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Abstract

Some scenes of violent crime contain blood stains. Blood
spatter stains occur when blood falls passively due to force
being applied to a body. There is a well established though
extremely tedious technique by which a specially trained
forensic technician can analyse the individual blood spots.
This procedure estimates the body’s 2D location on the
floorplan when the body was impacted. Our image analysis
algorithm contributes an automatic and accessible alternative
that could be exploited at crime scenes, assuming the stains
are known to be the result of spatter. This paper presents our
approach and the results of comparative experiments we used
to confirm the accuracy of the algorithm.

1 Introduction and Background

Blood spatter analysis is performed by forensics experts at
crime scenes where impact on a body has caused blood to
fly off and land on surrounding surfaces. The resulting stains
are affected by many physical variables, such as speed, liquid
density, and the material properties of the surface. However,
the shape of the stains, in this case the spatter pattern, does
reveal information that can be useful to investigators. In 1895,
Piotrowski [8] was the first to propose that the elongated shape
and layout of the stains indicated the location of a victim’s head
at the time it was subjected to trauma.

Subsequent developments have led to the emergence of Blood
Spatter Analysis as a forensic specialisation [4]. While
great care will continue to be necessary on the part of the
expert, our work proposes an image analysis technique that
can automate aspects of gathering and analysing the data.
Our main contribution is an algorithm that processes digital
images of the crime scene to obtain the same information
as the current but incredibly tedious “string method.” Our
secondary contribution is the exploitation of calibration objects
to perform image rectification, producing shot-from-above
images of the crime scene.

Blood is a complex non-Newtonian viscoelastic fluid. In
contrast to Newtonian fluids, blood drops do not exhibit
“wobble” after separating. While air resistance still affects
the otherwise spherical shape of an airborne blood drop,
such an approximation of shape is considered acceptable in

Figure 1: BackTrackTM software allows a user to click, specifying
endpoints of the plumb line and points on the blood spot’s major axis.
Screenshot courtesy of Fred Carter, Carleton University.

practice [10]. Ideally, once the sphere lands on a flat surface,
the collision flattens the liquid into an elongated shape. In
reality, the collision is a complex interaction that also produces
various secondary stains, but our focus is the primary stain,
which is elliptical. Neglecting wind, the major axis of the
ellipse indicates a ray along the drop’s trajectory from its point
of origin. When one physical blow generates two non-colinear
stains on a flat floor, the point of convergence of the two flight
directions reveals the 2D location of the blood source. If
more stains are available, the localisation is overconstrained,
yielding an area from which the blood likely originated.
Blood from multiple impacts should produce concentrations of
intersections.

The original “string method” consisted of physically pinning
one end of a string at the tip of the blood stain’s ellipse, and
pinning the other end on the floor across the room, along the
extension of the major axis. Repeating this process for up to
hundreds of blood spots takes substantial time and effort, but
gives the forensic expert a good idea of where the victim stood
on the floorplan when hit.

The current form of the string method was developed in 1939.
Beyond information about the blood’s 2D travel direction,
Balthazard recognised that the ratio of a stain ellipse’s axes is
also useful [1]. The amount of elongation relative to the width
of the drop reveals the vertical impact angle, α, between the
blood’s flightpath and the ground. The prolific blood spatter
expert H.R. MacDonell later formalised this relationship as

α = sin−1 (
We

Le
), (1)



Figure 2: Courtesy [1]. Sequential progression of different stains that form when a blood drop collides with a flat surface. At present, only the
stain produced at initial collision is considered.

where We and Le are, respectively, the width and length of
the primary ellipse pattern. Since the blood drop’s velocity
and mass are unknown, this impact angle is only used to
approximate the height at which the trauma occurred; each
string is still stretched straight in the direction of the major
axis, but at α degrees to the ground plane. Due to the
projectile motion of the drops, this procedure at least places
an upper bound on the height at which the victim was struck.
Commercial software has been developed to compute both
Equation (1) and the major axis angle, γ, after a user clicks
points in a digital image (see Figure 1) [3, 9]. That software
also allows the angles to be stored and used to graph virtual
strings, to our knowledge, after each stain’s global position is
typed in manually. Our objective has been to automatically
perform (A) the image analysis of each stain, and (B) the
calibration of multiple images into an overhead picture with a
unified coordinate frame. We hypothesise that computer vision
could help automate and quantify the reliability of blood spatter
analysis.

