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Abstract

Whereas most existing action recognition methods require computationally demand-
ing feature extraction and/or classification, this paper presents a novel real-time solution
that utilises local appearance and structural information. Semantic texton forests (STFs)
are applied to local space-time volumes as a powerful discriminative codebook. Since
STFs act directly on video pixels without using expensive descriptors, visual codeword
generation by STFs is extremely fast. To capture the structural information of actions, so
called pyramidal spatiotemporal relationship match (PSRM) is introduced. Leveraging
the hierarchical structure of STFs, the pyramid match kernel is applied to obtain robust
structural matching, avoiding quantisation effects. We propose the kernel k-means forest
classifier using PSRM to perform classification. In the experiments using KTH and the
latest UT-interaction data sets, we demonstrate real-time performance as well as state-of-
the-art accuracy by the proposed method.

1 Introduction
Recognising human actions from videos has been widely studied for applications such as
human-computer interaction, digital entertainment, visual surveillance and automatic video
indexing. Despite the popularity of the topic in computer vision research, some issues still
remain for realising its potentials:

• While time efficiency is of vital importance in real-world action recognition systems,
current methods seldom take computational complexity into full consideration. State-
of-the-art algorithms (e.g. [5, 8, 9, 27]) have reported satisfactory accuracies on stan-
dard human action data sets. They, however, often resort to computationally heavy
algorithms to obtain the good accuracies.

• Action classification with a short response time is useful for continuous recognition in
human-computer interaction. Typically, a class label is assigned after an entire query
video is analysed, or a large lookahead is required to collect sufficient features. In fact,
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as suggested by [22], actions can be recognised from very short sequences called the
“snippets”.

• Structural information is a useful cue for action recognition. The “bag of words”(BOW)
has proven a effective model for action recognition owing to its rich description power
of local appearance information and its inherent benefits to cope with scale changes,
translation and cluttered backgrounds. However, the standard BOW model ignores the
spatiotemporal relationships among local descriptors.

Addressing the aforementioned challenges, we present a novel method for human action
recognition. The goal of this work is to design a very fast but competitively accurate action
recogniser over state-of-the-arts. The major contributions include the followings:

Efficient Spatiotemporal Codebook Learning: We extend the use of semantic texton
forests [25] (STFs) from 2D image segmentation to spatiotemporal analysis. STFs are en-
sembles of random decision trees that translate interest points into visual codewords. In
our method, STFs perform directly on video pixels without computing expensive local de-
scriptors. As well as being much faster than a traditional flat codebook such as k-means
clustering, STFs achieve high accuracy comparable to that of existing approaches.

Combined Structural and Appearance Information: We propose a richer descrip-
tion of features, hence actions can be classified in very short video sequences. Building on
the work of Ryoo and Aggarwal [19], we introduce pyramidal spatiotemporal relationship
match (PSRM). Histogram intersection used in [19] is prune to quantisation errors when the
histograms have a large number of bins. Taking the inherent benefit of the hierarchical struc-
ture of semantic texton forests, the pyramidal match kernel [4] is employed to alleviate this
problem.

Improved Recognition Performance: Several techniques are employed to enhance the
recognition speed and accuracy. A novel spatiotemporal interest point detector, called V-
FAST, is designed based on the FAST 2D corners [18]. A fast and effective classifier, namely
k-means forest classifier, is also proposed. The recognition accuracy is improved by adap-
tively combining PSRM and the bag of semantic texton (BOST) method [25].

The rest of the paper is structured as follows: In section 2, related works are reviewed. In
section 3–7, the proposed methods are detailed. Evaluation results are reported and discussed
in Section 8 and the conclusion is drawn in Section 9.

