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Abstract. We propose an algorithm for semantic segmentation based on
3D point clouds derived from ego-motion. We motivate five simple cues
designed to model specific patterns of motion and 3D world structure
that vary with object category. We introduce features that project the
3D cues back to the 2D image plane while modeling spatial layout and
context. A randomized decision forest combines many such features to
achieve a coherent 2D segmentation and recognize the object categories
present. Our main contribution is to show how semantic segmentation is
possible based solely on motion-derived 3D world structure. Our method
works well on sparse, noisy point clouds, and unlike existing approaches,
does not need appearance-based descriptors.
Experiments were performed on a challenging new video database con-
taining sequences filmed from a moving car in daylight and at dusk. The
results confirm that indeed, accurate segmentation and recognition are
possible using only motion and 3D world structure. Further, we show that
the motion-derived information complements an existing state-of-the-art
appearance-based method, improving both qualitative and quantitative
performance.

input video frame reconstructed 3D point cloud automatic segmentation

Fig. 1. The proposed algorithm uses 3D point clouds estimated from videos such as the
pictured driving sequence (with ground truth inset). Having trained on point clouds
from other driving sequences, our new motion and structure features, based purely on
the point cloud, perform 11-class semantic segmentation of each test frame. The colors
in the ground truth and inferred segmentation indicate category labels.
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1 Introduction

We address the question of whether motion and 3D world structure can be used
to accurately segment video frames and recognize the object categories present.
In particular, as illustrated in Fig. 1, we investigate how to perform semantic
segmentation from the sparse, noisy 3D point cloud given by structure from ego-
motion. Our algorithm is able to accurately recognize objects and segment video
frames without appearance-based descriptors or dense depth estimates obtained
using e.g., dense stereo or laser range finders. The structure from motion, or
SfM, community [1] has demonstrated the value of ego-motion derived data,
and their modeling efforts have even extend to stationary geometry of cities [2].
However, the object recognition opportunities presented by the inferred motion
and structure have largely been ignored1.

The proposed algorithm uses camera-pose estimation from video as an exist-
ing component, and assumes ego-motion is the dominant cause of pixel flow [4].
Tracked 2D image features are triangulated to find their position in world space
and their relationship to the moving camera path. We suggest five simple motion
and structure cues that are indicative of object categories present in the scene.
Projecting these cues from the 3D point cloud to the 2D image, we build a ran-
domized decision forest classifier to perform a coherent semantic segmentation.

Our main contributions are: (i) a demonstration that semantic segmentation
is possible based solely on motion-derived 3D world structure; (ii) five intuitive
motion and structure cues and a mechanism for projecting these 3D cues to the
2D image plane for semantic segmentation; and (iii) a challenging new database
of video sequences filmed from a moving car and hand-labeled with ground-
truth semantic segmentations. Our evaluation shows performance comparable
to existing state-of-the-art appearance based techniques, and further, that our
motion-derived features complement appearance-based features, improving both
qualitative and quantitative performance.

Background. An accurate automatic scene understanding of images and videos
has been an enduring goal of computer vision, with applications varying from
image search to driving safety. Many successful techniques for 2D object recogni-
tion have used individual still images [5–7]. Without using SfM, Hoiem et al. [8, 9]
achieve exciting results by considering several spatial cues found in single images,
such as surface orientations and vanishing points, to infer the camera viewpoint
or general scene structure. This, in turn, helps object recognition algorithms
refine their hypotheses, culling spatially infeasible detections. 3D object recog-
nition is still a new research area. Huber et al.[10] matched laser rangefinder
data to learned object models. Other techniques build 3D object models and
match them to still images using local descriptors [11–14]. None of these meth-
ods, however, can exploit the motion-based cues available in video sequences.
Dalal et al. [15] is a notable exception that used differential optical flow in pairs
1 The work of [3] was similarly motivated, and used laser-scans of static scenes to

compute a 3D planar patch feature, which helped to train a chain of binary classifiers.
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of images. In this paper, we reason about the moving 3D scene given a moving
2D camera. Our method works well on sparse, noisy point clouds, and does not
need appearance-based descriptors attached to 3D world points.

