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Abstract. Automatic biometric analysis of the human body is normally
reserved for expensive customisation of clothing items e.g. for sports or
medical purposes. These systems are usually built upon photogrammet-
ric techniques currently requiring a rig and well calibrated cameras. Here
we propose building on advancements in deep learning as well as util-
ising technology present in mobile phones for cheaply and accurately
determining biometric data of the foot. The system is designed to run
efficiently in a mobile phone app where it can be used in uncalibrated
environments and without rigs. By scanning the foot with the phone
camera, our system recovers both the 3D shape as well as the scale of
the foot, opening the door way for automatic shoe size suggestion. Our
contributions are (1) an efficient multiview feed forward neural network
capable of inferring foot shape and scale, (2) a system for training from
completely synthetic data and (3) a dataset of multiview feet images for
evaluation. We fully ablate our system and show our design choices to
improve performance at every stage. Our final design has a vertex error
of only 1mm (for 25cm long synthetic feet) and 4mm error in foot length
on real feet.

1 Introduction

Footwear is an essential clothing item for all age groups and genders, serving
many practical purposes, such as protection, but also typically worn as a fashion
item. It is conventional and often vital for one to physically try on a pair of ready-
to-wear shoes prior to deciding upon a purchase. This is cumbersome for in-store
shopping but very inefficient and environmentally damaging for online shopping.
In this setting, it is standard for many shoes to be transported back and forth
between warehouse and customer to accommodate for this try-on process.

Foot length-to-size charts can be easily found on the internet but the conver-
sion tends to vary from brand to brand. Length alone is also often not sufficient
to characterise the entire shape of the foot and other measurements such as foot
width and instep girth are important for correct fitting. Therefore, a method for
easily obtaining a 3D model of the foot would be beneficial as it allows customers
to virtually try on shoes to find the best size and shape.

Many products for 2D/3D foot scanning already exist on the market such as
those developed by VoxelCare [1] and Vorum [2] but these devices tend to be
expensive and are usually not targeted at common shoe customers.
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Fig. 1: Overview of the foot reconstruction framework

In this paper, we propose a novel end-to-end framework, which we call Foot-
Net, that reconstructs a scale accurate 3D mesh representation of the foot from
multiple 2D images. Reconstruction is very quick and can be computed directly
on a smart phone.

2 Related work

Traditional methods take a geometrical approach to tackle the reconstruction
problem. Examples of commonly used techniques are passive/active triangula-
tion [1, 2, 3, 4, 5, 6] and space carving [7]. Deep learning has been tremendously
successful in tackling vision related problems including 3D reconstruction. CNNs
for object reconstruction typically have an encoder that maps the input into a
latent variable or feature vector, which is then decoded into the desired output
depending on how the 3D shape is represented. Common representations include
voxel grids, meshes and point clouds.

Voxel grids. A standard approach is to use up-convolutional layers to directly
regress the 3D voxel occupancy probabilities from the latent variables [8, 9, 10].
With the availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect),
methods were proposed to reconstruct objects from depth maps [11,12,13]. For
example, MarrNet [12] uses a two-stage network, where the first stage is an
encoder-decoder architecture that predicts the 2.5D sketches (depth, surface nor-
mals, and silhouette), and the second stage is another encoder-decoder network
that outputs a voxelised shape. These methods have generally been successful in
reconstruction tasks but the output resolution is limited due to the high mem-
ory requirements, as the memory scales cubically with the voxel resolution. The
methods mentioned above produce grids of resolution 323 to 643, except for
MarrNet whose output resolution is 1283. Approaches such as space partition-
ing [14, 15] and coarse-to-fine refinement [16, 17, 18] were able to increase the
output voxel size to 2563 or 5123.

Meshes. Meshes are less demanding in memory but they are not regularly
structured so the network architectures have to be specifically designed. One
approach is to start with a template such as a sphere and deform the template
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to output the predicted 3D shape [19,20]. Kato et al. [19] proposed a method to
approximate the gradient for rendering which enables integration of rendering a
mesh into a neural network. Wang et al. [20] represents the 3D mesh in a graph-
based CNN and predicts the shape by progressively deforming an ellipsoid.

Multiview networks. The problem of self-occlusion could be overcome by
providing more than one viewpoint, especially in reconstructing novel shapes.
Several methods were proposed to combine the information from different view-
points. For example, silhouettes from multiple views can be combined at the
input as separate channels and then passed through convolutional layers, or
they can be passed into separate convolutional blocks and the outputs are con-
catenated [21]. The number of viewpoints would be fixed for such models. Choy
et al. [22] uses a LSTM framework to combine a variable number of views but
the output is not consistent if the order of input views is altered. Wiles and
Zisserman’s [23] uses max-pooling to combine the encoded latent feature vectors
from multiple views so that the result is not affected by the order of input images
and it could generalise to any number of views.

Foot reconstruction. Several methods were developed specifically for foot
shape reconstruction. For example, Amstutz et al. [24] reduces the 3D vertices
of feet to only 12 parameters while preserving 92% of the shape variation, using
PCA decomposition on a foot dataset. Given multiple images of a foot from
different viewpoints, reconstruction is done by optimising the pose parameters,
shape parameters and scale. However, their system operates in a very constrained
setting, using a camera rig, structured lighting and physical aids for background
subtraction. Our solution is for in the wild use, using a mobile phone. Another
approach [25] uses deep learning to infer the foot shape from a single depth
map by synthesising a new view that contains information of the foot missing
from the input. Unfortunately, this method requires a depth sensor such as the
Microsoft Kinect to operate.

