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Abstract

We propose a novel model for the spatio-temporal clus-
tering of trajectories based on motion, which applies to
challenging street-view video sequences of pedestrians cap-
tured by a mobile camera. A key contribution of our work
is the introduction of novel probabilistic region trajecto-
ries, motivated by the non-repeatability of segmentation of
frames in a video sequence. Hierarchical image segments
are obtained by using a state-of-the-art hierarchical seg-
mentation algorithm, and connected from adjacent frames
in a directed acyclic graph. The region trajectories and
measures of confidence are extracted from this graph using
a dynamic programming-based optimisation. Our second
main contribution is a Bayesian framework with a twofold
goal: to learn the optimal, in a maximum likelihood sense,
Random Forests classifier of motion patterns based on video
features, and construct a unique graph from region trajecto-
ries of different frames, lengths and hierarchical levels. Fi-
nally, we demonstrate the use of Isomap for effective spatio-
temporal clustering of the region trajectories of pedestrians.
We support our claims with experimental results on new and
existing challenging video sequences.

1. Introduction
Fig. 1 illustrates a basic task attracting increasing atten-

tion in the Vision community: the detection, segmentation
and tracking of moving pedestrians. The topic is regarded
for purposes such as surveillance, automatic navigation, or
as the base for action recognition and video database in-
dexing. Many factors concur to make it extremely chal-
lenging: camera motion, non-rigid deformations, perspec-
tive and scale changes, occlusion, illumination changes etc.

Recent results in image segmentation have provided im-
portant tools for clustering the image pixels based on ap-
pearance. However, it is widely agreed that segmentation is
ambiguous in most cases, e.g. a dark coat is often more sim-
ilar to the background than to the cloths of the same person.
Furthermore, the “right” segmentation needs usually defin-
ing a task, e.g. a vision system may be employed to detect

pieces of clothing, human silhouettes, or a moving crowd.
Contemporary people detectors achieve this goal by

learning the appearance and shape from single frames, often
using images annotated with bounding boxes. While work-
ing commercial solutions are already available, proving that
repeatable results may be obtained with these algorithms,
one can anticipate the need for larger databases for includ-
ing all the possible appearances of the world pedestrians.

At the junction of unsupervised image segmentation and
appearance learning-based methods, we present a new ap-
proach to spatio-temporal clustering based on learnt motion
patterns. Motivated by the non-repeatability of segmenta-
tion of frames in a video sequence, in Sec. 3 we introduce
novel probabilistic region trajectories. Based on a hierar-
chical segmentation algorithm [1] and on dynamic program-
ming (DP) optimisation, the probabilistic region trajectories
aim to track the most probable image segments across the
frames and the hierarchical levels of the video sequence.

A Bayesian framework is introduced in Sec. 4 to ad-
dress our novel purposes: defining a task for the spatio-
temporal clustering, and learning complex motion patterns
from novel and more descriptive low-level video features,
as opposed to traditional frame-based features. There, we
also illustrate the effective use of the Isomap technique.

Our model, generally applicable to any motion pattern, is
validated in Sec. 5 on the difficult scenario of pedestrians in
crowds, in new and existing outdoor video sequences. We
conclude the paper and discuss future prospects in Sec. 6.

2. Related Work
The spatio-temporal clustering of region trajectories is

closely related to the problems of detection, segmenta-
tion and tracking. Especially for the case of pedestrians,
a number of techniques have been recently proposed in
these areas, based on learning the appearance of body parts
([10, 22, 14]), particle filters ([9, 12]), and feature point tra-
jectories ([4, 17, 18, 7, 8, 5]). The presented work proceeds
in a different direction from [22, 14, 10], as it is based on
motion cues, believing that pedestrians have extremely vari-
able appearances. Similarly to [4, 17, 18, 7, 8, 5] our work
is based on the clustering of spatio-temporal trajectories.



