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ABSTRACT

In this paper, a system which constructs a mosaic image of
the tunnel surface with little distortion is presented. The tun-
nel surface is typically composed of a roughly cylindrical sur-
face and protuberant regions containing objects such as pipes,
pans and tunnel ridges. Since the true surface is neither pla-
nar nor quadric, existing mosaicing methods, which assume
either homography or quadratic motion models, suffer from
distortion. The proposed system obtains a sparse 3D model
of the tunnel by multi-view reconstruction. Then, the Sup-
port Vector Machine (SVM) classifier is applied in order to
separate image features lying on the cylindrical surface from
those of the non-surface. The reconstructed 3D points are re-
projected into images to retrieve the priors given by the SVM
classifier for accurate cylindrical surface estimation. The final
mosaic image is obtained by flattening the estimated textured
surface onto a plane. The results suggest that the mosaic qual-
ity depends critically on the surface estimation accuracy and
the proposed system is able to produce the mosaic image that
preserves all physical sense, e.g. line parallelism and straight-
ness, which is important for tunnel inspection.

Index Terms— Visual inspection, Mosaicing, Multiple
view geometry, Support Vector Machine

1. INTRODUCTION

Much of the underground infrastructure, especially in Lon-
don, was constructed over half a century ago and has shown
signs of deterioration which causes problems in structural in-
tegrity. Maintenance works are regularly carried out and vi-
sual inspection is a common practice that is used in detecting
and monitoring anomalies (e.g. cracks, spalling, and stain-
ing). Photographs are used as a mean of recording anomalies
although over years they become large and difficult to organ-
ise. Therefore, an automatic tool such as image mosaicing
will assist inspectors in organising images and in examining
the tunnel surface much more effectively.

In recent years, image mosaicing technology has been
greatly improved which is attributed to better algorithms in
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Fig. 1: The result from a state of the art mosaicing method based on
the planar motion model [12]. The parallel lines (tunnel ridges) di-
verging along the horizontal axis of the image and mis-registrations
due to protuberance are evident (within the red box).

feature detection and matching [1], and the use of the ad-
vanced motion models. The homography-based model, which
assumes the planar surface, is widely adopted due to its sim-
plicity. However, it suffers from perspective distortion [1],
especially in our setting in which photos are taken near the
tunnel surface (see Fig.1). To allow the non-planar surface, it
is often assumed that a camera undergoes pure rotation since
estimating the full perspective model is generally difficult.
Although this assumption is a popular choice for large-scale
image stitching, it is inherently limited when the camera mo-
tion is arbitrary. Another important line of mosaicing is to
map images to cylindrical or spherical surfaces with different
camera motion constraints [2, 3]. The hierarchical estimation
of the motion model has been proposed to relieve the motion
constraints for the quadric surface mosaicing [3]. The global
consistency, in which more than a single pair of images are
registered, also helps to improve the quadric mosaic quality
[2, 3]. However, the true tunnel geometry is not quadric but
typically a mixture of a cylindrical surface and protuberant
regions such as pipes, pans and tunnel ridges. Hence, the
methods of the quadric surface mosaicing still cause distor-
tion subject to the amount and degree of protuberance from
the cylindrical surface.

We present a system that mosaics the tunnel images via
robust quadric surface estimation. The multi-view reconstruc-
tion and classification of the cylindrical surface points by Sup-
port Vector Machine (SVM) enable accurate surface estima-
tion which results in a mosaic image with little distortion. The
rest of the paper is organised as follows. Section 2 explains
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Fig. 2: System outline.

the outline of the proposed system. Multi-view reconstruction
is explained in Section 3. Section 4 describes classification of
points on the tunnel images and its use in surface estimation,
and texture mapping. Section 5 contains results and discus-
sion. Conclusions and future works are included in Section 6.