2 Related Work

State-of-the-art action recognition methods have shown the effectiveness of local appearance-
based features: the “bag of words” is a widely used technique in the literature [2, 14, 17, 23,
28]. A codebook is learned to quantise input features into visual codewords. Classification
is then performed on the histograms of codewords. Generally, a large-sized codebook is re-
quired to obtain high recognition accuracy, yet an oversized codebook leads to high quantisa-
tion errors and overfitting. K-means clustering is a popular algorithm for codebook learning.
Feature quantization by a large flat codebook such as k-means is, however, computationally
heavy. Tree-based codebooks have been explored as an alternative to speed up the feature
quantisation. Since Moosmann et al. [13], random forests have been increasingly used in
many tasks e.g. image classification and segmentation [25], owing to good generalisation
and efficiency. Similarly, Oshin et al. [15] recognise actions by analysing the distribution of
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interest points by random ferns. Lin et al. [8] used a prototype tree to encode holistic motion-
shapes descriptors. Mikolajczyk and Uemura [12] built clustering trees from the centroids
obtained by k-means clustering. Hierarchical codebooks enable fast vector quantisations, but
the expensive features and classifiers used in [8, 12] make the overall processes still heavy.

Standard bag of word models contain only local appearance information. While struc-
tural context could be useful for describing action classes, it is often overlooked in current
action recognition methods. Several recent studies have attempted to augment structural in-
formation into local appearance features. Scovanner et al. [24] employ a two-dimensional
histogram to describe feature co-occurrences. Savarese et al. [21] propose “correlograms”
to measure the similarity of actions globally. Wong et al. [28] present the pLSA-ISM model,
which is an extension of the probabilistic latent semantic analysis (pLSA) by spatial infor-
mation. Tran and Sorokin [26] and Zhang et al. [30] capture structural information directly
by a global shape descriptor. Since these methods [26, 28, 30] encode holistic structures
with respect to a reference position e.g. the center of ROI (region of interests), they require
manual segmentation or computationally-demanding detection of ROI. Structural relation-
ships among individual features are not fully utilised in these methods. Most recently, Ryoo
and Aggarwal [19] propose the spatiotemporal relationship match (SRM) which represents
structures by a set of pairwise spatiotemporal association rules. Kovashka and Grauman [6]
exploit structural information by learning an optimal neighbourhood measure on interest
points. Despite of the high accuracies reported, speed and quantisation errors are the major
issues due to the flat k-means codebook involved.

The pyramid match kernel (PMK) [4] is widely used in recent image-based object detec-
tion and matching studies. PMK exploits multi-resolution histograms. Similar points that do
not match at fine resolutions have a chance to match at lower resolutions. Hence, PMK re-
duces quantisation errors and enhances robustness. Liu and Shah [9] matched interest points
in multiple resolutions using PMK and reported improved results, however the features are
only matched spatially but not semantically.

Design of interest point detector/descriptor and classifiers also plays an essential role.
Just to name a few, the detectors designed by Laptev and Lindeberg [7] and Dollar et
al. [2] are commonly adopted in existing methods. Both of them are the extensions of two-
dimensional Harris corners. To describe interest points, histograms of gradients (HOG) and
optical flow are popular in earlier approaches [2, 14, 23]. Scovanner et al. [24] proposed
a three-dimensional version of Lowe’s popular SIFT descriptors [10]. Willems et al. [27]
used an extended SURF descriptor for action recognition. Some common classifiers used in
action recognition include K-NN classifiers, support vector machines and boosting, which
are complex to attain sufficient real-time performance.

With increasing interests in practical applications, real-time action recognition algo-
rithms have attained new attentions. For instance, Yeffet and Wolf [29] utilise dense local
trinary patterns with a linear SVM classifier. Gilbert et al. [3] propose a fast multi-action
recognition algorithm by finding reoccurring patterns on dense 2D Harris corners by a data-
mining algorithm. Patron-Perez and Reid [16] designed a probabilistic classifier that recog-
nises actions continuously by a sliding window. Bregonzio et al. [11] consider actions as
clouds of points, and efficient classification is done by analysing histograms of point clus-
ters. The requirement of prior segmentation or long sequences for classification renders the
respective methods not responsive.
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Figure 1: Overview of the proposed approach

3 Overview
An overview of the proposed approach is illustrated in figure 1. Firstly, spatiotemporal inter-
est points are localised by the proposed V-FAST detector. Semantic texton forests (STFs) are
learned to convert local spatiotemporal patches to visual codewords. Secondly, structural in-
formation of human actions is captured by the pyramidal spatiotemporal relationship match
(PSRM). Classification is then performed efficiently using a hierarchical k-means algorithm
with the pyramid match kernel. The proposed method is adaptively combined with the prior-
art that uses the bag of semantic textons (BOST) and random forests as a classifier to further
improve the recognition accuracy.

