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Abstract

This paper tackles the novel challenging problem of 3D
object phenotype recognition from a single 2D silhouette.
To bridge the large pose (articulation or deformation) and
camera viewpoint changes between the gallery images and
guery image, we propose a novel probabilistic inference al-
gorithm based on 3D shape priors. Our approach combines
both generative and discriminative learning. We use la-
tent probabilistic generative models to capture 3D shape
and pose variations from a set of 3D mesh models. Based Gallery

on _the;e 3D Sh?pe priors, we generate a large number OfFigure 1.Phenotype recognition problem. Given a silhouette
projections for different phenotype classes, poses, and ca gallery of different body shapes, the goal is to classify libey
era viewpoints, and implement Random Forests to efficientlyshape of a query silhouette in the presence of pose and/@raam
solve the shape and pose inference problems. By modeliewpoint changes.

selection in terms of the silhouette coherency between the
qguery and the projections of 3D shapes synthesized usind’v

the galleries, we achieve the phenotype recognition result S . o

well as a fast approximate 3D reconstruction of the query. shgpe recognl_tlon, I.€. .classn‘ym_g phenotypgs of the 3D
To verify the efficacy of the proposed approach, we presentobject from asingle 2D silhouette input (see Fifj] 1 for an
new datasets which contain over 500 images of various hu_example of h_um_an_body shapes). Here, phenotypes are re-
man and shark phenotypes and motions. The experiment erred to the intrinsic shape differences across given muma

results clearly show the benefits of using the 3D priors in |ns|tan(_i_(;s, €.9., fadt.\f/fts tmn’ t?tllr]ys ShObr;[’ mgsctzﬁlf;lrt;]/s Lsmu
the proposed method over previous 2D-based methods. cular. The major difficully of this problem is that the query
silhouette can undergo large pose and camera view-point

1. Introduction changes. Traditional 2D-based approaches fail to capture
the intrinsic shape (dis-)similarity between the query and
Recognizing 3D objects from one or more 2D views is a gallery silhouettes. In view of this problem, we propose a
fundamental problem in computer vision. There have beennovel generative+discriminative solution by using 3D shap
increasing attempts to solve this problem, which embraces ariors, i.e. the knowledge learnt from previously-seen 3D
number of research issues such as view-invariant object inshapes. Our approach is motivated by the observation that
stance/category recognition [11] £Z] [5] 24,[32, 34], dbjec humans can perceive the 3D shape of an object from a sin-
pose recognition 13,17, PP, 1251311 29] 33], object view- gle image, provided that they have seen similar 3D shapes.
point classification[[9], gait recognition[L8], face readg  Once 3D shapes are estimated from single images (single
tion across pose and expressibnl [20, 36], etc. However, toview reconstruction), camera view-point/pose invariamt o
our best knowledge, the problem of classifying generic ob- ject recognition is achievable.
ject phenotypes (shapes), under 3D object pose and camera The problem we tackle, therefore, conjoins single view
view-point changes, has not been tackled. The successfuteconstruction with 3D object recognition. The novelties
solutions would be widely useful for potential applicaion  and main contributions lie in:
such as automatic human body shape monitoring, in relation
with recent food recognition studies in computer visiord an e Going beyond pose recognition: object pose recog-

ild animal (such as horse and fish) tracking, etc.
In this work, we address a novel challenging task of



nition and tracking by 3D template models has been  Single view reconstruction is an active research field.
widely studied [1B["24, 2%, 27, PB,135]. This work at- Just to name a few, Prasad et BLI[19] reconstructed curved
tempts to capture more subtle 3D shape variations onobjects from wireframes; Han et al_]10] applied Bayesian
the top of the estimated pose and camera view-points. reconstruction for polyhedral objects, trees, or grasacBl