Figure 1. (Top) Video sequence Lazona07 from our new dataset. Walking pedestrians are captured by a camera mounted at street-view
level on a mobile equipment. (Middle) The clusters of region trajectories computed with our algorithm are represented with different
shaded colours (some colours may be repeated). (Bottom) A graph representation of the result provides insights into the algorithm: pixels
belonging to region trajectories are shaded in yellow; boundaries of regions are marked with red lines; centroids of regions are marked
with little blue crosses; pale blue lines connect region trajectories in the same cluster (a connection between region trajectories regards
the regions as a whole, centroids are just used for visualization purposes). To enhance the readability, thicker blue lines are fitted to the
contours of the clustered region trajectories from pedestrians with active contours [6]. It is desirable that all pixels on pedestrians be shaded
in the same colour in the middle illustrations, and that all region trajectories belonging to pedestrians be connected by pale blue lines in
the bottom, i.e. clustered together. Unshaded pixels do not belong to any region trajectory and should not penalize the result, as a video
segmentation is beyond the purpose of the paper. The figure shows an appropriate clustering of most region trajectories, but also some
flaws, i.e. the cluster on the person walking forward is re-initialized, some region trajectories on limbs are misclassified.

However we define a probabilistic framework, allowing for
a task-oriented clustering, and adopt more informative re-
gion trajectories. Furthermore, our testing sequences are of
unprecedented difficulty for tasks of spatio-temporal clus-
tering: complex crowd scenes acquired by a mobile camera
at the height of a meter from the ground, therefore with no-
table perspective effects.

The proposed method for extracting region trajectories is
closely related to the works of [13] and [21]. The former ex-
tracts probabilistic point trajectories of feet from a graph of
temporal point correspondences. Similarly to [21], we use
DP for extracting region trajectories from a graph of inter-
connected image segments. However [21] aims to unsuper-
vised segmentation of video sequences and emphasizes the
Conditional Random Field model, while the extracted tra-
jectories are based on simple photometric similarities. By
contrast, we allow for encoding a task and aim to cluster the
stable and semantically meaningful region trajectories. Our
results are close to a video segmentation at some frames,
but this should be considered a side effect of a temporally

consistent clustering. Our work may also be related to [2],
which provides a generative formulation of region trajecto-
ries, limited however by an excessive computational load.

A variety of techniques are available for clustering in
unsupervised learning. A recent trend has been using an
eigendecomposition for obtaining a lower-dimensional em-
bedding of the data onto a non-linear manifold. This in-
cludes Isomap [19] and many variants of spectral clustering
[16, 11]. These techniques may capture non-convex and
variously shaped clusters and they all require additional pa-
rameters, often the number of clusters looked for. Our al-
gorithm is not constrained to use any particular method, but
Isomap is chosen for its attractive mathematical properties.

3. Probabilistic Region Trajectories

The extraction of region trajectories has received com-
paratively very little attention in vision because of the well-
known non repeatability of image segmentation over the
frames of a video sequence. This motivates the introduc-
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Figure 2. Extraction of probabilistic region trajectories. Hierarchical segments (levels 1-128-255 represented in the central red box) are
connected from adjacent frames at multiple levels in the hierarchy into a directed acyclic graph (dotted lines), with edges weighted using
an optical flow-based propagation. The probabilistic region trajectories are extracted from the graph with DP optimization (colored lines).

Figure 3. Colored areas represent 8 sample probabilistic region trajectories. Red crosses represent the propagated centroids of the regions.

tion of novel probabilistic region trajectories.
We use the hierarchical segmentation algorithm of [1] to

segment each frame of the video sequence into segments,
or regions, at 255 coarse-to-fine levels, according to several
criteria, i.e. illumination, color, texture etc. Subsequently, a
directed acyclic graph G = (V,E) is built by connecting
the segments from adjacent frames across all hierarchical
levels, as illustrated in Fig. 2. The frame-based segmen-
tations are generally non-repeatable at a particular level.
However parts of the image are consistently segmented at
certain coarse-to-fine levels. We term the region trajecto-
ries “probabilistic” because we extract the most likely paths
(the probabilistic region trajectories) at the most convenient
level of the hierarchy, alongside a measure of confidence.