2. SYSTEM OUTLINE

Figure 2 shows an outline of the proposed system. The first
component is the image collection. A camera which is cali-
brated from the Caltec calibration toolbox [7] is employed to
obtain images from the real underground environment. The
images are then input to the sparse multi-view reconstruction
algorithm based on the work of Snavely er. al. [5] as ex-
plained in Section 3. It is important to note that, at this stage,
points from both the surface (hereinafter, the quadric or cylin-
drical surface is simply written as surface) and the protuberant
regions (see Fig. 1) are useful for estimating the 3D model and
the camera projection matrices, although, the latter will need
to be removed in the subsequent steps for reliable quadric sur-
face estimation. For SVM classification, some input images
are manually labelled to separate the surface to the protuber-
ant regions. The labelled images with their associated image
points, which is represented by Scale Invariant Feature Trans-
form (SIFT) descriptors [6], are used for training and eval-
uating the SVM classifier as explained in Section 4.1. The
reconstructed 3D points are then classified into two regions
by applying the learnt SVM classifier to their associated im-
age points (each 3D point has more than two corresponding
image points). The priors obtained by classification of the 3D
points help the quadric surface estimation step as explained
in Section 4.2. The surface is correctly estimated by remov-
ing the non-surface points that can badly skew the quadric
surface estimation. The proposed system approximates the
true tunnel surface geometry to be cylindrical, this assump-
tion is exploited for mosaicing. The images are registered to
the estimated cylindrical surface and the textured surface is
then flattened to yield a mosaic image, see Section 4.3. The
sparse 3D model reconstructed by the proposed system is also
a useful bi-product for tunnel inspection.

3. MULTIPLE VIEW RECONSTRUCTION

The algorithm in [5, 8] is modified to obtain a sparse 3D
reconstruction of the tunnel. The algorithm starts with the

SIFT algorithm to extract features and their associated de-
scriptor vectors for each image [6]. It has been shown that
this feature is invariant to scale and robust to affine trans-
formation. The 128-dimensional descriptor vectors are then
pairwise matched by the k-nearest neighbour method for each
pair of images. Incorrect matches are filtered out by the ge-
ometrical consistency constraint by the RANdom Sampling
Consensus (RANSAC) algorithm with the 8-point algorithm.
The fundamental matrix F obtained by the RANSAC is used
to obtain the essential matrix, E = KQTFKl, where K is
the camera calibration matrix obtained by [7]. The essen-
tial matrix is decomposed by Singular Value Decomposition
(SVD) to produce the relative camera rotation and translation
matrices, hence the projection matrices, between each camera
pair. The ambiguity of the projection matrices is solved by the
cheirality constraint [9]. To register all cameras in a global
scale, the scale ambiguity is solved in a triplet-wise fashion.
The scale ratio of each triplet is found by the SVD method.

Once all camera projection matrices in the global frame
are found, 3D points can be recovered from any pair of the
projection matrices by triangulation. In our algorithm, a 3D
point is triangulated from the first pair of the cameras that
see this point. The DLT algorithm is used in the triangulation
step [4]. All 3D points, the camera rotation and translation
matrices, and the calibration matrix are then used to initialise
the Bundle Adjustment (BA) algorithm. This algorithm can
greatly improve the reconstruction accuracy by global regis-
tration in which all parameters (i.e. 3D points and all camera
projection matrices) are optimised together by minimizing a
suitable cost function. The implementation of the BA algo-
rithm is obtained from [10].

4. QUADRIC SURFACE ESTIMATION FOR
MOSAICING

4.1. Implementation of Support Vector Machine

The SVM classifier is applied to discriminate the tunnel sur-
face points from the non-surface points. The interest points
detected by the SIFT algorithm on or near the protuberant
regions are collected as the non-surface class and the other
interest points as the surface class, as shown in Fig. 4 (Right).
The image patches centered on the interest points of the two
classes exhibit distinctive appearances as shown in Fig.3,
thus they are separable. The training data set is composed
of {x;,y;} where x; is the 128-dimension SIFT descriptor
vectors [6] and y; € {—1,+1} is the class label. The SVM
classifier [11] that optimally separates the positive class from
the negative class is obtained as

N
f(x) = Z%’yiK(Si,X) +b ey
i=1

where {s1,...sn,} is the set of support vectors, which is a
subset of the training vectors, and «; is the weight for the i-th



&7

A &r e, ;
f, & B | .
“ia = L X

Fig. 3: An example of two classes. The interest points on and near
the protuberant regions are Class 1 and on the surface are Class 2.

class 1

support vector and b is the bias. The kernel function that we
use in the system is K (x;,x;) = e~ Ixi=x411*/20% \where o is
the kernel variance. The variance ¢ and the penalty constants
are set using a validation set.