2 Approach for Individual Stains

On collision with a surface, successive bloodstains form
during different phases (see Fig. 2). In the contact and collapse
phase, the stain formed is the primary spatter pattern. Further
non-primary spatter patterns are formed by displacement,
dispersion, and retraction on the surface. The general shape of
primary spatter patterns is an ellipse. Primary spatter patterns
vary little between surfaces of different materials. Their shape
is instead highly related to the dynamics of the blood drop
before it landed.

Existing ellipse fitting techniques include linear least-squares,
bias-corrected renormalisation, and other robust estimation
techniques [11]. A direct least squares fitting method was
used [5] because it is invariant to affine transformation
of the contour with high robustness. The algorithm’s
Matlab implementation was adapted to have the additional
functionality of area-calculations available in [6].

The image of blood spatter is the combination of primary and
non-primary patterns, so ellipse fitting can be unreliable when
non-primary spatter patterns dominate:

Ats = Aps

⋃
Ans. (2)

Ats is the total spatter area, while Aps and Ans are the primary
and non-primary spatter areas, respectively. It is important to

Figure 3: Outlier (top) vs. good fit of ellipse estimation (bottom),
where ellipses are shown in bright green.

Figure 4: Error area computed for outlier rejection using Equation 3.

discern primary vs. secondary stains, but as impact angles get
smaller, non-primary spatter patterns dominate. This makes
extracting ellipse features much more difficult and inaccurate.

The presence of non-primary spatter, such as a teardrop, could
falsely elongate the fitted ellipse. Therefore, such outliers must
be detected and rejected, in favour of spatter stains that are
closer to the origin. For this outlier rejection, an error property
is defined:

Aerr =
Ae

⋃
Ats − Ae

⋂
Ats

Ae

⋂
Ats

, (3)

where Aerr is the percentage error, Ae is the fitted ellipse area,
and Ats is the total spatter area.

For example, in Fig. 3, the lower stain has a better ellipse fit
than the upper stain because less secondary stain is present.
In our quantitative outlier rejection, the upper stain will have
an error area as highlighted in Fig. 4. A threshold of 90%
was applied so that only the fitted ellipses that agreed with the
spatter to a certain extent were kept. As a result, the estimates
of α had controlled deviation from the true ellipse values.

3 Impact Angle Experiments

The pattern of a bloodstain depends on the droplet’s speed,
mass, density (specifically hematocrit %), impact angle, and
also the surface on which it lands. Ideally, human blood would
have been used to test our algorithm, but we experimented



Figure 5: Apparatus used to collect experimental data of red liquid
impacting a surface at a range of angles.

instead on paint. We are seeking collaborators who can offer
real bloodstain images so we can repeat our procedure on
less idealised data. In order to gather consistent images of
paint spatter at various impact angles, the paint was dropped
vertically onto a surface that was placed at an angle to the
ground (see Figure 5). The height from which the paint was
dropped influences speed, mainly changing the non-primary
spatter patterns.

The surface used was plain photocopy paper. The apparatus
included a clamp stand, pipette, and hardboard where paper
was placed. Paint was dropped at impact angles from 90◦ to 5◦

at increments of 5◦, and at 20cm and 40cm above the paper,
with repetitions at each angle/height combination.

Figure 6: Graph from experiment showing the angle of impact
computed using either photographed or scanned sheets of paint stains.
While both are imperfect compared to the true angles, they are very
close to each other, indicating that hand-held photography of blood
spatter may not adversely affect our algorithm.

At small impact angles and low height, the paint tended to have
displacement without dispersion. But at 5◦ impact angle and
40cm above, the spatter of blood had displacement longer than
the length of the paper, so only the 20cm samples were made.

These paint stains were photographed digitally and also
scanned on a flatbed scanner to check the reliability of
handheld digital photography. The estimates of α from the
digital snapshots were consistent with those from the scanned

Figure 7: Graph showing actual vs. computed angles of impact,
measured when dropping liquid from 20cm and 40cm.

Figure 8: Absolute variance before and after outlier rejection

images (see Fig. 6). This demonstrated that careful digital
photography is reliable in real applications where scanning of
the crime scene is impossible.

