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Abstract

This paper presents a vision-based system for interaction with a display via
hand pointing. An attention mechanism based on face and handdetection
allows users in the camera’s field of view to take control of the interface. Face
recognition is used for identification and customisation. The system allows
the user to control the screen pointer by tracking their fist.On-screen items
can be selected using one of four activation mechanisms. Current sample
applications include browsing image and video collectionsas well as viewing
a gallery of 3D objects. In experiments we demonstrate the performance of
the vision components in challenging conditions and compare it to that of
other systems.

1 Introduction

This paper presents a vision-based interface using a singlecamera on top of a display,
as shown in Fig.1. Such a system allows touch-free input at a distance and has several
uses in practice: virtual remote control for a TV or for otherhome appliances, gaming, or
browsing public information terminals in museums or windowshops. Here we present a
complete system which integrates (a) an attention mechanism for initiating the interaction,
(b) face recognition for user identification and customisation (in terms of content and
functionality) and (c) fist tracking for moving a pointer andrecognition of hand gestures
such as a ‘thumb up’ or a ‘shake’ gesture for item selection.

For face recognition we make use of the video data by matchingimage sets, which has
been shown to be significantly more robust than single image matching [10]. Adaptation
is a key element for recognition under changing conditions and improves the recognition
rate by integrating new training data. The system thereforeincludes a scheme to update
the face manifold representation online.

The hand tracking problem is challenging due to several factors, including motion
blur, distraction from background objects, and appearancevariation due to pose and light-
ing changes. This is illustrated in Fig.2, showing examplesof image regions around the
hand taken from the test sequences. In order to handle such variation the proposed hand
tracker switches dynamically between different cues basedon confidence estimates. In
addition to tracking, automatic initialisation is required to find the hand at the beginning
and after loss of track. This may occur regularly, for example every time the hand is out-
side the camera’s view. The proposed system thus integratesan off-line trained detector
to initialise and update the trackers to avoid drift.



(a) (b) (c)

Figure 1:Gesture interface. (a) face detection is performed during the attention phase,interac-
tion is initiated by hand detection, (b) set up of camera mounted on top of the screen and multiple
users in the field of view, (c) a sample application for the inspection of 3D models.

In the following section we give an overview of prior work on hand tracking in the
context of this work. Section 2 explains the attention mechanism that allows a user to
initiate the interaction. The face recognition component is described in Section 3 and the
fist tracker in Section 4. Experiments in Section 5 demonstrate the performance of the
face recognition and hand tracking components.

1.1 Previous work

A large number of vision-based gesture interfaces have beenproposed, only some of
which are concerned with our particular setting of having a single camera pointing to-
wards a scene of possibly multiple people. In this paper we focus on single camera sys-
tems, although a stereo setup or time-of-flight sensors present valid alternatives. We give
a brief overview of prior art while highlighting some of the limitations.

Freeman and Weissman [6] introduced a system for televisionremote control by hand
motion where a hand template is tracked based on correlatinglocal orientations. It uses
a hand template for detection and tracking and includes background subtraction. The
tracker works when the hand moves slowly, but edge features tend to be unstable when
motion blur occurs. Bretzner et al. [4] used multi-scale blob detection of colour features
in order to detect an open hand pose with possibly some of the fingers extended, corre-
sponding to different input commands. A simple 2D shape model is used for tracking
with a particle filter. The method requires a skin colour prior, which is obtained by man-
ually labelling 30 frames. An interface based on tracking multiple skin coloured regions
was proposed in [1]. Again, the skin colour model is obtainedby manually labelling skin
regions, but the colour model is adapted during tracking. Weobserved that trackers which
use only colour features struggle in our setting, in particular if the hand moves in front
of the face, if the user wears short sleeves, or if there are objects of similar colour in the
background. An active camera system for hand tracking by finding regions of high motion
and skin colour probability was proposed in [12]. The Viterbi algorithm is used to find
a temporal path connecting local maxima of a likelihood function that combines these
two cues. A spatial prior is used to associate blobs to hand and face. A restriction of the
system is that it performs search over a single scale only, requiring the user to be at a fixed
distance to the camera. Kölsch and Turk [11] presented a multi-cue tracker that combines
colour and many short tracks of local features under ‘flocking’ constraints. The colour
model is automatically initialised from hand detection. Although the method was shown



