shows a high peaking. The accuracy of CMSM at 400 is just equivalent to that of simple
aggregation of canonical correlations.

experiments. This behaviour is highly beneficial from the practical point of view.
The PCA dimension of image sets was also fixed to 10 for the proposed method.

Construction of Within-class Sets for the proposed method. In the face
image set experiment, the images drawn from a single video sequence of arbitrary
head movement were randomly divided into the two within-class sets. The test
recognition rates changed by less than 1-2 % for the different trials of random
partitioning. In the experiment of general object recognition in Section 4.3, the
two sets defined according to different viewing scopes comprised the within class
sets.

4.2 Accuracy Comparison for Face Experiments

The 18 experiments were arranged in the order of increasing K-L Divergence
between the training and test data. Lower K-L Divergence indicates more sim-
ilar conditions. The identification rates of the evaluated algorithms is shown in
Figure 6.

First, different methods of measuring set similarity were compared in Figure 6
(a). Most of the methods generally had lower recognition rates for experiments
having larger KL-Divergence. The KLD method achieved by far the worst recog-
nition rate. Seeing that the illumination conditions varied across data and that
the face motion was largely unconstrained, the distribution of within-class face
patterns was very broad, making this result unsurprising. As representatives
of non-parametric sample-based matching, the 1-NN, 10-NN, and Hausdorff-
distance methods defined in the PCA subspace were evaluated. It was observed
that the Hausdorff-distance measure provided consistent but far poorer results
than the NN methods. 10-NN yielded the best accuracy of the three, which is
worse than MSM by 8.6% on average. Its performance greatly varied across the
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(a) (b)

Fig. 6. Identification rates for the 18 experiments. (a) Methods of set match-
ing. (b) Methods of set matching combined with discriminative transformations. (The
variation between the training and test data of the experiments increases along the
horizontal axis. Note that (a) and (b) have different scales for vertical axis.)

experiments while MSM showed robust performance under the different experi-
mental conditions.

Second, methods combined with any discriminant function were compared
in Figure 6 (b). Note that Figure 6 (a) and (b) have different scales. By taking
MSM as a gauging proxy, 1-NN, 10-NN, and Hausdorff distance in the LDA
subspace and CMSM were compared with the proposed algorithm. Here again,
10-NN was the best of the three LDA methods. For better visualization of com-
parative results, the performance of 1-NN and Hausdorff in LDA was removed
from the figure. 10-NN-LDA yielded a big improvement over 10-NN-PCA but
the accuracy of the method again greatly varied across the experiments. Note
that 10-NN-LDA outperformed MSM for similar conditions between the train-
ing and test sets, but it became noticeably inferior as the conditions changed.
The recognition rate of NN-LDA was considerably inferior to our method for
the more difficult experiments (experiments 11 to 18 in Figure 6 (b)). NN-LDA
yielded just 75% recognition rate for exp.18 where two very different illumina-
tion settings (see last two of Figure 4 (b)) were used for the training and test
data. The accuracy of our method remained high at 97%. Note that the exper-
iments 11 to 18 in Figure 6 are more realistic than the first half because they
have greater variation in lighting conditions between training and testing. The
proposed method also constantly provided a significant improvement over MSM.
Just one exception for the proposed method due to overfitting were noted. Ex-
cept this single case, the proposed method improved MSM by 5-10 % reaching
almost more than 97% recognition rate.

Although the proposed method achieved a comparable accuracy with CMSM
in the face recognition experiment, the latter had to be optimised aposteriori by
dimensionality selection. By contrast, DCC does not need any feature selec-
tion. The underlying concept of CMSM is to orthogonalize different class sub-
spaces [17], i.e. to make Pi

T Pj = O if Ci 6= Cj , where O is a zero matrix.
Then, canonical correlations (2) of the orthogonal subspaces become zeros as
tr(QT

ijPi
T PjQji) = 0. However, subspaces can not always be orthogonal to all

the other subspaces. Then, a direct optimization of canonical correlations in the
proposed method would be preferred.
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(a)
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Fig. 7. ALOI experiment. (a) The training set consists of 18 images taken at every
10 degree. (b) Two test sets are shown. Each test set contains 9 images at 10 degree
intervals, different from the training set. (c) Cumulative identification plots of several
methods.

4.3 Experiment on Large Scale General Object Classes

The ALOI database [15] with 500 general object categories of different viewing
angles provides another experimental data set for the comparison. Object images
were segmented from the simple background and scaled to 20×20 pixel size.
The training and five test sets were set up with different viewing angles of the
objects as shown in Figure 7 (a) and (b). All images in the test sets had at least
5 degree pose difference from every sample of the training set. The methods of
MSM, NN-LDA and CMSM were compared with the proposed method in terms
of identification rate. The PCA dimensionality of each set was fixed to 5 and
thus 5 canonical correlations were exploited for MSM, CMSM and the proposed
method. Similarly, 5 nearest neighbours were used in LDA. See Figure 7 (c) for
the cumulative identification rates. Unlike the face experiment, NN-LDA yielded
better accuracy than MSM. This might be due to the nearest neighbours of the
training and test set differed only slightly by the five degree pose difference
(The two sets had no changes in lighting and they had accurate localization of
the objects.). Here again, the proposed method were substantially superior to
both MSM and NN-LDA. The proposed method outperformed even the best
behaviour of CMSM in this scenario.

4.4 Computational Complexity

The matching complexity of the methods using canonical correlations, O(d3), is
far lower than that of the sample-based matching methods such as k-NN, O(c2n),
where d is the subspace dimension of each set, c is the number of samples of each
set and n is the dimensionality of feature space, since d ¿ c, n.

5 Conclusions

A novel discriminative learning framework has been proposed for object recog-
nition using canonical correlations of image sets. The proposed method has been
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evaluated on both face image sets obtained from videos and image sets of five
hundred general object categories. The new technique facilitates effective dis-
criminative learning over sets, thus providing an impressive set classification ac-
curacy. It significantly outperformed the KLD method representing a parametric
distribution-based matching and NN in both PCA/LDA subspaces as examples
of non-parametric sample-based matching. It also largely outperformed MSM
and achieved a comparable accuracy with the best behavior of CMSM but, more
pertinently, without the need for feature selection. The proposed method is also
more theoretically appealing than CMSM.
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