e Recognising generic deformable objects: our frame- et al. [6,[28] estimated detailed human body shapes us-
work does not require strong class-specific knowledge ing parametric morphable models. [n[28], a discrimina-
such as human body skeleton consisting of a number oftive+generative method was proposed to help initialise the
joints in [6,[28] or face shape models defined by man- body parameters for reconstruction. [lh [6], shading cues ar
ual control points{[36], and is thus applicable to differ- incorporated for single view reconstruction. Althoughythe
ent object categories. Previous studles [12[ 15[ 23, 34]showed detailed shape recovery, it does not seem easy, in
are limited to rigid object classes. general, to solve the regression problem of the huge para-

e Exploiting shape cues (vs textures): whereas a ma-metric space of joint angles, and to extend the approach to
jority of existing 3D object recognition work relies model other object categories. Chen etldl. [3] tackled more
on image appearance or textures (e.g., affine invariantgeneral deformable object categories. The shape and pose
patches[[24[_32]), we exploit shape cues, silhouettes,generators need only a small number of latent variables to
which are useful when there is no overlap in views be- estimate, yet are able to capture complex 3D object shapes.
tween a model and a query, or no consistent textures One close work to ours i§]23], where an unified method
e.g. changing clothes etc. to segment, infer 3D shapes and recognise object categories

e Transferring 3D models to images: we learn from 3D is proposed. They used a crude voxel representation for the
models and perform recognition of images, which con- shape prior and apply it to object categories such as cups,
trasts previous work matching only among 3D models mugs, plates, etc. However, they are limited to simple and

[4] or 2D images. rigid objects. In[[I5[-34], 3D geometrical models are learnt
to detect objects in images, but similarly, no articulation
1.1. Related Work deformation is considered.

o L . The following branches of studies have conceptual dif-
There has been a growing interest for view-invariant ob-

. L 77 ferences from our work. Studies for human gait recog-
Ject instance or category recognitidn] 4] 32]. T_he|r l_)wld nition [I8] perform human identification from video se-
ing b_Iocks are often _the image patches that are _mvanant quuences (instead of images) in a fixed camera view-point.
to affine transformations, and the structural relatlonsrayno Image-based face recognition across pose is an intensively
”?? pat ches are then captured. TextL_Jre-based O_b]eCt r€CO% died ared [20,-36]. Representative methods exploiteacti
”'“OF‘ is useful manywhere though,_ it becomes inherently face shape models for view-point invariancel [36] or expres-
ambiguous when there are no consistent textures between

deland ) lanDi . hanai loth &ion invariancell21], however, these models are specificall
modeanda query. no overiapping views, changing clo es’designed for faces, involving many control points manually
or textureless objects.

. _ defined. Studies for 3D object retrieval ite diff t
Shape (silhouette or edge map) is another useful cue eline udies for object Tetrieval are qurte ditieren

which has been long explored for object recognition, how- as they match one 3D model with another.

ever most relevant studies have been done in[2I0 15, 30].2. Phenotype Recognition and Shape Recon-
T.hey dq not exp!|C|tIy cap?ure 3D shapes, poses, camera struction Based on Classifiers
view-points of objects, relying on a large number of model
images. It basically fails when query images exhibit con-  In the paper, the phenotype recognition problem is for-
siderably different poses or view-points from those of mod- mulated as follows. We assume that a set of 2D phenotype
els. On the other hand, studies on 2D shape representagalleries; = {SS}, of N, instances, which contains one
tion [8,[16] have tackled the problem of recognizing articu- sample silhouett8& for each phenotype clasgsee Fig[lL
lated objects, but they model the articulation on a 2D basisfor examples), is provided as the reference, and all the sil-
and have difficulties dealing with self-occlusions and éarg houettes irg are in a common canonical pose. We hope to
3D camera pose changes. find the phenotype labef* € {1,2,---, N.} for a query

