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Abstract

This paper presents a vision-based system for interactidnardisplay via

hand pointing. An attention mechanism based on face and tietettion

allows users in the camera’s field of view to take control efititerface. Face
recognition is used for identification and customisatiohe Bystem allows
the user to control the screen pointer by tracking their fst-screen items
can be selected using one of four activation mechanismsre@usample
applications include browsing image and video collectaswell as viewing
a gallery of 3D objects. In experiments we demonstrate tifopaance of

the vision components in challenging conditions and comjitato that of

other systems.

1 Introduction

This paper presents a vision-based interface using a sirgiera on top of a display,
as shown in Fig.1. Such a system allows touch-free input astartte and has several
uses in practice: virtual remote control for a TV or for otheme appliances, gaming, or
browsing public information terminals in museums or windglvops. Here we present a
complete system which integrates (a) an attention mectmepisinitiating the interaction,
(b) face recognition for user identification and custonisa(in terms of content and
functionality) and (c) fist tracking for moving a pointer aretognition of hand gestures
such as a ‘thumb up’ or a ‘shake’ gesture for item selection.

For face recognition we make use of the video data by matdhiage sets, which has
been shown to be significantly more robust than single imaatemmg [10]. Adaptation
is a key element for recognition under changing conditiordsienproves the recognition
rate by integrating new training data. The system therdfarieides a scheme to update
the face manifold representation online.

The hand tracking problem is challenging due to severabfactincluding motion
blur, distraction from background objects, and appearaaGation due to pose and light-
ing changes. This is illustrated in Fig.2, showing examplesnage regions around the
hand taken from the test sequences. In order to handle suietioa the proposed hand
tracker switches dynamically between different cues basedonfidence estimates. In
addition to tracking, automatic initialisation is requdr® find the hand at the beginning
and after loss of track. This may occur regularly, for exaalery time the hand is out-
side the camera’s view. The proposed system thus integaateff-line trained detector
to initialise and update the trackers to avoid drift.
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Figure 1:Gesture interface. (a) face detection is performed during the attention phaserac-
tion is initiated by hand detection, (b) set up of camera ntedion top of the screen and multiple
users in the field of view, (c) a sample application for theéettion of 3D models.

In the following section we give an overview of prior work oard tracking in the
context of this work. Section 2 explains the attention medra that allows a user to
initiate the interaction. The face recognition componemtéscribed in Section 3 and the
fist tracker in Section 4. Experiments in Section 5 demotesttze performance of the
face recognition and hand tracking components.

1.1 Previous work

A large number of vision-based gesture interfaces have pegposed, only some of
which are concerned with our particular setting of havingngle camera pointing to-
wards a scene of possibly multiple people. In this paper wad®n single camera sys-
tems, although a stereo setup or time-of-flight sensorepteslid alternatives. We give
a brief overview of prior art while highlighting some of thmitations.

Freeman and Weissman [6] introduced a system for televisimote control by hand
motion where a hand template is tracked based on correlitiad orientations. It uses
a hand template for detection and tracking and includesdracikd subtraction. The
tracker works when the hand moves slowly, but edge feateras b be unstable when
motion blur occurs. Bretzner et al. [4] used multi-scalebbdi@tection of colour features
in order to detect an open hand pose with possibly some ofithers extended, corre-
sponding to different input commands. A simple 2D shape rhizdesed for tracking
with a particle filter. The method requires a skin colour pnhich is obtained by man-
ually labelling 30 frames. An interface based on trackindtiple skin coloured regions
was proposed in [1]. Again, the skin colour model is obtaibgdnanually labelling skin
regions, but the colour model is adapted during trackingoWéerved that trackers which
use only colour features struggle in our setting, in paldicif the hand moves in front
of the face, if the user wears short sleeves, or if there gecthof similar colour in the
background. An active camera system for hand tracking byrfgiegions of high motion
and skin colour probability was proposed in [12]. The Viialgorithm is used to find
a temporal path connecting local maxima of a likelihood fiorcthat combines these
two cues. A spatial prior is used to associate blobs to haddae. A restriction of the
system is that it performs search over a single scale omjyjri@g the user to be at a fixed
distance to the camera. Kdlsch and Turk [11] presented &-oué tracker that combines
colour and many short tracks of local features under ‘flogkaonstraints. The colour
model is automatically initialised from hand detectionth®lugh the method was shown