4 V-FAST Interest Point Detector
V-FAST (Video FAST) interest points are obtained by extending the FAST corners [18] into
a spatiotemporal domain. It considers pixels in three orthogonal Bresenham circles with a
radius r on XY , Y T and XT planes. Similar to FAST, saliency is detected on a plane if
there exist n contiguous pixels on the circle which are all brighter than a reference pixel
p(x,y, t) plus a threshold t, or all darker than p(x,y, t)− t. An interest point is detected when
the reference pixel shows both spatial (XY -plane) and temporal (XT -plane or Y T -plane)
saliency. The V-FAST detector gives a dense set of interest points, which enables accurate
classification from relatively short sequences. Figure 2 illustrates how interest points are
detected using the 42-pixel V-FAST interest point detector with r = 3.

(a) V-FAST detector (b) Spatiotemporal interest points (c) Spatiotemporal volumes

Figure 2: Spatiotemporal interest points localised by the proposed V-FAST detector

5 Spatiotemporal Semantic Texton Forests
Semantic texton forests [25] are ensembles of randomised decision trees which textonise in-
put video patches into semantic textons. They are extremely fast to evaluate, since only a
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Spatiotemporal Semantic Texton Forest
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f(cuboid):

if (w1P1 – w2P2) > Threshold

goto LEFT

else

goto RIGHT 
Tree 1 Tree M

Codeword B

Codeword A

Figure 3: Visual codeword generation by Spatiotemporal Semantic Texton Forests

Algorithm Complexity Relative Speed* Hierarchical
k-means O(K) 1 no

Hierarchical k-means O(b logb(K)) 43.51 yes
STFs O(log2(K)) 559.86 yes

*Speed measurements are relative to the k-means clustering algorithm. The speed is measured
by computing 1 million feature vectors of 405 dimension. The codebook size K is 1905 and the
branching factor b in the k-means algorithm is 16.

Table 1: A comparison of semantic texton forests and k-means codebooks.

small number of simple features are used to traverse the trees. They also serve a powerful dis-
criminative codebook by multiple decision trees. Figure 3 illustrates how visual codewords
are generated using the spatiotemporal semantic texton forests in the proposed method. It
acts on small spatiotemporal volumes p(x,y, t), which are taken around the detected interest
points in input videos. The training process of STFs is similar to that of random forests.
At each split node, candidate split functions are generated randomly, and the one that max-
imises the information gain ratio is chosen. The split functions in this work are defined as
the weighted differences of two pixel values of the spatiotemporal volumes:

f (p) = w1 · p(x1,y2, t1)−w2 · p(x2,y2, t2)> threshold (1)

The small volumes are passed down M trees. The STF codebook has a size of L = ∑
M
m Lm

where Lm represents the number of leaf nodes i.e. codewords in m-th tree. Figure 3 (right)
shows the two codewords generated by the example split function. Table 1 summarises a
comparison between STFs and k-means algorithms.

6 Pyramidal Spatiotemporal Relationship Match

Pyramidal spatiotemporal relationship match (PSRM) is presented to encapsulate both lo-
cal appearance and structural information efficiently. Semantic texton forests quantise lo-
cal space-time volumes into codewords in multiple texton trees. For each tree, the three-
dimensional histogram is constructed by analysing pairs of codewords and their structural
relations (see figure 4 (left and middle)). For each histogram, a novel pyramid match kernel
is proposed for robust matching (figure 4 (right)). Multiple pyramidal matches are then com-
bined to classify a query video. Whereas the spatiotemporal relationship match (SRM) [19]
relies on a single flat k-means codebook, PSRM leverages the properties of semantic trees
and pyramidal match kernels. Its hierarchical structure offers a time efficient way to perform
the pyramid match kernel for semantic codeword matching [4].
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Multiple spatiotemporal 
histograms

Spatiotemporal Relationship Match of visual 
codewords from Semantic Texton Forest

Pyramid Match Kernel is utilised 
to match the histograms

Feature Extraction Feature Representation Feature Matching

Figure 4: Pyramidal spatiotemporal relationship match (PSRM)