There is a long history of fascinating research about motion-based recognition
of human activities [16]. Laptev and Lindeberg [17] introduced the notion of
space-time interest points to help detect and represent sudden actions as high
gradient points in the xyt cube for motion-based activity recognition. Our focus
is rather object recognition, and our features do not require a stationary camera.

While it is tempting to apply other detectors (e.g., pedestrians [18]) directly
to the problem of recognizing objects from a moving camera, motion compensa-
tion and motion segmentation are still relatively open problems. Yin et al. [19]
use low-level motion cues for bi-layer video segmentation, though do not achieve
a semantic labeling. Computer vision for driving has proven challenging and has
previously been investigated with a related focus on motion segmentation [20].
For example, Kang et al. [21] have recently shown an improvement in the state
of the art while using a structure consistency constraint similar to one of our
motion cues. Leibe et al. [22] address recognition of cars and pedestrians from
a moving vehicle. Our technique handles both these and nine further categories,
and additionally semantically segments the image, without requiring their ex-
pensive stereo setup.

Optical flow has aided recognition of objects for static cameras [23], but for-
ward ego-motion dominates the visual changes in our footage. Depth-specific
motion compensation may help, but requires accurate dense-stereo reconstruc-
tion or laser range-scanning. We instead employ features based on a sparse SfM
point cloud and avoid these problems.

2 Structure from Motion Point Clouds

We use standard structure from ego-motion techniques to automatically generate
a 3D point cloud from video sequences filmed from moving cars. The dominant
motion in the sequences gives the camera world-pose and thereby the relative
3D point cloud of all tracked 2D features, including outliers.

We start by tracking 2D image features. Specifically, we use Harris-Stephens
corners [24] with localized normalized cross correlation to track 20 × 20 pixel
patches through time in a search window 15% of the image dimensions. In prac-
tice, this produced reliable 2D trajectories that usually spanned more than 5
frames. To reduce the number of mis-tracks, each initial template is tracked
only until its correlation falls below 0.97.

Footage is obtained from a car-mounted camera. We assume, for purposes
of 3D reconstruction, that changes between images are the result of only ego-
motion. This allows us to compute a single world-point W = (x, y, z, 1)T for
each point tracked in 2D image space, (ut, vt). A best-fit W̃ is computed given
at least two corresponding 3x4 camera projection matrices Pt from the sequence.
Matrices P are inferred in a robust pre-processing stage, for which we simply use
a commercial product [4], which normalizes the resulting up-to-scale solutions
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to 1.0. Then P is split into row vectors p1:3, so W projects into the camera Ct as
[u1, v1]T ≡ [ũ1, ṽ1, λ]T = [p1, p2, p3]T [x, y, z]T , and dividing through by λ gives
u1 = p1W

p3W , v1 = p2W
p3W , and similarly for (u2, v2), Pt+1, and Ct+1. As long as the

feature was moving, a least squares solution exists for the three unknowns of
W̃ , given these four or more (in the case of longer feature tracks) equations.
We reconstruct using only the most temporally separated matrices P , instead of
finding a W̃ based on the whole 2D track. This strategy generally gives maximum
disparity and saves needless computations. After computing the camera poses,
no outlier rejection is performed, so that an order of magnitude more tracked
points are triangulated for the point cloud.

3 Motion and 3D Structure Features

We now describe the new motion and 3D structure features that are based on
the inferred 3D point cloud. We suggest five simple cues that can be estimated
reliably and are projected from the 3D world into features on the 2D image
plane, where they enable semantic segmentation. We conclude the section by
explaining how a randomized decision forest combines these simple weak features
into a powerful classifier that performs the segmentation.