NRASR YRR 2
BL K JOI0E

Figure 2: Appearance variation of hand regions. Shown are cropped hand regions from test
sequences. Motion blur, changing pose and other skin cetbabjects make tracking challenging.

for top-view tracking, it is general enough to work for frahtiews. However, it struggles
with rapid hand motion and skin coloured background objebt system in [21] used a
trained detector followed by optical flow tracking. Tradkibased on optical flow alone
has difficulties coping with rapid hand motion as well as nmmgubackground objects. lke
et al. [9] presented a real-time system for gesture corttaildetects three different hand
poses independently in each frame. Due to the high compuategguirement it was im-
plemented on a multi-core processor. We compared with fitbefbove systems and
present the results in Section 5.

To summarise, no complete system meets the requiremerdbustrtracking, cleanly
handling initialisation and tracking failure, working fboth slow and rapid motion, han-
dling multiple scales, using a single CCD camera and beiffegcntly fast to run on a
standard PC.

2 Visual attention mechanism

One goal of this work is being able to set up the system in aitrarp environment, such
as the living room, or a public space, where multiple peopdg tve within the camera’s
view. For some periods there may be no interaction at all ong person initiates the
interaction in order to achieve a specific task. In AIDIA thisrks as follows: Initially
the system performs face detection using a boosted defd@hr Multiple detections
are associated over time by minimising the sum of distanteetections between two
frames with the Hungarian algorithm. Once a face is detettteduser is prompted to
show an open hand gesture within the area below their faedrigela. This also works
for multiple users in the scene. The rectangular input regielow the face detections are
ordered according to scale, giving easier access to userasglttloser to the camera. The
first detection of an open hand triggers the face recognitiep: Detected face regions are
stored during the attention phase and the image set of tseparho activated the system
is passed to the recognition component. At this point the mseg register in the database
or, if they have used the system before, they can choose @t@ipiteir face model with
the new data. Recognition prompts a personalised greetasgage to be displayed (see
Fig.3b) and the content can be customised according to #rsysofile. Subsequently
the hand tracker becomes active and allows the user to brihessontent by selecting
items from a menu that is overlaid on the screen. Note thaadhke of the face detection
is used to define the size of the interaction area while th&reaf the interaction area
is set to the location of the open hand detection. This mdaatstlhe range of motion
remains constant for different distances to the camera.
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Figure 3: Face recognition by matching image sets(a) The similarity between manifolds is
computed as the sum of principal angles and is used for NMifileetion. Once a query set has
been classified, it can be included in the model by on-lineatipd the existing manifold. (b)
Screenshot after recognition.

3 Face recognition by matching image sets

This section describes the face recognition componeneafitbtem. While the number of
users may be small in our system, the appearance variatipmeniarge due to pose and
illumination changes. Our recognition component uses arsgs for matching, which
are captured during the attention phase. The image set paureaappearance changes
and provide more evidence on face identity than a single é@gne. No temporal co-
herence is used as this may actually decrease recognititorpance [25].

Generally, there are three types of approaches to imagese&e¢tor set) match-
ing: aggregation of multiple nearest neighbour vectoremes [5], probability-density
based methods [22], and manifold-based methods [24]. @akie latter approach, we
match manifolds using canonical correlations. Canoniaalr&ation Analysis (CCA)
(also called canonical or principal angles) [24] comparasifiolds by measuring the an-
gles between them (see Fig.3a). Canonical correlationghvwdre cosines of principal
angles between any twbdimensional linear manifold$” and.%,, are defined as

cosf = max maxu; vi, i=1,...d, (1)
UL V€L

subject tou] ui = vvi =1, uluj =vvj =0, i # j. If P1,P, denote the basis matrices
of the two manifolds (see Section 3.1), canonical correfetiare conveniently obtained
as singular values d?PIPz, only takingO(d®). CCA has the following nice properties:
(a) It allows interpolation of the vectors in each set whedifig maximum correlations,
thus being more robust to data variation and noise, and édpth-dimensional manifold
representation allows matching that is both time and mereaffigient.