Spatiotemporal relationship histograms. Subsequences are sequentially sampled from
an input video in very short intervals (e.g. 10 frames). A set of spatiotemporal interest points
U = {ui} are localised. The trained STFs assign visual codewords to the interest points.
Therefore, an encoded interest point can be described as ui = {xi,yi, ti, lm,i},m = 1, ...,M,
where xi,yi,zi represents a XY T -location of the feature and lm,i the visual codeword i.e. the
leaf node assigned to ui by the m-th tree. A set of pairwise spatiotemporal associations are
designed to capture the structural relations among interest points. By analysing all possible
pairs ui and u j in U, space-time correlations are described by the following seven association
rules R = {R1, . . . ,R7}:

R1 overlap : |ti− t j|< To, R4 nearXY : (|xi− x j|< Tn)∧ (|yi− y j|< Tn)

R2 be f ore : To < t j− ti < Tb, R5 nearX : (|xi− x j|< Tn)∧ ∼ (nearXY )

R3 a f ter : To < ti− t j < Ta, R6 nearY : (|yi− y j|< Tn)∧ ∼ (nearXY )

R7 f ar : (|xi− x j|< Tf)∧ (|yi− y j|< Tf) ∧ ∼ (nearXY ∨nearX ∨nearY )

Figure 4 illustrates how the relationship histograms are constructed and matched using PSRM.
A set of 3D relationship histograms {H1(U), . . . ,HM(U)} are constructed by analysing every
pair of feature points in U. The bin hm(i, j,k) of the m-th tree histogram Hm(U) takes the
count of matching (lm,i, lm, j) codeword pairs by an association Rk. The total number of bins
in Hm(U) is Lm×Lm×|R|. Despite the large size of the relationship histograms, operations
on these histograms can be greatly accelerated by sparse matrices.

Pyramid match kernel for PSRM. Similarity between the two sets of interest points U
and V is measured by the pyramid match kernel (PMK) from a multi-resolution histogram
space for each tree. At a specific resolution q, the two sets U and V having the histogram
bins hq

m(i, j,k) and gq
m(i, j,k) respectively, are matched by histogram intersection in (2). New

quantisation levels in the histogram pyramid are formed by increasing the bin size. In the
proposed method, adjacent bins that share the same parent node in the tree are conveniently
merged in (3), creating a new quantisation level hq+1

m (i, j,k) (the same for gq+1
m (i, j,k)). The

match kernel Km at the m-th tree is then defined in (4) by the weighted summation of dif-
ferences between successive histogram intersections. Matches in finer bins score higher
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similarity than matches in coarser levels by a factor of 1
4q−1 .

Iq(U,V) = Σ
Lm
i=1Σ

Lm
j=i+1Σ

7
k=1 (min(hq

m(i, j,k),gq
m(i, j,k))) (2)

hq+1
m (i, j,k) = Σ

2
u=1Σ

2
v=1 (h

q
m(2(i−1)+u,2( j−1)+ v,k)) (3)

Km(U,V) = Σ
Q
q=1

1
4q−1

(
Iq+1(U,V)− Iq(U,V)

)
(4)

Kernel k-means forest classifier. We learn the k-means forest classifier using PSRM as
a matching kernel. Given a set of training video data Ui, M independent clustering trees
are grown by recursively performing k-means clustering on the pyramid matches. For the
m-th tree in STFs, the hierarchical k-means algorithm aims to partition the training data into
S = {Si}, i = 1, ...,N clusters so as to maximise the intra-cluster similarity by (5):

argmax
S

Σ
N
i=1ΣU j∈SiKm(U j,µm,i) (5)

where µm,i is the centroid of i-th cluster. In the testing stage, PSRM is performed on a
query video V against all centroids µm,i at the same level. The query video proceeds to
the node with the highest similarity score and PSRM is performed recursively until a leaf
node is reached. Classification is done by the posterior probability by averaging the class
distributions of the assigned leaf nodes {µ̂m},m = 1, ...,M trees as

argmax
c

PH(c|V) =
1
M

Σ
M
m=1PH(c|µ̂m) (6)

7 Combined Classification
Bag of semantic textons. The method called bag of semantic textons (BOST) developed
for image classification [25] is applied to analyse local space-time appearance. The 1-D
histogram B is obtained by counting the occurrences of interest points at every node in the
STF codebook, hence the histogram size |B| is the total number nodes in the STFs. Since
its dimension L is relatively low (c.f. the PSRM histogram has Lm×Lm× |R| dimension),
standard random forests [1] are applicable as a fast and powerful discriminative classifier,
which is a proven technique in image categorisation and visual tracking. The random forests
trained on the BOST histograms classify a query video V by the posterior probability by
averaging the class distributions over the assigned leaf nodes {l̂1, . . . , l̂m},m = 1, ...M trees
in the STFs: PB(c|V ) = 1

M ∑
M
m=1 PB(c|l̂m).