3.1 Cues from Point Clouds

Just as there are many ways to parameterize the colors and texture of appear-
ance, there are numerous ways to parameterize 3D structure and motion. We
propose five motion and structure cues. These are based on the inferred 3D point
cloud, which, given the small baseline changes, is rather noisy. The cues were
chosen as robust, intuitive, efficient to compute, and general-purpose but object-
category covariant, though these five are by no means exhaustive. The cues also
fit nicely with the powerful 3D to 2D projection mechanism (Sect. 3.2). With
the driving application in mind, they were designed to be invariant to camera
pitch, yaw, and perspective distortion, and could generalize to other domains.

The cues are: height above the camera, distance to the camera path, pro-
jected surface orientation, feature track density, and residual reconstruction er-
ror. These are intentionally weak; stronger features would not work with the
sparse noisy point clouds, though dense feature tracking could someday enable
one to apply [25]. We use machine learning to isolate reliable patterns and build
a strong classifier that combines many of these cues (Sect. 3.3). By projecting
from the 3D point cloud to the 2D image as described in Sect. 3.2, we are able
to exploit contextual relationships. One of the benefits of video is that analysis
of one frame can often be improved through information in neighboring frames.
Our cues take advantage of this since feature tracks exist over several frames.
Height above the camera fH. During video of a typical drive, one will notice
that the only fairly fixed relationship between the 3D coordinate frames of the
camera C and the world is the camera’s height above the pavement (Fig. 2).
Measuring height in image-space would be very susceptible to bumps in the
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Fig. 2. The height, camera distance, and residual error features are illustrated for a
car following the dotted yellow path. The red vertical arrow shows how fH captures the
height above the ground of a 3D point (red dot) reconstructed at the top of the stop
light. The green arrow reflects the smallest distance between the point on the railing
and the car’s path. The blue ellipse for fR illustrates the large residual error, itself a
feature, in estimating the world coordinate W̃ of a point on the moving person’s head.

road. Instead, after aligning the car’s initial “up” vector as the camera’s −y
axis, the height of each world point W̃ is compared to the camera center’s y
coordinate as fH(W̃ ) = W̃y − Cy. By including a fixed offset Cy, the algorithm
can be trained on point clouds from one vehicle, but run on other cameras and
vehicles. Our experiments use footage from two different cars.
Closest distance to camera path fC. The paths of moving vehicles on road
surfaces are less repeatable than a class’s absolute height in world coordinates,
but classes such as buildings and trees are normally set back from driving roads
by a fixed distance (Fig. 2). This feature, using the full sequence of camera
centers C(t), gives the value of the smallest recorded 3D separation between C
and each W̃ as fC(W̃ ) = mint ‖W̃ − C(t)‖. Note that the smallest separation
may occur after a feature in the current frame goes out of view. Such is the case
most obviously with features reconstructed on the surface of the road.
Surface Orientation fOx , fOy . The points W̃ in the point cloud are too sparse
and inaccurate in depth to allow an accurate 3D reconstruction of a faceted
world, but do still contain useful spatial information. A 2D Delaunay triangu-
lation [26] is performed on all the projected W̃ points in a given frame. Each
2D triangle is made of 3D coordinates which have inaccurate depths but, heuris-
tically, acceptable relative depth estimates, and thus can give an approximate
local surface orientation. The 3D normal vector for each triangle is projected
to an angled vector on the image plane in 2D. The x and y components of this
2D angle are encoded in the red and green channels of a false-rendering of the
triangulation, shown in the supplementary data online.
Track Density fD. Faster moving objects, like oncoming traffic and people,
often yield sparser feature tracks than stationary objects. Further, some object
classes have more texture than others.We thus use the track density as one of
the motion-derived cues. fD(t) is the 2D image-space map of the feature density,
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Fig. 3. Points in the 3D point cloud are marked as red dots, as are their projections
from world space to the camera’s image plane. Any feature information associated with
a 3D point also lands on the image plane and is summed in Equations 1, 2 or 3. The
yellow and green crosses illustrate how the algorithm slides over each pixel in turn to
classify it using a randomized decision forest. Feature responses are calculated at a
fixed relative 2D offset (white dashed line) and rectangle r. Here we show two example
rectangles r1 (yellow) and r2 (green) with their associated truncated pyramids p1 and
p2. Rectangle r1 is offset up and to the left of pixel (xi, yi), and thus can use the context
of e.g., fC to help determine the category at (xi, yi). Rectangle r2 is centered on pixel
(xj , yj) (i.e., no offset), and thus pools the local information of e.g., fOx .