3D templates and shape models have been widely incor-silhouetteS< in an arbitrary pose and camera viewpoint.
porated into object pose recognition problems forhands [31  To handle the difficulties caused by poses and camera
[29] or human bodie$ 117,22, 129.133] 35], but their models view changes, our approach learns 3D shape pridrsn
are designed for pose, often without consideration of shapeavailable 3D data. Gaussian Process latent variable models
variations. Whereas they do not explicitly handle the clas- (GPLVMs) [14] have been shown powerful in pose estima-
sification problem of phenotypes or 3D shapes, we capturetion and shape modelin@l[8.11[7,135]. We implement the
and discriminate 3D shape variations in an invariant mannerframework in [3], in which two GPLVMs, the shape gener-
to object poses and camera view-points. ator M s and the pose generatant 4, are learned to sepa-
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Figure 2. The graphical model for the 3D shape recognitiahraconstruction problem (left). Example trees of Randomes§ts for the
phenotypeFs (middle) and poseF 4 (right): they show the class histogram at each split nodetla@ghenotype/pose class at each leaf
node. Note that the trees shown here are grown tiny for theligation purpose.

rately capture 3D shape and pose variations and jointly usedrig. [@(left), we infer the labet* of the query instance
to synthesize new 3D shapes. Each 3D sh¥p&s then by maximizing a posteriori probability given pre-learned
parametrized by a phenotype latent variabdeand a pose  shape priorsM = {Ms, M4} and classifiersF =

latent variablex a , as Fig[2(left) shows. {Fs,Fa,Fc}as
Given a silhouette imag849, we infer its embedding P(c*|S%, 89, {SE}Ne, M, F)
ose latent parametessy, and the camera parameters . .
: o neutraliot e and camera <P(§c", ST (S M. F)P(e)

so that we can neutralise the influence of pose and camera
viewpoint changes in the recognition. .Inferri.ng these pa- :P(c*)/ P(xs|SE, Fs)P(xa|S%, F4)
rameters can be done through the optimisation process of XS,XA Y

the generative model if][3]. However, the back-projection a da

from 2D to 3D is usually multi-modal, and this results in POIST, 7o) P(S%xs, xa, 7, M)dxsdxady, (1)
a non-convex objective function with multiple local op- : ' g ) o
tima, which is usually difficult to solve. To avoid this non- that the class prioP(c*) is subject to a uniform distribu-
convex optimisation, some previous studies have tried com-tion. i-e, P(¢”) = 1/Nc.

bining generative and discriminative approacties [25, 28]. In @), the first three terms describe the prior of shape
We here propose an approach for fast hypothesizing shap@nd pose latent parametess, x4 ) and camera parame-
(phenotype), pose, and camera parameters based on rafe€rs~y from the random forest classifiefss, 7.4, and 7,
dom forest (RF) classifiers, which are shown to have excep-féspectively. The shape classifigg predictsNs candidate
tional performance in solving multi-modal mapping prob- Phenotype shapescg ;1,7 for the canonical posed gallery
lems [22[2F]. In our approach, three RESs, F 4, Fc}, silhouetteSS of each class*; while the pose classifieF 4

are learned on a large number of silhouettes synthesized byand the camera viewpoint classifie predict V4 candi-

M and M 4 with different camera parameteygsee Sec-  date pose$xa ; };.V;‘I andN g candidate camera parameters

tion[d for details of learning these RFsFs predicts the {4y}« for the query silhouette inp®a. Mathematically,

whereS4a denotes the mirror node 8. Here, we assume

shape parametess from a gallery silhouett8, while 74 these three terms can be written as delta impulses.

and F¢ predict the pose and camera paramefets, v} Ns

from the query silhouett&4. S9 or S§ is passed down P(xg|S&, Fs) = Z hcgfﬁ(Xs - xg’ti), (2)

each tree in the forest, and the leaf nodes of these trees i—1

quickly provide multiple candidates of its corresponding Na

shape, pose or camera parameters (se€Fig. 2 for examples). P(xa|SY, F4) = Z hajo(xa —xaj), 3)
Finally, the 3D shap® of the queryS? is recovered by j=1

the estimated pose latent valueg of S and the shape la- Nk

tent values of each gallery instancgS (see Sectiof212), P(yI8%, Fe) =Y hewd(y — o), (4)

and the recognition is achieved by a model-selection, i.e., k=1

assigning the phenotype classthat yields the best match-  whereh ;, ha ;, andhc, are class histogram values voted

ing between the querg® and the projection of the recon- by every tree inFs, F4, and F¢, respectively, and they
structed shap® in camera viewpoint (see Sectiof211). satisfny\fl hs; = Z?f:ﬁ ha; = Ziv:ﬂ how = 18

2.1. Phenotype Recognition

. . 1For the purpose of robustness and acceleration, we disdiatea
Phenotype recognition is formulated as a model- smajlweighted candidates under the threshaigs, < 0.05, ha; <

selection problem. Based on the graphical model in 0.05, andhc ;. < 0.05 in the experiments.