In more details, let us consider two regions, rf and rf+1,
respectively at frames f and f +1. The weight of the corre-
sponding graph edge captures the similarity of rf and rf+1.
It is given by the cross-correlation product srf ,rf+1

between
the “propagated” mask of the region rf to frame f+1, m′

rf
,

and the mask of rf+1 at that frame, mrf+1
:

srf ,rf+1
=

2|m′
rf

∩mrf+1
|

|m′
rf
|+ |mrf+1

|
(1)

The mask propagation consists on projecting each pixel
of the region to the following frame by using an optical
flow. In particular, we use the optical flow algorithm of
[23] and smooth its output by bilateral filtering to preserve

the boundary sharpness [15]. The computed flow at pixel x,
u(x), is averaged with the flow at its neighbouring pixels
within the region, Nerf (x), weighted by spatial proximity
and motion coherency (σx = 6.9, σm = 3.6):

ū(x) =
Σx′∈Nerf

(x)u(x
′)w(x,x′)

Σx′∈Nerf
(x)w(x,x

′)
,

w(x,x′) = N(x; ∥x−x′∥, σx) N(x; ∥u(x)−u(x′)∥, σm) .
(2)

The region trajectories are extracted as the shortest paths
in the graph by using a DP optimization, in a forward and
backward pass to remove spurious correspondences. As
similarly noted in [21], the extraction of shortest paths may
be thought as drawing region trajectories from an undi-
rected graphical model, where each frame is associated to
a variable, zf , to represent the selection of a segment from
that frame, and is connected to its adjacent-frame variables,
zf−1 and zf+1. By defining binary potentials Ψ(zf , zf+1)
as the similarities srf ,rf+1

, the probability of a region tra-
jectory is expressed as the joint distribution of the corre-
sponding sequence of segments z0, z1, . . . , zF :

P (z0, z1, . . . , zF ) ∝
F−1∏
f=0

Ψ(zf , zf+1) , (3)

Figure 3 shows some region trajectories spanning differ-
ent resolutions. Compared to point trajectories, our region



Figure 4. Spanning tree for region trajectories of length 5 frames
(L = 2). Note that: (i) the connectivity is given by the whole re-
gions, touching regions yield distance 1 and “continuous” connec-
tivity, centroids are just used for visualization; (ii) not connected
regions, e.g. due to partial occlusions, may still be clustered to-
gether if they are connected at any other frame (graph transitivity).

trajectories present numerous advantages, most notably: (i)
they are dense, so we may associate several statistics to
them, as we discuss in Sec. 4; (ii) they are generally robust
to deformation, partial occlusion, scale change and perspec-
tive effects, e.g. see the disoccluding floor tiles in Fig. 3;
(iii) they track “semantic” image parts, as in most cases sta-
ble image segments are semantically consistent.

4. Bayesian Framework
Let us consider a set of region trajectories {Xi}N1 and

a symmetric distance measure Z(Xi, Xj). Our task is to
assign each X to a cluster {c}C1 and to define the number of
clusters C. Given C, the best clustering hypothesis Θ is the
maximum a-posteriori (MAP) estimate:

Θ̂MAP = argmax
Θ

P (Θ|Z) . (4)

With Bayes’s rule, we express the posterior in terms of the
likelihood and prior probabilities:

P (Θ|Z) =
P (Z|Θ)P (Θ)

P (Z)
=

P (Z|Θ)P (Θ)∫
Θ

P (Z|Θ′)P (Θ′) dΘ′
.