Figure 2: Appearance variation of hand regions. Shown are cropped hand regions from test
sequences. Motion blur, changing pose and other skin coloured objects make tracking challenging.

for top-view tracking, it is general enough to work for frontal views. However, it struggles
with rapid hand motion and skin coloured background objects. The system in [21] used a
trained detector followed by optical flow tracking. Tracking based on optical flow alone
has difficulties coping with rapid hand motion as well as moving background objects. Ike
et al. [9] presented a real-time system for gesture control that detects three different hand
poses independently in each frame. Due to the high computation requirement it was im-
plemented on a multi-core processor. We compared with five ofthe above systems and
present the results in Section 5.

To summarise, no complete system meets the requirements of robust tracking, cleanly
handling initialisation and tracking failure, working forboth slow and rapid motion, han-
dling multiple scales, using a single CCD camera and being sufficiently fast to run on a
standard PC.

2 Visual attention mechanism

One goal of this work is being able to set up the system in an arbitrary environment, such
as the living room, or a public space, where multiple people may be within the camera’s
view. For some periods there may be no interaction at all until one person initiates the
interaction in order to achieve a specific task. In AIDIA thisworks as follows: Initially
the system performs face detection using a boosted detector[18]. Multiple detections
are associated over time by minimising the sum of distances of detections between two
frames with the Hungarian algorithm. Once a face is detectedthe user is prompted to
show an open hand gesture within the area below their face, see Fig.1a. This also works
for multiple users in the scene. The rectangular input regions below the face detections are
ordered according to scale, giving easier access to users who are closer to the camera. The
first detection of an open hand triggers the face recognitionstep: Detected face regions are
stored during the attention phase and the image set of the person who activated the system
is passed to the recognition component. At this point the user may register in the database
or, if they have used the system before, they can choose to update their face model with
the new data. Recognition prompts a personalised greeting message to be displayed (see
Fig.3b) and the content can be customised according to the user’s profile. Subsequently
the hand tracker becomes active and allows the user to browsethe content by selecting
items from a menu that is overlaid on the screen. Note that thescale of the face detection
is used to define the size of the interaction area while the centre of the interaction area
is set to the location of the open hand detection. This means that the range of motion
remains constant for different distances to the camera.
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3 Face recognition by matching image sets

This section describes the face recognition component of the system. While the number of
users may be small in our system, the appearance variation may be large due to pose and
illumination changes. Our recognition component uses image sets for matching, which
are captured during the attention phase. The image set can capture appearance changes
and provide more evidence on face identity than a single image alone. No temporal co-
herence is used as this may actually decrease recognition performance [25].

Generally, there are three types of approaches to image set (or vector set) match-
ing: aggregation of multiple nearest neighbour vector-matches [5], probability-density
based methods [22], and manifold-based methods [24]. Taking the latter approach, we
match manifolds using canonical correlations. Canonical Correlation Analysis (CCA)
(also called canonical or principal angles) [24] compares manifolds by measuring the an-
gles between them (see Fig.3a). Canonical correlations, which are cosines of principal
angles between any twod-dimensional linear manifoldsL1 andL2, are defined as

cosθi = max
ui∈L1

max
vi∈L2

uT
i vi , i = 1, ...,d, (1)

subject touT
i ui = vT

i vi = 1, uT
i u j = vT

i v j = 0, i 6= j. If P1,P2 denote the basis matrices
of the two manifolds (see Section 3.1), canonical correlations are conveniently obtained
as singular values ofPT

1 P2, only takingO(d3). CCA has the following nice properties:
(a) It allows interpolation of the vectors in each set when finding maximum correlations,
thus being more robust to data variation and noise, and (b) the low-dimensional manifold
representation allows matching that is both time and memoryefficient.