In the last term of the model, each combination of shape with different latent parametefss, xa } and camera view-
and pose latent parametéxs;, x 4 ), and the camera pose points~.
are verified by the silhouette likelihood of the query image  The shape classifieFs, an ensemble of randomised de-
S4. It can be formulated as the following equation: cision trees, is used to encode the phenotype information
P(§q|xs,xA,'y,/\/l) of each gallery silhouett8 in the canonical pose. It is
1 oem (Hw gq)/20_2 trained on a datasd?; consisting of canonlcal—pose_d sil-
e ’ *, (5)  houettes ofN = 50 phenotype samplefxs ;}¥, which

ZS\/ det (I + aigzw) are uniformly sampled from the latent space of the shape

whereW is referred to the projected silhouette of the latent generatorMs. For each sample of phenotype labeE

3D shapeV in the camera viewpoing; uw and Xy refer {1,2,--- N}, we generateR = 250 sample silhouettes
to the mean and the covariance matrixWf, respectively ~ from the 3D mesh model with minor pose perturbations and
(refer to [3] for detail formulations)y? andZs are normal- camera parameter changes, e.g., slight camera rotatidns an

isation factors. We use oriented Chamfer matching (OCM) focal length changes. AIN x R = 12500 binary images
distance[[3M] to measure the similarity between the meanare aligned and normalised to have the same size.
projected silhouettgw and the silhouette of the query im- On the other hand, the pose classiffef and the cam-
ageS4. Detailed formulations of OCM are described in era classifiecFe are used to predict the pose and camera
SectioZP. Given all the probability terms, the final peste viewpoint of the query silhouett®4. We train them on an-

rior probability in [1) can be computed as: other dataseb, with large pose and camera viewpoint vari-
P(c*|89,89, {SE}Ne M, F) ations as well as phenotype variations. We uniformly sam-
N Na Na B ple M = 50 pose sample&Ad}jf‘il from the latent space
1 * & * of the pose generatovt 4, and K = 50 camera viewpoint
~— hS iha,jhok P(SYXS 5, XA j, e, M). A :
N¢ Z Z Z s.ihahonP (ST 5 XA M6 M) sampleq v}, uniformly distributed in the 3D space, and

s (6) generate 3D shapes along with the saive= 50 pheno-

2.2. Single View 3D Shape Reconstruction type samplegxs ; } ¥, used in the shape classifier training
stage. This generat@éx M x K = 125,000 silhouette in-
As a by-product, our framework can also be used to stances, and each of them is labeled by, k) representing
quickly predict an approximate 3D shapefrom the query  phenotype, pose and camera viewpoint, respectively. An
silhouetteS9. This shape reconstruction problem can be ensemble of decision trees f&i4 and ¢ are grown by the

formulated probabilistically as follows: pose labelj and camera labe#, respectivell. See below
P(V[S9,{SE} e M, F) for the random features and split criteria used.
NC
:Z {/ P(V. x5, %4, c|S%, S, M, F)dxsdxa 3.1. Error Tolerant Features
c=1 L/xs:xa We generateD = 12000 random rectangle pairs
Ne {(Ra1,Ra2)}?_, with arbitrary centroid locations
:ZP(C)[/ P(xs|SS, Fs)P(xa|SY, Fa) (la,1,1a,2), heightshy, and widthsw, (see Fig[B(a) for
c=1 Xs,XA

example). For each binary silhouette imagr training,
the difference of mean image intensity values within each

P(V|XS’XA’M)dXSdXA} pair of rectangles is then computed as the split feature

LN N s Ji = e (Drey, 10) = Dreg, , 1(0)). In this way

~_ K ha ;N (Vipy, Bv). (7) each training instancé is hence converted to a 12000-D