Secondary teardrop stains form at small angles, elongating the
resulting pattern. A smaller width-length ratio then results in
a deflated estimate of α. The first task of the algorithm is to
extract the best possible primary pattern, whose contour points
are used for ellipse fitting. For a paint stain that has a teardrop
with a shorter tail than its primary ellipse, random sampling
of data points would stay on the primary ellipse edge more
than on the teardrop, therefore the least squares ellipse fitting
would show a peak at the primary ellipse as desired. A more
advanced sampling favoured points chosen for being further
away from the major axis of the ellipse. These points had a
higher chance of being on the primary ellipse rather than the
teardrop. However, even this sampling breaks down when the
teardrop is very long, approximately when its length exceeds
1.5 times that of the primary stain. The outlier rejection is
designed to limit the impact of such situations.

The results of our experiments are plotted in Fig. 7. The
estimated angles match the known angles to varying extents,
but track each other as expected. There appears to be an angle-
dependent bias. Interestingly, Bevel and Gardner [1] point out
that it is “Difficult for a new analyst to differentiate bloodstain



lengths, particularly those in the 10 to 35 degrees range.” This
suggests that an algorithm should also learn a compensatory
bias. While there may be some inherent difficulty with this
range of angles, we foresee using our experiment in practice,
over the entire range of angles, to find the calibration that would
bring the curves into alignment with the ground truth.

These results show the inclusion of outlier rejection, which was
crucial in significantly reducing the absolute variance. Fig. 8
shows the negative effect of including all the spatter patterns.
As the impact angles increase, the range of possible deviations
from the true angle also increases, therefore, the percentage
variance would be more appropriate when comparing the
accuracy at different angles. Bevel and Gardner again give
us an estimate of the accuracy one can expect from the string
method: “As a general rule, the angle indicated is probably
accurate to within 5 to 7 degrees.” [1] This is consistent with
the results of our automatic method being applied to simulated
blood.

Figure 9: Original angled view of the “crime” scene.

Figure 10: View of Figure 9’s scene rectification as if photographed
from overhead.

4 Application: Origin Estimation from Multiple Spots

We have established a method for estimating the direction and
angle of impact of a single passive liquid drop. The main
application of this method will be the localisation of the blood’s
origin – the 2D point on the floorplan of a crime scene where a
body was impacted, causing the spatter. Locating the origin
in 3D is discussed in the Conclusion, but requires both the
proposed algorithm and further extensions. The algorithm in
Sections 2 and 3 produces a ray from each stain to an origin.
To find the 2D origin itself, one must locate the point in the
plane where two or more rays converge.

The ability to capture meaningful images is an important
practical consideration, with two constraints. Good ellipse
fitting benefits from images where a stain is represented by a
large area of pixels, photographed with the image plane parallel
to the surface. But the other objective is to frame all of the
crime scene’s spatter in one photograph where the rays all have
the same coordinate system, and where the resulting origin can
be plotted. Since CCD resolutions are increasing but are still
finite, we propose that multiple photographs be registered to a
common virtual image; generated to look as if the camera had
been looking down at the crime scene from directly above. See
the example of Figures 9 and 10.

Rectification for the task of origin-localisation requires these
steps:

1. Calibrating the camera that took the original (angled) images of
the crime scene,

2. Specifying a virtual overhead camera that will serve as the
canonical coordinate frame,

3. Interpolation of original-pixels to synthesise the overhead
picture

4. (Optional) stitching together of overlapping versions of the
overhead image.

Our implementation serves as one example of how these steps
can be performed. It is usually reasonable to assume that one
or more visible calibration objects can be placed in the crime-
scene to facilitate Steps 1 and 2. We used a checkerboard
pattern in testing our prototype. We employed the camera
calibration toolkit of Jean-Yves Bouguet [2] to first calibrate
(off-site) a camera’s intrinsics, matrix K, using 20 images
of the calibration pattern. Then, each angled photo of the
scene, shot to include the calibration object, was processed to
determine that view’s extrinsics, Mwc, the transformation from
world to camera c’s coordinates.