4.2. Quadric Surface Estimation with Priors

The tunnel surface geometry is assumed to be a cylinder in
which a 3D coordinate X; is described by:

(X;-C X;-C)=1 2

T (I-AAT)
)
where the centre C, the directional vector A and the radius
r are used to parameterise the cylinder. Since not all of the
3D points are equally reliable in the surface estimation, the
weighted cost function is proposed as

Z wld(X1)27 w; = EjP(in) (3)

where d is the distance of the 3D point to the estimated cylin-
der and P is the probability that the corresponding image
point belongs to the surface class. The SIFT vector of the
Jj-th image point of X; is denoted by x;; and P(x) = 1/(1 +
exp(—f(x))) where the function f is the SVM classifier in
(1). That is, each 3D point is re-projected into the images that
see the 3D point and the probabilities are summed over the
associated images coordinates. The surface parameters are
estimated by minimizing the weighted cost function using the
Gauss-Newton method. Using a more robust estimator such
as the RANSAC algorithm with the SVM priors is an inter-
esting future work.

4.3. Image Warping and Final Mosaicing

A cylinder is the surface of the zero Gaussian curvature so
it is possible to define a local isometry for flattening the
curved surface onto a plane. Moreover, given the constraints
on the image collection process, cameras are put inside the
cylinder and each ray intersects the surface in only a single
visible point, defining a bijection between an image sample
and a point on the surface. These facts allow us to define a
warping producing the flattened versions of the input images.
The warped images can finally be mosaiced with any stan-
dard stitching algorithms using the planar projective motion
model. The Microsoft Image Composite Editor [13] is used
to obtain the final mosaics in both Figure 1 and 6(b).
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Fig. 4: SVM classification results. The ROC curves for the differ-
ent kernel parameters and the penalty constants (Left); a test exam-
ple: the points in gray are classed as non-surface points or class 1,
and the points in red are surface points or class 2 (Right).

5. RESULTS AND DISCUSSION

For the SVM classification, the data set contains 1369 training
points and 635 test points from 19 labelled images. The ROC
curves for the different variance and the constants are shown
in Figure 4 (Left). The best performance is achieved when the
kernel variance and the penalty constants are set as o = 0.5
and [Cy, C2] = [2, 1], respectively. Figure 4 (Right) shows an
example of image points classified by the learnt classifier.

Figure 5 shows the sparse 3D reconstruction model of the
tunnel without the global registration by the BA, (b), and with
the BA ,(c). The tunnel linings are clearly seen after the BA is
performed. The convergence graph of the BA algorithm, (a),
quantitatively shows significant improvement in the global
registration as the cost function converges to a correct min-
imum. The 3D points classified as the surface points by the
SVM classifier are marked as red in Figure 5(c). The esti-
mated surface with (in blue) and without (in red) the SVM
classification is shown in Figure 5(d).

The top figure in Fig. 6(a) shows the result before the
BA is applied. Misalignment in the overlapping regions are
clearly seen due to the errors in the camera registration. The
bottom figure in Fig. 6 (a) illustrates the result after the BA
is used but without the SVM classifier employed. Skewness
in the surface estimation induced by the non-surface points
causes noticeable distortion in the mosaic image shown as the
curvature in the tunnel ridges. In this result, parallelism of the
tunnel linings is somewhat preserved, but not the line straight-
ness. Similarly, the physically incorrect mosaic is seen in the
homography-based mosaic in Fig. 1 where the parallel lines
diverge. Figure 6(b) shows the result after the cylindrical sur-
face is corrected by the SVM classification. Noticeably, both
line parallelism and straightness are preserved. The angle be-
tween the vertical and horizontal lines is 90° which indicates
the tunnel in the correct physical sense. This is important
for tunnel inspection. The region within the red box indi-
cates a small misalignment compared with significant distor-
tion shown in Fig. 1.
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Fig. 5: The sparse multi-view reconstruction models and the surface estimation. The convergence graph of the BA algorithm (a). The
reconstructed models without and with the BA (b and c, respectively). The estimated surfaces, (d).

Fig. 6: Mosaic image results. (a) The top image is the result with BA but without SVM, the bottom image is the result before BA. (b) The

final result with BA and SVM applied.

6. CONCLUSIONS AND FUTURE WORKS

The system for mosaicing images of the tunnel is presented.
The quality of the mosaic image depends critically on the es-
timation of the surface geometry. The SVM classifier is able
to separate the points belonging to the tunnel surface the non-
surface. The priors obtained by the SVM classification greatly
improves the quality of the mosaic. Althought, a small mis-
alignment is still observed in one region, this can be improved
by locally correcting the region.

In the future, it is planned to conduct further validation on
more datasets that were recently acquired. Furthermore, the
prototype of the system including the software and the appa-
ratus for acquiring images (e.g. 20-30 metres of the tunnel
length) is currently being developed so that it can be practi-
cally adopted in the tunnel inspection procedure.
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