(5)
Estimating the MAP, would require the evaluation of all
possible clustering hypotheses Θ, a combinatorial of the
number of region trajectories. Furthermore the estimation
should be repeated for every possible number of clusters C
and model selection should be taken into account. The pro-
cess is intractable even for few trajectories. Alternatively,
we use a Bayesian framework to determine the optimal, in
a maximum likelihood sense, probability of clustering be-
tween region trajectories based on motion-based video fea-
tures, and construct a unique graph from tracks of different
frames, lengths and hierarchical levels. Then we employ
Isomap [19] for effective spatio-temporal clustering.
PRIOR We model in the prior the connectedness of the
graph. We assume that only neighboring segments may be

clustered together and extend this to the region trajectories.
Let us consider all the region trajectories which exist at
frame f and in the range [f−Lmin, f+Lmin]. A spanning
tree is constructed according to the criterion of minimum
and equal distances (we use Kruskal’s algorithm, modified
to include equal distances at each iteration). The prior prob-
ability P (Θ) is uniform over the connected nodes and zero
otherwise. At the same frame, this connectivity is pre-
served for graphs of longer region trajectories, existing in
the ranges [f − L, f + L], L ∈ (Lmin, Lmax] (in the ex-
periments Lmin = 2, Lmax = 16, corresponding to region
trajectories of lengths 5 to 33 frames).
LIKELIHOOD Let us assume PZ(Xi, Xj), the probabil-
ity that two region trajectories Xi and Xj be clustered to-
gether. We define the likelihood of a clustering hypothesis
Θ, P (Z|Θ), as

P (Z|Θ) =
∏

i,j∈ck,k∈[1,C]

PZ(Xi, Xj) ×

∏
i∈ck,j∈cm,k,m∈[1,C],k ̸=m

(1− PZ(Xi, Xj)) . (6)

P (Z|Θ) is computed along the spanning tree and is the
product of the probabilities between region trajectories clus-
tered together, according to Θ, times the product of the
complementary probabilities between trajectories assigned
to different clusters. Eqn. 6 naturally penalises separating
trajectories with high linking probability. From a model se-
lection point of view, this corresponds to penalizing models
with higher complexity (larger number of clusters C).
VIDEO FEATURES The estimation of the probability of
clustering PZ(Xi, Xj) between region trajectories moti-
vates the introduction of novel video features.
A symmetric distance measure Z between two region tra-
jectories may be based on a variety of statistics, which may
be computed on the segments, or parts of them, forming the
trajectories. In the same way a dense set of region trajec-
tories can compactly represent the whole video sequence,
computing video features on these trajectories may theoret-
ically provide all the statistics measurable from the video
itself, not just limited to corners and blobs, nor to single
frames. The video features, made available from repre-
senting the video in terms of region trajectories, can de-
scribe low- and higher-level motion cues, as well as colour-,
texture- and, in general, appearance-based statistics.
We are interested in motion-based clustering with low-level
cues and therefore define video features between two re-
gion trajectories as combinations of: SUPPORTS (a) the en-
tire area of the regions in the trajectories, (b) the neighbour-
ing portions of areas of the regions, (c) the propagated cen-
troids; LOW-LEVEL MOTION STATISTICS (1) mean, (2) me-
dian, (3) min, (4) max, (5) standard deviation, (6) variance,
(7) Fourier transform; QUANTITIES (i) position, (ii) veloc-



Figure 5. (top row) Sample training video sequences and (bottom row) the provided ground truth labelling. This work focuses on pedestri-
ans, neglecting all other objects and the background (represented with a black/zero value).