The manifold angle is a natural extension of prior manifoltbed face recognition
methods. When a single face image is given as an input, tharstandard way to classify
it by manifolds: by measuring the distance of the face vacteach manifold and picking
the closest one. When classifying a manifold instead of glsinector, angles between
manifolds become a reasonable distance measurement. ifBepé&l comparison with
other vector-set classification methods advocates thengzadaorrelation method [10].
Since Hotelling [8], CCA has received increasing attentimd recently Bach and Jor-
dan [2] have proposed a probabilistic interpretation, amif Whd Shashua [24] proposed
a kernel version. Kim et al. [10] proposed discriminativenifigld learning for CCA,
resulting in better performance than other CCA-based nakstho



3.1 On-line manifold learning

While most existing recognition systems rely on a singlelio# training phase, it is
desirable to include new data when it becomes availablereftwe the face recognition
component includes a method for user-interactive updatinige manifolds.

We will first explain how to learn the discriminative manididior CCA, i.e. the basis
matrix P; in Eqn. 1. Recalling that the canonical vectors representlitections of most
similar data variations the of two sets, it is ideal to repreégach set by the manifold that
maximally represents the respective class data while nisimign the variance of other
class data:

P/SP;
P PT S Py’
whereS;, St denote the covariance matrices of titl class and the total data. The basis
matrix ofi-th class moddp;, is obtained as the generalised eigen-solution.

It is too inefficient in terms of time and memory to run the batomputation of the
manifold whenever new data is added. Instead, the two covegimatrices are first eigen-
decomposed &8 = Qi/\iQiT, Sr = QT/\TQL whereQ, A are the eigenvector and eigen-
value matrix, respectively, corresponding to the first fégeavectors. The manifold is
then updated by separately updating the eigen-componeshtsan computing the mani-
fold only by the new eigen-models. Owing to its linearityg thethod of Hall et al. [7] can
be appliedQj, Ai,Qt, At are updated ani; is computed by SVD ofvATQi) 1Qiv/A..

i=1..C )

4 Hand tracking

For initialisation, a detector for a fist pose is trained lofé using the method of Mita
et al. [18]. It is applied within a region of interelsbbtained during the attention phase,
which constrains the valid region of the hand tracker. Dubédistinctive appearance of
the frontal fist region a single image patch is tracked usimgnalised cross-correlation
(NCC) [14]. The patch is selected as a smaller subregioneolénd in order to discount
background regions. NCC tracking is accurate and worksléov Band motion within a
limited range of motion. However, It can only deal with mirappearance variation, and
rapid motion leading to strong motion blur is also problémathe idea therefore is to
start with NCC tracking and in case of failure apply a secoadker as a fall-back strat-
egy. The second tracker uses different feature spaces,lynaoieur and motion (CM
tracker). Colour models for the foreground region and theosunding background re-
gion are obtained from the detector and are represented-byn3d2GB histograms. The
motion model is represented as histograms of the absolfiezatices between consec-
utive frames. The CM tracker detects scale space maximaikélghbod function that
uses both cues. First a colour likelihood map is compute@dah location in the image
region of interestp(x|col), x € I. Similarly a motion likelihood magp(x|mot), x € | is
obtained. The likelihood function combines three terms aara and is based on [12],
however, here the functions are smoothed by Gaussians wétiance depending on the
size of the previously detected hand. The likelihood fuorcts defined as

p(handx) O we p(x|col) + wm p(xmot) + (1 —we —Wm) p(x|col) p(ximot),  (3)

wherew, andwy, are weights that are determined through experiments onidatiain
set (in our casev. = wy, = 0.1). Scale space maxima of this function are found with a



‘box filter’ [23], which is an efficient approximation to theaplacian. The three terms
in Egn. 3 allow tracking in different scenarios: e.g. if theés no other skin coloured
object in the background, the colour likelihood is discrative enough. Rapid motion
leads to peaks in the motion likelihood function. The thiedm gives high values to
objects that are moving and are skin coloured. The termsldmilcombined in a more
principled way, but in practice this formulation turns oattte quite efficient. Since the
CM tracker essentially models the shape as a simple blobnihandle large variations
in pose. Both trackers return a confidence value, which iS\tB€ correlation score and
the filter output, respectively.