Ne ;;; sahasN( ) feature vectof = [f4]}_,. These features are efficient to
wherepy = pv(xay,x$;) andSy = Sy (xaj, xS ;) compute and capture spatial contéxfi[26].

are referred to the mean and variance function of the 3D  When training the phenotype classifi€g, we also in-
shape distributioiV, respectively, and their detailed formu- troduce a feature-correction scheme. SitGeis trained
lations can be found ifi]3]. Compared with the optimisation ©n synthetic silhouettes generated by the shape pidrs
approach in[ﬂS], the classifiers-based approach in the papeWthh are clean and unclothed, its discriminative power is
provides fairly good qualitative results and is much more usually reduced when working on noisy gallery silhouettes
efficient in computation time (See Sectanl4.4). segmented from real images. To model the systematic er-
- - rors between the synthetic and real silhouettes, we use the
3. Training Random Forest Classifiers approach in[[B] to create an extra silhouette set which con-

In order to learn the random forest classifiefs = 2In our implementation, we set the tree numbéy of all the forests

{Fs, Fa, Fc}, we use the shape and pose generators}'s, F 4, andFe to be 30, and the maximum depth, ... of a single tree
{Ms, M 4} to synthesize a large number of silhouettes to be 30.



diversity indexC'(n) = 1 — SN2 p2 . Intuitively, a lower
misclassification penalty is assigned between two visually
similar classes in[{8). The experiment shows that such a
similarity weighting scheme notably improves the recogni-
tion rate (see Sectidng.3).

4. Experimental Results
4.1. Datasets

We have verified the efficacy of our approach on two
shape categories: humans and sharks. For the human data,

(@) (b) we train the shape modé{s on the CAESAR database,
Figure 3. (a) Random paired-rectangle features. (B)#3 exam-  which contains over 2000 different body shapes of North
ple of dissimilarity matrix{I for human phenotype classes. American and European adults in a common standing pose,

b- and train the pose modgH 4 on 42 walking and jumping-
jack sequences in CMU Mocap dataset. For the shark data,
we learnM s on a shape data set that contains eleven 3D
shark models of different shark species available from the
Internet, andM 4 on an animatable 3D MEX shark model

sists of N, pairs of real and synthetic silhouettes descri
ing different clothing and segmentation errors and capturi
different phenotypes. We then extract the features from im-
ages using the same set of random rectangle pairs. ~f;ﬁf,‘ere,

(m=1,2,---,N,.) denotes the features extracted from the : :
real silhouette images, arffl, denotes those from the cor- to generate an 11-frame sequence of shark tail-waving mo-

responding synthetic silhouette images. The feature ®rror tion [3]. The mesh resolutions are: _3678 vertices/7356dace
can be thus modeled y, — £, — £°.. for the human data, and 1840 vertices/3676 faces for shark

To compensate for the systematic silhouette errors whendata’ respectively. We empirically set the latent space di-

trainingFs, we correct all those synthetic training data with
these error vectore,, } V. For each feature vectdrof
instancel, we find itsT" nearest neighbor synthetic features
in & (we choosel’ = 3), and use the corresponding error
vectorsey to correctf asfy = e, +f, (t = 1,2,---,T).
Finally, all N x R x T corrected features vectdisof N x R
training instances are used as training samplegfor

mension of the shape modél s to be 6 for human data
and 3 for shark data, while for the pose modédl|,, we set
the latent dimension to be 2 for both, similarly [ [3].

As there is no suitable public datasets to evaluate the
proposed approach, we have collected two new silhouette
datasets which capture a wide span of phenotype, pose,
and camera viewpoint changes(see Flg. 4 for examples).
Human motion datasetmainly captures two different hu-
3.2. Similarity-Aware Criteria Functions man motions: walking (184 images of 16 human instances)
and jumping-jack motion (170 images of 13 human in-
stances). The images are cropped from video sequences on
YouTube and public available human motion datasets, e.g.,
HumanEval[2B]. For each instance, a canonical standing
pose image is provided (see Hi§j. 1 and Row 1, 2 ofHig. 4).
All the instances are in tightly-fitting clothingshark mo-
tion datasetincludes 168 images of 13 shark instances of
5 sub-species. These images are cropped from underwater
swimming sequences downloaded from Internet. For each
instance, a profile-view image is provided as the canonical-
pose gallery image.