ity, (iii) velocity normalized by the local flow, (iv) accelera-
tion, (v) acceleration normalized by the local flow.
Any combination of supports (a-c), statistics (1-7) and
quantities (i-v) defines a simple distance Z between two re-
gion trajectories based on their overlapping frames. We do
not arbitrarily select a particular Z (e.g. compare [4, 5]). In-
stead we associate a vector of all available Z’s to each pair
of region trajectories and learn a Random Forests classifier
[3] on the two class problem: two region trajectories belong
to the same Vs different clusters. The optimal probability
PZ is given by the voting ratio of the decision trees (300
trees with minimum node size 36).
In Sec. 5 we consider the complex motion patterns of pedes-
trians and the task of clustering their relevant trajectories.
GRAPH-BASED CLUSTERING A graph allows clustering
non-convex and variously shaped structures. We assemble
the graphs for each frame and length into a unique graph.
The unique graph has the region trajectories from the whole
sequence as nodes. Edges are drawn in the graph according
to the links in the single graphs and assigned the probability
of clustering between the trajectories. As two region tra-
jectories Xi and Xj may be linked over several frames and
lengths, the evidence needs to be accumulated. Two or more
instances of clustering probabilities between Xi and Xj ,
P ′
Zij

and P ′′
Zij

, are therefore multiplied and renormalised,
so that the resulting PZij is consistent with Eqn. 6:

PZij =
P ′
Zij

P ′′
Zij

P ′
Zij

P ′′
Zij

+ (1− P ′
Zij

)(1− P ′′
Zij

)
(7)

CLUSTERING TECHNIQUE The spatio-temporal cluster-
ing of the region trajectories is achieved using the Isomap
algorithm [19]: this embeds the trajectories into a lower di-
mensional non-linear manifold where the actual clustering
is obtained by the use of the K-means clustering technique.

The proposed algorithm processes all the frames “in batch”,
as a sufficient number of trajectories needs be considered
for capturing the curvature of the manifold.

5. Experimental validation

Here we discuss experiments on challenging outdoor
video sequences. Results are task-oriented aggregation
steps, e.g. relevant to subsequent detection and recognition.

DATASET DESCRIPTION Recently, [5] has provided a
well designed dataset of 26 video sequences, 12 of which
were chosen from the Hopkins 155 database [20]. For eval-
uation purposes, [5] provides meaningful error metrics and
an evaluation software, alongside a ground-truth labelling
of sparse frames, with labels including pedestrians, cars,
and various other objects. As discussed in Sec. 4, our model
may be employed to learn different motion patterns but this
study emphasizes the most challenging case of pedestrians.
We select therefore the 16 sequences containing people, as
detailed in Tab. 1. To limit the computational load we con-
sider the first 100 frames only.
Our main purpose is to test our algorithm on complex
crowded scenes. We introduce therefore a new dataset of
15 ground-truthed video sequences, captured in the Tokyo
undergrounds of Shinagawa and Kawasaki, from a camera
mounted on a mobile equipment (fish-eye lens and HDi res-
olution). Samples of the extracted images (de-interlaced,
cropped and resized to 600x300) and the respective labels
are illustrated in Fig. 5. Notably the camera height from the
ground plane is about a meter, generating strong perspec-
tive effects on the approaching pedestrians. The labelling
poses the attention on the pedestrians and their belongings
(briefcases, bags etc.) and neglects all other objects and the
background, to which a zero value is assigned.
We train on 10 sequences from our dataset, and test on the



Figure 6. The clusters of region trajectories on the pedestrians are
well determined and, to a large extent, the input number of clusters
does not affect the segmentation output. no.clsuters=180 (left) and
the no.clusters=380 (right) yield similar results as in Fig. 1(middle
column), obtained for no.clsuters=90: as is desired, more clusters
only fragment the objects and background.

remaining 5 and on all selected videos from [5]. Notably,
the camera setup, and the camera and pedestrian motions in
the videos of [5] differ significantly from ours, so testing on
those sequences also provides testing for generalization.