Combined classification. The task of action recognition is performed separately by the
proposed kernel k-means forest classifier and by the BOST method. While PSRM has shown
effective in most of the cases owing to its both local and structural information, BOST dis-
tinguishes classes that are structurally alike (e.g. walking and running). By integrating clas-
sification results of both methods, average accuracy is significantly improved. Final class
labels are assigned to the classes c which obtain the highest combined posterior probability
as

argmax
c

P(c|V) = αcPH(c|V)+(1−αc)PB(c|V) (7)

where the weight αc is set to maximise the true positive ratio (sensitivity) of a class c ∈C by
a gradient descent or line search.
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Figure 5: Example frames of KTH (top row) and UT-interaction (bottom row) data sets
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Figure 6: Confusion matrices of BOST (left), PSRM (middle), and combined classifica-
tion(right) on KTH dataset

8 Experiments
The proposed method is tested on two public benchmarks, the KTH data set [23] and the UT-
interaction data [20], a more challenging set [19]. Other published methods are compared
with the proposed method in terms of recognition accuracy. Computational time of our
method is also reported. Our prototype implemented by C++ in an Intel CoreTM i7 920 PC
showed real-time continuous action recognition performance.

8.1 KTH
The KTH data set, a common benchmark for action recognition research, involves sequences
of six action classes taken with camera motions, scale, appearance and subject variations (see
figure 5 (top)). To demonstrate the method for continuous action recognition by a short re-
sponse time, subsequences of the length less than 2 seconds were extracted on the fly from
the original sequences. The subsequences of training videos were used to build the clas-
sifiers. Similar subsequences were extracted from testing videos for evaluation. We used
leave-one-out cross validation. Most published results in the literature were reported at the
sequence level: class labels were assigned to whole testing videos instead of individual short
subsequences. To put the proposed method in context, two different accuracies are mea-
sured: (1) the “snippet” accuracy that is directly measured at the subsequences level; and (2)
the sequence level accuracy, which is measured by majority voting from the subsequences’
classification labels.

Table 2 presents a detailed comparison of accuracies for our method and state-of-the-art
methods. The PSRM+BOST model gives a very competitive accuracy despite that only short
subsequences are used for recognition. The confusion matrices in figure 6 show how PSRM
and BOST complement each other to attain an optimised accuracy. Quantisation effects
are soothed by the multi-tree characteristics and pyramid matching of the proposed method,
compared to the original spatiotemporal relationship match method [19].

Table 3 summarises the experiment results on recognition speed. Different from other
sequence-level recognition approaches, a more realistic metric is designed to measure the al-

Citation
Citation
{Schuldt, Laptev, and Caputo} 2004

Citation
Citation
{Ryoo and Aggarwal} 2010

Citation
Citation
{Ryoo and Aggarwal} 2009

Citation
Citation
{Ryoo and Aggarwal} 2009



YU et al.: REAL-TIME ACTION RECOGNITION BY SPATIOTEMPORAL FORESTS 9

Method box hclp hwav jog run walk Overall Protocol
PSRM + BOST 100.0 96.0 100 86.0 95.0 97.0 95.67 sequence
PSRM + BOST 99.0 96.6 98.9 82.6 89.5 94.8 93.55 snippet

PSRM 99.0 96.1 98.7 74.6 85.9 92.2 91.10 snippet
BOST 94.8 88.2 95.0 81.3 87.2 94.0 90.10 snippet

SRM [19] 96.0 95.0 97.0 78.0 85.0 92.0 90.5 sequence
Mined features (2009) [3] 100.0 94.0 99.0 91.0 89.0 94.0 96.70 sequence