The manifold angle is a natural extension of prior manifold-based face recognition
methods. When a single face image is given as an input, there is a standard way to classify
it by manifolds: by measuring the distance of the face vectorto each manifold and picking
the closest one. When classifying a manifold instead of a single vector, angles between
manifolds become a reasonable distance measurement. Experimental comparison with
other vector-set classification methods advocates the canonical correlation method [10].
Since Hotelling [8], CCA has received increasing attentionand recently Bach and Jor-
dan [2] have proposed a probabilistic interpretation, and Wolf and Shashua [24] proposed
a kernel version. Kim et al. [10] proposed discriminative manifold learning for CCA,
resulting in better performance than other CCA-based methods.



3.1 On-line manifold learning

While most existing recognition systems rely on a single off-line training phase, it is
desirable to include new data when it becomes available. Therefore the face recognition
component includes a method for user-interactive updatingof the manifolds.

We will first explain how to learn the discriminative manifold for CCA, i.e. the basis
matrix Pi in Eqn. 1. Recalling that the canonical vectors represent the directions of most
similar data variations the of two sets, it is ideal to represent each set by the manifold that
maximally represents the respective class data while minimising the variance of other
class data:

max
argPi

PT
i SiPi

PT
i STPi

, i = 1, ...,C (2)

whereSi ,ST denote the covariance matrices of thei-th class and the total data. The basis
matrix of i-th class modelPi , is obtained as the generalised eigen-solution.

It is too inefficient in terms of time and memory to run the batch-computation of the
manifold whenever new data is added. Instead, the two covariance matrices are first eigen-
decomposed asSi = QiΛiQT

i ,ST = QTΛTQT
T , whereQ,Λ are the eigenvector and eigen-

value matrix, respectively, corresponding to the first few eigenvectors. The manifold is
then updated by separately updating the eigen-components and then computing the mani-
fold only by the new eigen-models. Owing to its linearity, the method of Hall et al. [7] can
be applied:Qi ,Λi ,QT ,ΛT are updated andPi is computed by SVD of(

√
ΛTQi)

−1Qi
√

Λi .

4 Hand tracking

For initialisation, a detector for a fist pose is trained off-line using the method of Mita
et al. [18]. It is applied within a region of interestI obtained during the attention phase,
which constrains the valid region of the hand tracker. Due tothe distinctive appearance of
the frontal fist region a single image patch is tracked using normalised cross-correlation
(NCC) [14]. The patch is selected as a smaller subregion of the hand in order to discount
background regions. NCC tracking is accurate and works for slow hand motion within a
limited range of motion. However, It can only deal with minorappearance variation, and
rapid motion leading to strong motion blur is also problematic. The idea therefore is to
start with NCC tracking and in case of failure apply a second tracker as a fall-back strat-
egy. The second tracker uses different feature spaces, namely colour and motion (CM
tracker). Colour models for the foreground region and the surrounding background re-
gion are obtained from the detector and are represented by 32-bin RGB histograms. The
motion model is represented as histograms of the absolute differences between consec-
utive frames. The CM tracker detects scale space maxima of a likelihood function that
uses both cues. First a colour likelihood map is computed foreach location in the image
region of interestp(x|col), x ∈ I . Similarly a motion likelihood mapp(x|mot), x ∈ I is
obtained. The likelihood function combines three terms as asum and is based on [12],
however, here the functions are smoothed by Gaussians with avariance depending on the
size of the previously detected hand. The likelihood function is defined as

p(hand|x) ∝ wc p(x|col) + wm p(x|mot) + (1−wc−wm) p(x|col) p(x|mot), (3)

wherewc andwm are weights that are determined through experiments on a validation
set (in our casewc = wm = 0.1). Scale space maxima of this function are found with a



‘box filter’ [23], which is an efficient approximation to the Laplacian. The three terms
in Eqn. 3 allow tracking in different scenarios: e.g. if there is no other skin coloured
object in the background, the colour likelihood is discriminative enough. Rapid motion
leads to peaks in the motion likelihood function. The third term gives high values to
objects that are moving and are skin coloured. The terms could be combined in a more
principled way, but in practice this formulation turns out to be quite efficient. Since the
CM tracker essentially models the shape as a simple blob, it can handle large variations
in pose. Both trackers return a confidence value, which is theNCC correlation score and
the filter output, respectively.