The interesting part of each photograph is planar, and
calculating the homography allows us to view that plane,
filmed with the camera at an angled position, as if it were
filmed from overhead. Further details of computing a planar
scene homography are in [7]. In brief, since the intrinsics



of the virtual and the several real cameras are the same, the
homography between camera n and camera 1 is

H = KMwc1M
−1
wcn

K−1. (4)

Figures 11 and 12, and Figures 13 and 14 are examples
of photographing and rectifying different parts of the same
“crime scene.” The checkerboard pattern used for homography
calibration serves as the common anchor for both top view
rectified images. The homography transformation does not
sample the original images on a regular grid, so missing pixel
values are interpolated linearly. Future work can include
superimposing or stitching the rectified images to render a
composite visualisation that may help in court cases etc., but
the canonical coordinate frame is sufficient to make combined
estimates of the origin point.

Figure 11: Original photo01, photographed with a handheld camera
viewing the blood spatter plane at an angle.

Figure 12: Version of photo01 rectified and interpolated to appear as
if photographed from directly above.

The experiment for generating the multi-spot paint stains was
performed using red paint and light brown paper. A thin layer
of paint was located at the top of a cylindrical container, with
the liquid held together by its surface tension. A flat paddle
was swung vertically onto the top of the circular container
to simulate impact. The container was 22cm high and had a
radius at its top of 3cm.

Fig. 15 shows the image of multiple paint stains produced by
the impact. Fig. 16 shows the fitted ellipses of filtered stains

Figure 13: Color-processed photo02, also photographed with a
handheld camera viewing the same blood spatter plane at a different
arbitrary angle.

Figure 14: Version of photo02 rectified and interpolated to appear as
if photographed from directly above. Note that now, the real version of
this image and Fig. 12 have compatible size and orientation to allow
superimposing or stitching together into one canonical view of the
scene.

and the directions estimated are drawn as straight lines. The
lines cross at intercepts that represent estimates of the origin of
impact.

To locate the most probable region of the origin, we generate
2D Gaussian kernels centred where pairs of rays cross. These
kernels are combined additively. After normalising, this
produces a height field that represents the pair-wise probability
that a given 2D location is the point of origin. This constitutes
a prior for RANSAC estimation, which we speculate will also
reveal (in the form of multi-modal distributions) when the
blood spatter is the result of multiple non-collocated impacts
on the body. Running RANSAC for 500 iterations produced
a map with estimated origins that was dense at the actual
origin of impact area. Further testing is needed to establish the
accuracy and precision of this subroutine, and to evaluate the
convergence criteria of RANSAC in this case.

5 Conclusions and Future Work
We have demonstrated an automatic algorithm for analysis
of blood spatter at crime scenes. This approach serves as



Figure 15: Rectified image of experimental multi-spot blood spatter.
Note that the spatter emanated from a circular source located in the
middle of the image, at the bottom edge.

an alternative to the currently employed string method. This
innovation should serve to speed up the labour-intensive
process of localising the blood’s origin in 2D. Further,
it provides a quantitative metric that indicates with what
certainty a given location was the source of the blood spatter.
Since the experiments were performed using paint instead
of blood, further trials are necessary, and these should also
include non-white surfaces with various absorption properties.
The experiments on paint do indicate that for single-stain
analysis, the algorithm matches the accuracy expected from a
forensic investigator.

Since we derived the impact angle from each fitted ellipse and
the distance from each paint spot to the estimated origin, we
can already roughly estimate the 3D origin (height), assuming
the trajectory was straight. This however, neglects the drops’
projectile motion, and the many associated factors. To model
the dynamics of the droplet, we could estimate its speed from
its stain, to calculate the time of travel, t, and assume the initial
velocity in the vertical direction was zero.

Large spatter patterns indicate the drops had more mass, which
correlates approximately with slower-velocity impact to the
body. The smallest spatter stains are from high-velocity impact,
such as the result of gun shot wounds [10]. But significant
quantities of data must be collected before this relationship can
be learned, since the density of blood is not uniform. Blood
is a mixture of lighter plasma proteins and heavier red blood
cells (erythrocytes). These blood dynamics lead to confusion
on the relationship between velocity and the size of the drops:
density and aeration depend on age, fitness, alcohol and fatigue
levels, and are non-uniform throughout the body (most affected
by organs). Naturally, these factors are considered by forensics
experts, and it is our hope that further experiments will produce
a tool that is helpful to them.

Figure 16: Result of fitting ellipses to individual liquid stains from
Figure 15. While a few stains generate rays pointing away from the
true blood source location, most rays cross in the correct area.
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