The silhouettes are manually segmented from the images
and all of them are normalised by their height and resized to

When training a random forest classifieF* ¢
{Fs,Fa, Fc}, the instancd is pushed through each tree
in F* starting from the root node. At each split node, the
error-corrected random featufe= [f4]7_, is evaluated for
every single training instance (see Secfio 3.1). Theredas
on the result of the binary te$~g > 7, I is sent to the left
or the right child node. The feature dimension indexnd
the split valuer,;, at a split node: are chosen to maximize
AC(n) = C(n)— el tnn i whereC' measures
the distribution purity of the node, and, andny denote
the left and right children of node. For the criteria func-
tion C, we generalise Gibbs and Martin’s diversity index [7]

and take the class similarity gwto account: the resolutioni 21 x 155. For both datasetsy,. = 20 addi-
C(n) =p, Ipn, (8) tional images are collected for modeling the feature errors
wherep,, = [Pn.1,Pn.2," "+, Pn,Np) IS referred to the class  (in SectiorZ30L).

distribution of noden; N denotes the number of class la-
bels of the random forest*; the weighting matrixtI =
{mi; = 1—e I1AVLIF/o* ) n,., which is defined by the For the purpose of comparison, we also implemented
average spatial mesh distanfA V; ;|| between classeis three state-of-the-art methods based on 2D shape match-
and; (see Fig[B(b) for an example of phenotype classes).ing: 1) Shape contexts (SA)I[1], 2) Inner-Distance Shape
WhenII = 1 — I, equation[(B) is reduced to the standard Context (IDSC)[[15], and 3) the oriented chamfer matching

4.2. Comparative Methods



G
S® = {s?} and gallery silhouetteSS — {s&; j.V:Cl
(c=1,2,---,N.), wheresy andsgj denote edge points,

are divided intoN,,, orientation channels{SZ}"<" and
{SSt iV:’f respectively. In our implementation, we set
N., = 8. To minimise the allocation error of image edges
in orientation, an edge poisﬁj is assigned to both adjacent
channels when its orientation is around the border region.
The OCM distance betweesf* andS4 is calculated as the
sum of independent chamfer distance with each indepen-
dent orientation channel, as the following equation shows:
1 Necp

OCM(SF,8%) = N, > Jin, syt~ sgill”, (9)

. t=1sge8, . .
Mixture of Experts for the shape reconstruction. We im-
plemented a 3D shape recognition approach, called HoSC-
MoE-Chamfer, based on the shape reconstruction frame-
structure: one canonical-posed instance and severalraagbit work proposed in[28], in which mappings from HOS_C fea-_
posed instances; Row 3: human jumping-jack motion; Row 4: furesto shape and pose parameters are learned using a Mix-

human walking; Row 5: shark underwater swimming motion. ture of Experts (MoE) model. Weighted linear regressors
are used as mixture components. For a fair comparison, the

(OCM) [31], and two methods using the 3D shape priors: same training set®; andD, and shape prior$ are used,

4) the single-view 3D shape reconstruction method by MiX- and the recognition is also based on the OCM distance be-
ture of Experts[[28] and 5) the RF implementation directly tween the predicted shape and the query silhouette.

using the shape class labels. Nearest Neighbor classificasingle Random Forest Shape VerificationWe also com-
tion is performed in terms of the similarity provided by the pare our framework with a straightforward classification ap
compared methods. proach based on a single shape random forest, in which
Histogram of Shape Context (HoSC) Shape contexts is directly learned on the large pose and camera viewpoint
(SC) are rich local shape-based histograms encoding convariation dataseD, according to the phenotype labiglsee
tour information and they have been widely used for shape SectiorB). For an arbitrary input silhouette, the phenetyp
matching and pose recognition. Since SCs are definedprediction from the foresFs is given by a histogram which
locally on every single silhouette point, representing the summaries the phenotype vote from each tree. The pheno-
whole shape can be expensive. To reduce the dimensiontype similarity between the query silhouette and an gallery
ality of shape contexts, Agarwal and Triggs introduce a silhouette can be measured by fffedistance between their
bag-of-features scheme called histogram of shape contextandom forest prediction histograms.