The complete tracking algorithm proceeds as follows: Afterdetection the NCC tracker
is active. If it returns a confidence value below a thresholdθNCC tracking continues with
the CM tracker. At everykth frame, the fist detector is applied in the local neighbourhood
and, if successful, NCC tracking resumes with a new template. Thus, trackers (and corre-
sponding features) are switched online. Tracking is stopped when the confidence value of
the CM tracker is below a thresholdθCM. A Kalman filter is used to combine the estimates
with a constant velocity dynamic model. The approach taken in this paper is to efficiently
but densely sample the likelihood values around the estimated location.

Related tracking methods can be found in the extensive literature on multi-cue track-
ing [3, 13, 20]. The benefit of these approaches is increased robustness when different
cues have different failure modes and therefore complementeach other. The most com-
mon idea is to run several trackers in parallel and subsequently combine their output,
by either selecting between them [3] or by probabilistically merging them [13, 20]. In
contrast, the proposed tracker switches between trackers (and corresponding features) en-
tirely, therefore not requiring trackers to run simultaneously. We further note that our
tracker is tightly integrated with a detector. Indeed, local detection together with a strat-
egy to link up missing detections through time is a viable solution such as in the system
of Ike et al. [9]. Even though localisation is not as precise as with NCC and less pose
variation is handled compared to the CM tracker, it allows handling multiple scales and
updating the tracking template. Note that the idea of running a tracker and a detector in
tandem has previously been used to build tracking systems that work over arbitrary time
periods, e.g. the system in [11]. Similarly, detector output has been integrated directly in
the observation model [15].

4.1 Selection mechanisms

In order to activate a screen icon a

(a) (b) (c) (d)

Figure 4: Different gestures for selection: (a) open
hand pose, (b) thumb up pose, (c) hovering for a short
time period and (d) a shake gesture.

selection mechanism equivalent to a
mouse click needs to be defined. So-
lutions that have previously been pro-
posed include changing hand pose, fin-
ger or thumb extension and simply
hovering over an icon for a short time
period [4, 6, 9, 11, 16, 21]. We have
implemented these by training sepa-
rate detectors, see Fig.4, (a) an open hand detector, (b) a thumb up detector, and (c)
hovering over an icon for a short period of time (0.5 seconds). Additionally, we propose
the following method: (d) detecting a quick left-right shake gesture. The shake gesture is
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Figure 5:Face recognition experiments.(a) Example input sets and canonical vectorsu,v com-
puted. (b) (left) Accuracy improvement of the on-line and batch-method for the number of updates.
(right) Computational time of the two methods.

detected by recording the hand motion over a sliding window of 20 frames and classify-
ing this vector. In experiments LDA and k-nearest neighbourclassifiers were tested, but
the most reliable results were obtained by computing the distance to the closest positive
training example (among a small set of 75 examples) and threshold this value. Only one
of the four selection mechanisms is used at any time, according to the user’s preference.

5 Results

This section presents quantitative results on the face recognition algorithm as well as the
hand tracking algorithm.

5.1 Face recognition experiments

We have evaluated the face recognition performance using a data set containing 5 people
(10 sequences per person, 50 frames per sequence). The 10 sets were collected at different
times, days and places and leading to appearance variation.The input dimension was set
to 40×40 and the manifold dimension to 10.

Fig.5a shows example inputs and the canonical vectors computed by CCA. The canon-
ical vectors in each pairui ,vi are visually similar despite the large appearance changes
across the two sets. As shown in Fig.5b, the method achieved perfect recognition results
after updating with 6 image sets. The on-line method requires significantly lower com-
putation time than the batch-solution when increasing the amount of training data. In the
experiment one set per person was added to the model at each stage and all remaining data
was used as query during each update. 5-fold cross validation was performed by random
data partitioning.