ERROR METRICS We take care to provide a comprehen-
sive quantitative evaluation of our algorithm. To this pur-
pose we gather the available error metrics from relevant
works on spatio-temporal clustering [5] and video segmen-
tation [21]. Tab. 1 reports five metrics computed over the
clusters of pixels from pedestrians: (i) density: the percent-
age of correctly classified pixels over the total number of
pixels, from [5], it may be paired with recall [1]; (ii) overall
clustering error: the percentage of bad pixel labels over the
total number of labels, from [5], it complements precision
[1]; (iii) average clustering error: similar to the overall er-
ror, but given by averaging over each cluster first, from [5];
(iv) segmentation covering: a general measure of how well
the computed clusters of pixels superpose on the true seg-
mentation, given by the Dice coefficient between the sets,
from [21], it relates to F-measure [1]; (v) head count: the
number of pedestrians considered (still persons or people
further away with respect to the main actors are neglected).
Note that in [5] only a global evaluation of metrics over the
all video sequences is available (for variable lengths) and
that this includes other objects alongside pedestrians. We
present detailed metrics for each sequence separately to of-
fer closer evaluation and future comparison, but our metrics
only regard pedestrians, which must be kept in mind in a
comparison to [5]. Additionally, we do not report a met-
ric on over-segmentation error because we only allow one
cluster to explain a single pedestrian at each frame.

DISCUSSION The probabilistic region trajectories from
pedestrians are successfully clustered at most frames. The
clustering errors reported in Tab. 1 are comparable to those
from [5] (ϵoverall: ours is 17.39% against 7.13%1; ϵaverage:
ours is 17.52% against 31.14%1) but our density indexes are
an order of magnitude greater (ρ: ours is 50.62% against
3.27%1). Additionally, the reported average segmentation

1Best value between first 50 and 200 frames results in [5] is reported

V Sequences ρ ϵoverall ϵaverage SC HC

Dataset of [5]
Miss Marple1 44.02% 0.25% 0.25% 0.61 1
Miss Marple2 69.62% 7.93% 7.93% 0.79 1
Miss Marple3 40.31% 16.47% 16.47% 0.54 1
Miss Marple4 32.35% 24.58% 24.58% 0.45 1
Miss Marple5 66.75% 8.69% 8.69% 0.77 1
Miss Marple6 63.19% 37.18% 37.18% 0.63 1
Miss Marple7 52.58% 5.53% 5.53% 0.68 1
Miss Marple8 13.19% 38.48% 38.48% 0.22 1
Miss Marple9 42.05% 2.21% 3.20% 0.59 2
Miss Marple10 42.84% 60.24% 60.24% 0.41 1
Miss Marple11 54.65% 4.76% 4.76% 0.69 1
Miss Marple12 54.76% 23.42% 23.42% 0.64 1
Miss Marple13 62.85% 0.29% 0.29% 0.77 1
Tennis 50.47% 46.14% 46.14% 0.52 1
People1 51.00% 1.17% 1.17% 0.67 1
People2 69.27% 0.86% 1.97% 0.82 2
Averages 50.62% 17.39% 17.52% 0.61 1.1
Our Dataset
Lazona07 48.33% 13.65% 17.94% 0.62 5
Lazona08 63.43% 25.01% 25.77% 0.69 6
Lazona14 64.06% 32.11% 32.11% 0.66 1
Shinagawa04 48.70% 23.40% 29.02% 0.60 5
Shinagawa05 49.61% 25.01% 24.48% 0.60 5
Averages 54.83% 23.84% 25.86% 0.63 4.4

Averages on all 51.62% 18.92% 19.51% 0.62 1.9

Table 1. Evaluation results. Legend: ρ density; ϵoverall overall
error; ϵaverage average error; SC segmentation covering; HC head
count.