(HoSC) [1] for human pose estimation. In HoSC, k-means
clustering is used to yield @-dimensional codebook of
the cluster means/( = 100 in the paper), and all its We perform cross validations by randomly selecting 5
shape contexts are then softly binned to a quantized  different instances, where we use their canonical posed im-
dimensional histograms. We implemented a 2D approachages as the galleries and any other poses as the query. The
HoSC-+?, which compares thg*-distances of HoSC fea-  results of the proposed approach (G+D) and its variants
tures extracted from the query and each gallery silhouette. are reported to show the effect of components and inter-
Inner-Distance Shape Context (IDSC) Recent research nal parameters. To evaluate the benefit of using the feature
on shape matching has addressed the problem of findingorrection (Sectioi3l11) and similarity-based criterindu
articulation invariant distance measurement for 2D shapestion (Sectiorz3P), we present the results of our approach
Among them, a representative recent work is Inner-Distancewithout error modeling (G+D-E) and using standard diver-
Shape Context (IDSC) by Ling and Jacobsl [16], which has sity index [7] as the criteria function (G+D-S) in FI@. 5(a).
been proved successful in 2D shape classification problemsit shows that both schemes help improve the recognition
The authors’ own code is used. performance of our approach to some extent in all three
2D Oriented Chamfer matching (OCM). Chamfer match-  datasets. We also investigate how the maximum tree depth
ing and its variants have been widely used for shape match<,,,, and the tree numbe¥ of random forestsFs, F 4,

ing and pose recognition.Among them, oriented Chamfer and ¥ affect the performance. As shown in Fig. 5(b) and
matching has been proved to be an effective method forfH(c), the accuracy does not vary much at over 25 depths,
shape-based template matchihgl [31]. The query silhouettebut increasing the number of trees of each forest gradually

Figure 4. Examples of images and their corresponding séties
in our phenotype-class recognition datasets. Row 1,2:sdata

4.3. Numerical Results of Phenotype Recognition



Recognition Rate (%) Recognition Rate (%) Recognition Rate (%)
80 80

80
70|

Bp—————— E 75 4

60 i
701 ! 701 —

— — _— -
o — _
/
— /
60 TTTTe— ] 607 I
55 —<— Human (jumpingjack) 55 7}777777 —<— Human (jumpingjack)

50

40|

30

20
—JSingle shape RF —+— Human (walking) —+— Human (walking)
10 CG+D —6— Shark —©&— Shark
EG+D-E 50 I ! 50 .
o | | | [ 8 mGD-s 20 25 30 35 40 10 20 30
(a) Human (jumping jack) Human (walking; (b) Max Tree Depth dmax (C) Tree NumberN;

Figure 5. Phenotype recognition accuracy on human and sl@dsets. (a) Comparison over 8 different approaches;gtipnmance
under different maximum tree depttis,..; and (c) different tree number$; of the random forest&s, F.4, andF¢.