i.e., features with the requisite lifespan (3 frames) that were being tracked at a
given time. For example, buildings and vegetation have high density, roads and
sky have low density, and cars have both types of regions locally.
Backprojection Residual fR. Having computed a 3D position W̃ for each
trajectory (ut, vt), we compute q(W̃ ), the 2D variance of its reprojection error
with respect to that track in pixels (Fig. 2). This serves to measure the accuracy
of the rigid-world assumption, and highlights objects that move. We use a loga-
rithmic scaling fR(W̃ ) = log(1+q(W̃ )) to prevent apparent corners and tracking
errors on distant objects from dominating the residuals caused by real moving
objects. This motion-covariant feature is naturally dependent on the extent to
which objects move, so should help separate buildings from cars, for example.2

This cue is illustrated in the supplementary video.

3.2 Projecting from 3D to 2D

We extend the features suggested in [27] to project our cues from the 3D point
cloud to the 2D image plane, illustrated in Fig. 3. A classifier is trained to
compute a segmentation output for each pixel, scanning across the image. When
classifying pixel (x, y) in the image, the randomized decision forest, described
in Sect. 3.3, computes feature responses using rectangles r(x, y) defined relative
to (x, y). Given the camera center, each 2D rectangle implicitly defines a 3D

2 Of course, however, it may also separate parked cars from moving ones.
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truncated pyramid p(x, y) forward of the image plane. For visible 3D world
points within a truncated pyramid, the cue values are summed to give the feature
responses, as follows. For heights fH, camera path distances fC, and residuals
fR the response is calculated as:

FT (x, y) =
∑

W̃∈p(x,y)

fT (W̃ ) for T ∈ {H,C,R}. (1)

For surface orientation, the triangulated mesh is projected directly into the im-
age, and the sum is over image pixels rather than world points:

FOx(x, y) =
∑

(x′,y′)∈r(x,y)

fOx(x
′, y′), (2)

and similarly for FOy . For track density, the response is

FD(x, y) = |{W̃ ∈ p(x, y)}|, (3)

i.e., the number of tracked points within pyramid p. Given this projection, we
can make use of integral images [28] in the image plane, one for each cue, for
fast feature response computation.

By defining the rectangles (and thereby truncated pyramids) relative to pixel
(x, y), we can capture contextual relationships. For example, when classifying for
a car pixel, it may be useful to know that a rectangle under the car has a road-like
structure (see Fig. 3).

3.3 Randomized forest

Recent work [7] has employed randomized decision forests for fast and accurate
segmentation using appearance features. We implemented a similar randomized
forest classifier for segmentation based on our motion and structure features. It
serves as a simple to implement and fast algorithm, that crucially, allows us to
compare our motion and structure cues to the newest appearance results, on a
level playing field. A number of randomized decision trees are averaged together
to achieve robust segmentation and avoid over-fitting [29]. Each decision tree
recursively branches down from root to leaf nodes. The non-leaf nodes compare a
feature response F from (1), (2) or (3) to a learned threshold. At the leaf nodes,
there is a class distribution learned from the training data, implicitly sharing
features between classes. The MAP classification is given as the segmentation at
each pixel. We use the extremely randomized trees algorithm [30] to train the
forests. This recursively splits the training data, taking at each split the feature
and threshold that maximizes the expected gain in information about the node
categories. We follow the idea suggested in [7] of balancing the categories to
optimize the category average performance versus the global performance.
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Road 26.0% 0.3% 1.6% 0.1%