covering index is greater than in a state-of-the-art video seg-
mentation work [21] (SC: ours is 0.62% against 0.52%),
opening the way to extending this work to motion-based
video segmentation, see discussion in Sec. 6.
We believe that the main advantage of our new model lies
in the use of regions. These define a continuous flow vari-
ation on the objects of interest, allowing reasoning on body
parts generally moving in completely different fashion, e.g.
arms and legs. Not less important is the clustering frame-
work. Results show that it generalizes well to video se-
quences where the camera and the objects move very dif-
ferently from the training dataset. Furthermore it is not lim-
ited to pedestrians but may be used to learn other complex
motion patterns, and it provides robust clustering results, es-
pecially on frames densely covered with region trajectories.
We observe two kinds of flaws of our current model: (i)
at some frames the clusters are re-initialized; (ii) some re-
gion trajectories from the arms and legs, or on pedestrians
moving frontally at the same speed as the camera (no appar-
ent motion) are misclassified. Failures on cases of no ap-
parent motion is expected in algorithms relying on motion
cues and could be addressed by integrating appearance into



Figure 7. Video sequences from [5]: (Columns from left to right) Miss Marple1 frame 80; Miss Marple2 frame 80; Miss Marple7 frames
30,50,80. The figure presents the frames, the colour-coded clusters of region trajectories and the graph representation of the spatio-temporal
clustering, as described in Fig. 1. A qualitative inspection reveals that the algorithm succeeds in clustering most of the region trajectories
from each pedestrian, although both the camera and the pedestrians move in a completely different fashion from our training dataset, and
the pedestrians are observed at very different scales. A supplementary video can be downloaded from http://fabiogalasso.org/

the framework, as discussed in Sec. 4. On the other hand,
a common cause seems to be underlying the other flaws:
a divergent image segmentation over multiple hierarchical
levels at some frames. As seen in Sec. 3, a probabilistic ap-
proach addresses most issues of repeatability by choosing
the appropriate hierarchical level. However a divergence
over multiple levels may result in no region trajectories on
pedestrians or, to a less extent, in a sparser covering. The
former implies re-initialization of the cluster at the follow-
ing frame, the latter may cause discontinuities in the flow
variations between adjacent regions, resulting, possibly, in
the misclassification of the most challenging arms and legs.
Interestingly, such flaws are more frequent on our testing se-
quences than on those from [5], although ours are actually
more similar to the training set. On the one hand, our new
video sequences are of unprecedented difficulty in tasks of
motion-based clustering; on the other hand, we believe that
such flaws are inherent in algorithms defining video trajec-
tories by using image segmentations, also a trend in state-
of-the-art video segmentation [21]. Future research on the
topic should address this issue, as we discuss in Sec. 6.

TIME COMPLEXITY Our non-optimized Matlab code
runs on a single CPU in few minutes per frame. Most com-
putational load (∼95%) is taken by constructing the graph
of image segments and computing the video features. The
region trajectories represent the video sequence compactly

(less than 3000 are used for each of the sequences), Isomap
and K-means cost therefore less than seconds per frame.
Implementing the algorithm is relatively easy, as it includes
simple sub-modules (e.g. bilateral filtering, mask propaga-
tion, DP) and others available on the web (e.g. [1, 23, 3, 19])
used with standard parameters, unless specified. Similarly,
the video features are easy to code and extend, to include
new aspects of Vision into the probabilistic framework.

6. Conclusions and Future Work

We have presented a novel approach to the spatio-
temporal clustering of trajectories based on motion. We
have introduced novel probabilistic region trajectories, a
novel Bayesian framework, and we have applied our model
to the difficult case of pedestrians in crowded outdoor video
sequences, comparing to a state-of-the-art algorithm. The
present work is the first of its kind in various respects, most
importantly: first example of clustering of region trajecto-
ries and first example of object learning from video data.