The complete tracking algorithm proceeds as follows: Aditection the NCC tracker
is active. If it returns a confidence value below a threslthid tracking continues with
the CM tracker. At everith frame, the fist detector is applied in the local neighbooch
and, if successful, NCC tracking resumes with a new templties, trackers (and corre-
sponding features) are switched online. Tracking is stdpygeen the confidence value of
the CM tracker is below a threshofd,. A Kalman filter is used to combine the estimates
with a constant velocity dynamic model. The approach takehis paper is to efficiently
but densely sample the likelihood values around the estidhatation.

Related tracking methods can be found in the extensivatiiez on multi-cue track-
ing [3, 13, 20]. The benefit of these approaches is increastmastness when different
cues have different failure modes and therefore compleewmett other. The most com-
mon idea is to run several trackers in parallel and subselyuesmbine their output,
by either selecting between them [3] or by probabilisticatierging them [13, 20]. In
contrast, the proposed tracker switches between trackedscprresponding features) en-
tirely, therefore not requiring trackers to run simultangly. We further note that our
tracker is tightly integrated with a detector. Indeed, latstection together with a strat-
egy to link up missing detections through time is a viableisoh such as in the system
of Ike et al. [9]. Even though localisation is not as precisevth NCC and less pose
variation is handled compared to the CM tracker, it allomsdiimg multiple scales and
updating the tracking template. Note that the idea of rugitracker and a detector in
tandem has previously been used to build tracking systeatsuvbrk over arbitrary time
periods, e.g. the system in [11]. Similarly, detector ottpas been integrated directly in
the observation model [15].

4.1 Selection mechanisms

In order to activate a screenicon a
selection mechanism equivalent tol J ‘
mouse click needs to be defined. S v--,,-,_ "
lutions that have previously been pro \i \'ﬁ__. k‘ aﬁ'i
posed include changing hand pose, fin- (a) (d)
ger or thumb extension and simplyFigure 4: leferent g&;ture;for selection: (a) open
hovering over an icon for a short timehand pose, (b) thumb up pose, (c) hovering for a short
period [4, 6, 9, 11, 16, 21]. We havetime period and (d) a shake gesture.
implemented these by training sepa-
rate detectors, see Fig.4, (a) an open hand detector, (l)nabtlup detector, and (c)

hovering over an icon for a short period of time (0.5 seconddgitionally, we propose
the following method: (d) detecting a quick left-right skeadesture. The shake gesture is

I



0.95 C 80 g
¢" O"
0.9 » 70
&"
s 60 "
08 J Computation t'ime (sec)
Recognition rate ’

= & = Batch-update /’
0.55, Online-update 100 4
7 -

2

8 2 8

4 6 4 6
number of updates number of updates

@ (b)
Figure 5:Face recognition experiments(a) Example input sets and canonical vectors com-
puted. (b) (left) Accuracy improvement of the on-line anttivanethod for the number of updates.
(right) Computational time of the two methods.

detected by recording the hand motion over a sliding windb20dframes and classify-
ing this vector. In experiments LDA and k-nearest neightmassifiers were tested, but
the most reliable results were obtained by computing thiawdé to the closest positive
training example (among a small set of 75 examples) andhbtéshis value. Only one
of the four selection mechanisms is used at any time, acugtdithe user’s preference.

5 Results

This section presents quantitative results on the facegrétton algorithm as well as the
hand tracking algorithm.

5.1 Face recognition experiments

We have evaluated the face recognition performance usimgeasgt containing 5 people
(10 sequences per person, 50 frames per sequence). The tesetollected at different
times, days and places and leading to appearance varidti@nnput dimension was set
to 40x 40 and the manifold dimension to 10.

Fig.5a shows example inputs and the canonical vectors cimdpy CCA. The canon-
ical vectors in each paiy;,v; are visually similar despite the large appearance changes
across the two sets. As shown in Fig.5b, the method achiexddqh recognition results
after updating with 6 image sets. The on-line method regusignificantly lower com-
putation time than the batch-solution when increasing theumnt of training data. In the
experiment one set per person was added to the model at egetestd all remaining data
was used as query during each update. 5-fold cross validats performed by random
data partitioning.