5.2 Hand tracking experiments

The robustness of different hand tracking algorithms was evaluated on a set of 10 labelled
sequences of 500 frames each (size 320× 240, recorded at 30fps), measured as the mean
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Figure 6:Hand tracker evaluation. Comparative results showing the mean number of consecu-
tively tracked frames over 10 sequences of 500 frames. The NCC/CM tracker is the most robust.

number of successfully tracked frames. After loss of track (defined by a scale-normalised
distance being above a threshold) trackers are re-initialised at the next detection within
the sequence. This allows a realistic assessment of the performance over the complete
data set. To reduce the bias introduced by the finite number offrames (a failure close
to the end may lead to a very short track) the last measurementbefore the end of the
sequence is discarded if at least one tracking failures has occurred previously. The trackers
that were compared against have been used in other hand tracking systems and include:
local orientation correlation (LOC) [6], flocks of featurestracking (FF) [11], optical flow
tracking using templates on a regular grid (OF) and local feature tracking, KLT-tracker
(KLT) [21], and boosted detection (BD) [9, 11, 17, 19, 21]. The performance of the
individual components, the CM and NCC tracker, was also measured. The results are
shown in Fig.6. The proposed NCC/CM tracker performs best and loses track in only
two of the ten sequences. This is due to the CM component locking onto other coloured
objects, in one case the user’s arm, in the other case the moving hand of another person. In
both cases the CM tracker’s confidence value drops below the confidence threshold after
a few frames and the tracker re-initialises by global detection. The CM tracker comes
second in terms of robustness, however, it is much less precise during slow hand motion.
The FF tracker can handle slow motion, but struggles with strong motion blur. It can also
be distracted by other skin coloured regions with salient features such as the face. The
regular block-based optical flow algorithm showed to be morerobust than the KLT tracker,
but both had difficulties handling rapid hand motion. Somewhat surprisingly the NCC
tracker is more robust than the LOC tracker. A background estimation step used in [6]
does not change the performance much (9 different updating weights were tested), which
is likely due to the fact that the background appearance changes occasionally in the test
sequences. The performance of the boosted detector is lowest in terms of our definition
of robustness as consecutively tracked frames. The averagenumber of detections on the
data set is 242, but it varies significantly across the sequences. On some sequences there
are very few detections due to larger pose changes.

Fig.7 shows some typical results on one of the test sequences, comparing the individ-
ual trackers as well as the frame-by-frame detector output.The NCC tracker loses track
during rapid motion while the CM tracker is robust, but not always accurate (see the two
rightmost frames). The frame-by-frame detector does not fire in several frames. The best
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detection and the proposed NCC/CM tracker.

results are obtained with the combined NCC/CM tracker. The switching behaviour of the
NCC/CM tracker is illustrated in Fig.8. During this sequence the light is turned off and
on. Switches between components allows the tracker it to handle track successfully by
updating its object representation.

6 Conclusions

We have presented a gesture interface by tracking a pointingfist with a single camera fac-
ing the user. The system includes an attention mechanism that allows one user at a time to
be in control. Face recognition is employed for customisingthe interface. To increase the
recognition performance under changing conditions the face model can be updated using
efficient online learning. For fist tracking, we proposed a multi-cue method that switches
trackers over time and is updated continually by an off-linetrained detector. In exper-
iments on ten hand pointing sequences our method outperformed other algorithms pro-
posed for hand tracking such as local orientation correlation tracking, flocks-of-features
tracking and optical flow tracking. So far the system has beentried by approximately 100
people within public exhibition settings. The main failuremodes were found to be false
fist detections, leading to incorrect adaptation of the colour model, as well as the CM
tracker’s reliance on colour and motion cues alone. Future work will address improving
feature selection as well as the performance of the fist detector in order to handle larger
appearance variation.
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