Building 20.8% 1.7% Road 27.9%

Sky 18.0% Building 22.5%

Tree 10.8% 0.9% Sky 18.0%

Sidewalk 6.7% 0.4% Tree 11.7%

Car 4.2% 0.5% 0.7% Sidewalk 7.1%

Void 2.8% 0.4% 0.3% 0.1% 0.0% 0.0% 0.0% Car 5.3%

Column-Pole 1.0% 0.0% Void 3.6%

Fence 0.9% Column-Pole 1.0%

Pedestrian 0.6% 0.0% 0.0% Sign-Symbol 1.0%

Bicyclist 0.3% 0.0% Fence 0.9%

Sign-Symbol 0.2% 0.5% 0.3% Pedestrian 0.6%

Bicyclist 0.3%

27.9%

22.5%18.0%

11.7%

7.1%

5.3%
3.6%

1.0% 1.0% 0.9% 0.6% 0.3% Road
Building
Sky
Tree
Sidewalk
Car
Void
Column-Pole
Sign-Symbol
Fence
Pedestrian
Bicyclist

Fig. 4. Left: Breakdown by category (listed clockwise from 12 o’clock) of the proportion
of pixels in the 600 manually segmented frames in our driving video database. Right:
30Hz high-definition videos for which every 30th frame was painted manually with
per-pixel semantic labels. Sequences were used as either training or testing data.

4 Experiments

The extensive experiments evaluated whether the simple ego-motion-derived
cues could perform object recognition and segmentation. Since no existing data-
base met those needs, we created a new labeled dataset of driving sequences.
We then evaluated our motion and structure cues and compare them to existing
appearance-based features. We finally show how our motion and structure cues
can be combined with these appearance cues to improve overall performance.
Further results including videos are available online.

Data Acquisition. Existing databases of labeled images do not include frames
taken from video sequences, and usually label relevant classes with only bound-
ing boxes. It takes the same amount of human effort to semantically label the
pixels of N images drawn from video sequences as is needed for N indepen-
dent photographs. The difference is that in the case of video, each labeled frame
could have potentially many other temporally related images associated with
it. Without an existing corpus of such data, we proceeded to film 55 minutes
of daytime footage, 31 minutes of footage at dusk. Pedestrians and cyclists are
visible at almost all times, but usually occupy only a small proportion of the
field of view (see Fig. 4 left). The footage includes a variety of urban, residential,
and mixed use roads. We developed a special purpose labeling tool for use in
hand-segmenting the images. This is essentially a paint program with various
edge detection and flood filling capabilities, but it also logs the amount of time
and order of paint strokes a user employed to label each class. This data will be
publicly available and we anticipate this will be of use to the community.

We selected daytime and dusk sequences, as listed in Fig. 4’s table. Labeled
images for each set are available at 1 fps, and ego-motion features and camera
poses were computed at 30 fps. The labeled data has 11 categories: Building,
Tree, Sky, Car, Sign-Symbol, Road, Pedestrian, Fence, Column-Pole, Sidewalk,
and Bicyclist. There is also a small number of ‘void’ pixels not belonging to one
of these classes that are ignored.
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Mot & Struct 43.9 46.2 79.5 44.6 19.5 82.5 24.4 58.8 0.1 61.8 18.0 43.6 61.8
Appearance 38.7 60.7 90.1 71.1 51.4 88.6 54.6 40.1 1.1 55.5 23.6 52.3 66.5
Combined 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1

Table 1. Results in pixel-wise percentage accuracy on all three training and both
test sequences, including both day and dusk frames. Note that (i) accurate semantic
segmentation is possible using only motion and structure features, without any appear-
ance information, and (ii) by combining our new motion and structure features with
existing appearance features, we obtain a small but significant improvement. See text
for more analysis.

Accuracy is computed by comparing the ground truth pixels to the inferred
segmentation. We report per-class accuracies (the normalized diagonal of the
pixel-wise confusion matrix), the class average accuracy, and the global segmen-
tation accuracy. The average accuracy measure applies equal importance to all
11 classes, despite the widely varying class prevalences (Fig. 4 left), and is thus a
much harder performance metric than the global accuracy measure. As a baseline
for comparison with our results below, chance would achieve a global accuracy
of about 9%. This rises to about 20% if the baseline chooses randomly according
to the category priors.