5.2 Hand tracking experiments

The robustness of different hand tracking algorithms wasuated on a set of 10 labelled
sequences of 500 frames each (size 320, recorded at 30fps), measured as the mean



mean number of frames tracked

NCC/CM  CM FF NCC KLT OF LOC LOC+BG BD

Algorithm | NCCICM  CM FF NCC KLT OF LOC LOC+BG BD
Mean frames tracked | 431.3 3854 1120 709 53.8 378 359 35.2 6.5

Figure 6:Hand tracker evaluation. Comparative results showing the mean number of consecu-
tively tracked frames over 10 sequences of 500 frames. TIZOM tracker is the most robust.

number of successfully tracked frames. After loss of trateied by a scale-normalised
distance being above a threshold) trackers are re-isgidlat the next detection within
the sequence. This allows a realistic assessment of therpefice over the complete
data set. To reduce the bias introduced by the finite humbé&aofes (a failure close
to the end may lead to a very short track) the last measurebefate the end of the
sequence is discarded if at least one tracking failures¢@ged previously. The trackers
that were compared against have been used in other hanihggaglstems and include:
local orientation correlation (LOC) [6], flocks of featureacking (FF) [11], optical flow
tracking using templates on a regular grid (OF) and localfeatracking, KLT-tracker
(KLT) [21], and boosted detection (BD) [9, 11, 17, 19, 21]. eTperformance of the
individual components, the CM and NCC tracker, was also meas The results are
shown in Fig.6. The proposed NCC/CM tracker performs bedtlases track in only
two of the ten sequences. This is due to the CM componentrigaknto other coloured
objects, in one case the user’s arm, in the other case thexmbaind of another person. In
both cases the CM tracker’s confidence value drops belowahidence threshold after
a few frames and the tracker re-initialises by global datact The CM tracker comes
second in terms of robustness, however, it is much lessg@ekiring slow hand motion.
The FF tracker can handle slow motion, but struggles wittmgtimotion blur. It can also
be distracted by other skin coloured regions with salieatures such as the face. The
regular block-based optical flow algorithm showed to be mobeist than the KLT tracker,
but both had difficulties handling rapid hand motion. Somaindurprisingly the NCC
tracker is more robust than the LOC tracker. A backgrounidnesion step used in [6]
does not change the performance much (9 different updataights were tested), which
is likely due to the fact that the background appearancegdsmaccasionally in the test
sequences. The performance of the boosted detector istlowkesms of our definition
of robustness as consecutively tracked frames. The averagber of detections on the
data set is 242, but it varies significantly across the segpgerOn some sequences there
are very few detections due to larger pose changes.

Fig.7 shows some typical results on one of the test sequetm@paring the individ-
ual trackers as well as the frame-by-frame detector oufplue. NCC tracker loses track
during rapid motion while the CM tracker is robust, but natays accurate (see the two
rightmost frames). The frame-by-frame detector does nofriseveral frames. The best
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Figure 7: Comparison of individual trackers with combined NCC/CM tra cker. This figure
shows snapshots of a sequence and results of the NCC trélckeEM tracker, frame-by-frame
detection and the proposed NCC/CM tracker.

results are obtained with the combined NCC/CM tracker. Witching behaviour of the
NCC/CM tracker is illustrated in Fig.8. During this sequeribe light is turned off and
on. Switches between components allows the tracker it tdlearack successfully by
updating its object representation.

6 Conclusions

We have presented a gesture interface by tracking a poifigingith a single camera fac-
ing the user. The system includes an attention mechanidraltbas one user at a time to
be in control. Face recognition is employed for customisheginterface. To increase the
recognition performance under changing conditions the faodel can be updated using
efficient online learning. For fist tracking, we proposed dtiraue method that switches
trackers over time and is updated continually by an off-timéned detector. In exper-
iments on ten hand pointing sequences our method outpegtbather algorithms pro-
posed for hand tracking such as local orientation coratatiacking, flocks-of-features
tracking and optical flow tracking. So far the system has teed by approximately 100
people within public exhibition settings. The main failun@des were found to be false
fist detections, leading to incorrect adaptation of the eoloodel, as well as the CM
tracker’s reliance on colour and motion cues alone. Futukwrill address improving
feature selection as well as the performance of the fist ttetecorder to handle larger
appearance variation.
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