improves the recognition rate. using our framework in contrast with those generated us-
Fig.[E(a) provides the recognition rates of different ap- ing the approach inJ3]. In general, these highest-weight
proaches. In general, the 3D-based approaches (single Rshape candidates generated by random forest classifiers of-
HoSC-MoE-Chamfer and the proposed method G+D) out- ten include meaningful shapes which can be used as fairly
perform those 2D-based ones (OCM, Ho$&-and IDSC) good approximate reconstruction results, albeit relitive
in the phenotype recognition tasks. The best 2D shape mealower silhouette coherency and less accurate pose estima-
surement IDSC achieves a close performance to that of 3Dtion. However, we also notice that some results may still
approaches. This indicates the benefit of using 3D shapebe in wrong phenotype (e.g., instance 5) or in a wrong pose
priors to handle pose deformations and camera viewpointor camera viewpoint (e.g., instance 9). This is mainly due
changes. On the other hand, given the same training datato the silhouette ambiguity or a limitation on the discrimi-
our approach (G+D) performs best among three 3D ap-native power of random forest classifiers given our training
proaches under all contexts. Compared to the single shapset. We also compute the running time of both approaches
RF, our framework that factorizes three types of variations under a 2.8GHz CPU. The average time for generating a 3D
in the training stage, better captures subtle shape vam@mti ~ shape using our new generative+discriminative framework
In most cases, object pose and camera viewpoint changeis less than 10 seconds using unoptimised Matlab codes,
are more dominant factors that affect the silhouette appear while using the approach ifl[3] takes about 10 to 15 minutes
ance than phenotype variations, and hence they greatly disfor generating 10 candidates. This improvementin compu-
tract the discriminative power of the single RF which is di- tational efficiency owes much to using RFs for hypothesiz-
rectly learnt on the mixed variation data st with the ing xs, xa, and~, which greatly narrows down the search
shape labels. Instead, we learn the phenotype clasgifier ~space of the algorithm.
on a canonical-posed datagef, which does not include .
large pose and camera viewpoint changes. For the pose ang' Conclusions
camera classifiers, we use the the mixed variation data set The paper presents a probabilistic framework which
D, but with the pose and camera labels respectively. Thecombines both generative and discriminative cues for recog
pose and camera parameters are much more reliably estinizing the phenotype class of an object from a single silhou-
mated than the shape parameter for given the same trainingtte input and reconstructing its approximate 3D shape. We
data. The comparison between our approach and HoSCiearn 3D probabilistic shape priors of the object categgry b
MoE-Chamfer shows that given the same training data, theGPLVM to handle the difficulties in the camera viewpoint
random forests and rectangle features we used also outpelchanges and pose deformation, and use random forests for
form the combination of MoE and HoSC features in the set- efficient inference of phenotype, pose, and camera param-
ting of phenotype discrimination. This could partially be eters. Experiments on human and shark silhouettes have
owing to the feature selection process during the RF train-shown the advantage of our approach against both standard
ing stage and the scheme of generating multiple hypothese@D-based methods and relevant 3D-based methods.
for a single input in the RF prediction stage. The present accuracy on the datasets we provide, espe-
cially on the shark dataset, is limited due to the descptiv
power of the shape and pose generators we used to synthe-
In our framework, these intermediate 3D shape candi- size silhouettes and insufficient number of 3D shapes and
datesV obtained during the recognition process can be motion data used for training. Using more extensive 3D
used for approximate 3D reconstruction from a single sil- training data would improve the accuracy. Another major
houette input, as mentioned in Sectonl2.2. In Elg. 6, we problem which limits the application of the current frame-
show some qualitative 3D outputs of different phenotypes work is in the requirement of silhouette segmentation. This

4.4. Approximate Single View Reconstruction



Figure 6. Approximate single view reconstruction using shape candidates from the random forest classifiers. (@} neery images
and silhouettes; (b) the highest-weight 3D shape candidadien s and.F 4 for each query silhouette (in two different views); (c) rksu
generated by the approach fih [3] (in two different views).

could be helped by e.g. Kinect camera which yields reliable [18] M.S. Nixon, T.N. Tan, and R. Chellappa, Human Identifima based
foreground-background segmentation in real time. Also, as _ ©on Gait. International Series on Biometrics, Springer §)00

. _ _[19] M. Prasad, A. Fitzgibbon, A. Zisserman, L. Gool, FingliNemo:
our future Wf)_rk' we plan to bl_,llld up a Iarger _Scale phe_:no Deformable Object Class Modelling using Curve Matching, R&/
type recognition dataset of different categories of olgject (2010).
and make it available to public. It would help evaluate our [20] S. Prince, J. Elder, J. Warrell, F. Felisberti, Tiedtfacanalysis for

approach and do comparative studies.
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