4.1 Testing Motion and Structure Features

We trained a randomized decision forest based on our five motion and structure
cues, using combined day and dusk sequences for both training and testing.
The results are shown in the top row of Table 1 and the middle row of Fig. 7.
These show the main contribution of the paper: that using only motion and
structure information derived from sparse and noisy point clouds (Fig. 1), one
can accurately segment images from video sequences and recognize the categories
present. Observe in Figs. 1 and 7 that our algorithm segments the global scene
well and even recognizes some of the smaller classes (e.g., bicycle, sign). In terms
of global accuracy, 61.8% of pixels are classified, and the strong average accuracy
of 43.6% shows good consistency across the different categories. The perhaps low
raw numbers highlight the difficulty of our new data set, but as we discuss shortly
are comparable to a state-of-the-art appearance algorithm.

One by-product of balancing the categories during training is that the areas
of smaller classes in the images tend to be overestimated, spilling out into the
background (e.g., the bicycle in Fig. 7). This suggests a shortcoming of the
segmentation forest algorithm suggested in [7], that all pixels of a certain class are
treated equally. The method in [31] may help with this. There is also considerable
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Fig. 5. Proportions of features used in the ran-
domized segmentation forest, as a function of
node depth. At the top of the tree there is some
bias toward our density, height and closest dis-
tance cues. But deeper in the tree all cues are
informative and used in roughly equal propor-
tions.

Cues Used Balanced Global
Ave. Score Score

All 43.3% 63.0%
Just Height 39.1% 55.3%
Just Distance 41.9% 57.1%
Just Orient. 37.3% 59.0%
Just Density 40.2% 60.0%
Just Residual 36.2% 58.1%

Fig. 6. We combine all the cues,
but here each cue was also tested
in isolation. Scores were computed
by either optimizing the balanced
per-category average, or the global
% correct - of pixels assigned to the
same class as in the ground truth.

confusion between fence and building which we believe to be shortcomings in the
ground truth.

To determine the relative importance of the five motion and structure cues,
we analyzed the proportion of each chosen by the learning algorithm, as a func-
tion of depth in the randomized forest. In Fig. 5 we observe near the tree roots
that there is some bias toward the density, height, and closest distance cues.
Further down the tree however, all five cues play an important and balanced
role (normals were split into x and y components in the figure). This suggests
that the density, height, and closest distance cues work well to segment the
rough global structure of the scene, and that the finer details are tackled more
consistently by all five cues.

These result used a randomized forest containing 50 trees trained to a maxi-
mum depth of 13, testing 500 random features (cue choice and offset rectangles)
at each step of building the tree. The learning takes only about 15 minutes, and
testing takes less than one second per frame.3 Our system should scale well, at
worst linearly with the number of object classes and training images.

4.2 Comparison with Appearance Features

We compared with a state-of-the-art technique [7]. It uses dense pixel patches to
semantically segment images using only appearance information (no motion or
structure). Table 1 includes the comparison between our motion and structure
features vs. the appearance features of [7]. As one might expect, given much
denser and less noisy image features, appearance works somewhat better than
motion and structure, though clearly this does not diminish our contribution
that the new motion and structure cues work at all. We discuss below how these
two complementary types of feature can be combined to improve overall results.
3 These timings assume pre-computed SfM point clouds. Recent work [22] has moved

towards making this real-time.



11

Train Day – Test Dusk Train Dusk – Test Day
Average Global Average Global

Mot & Struct 29.2% 45.5% 31.0% 59.4%

Appearance 14.2% 21.7% 25.4% 50.5%
Table 2. By training in one lighting condition (day or dusk) and testing in the other, we
compare the lighting invariance of our motion and structure features with appearance
based features. Observe much better generalization of our motion and structure features
to novel lighting conditions.