The use of pre-computed image segments, already seen
in state-of-the-art video segmentation algorithms, seems to
be computationally and biologically plausible in process-
ing video sequences. It comes however with some limita-
tions inherent in an appearance-based image segmentation.
Besides including principled video cues into the segmenta-
tion algorithm, future research may be addressed to create



Figure 8. Video sequences from our new dataset: (First two columns) Lazona08; (second two columns) Lazona14. Frames, colour-coded
clusters and graph representations are explained in Fig. 1. The examples show a successful aggregation of most region trajectories from
pedestrians into single clusters, alongside some flaws of our algorithm: some region trajectories on limbs are misclassified and the lady
inbetween the two children in Lazona08 is confused with the background (a case of no apparent motion as she moves forward at the same
speed as the camera). These video sequences are of unprecedented complexity for tasks of spatio-temporal clustering.

temporally stable image hierarchies. Other future research
will be pursued on including the trajectory extraction and
clustering into a unified model and on using higher-level
motion- and appearance-based video features.

Acknowledgements
The authors wish to acknowledge Vijay Badrinarayanan

for valuable discussions.

References
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. From con-

tours to regions: An empirical evaluation. In CVPR, 2009.
[2] A. Barbu and S. Zhu. On the relationship between image and

motion segmentation. In SCVMA Workshop ECCV, 2004.
[3] L. Breiman. Random forests. Mach. Learn., 45:5–32, 2001.
[4] G. J. Brostow and R. Cipolla. Unsupervised bayesian detec-

tion of independent motion in crowds. In CVPR, 2006.
[5] T. Brox and J. Malik. Object segmentation by long term

analysis of point trajectories. In ECCV, 2010.
[6] T. F. Chan and L. A. Vese. Active contours without edges.

Transactions on Image Processing, 10(2):266–277, 2001.
[7] A. Cheriyadat and R. Radke. Non-negative matrix factoriza-

tion of partial track data for motion segmentation. In ICCV,
pages 865–872, 2009.

[8] M. Fradet, P. Prez, and P. Robert. Clustering point trajecto-
ries with various life-spans. In CVMP, 2009.

[9] Z. Khan, T. Balch, and T. Dellaert. An mcmc-based parti-
cle filter for tracking multiple interacting targets. In ECCV,
2004.

[10] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection
in crowded scenes. In CVPR, pages 878–885, 2005.

[11] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In NIPS, 2001.

[12] K. Okuma, A. Taleghani, N. D. Freitas, O. D. Freitas, J. J.
Little, and D. G. Lowe. A boosted particle filter: Multitarget
detection and tracking. In ECCV, pages 28–39, 2004.

[13] F. Perbet, A. Maki, and B. Stenger. Correlated probabilistic
trajectories for pedestrian motion detection. In ICCV, 2009.

[14] M. D. Rodriguez and M. Shah. Detecting and segmenting
humans in crowded scenes. In ACM Multimedia, 2007.

[15] P. Sand and S. Teller. Particle video: Long-range motion
estimation using point trajectories. IJCV, 80(1):72–91, 2008.

[16] J. Shi and J. Malik. Motion segmentation and tracking using
normalized cuts. In ICCV, pages 1154–1160, 1998.

[17] J. Sivic, F. Schaffalitzky, and A. Zisserman. Object level
grouping for video shots. IJCV, 67:189–210, April 2006.

[18] D. Sugimura, K. M. Kitani, T. Okabe, Y. Sato, , and A. Sug-
imoto. Using individuality to track individuals: clustering
individual trajectories in crowds using local appearance and
frequency trait. In ICCV, 2009.

[19] J. B. Tenenbaum, V. D. Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduc-
tion. Science, 290(5500):2319 – 2323, 2000.

[20] R. Tron and R. Vidal. A benchmark for the comparison of
3-d motion segmentation algorithms. In CVPR, 2007.

[21] A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller. Mul-
tiple hypothesis video segmentation from superpixel flows.
In ECCV, 2010.

[22] B. Wu and R. Nevatia. Detection and tracking of multi-
ple, partially occluded humans by bayesian combination of
edgelet based part detectors. IJCV, 75(2):247–266, 2007.

[23] C. Zach, T. Pock, and H. Bischof. A duality based approach
for realtime tv-l1 optical flow. In Pattern Recognition (Proc.
DAGM), pages 214–223, 2007.