CCA (2007) [5] 98.0 100.0 97.0 90.0 88.0 99.0 95.33 sequence
Neighbourhood** (2010) [6] - - - - - - 94.53 sequence
Info. maximisation (2008) [9] 98.0 94.9 96.0 89.0 87.0 100.0 94.15 sequence
Shape-motion tree (2009) [8] 96.0 99.0 96.0 91.0 85.0 93.0 93.43 sequence

Vocabulary forests (2008) [12] 97.0 96.0 98.0 88.0 93.0 87.0 93.17 sequence
Point clouds (2009) [11] 95.0 93.0 99.0 85.0 89.0 98.0 93.17 sequence
pLSA-ISM (2007) [28] 96.0 92.0 83.0 79.0 54.0 100.0 83.92 sequence

* The length of subsequences called snippets is about 50 frames. To balance accuracy, speed and generality, the depth
of random forest classifier = 8; For k-means forest classifier: K = 10, depth = 3. ** Classifiers were trained by a split
dataset in separate scenarios.

Table 2: Accuracies on KTH data set by the proposed method and state-of-the-art methods.
Leave-one-out cross validation (LOOCV) scheme was used.

Dataset V-FAST STFs and BOST PSRM Random k-means Total
feature detection forests forests FPS

KTH 66.1 59.3 194.17 1137.6 67.1 18.98
UT-interaction 35.1 25.8 35.1 612.2 428.1 10.02
Table 3: Average recognition speed at different stages in frames per second (FPS)

gorithm speed. Every stage of the method (including feature detection, feature extraction and
classification) is timed, and the average speed is defined as (total number of subsequences)/
(total recognition time) FPS. It shows that the proposed method runs at 10 to 20 frames per
second. The introduction of STFs has greatly improved the speed for feature extraction and
codeword generation, outperforming the k-means visual codebook (see also Table 1). Using
random forests and kernel k-means forest classifiers has provided a faster solution to match
and classify multi-dimensional histograms over the traditional nearest neighbour and SVM
classifiers.

8.2 UT-interaction data set

The UT-interaction data set contains six classes of realistic human-human interactions, in-
cluding shaking hands, pointing, hugging, pushing, kicking and punching (see figure 5 (bot-
tom)). Some challenging factors of this data set include moving backgrounds, cluttered
scenes, camera jitters/zooms and different clothes. In the experiments, the segmented UT-
interaction sequences were used for evaluating the recognition accuracy and speed of our
method. As reported in table 4, the proposed method marked the best accuracy in classify-
ing the challenging realistic human-human interactions. Under the complex human interac-
tions, PSRM using both local appearance and structural cues appeared to be more stable than

Method shake hug point punch kick push Overall Protocol
PSRM+BOST 100.0 65.0 100.0 85.0 75.0 75.0 83.33 sequence

PSRM 90.0 50.0 85.0 65.0 70.0 40.0 66.67 sequence
BOST 80.0 50.0 100.0 65.0 25.0 35.0 59.16 sequence

*SRM [19] 75.0 87.5 62.5 50.0 75.0 75.0 70.8 sequence
* Unsegmented videos were used in the experiments.

Table 4: Accuracies on UT-interaction dataset. Leave-one-out cross validation (LOOCV)
scheme was used.
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BOST that uses only local appearance. However, there still exist improvements in overall
recognition accuracies by the combined approach. The method runs at high speed more than
10 frames per second from table 3. The recognition speed on this data set over KTH has
dropped due to extra interest points from other moving objects in the scene.

9 Conclusions
This paper has presented a novel real-time solution for action recognition. Compared to
existing methods, a major strength of our method is in run-time speed. Real-time perfor-
mance is achieved by semantic texton forests which work on video pixels generating visual
codewords in an extremely fast manner. PSRM is proposed to capture both spatiotemporal
structures and local appearances of actions and reduce quantisation errors. Furthermore, a
novel fast interest point detector and application of random forests and kernel k-means for-
est classifiers contribute to the acceleration of recognition speed. Experimental results show
the comparable accuracies of the proposed method over state-of-the-arts. Future challenges
include tackling more complex realistic human actions and partial occlusions, as well as
performing continuous action detection in real-time.
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