Motion and structure features do however have an obvious advantage over
appearance features: generalization to novel lighting and weather conditions.
We compare in Table 2 the global and average segmentation accuracies obtained
when training in one lighting condition (day or dusk) and testing in the other.
Figure 8 and the online materials show segmentation results. We see for both
combinations that the new motion and structure features generalize much better
than the appearance features. Extra labeled data could be used to improve the
appearance features, but obtaining labeled data is very expensive. Without any
extra data, our motion and structure features can reasonably be expected to
generalize to other lighting and weather conditions such as night, snow or rain,
since they are almost independent of image appearance (up to obtaining feature
tracks).

4.3 Combined Ego-Motion & Texton Features

Since our motion and structure features contain rather different information to
the appearance features of [7], one would expect the two to be complementary.
We investigated a simple method of combining the features, by taking a geomet-
ric interpolation of the two classifiers. We denote our randomized decision forest
classifier based on motion and structure cues as P (c|M), and the appearance-
based classifier from [7] as P (c|A). These were trained independently and then
combined as

P (c(x,y)|M,A) =
1
Z

P (c(x,y)|M)× P (c(x,y)|A)α, (4)

where α is a weighting parameter chosen by holdout validation, and Z is used to
renormalize the distribution. The two distributions P (c|M) and P (c|A) should
reinforce their decisions when they agree and flatten the distribution when they
disagree, a kind of soft ‘AND’ operation. This was found better in practice than
an arithmetic average (‘OR’).

The results for this combination can be seen in the last row of Table 1 and
Fig. 7, and in the online video, using α = 2.5. The soft AND operation does
not guarantee an improvement for all categories, but still we observe a small but
significant improvement in both average and global accuracy. The qualitative
appearance of the segmentations is also consistently improved. These results are
very encouraging, suggesting that our motion and structure features are indeed
complementary to appearance features.
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(A) DayTest #0450 (B) DayTest #2460 (C) DuskTest #8550 (D) DuskTest #9180

Fig. 7. Sample segmentation results. From top to bottom: test image, ground truth,
motion and structure inferred segmentation, appearance inferred segmentation, and
combined segmentation. Note that accurate segmentation and recognition is possible
using only motion and structure features, and that combining our new cues with exist-
ing appearance cues gives improved segmentation. The whole video sequence is online.

5 Conclusions

Using motion and 3D world structure for segmentation and object recognition
is a fundamentally new challenge. Our main contribution has been to show that
accurate results are possible using only ego-motion derived 3D points clouds.
Experiments on a challenging new database of naturally complex driving scenes
demonstrate that our five new motion and structure cues can be combined in
a randomized decision forest to perform accurate semantic segmentation. These
five cues were also shown to generalize better to novel lighting conditions than ex-
isting appearance-based features. By then combining motion and structure with
appearance, an overall quantitative and qualitative improvement was observed,
above what either could achieve individually.

The worst performance of our system is for those categories least well rep-
resented in the training data, despite balancing categories during training. We
hope that semi-supervised techniques that use extra partially labeled or unla-
beled training data may lead to improved performance in the future.

Our combination of segmentation classifiers (Equation 4) is somewhat sim-
plistic, and we are investigating other methods. Learning a histogram for each
pair of (motion and structure, appearance) tree leaf nodes could better model
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(A) DuskTest #8580 (B) DuskTest #10020 (C) DayTest #0960 (D) DayTest #4680

Fig. 8. Inherent invariance of motion and structure to novel lighting conditions. From
top to bottom: test image, ground truth, motion and structure inferred segmentation,
and appearance inferred segmentation. When trained on daytime footage and tested on
dusk footage and vice-versa, our motion and structure cues are still able to accurately
recognize and segment the scene. In contrast, the appearance inferred segmentation
degrades drastically.

the joint dependencies of the two classifiers, but care must be taken so that in
avoiding overfitting, quadratically more training data is not required.

Acknowledgements Thanks to John Winn for advice and for driving one of
the capture cars.
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