3 Overview

Our system is illustrated in Fig 1 and is broken down into three parts:

Acquisition. Our system takes multiple photos of the target from various view-
points surrounding the foot. Using a smart phone camera we utilise the AR
features (ARKit/ARCore) and attach to each image the real world camera ex-
trinsics. The RGB images are preprocessed by passing them through a foot
segmentation network.

3D inference using FootNet. A deep network ingests the silhouette and
camera pose data to infer foot length as well as shape. This regression network
(FootNet) takes inspiration from the architecture of SilNet [23] and is able to
handle any number of input viewpoints without being affected by the order of
inputs. Compared to SilNet which was shown to only handle 1 degree of freedom
in camera pose, FootNet is built to handle all 6. In addition, FootNet regresses to
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a dense mesh reconstruction rather than a voxel grid and incorporates an efficient
encoder based on MobileNet [26] to allow mobile implementation. We also show
FootNet works on real data whereas SilNet was only tested on synthetic data.

Foot shape and scale. Foot shape is paramaterised by a PCA foot model
trained from 3D scans of people’s feet using a multi-view stereo (MVS) sys-
tem [27]. We train our deep network to infer these parameters from synthetic
data only. Scale of the foot is inferred as a separate output. We next describe
our method in detail.

4 Methods

Our network is trained on synthetic foot silhouettes generated using arbitrary
foot shapes and camera poses. A PCA based 3D foot mesh is used here and
silhouettes are rendered by artificially adjusting camera extrinsics and sampling
shape from the PCA model.

4.1 3D foot mesh parameterisation

3D meshes of over 1600 feet are obtained using a MVS system1 [27]. We apply
PCA to this foot dataset, similar to Amstutz et al. [24], expressing changes
in foot shape based on 10 PCA parameters. The foot mesh is composed of
1602 vertices. Fig 2(a) illustrates the data collection pipeline showing calibration
pattern used for multi-view stereo and in Fig 2(b) the PCA based foot mesh with
annotated vertex points representing various anatomical positions on the foot. A
comparison of example dense foot meshes and their compact PCA representation
is shown in Fig 3.

(a) RGB images, segmentation masks and dense
meshes

(b) Labelled keypoints

Fig. 2: Constructing the PCA based model. Data collection using MVS is shown
in (a) and the final PCA based model with vertex annotations is shown in (b)

From Fig 4, we see that the first coefficient corresponds to the roundness
of the toes, the second corresponding to width and thickness, the fourth corre-
sponding to height of the big toe.

1 https:/snapfeet.io/en
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Fig. 3: Comparison of the dense meshes (left column), meshes reconstructed using
1602 PCA coefficients (middle column) and meshes reconstructed using 10 PCA
coefficients (right column).

Fig. 4: Change in foot shape when one of the PCA coefficients is varied while
the others are fixed. Blue: mean foot. Red: coefficient set to largest in dataset.
Green: coefficient set to smallest in dataset.

4.2 Foot mesh reconstruction model (FootNet)

Having compressed the foot shape to 10 PCA coefficients, our goal is to con-
struct and train a regression model that predicts the coefficients and size given
foot silhouettes and the corresponding camera poses. We propose a multi-view
framework, inspired by Wiles and Zisserman [23], that can handle any number of
viewpoints and is not affected by the order of the inputs. The overall framework
is displayed in Fig 5. To allow more flexibility in the shape prediction, we add
two extra output units representing the width deformation, kw, and height de-
formation, kh, which scale the foot vertices in the horizontal (inside to outside)
and vertical (sole to ankle) directions respectively:

Voriginal =
[
vx vy vz

]
−→ Vdeformed =

[
vx kwvy khvz

]
(1)

At test time, foot segmentation is produced by a separate CNN based on
ENet [28] trained on the 1601 collected foot images and silhouettes obtained
from reprojection of the dense foot meshes. The main focus of this paper is on
inferring the shape and scale of the foot and we are agnostic to the method used
for segmentation.
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Fig. 5: Foot mesh reconstruction model architecture (FootNet).

Loss function. In our framework, we consider shape prediction and length
prediction separate tasks each having its own loss function.

Since the ground truth foot shapes are available, an intuitive loss for shape
is the 3D vertex error, i.e., mean vertex error on the 1602-vertex point cloud. To
compute the shape loss, Lshape, the predicted and ground truth shapes are both

scaled to 25 cm long and the corresponding vertices (V and V̂) are compared:

Lvertex(V, V̂) =
1

m

m∑
i=1

d(vi, v̂i) (2)

where vi and v̂i are the i-th row of V and V̂ (i.e. 3D coordinates of a vertex)
respectively and d(x1,x2) is the Euclidean distance between x1 and x2.

To improve the robustness, the Huber loss [29] is applied to each vertex and
the mean is taken.

Lhuber(a; δ) =

{
1
2a

2, |a| ≤ δ,
δ
(
|a| − 1

2δ
)
, otherwise

(3)

Lshape(V, V̂; δ) =
1

m

m∑
i=1

LHuber (d(vi, v̂i); δshape) (4)

The scale loss, Lscale, is the Huber loss on the foot length and the overall
loss function used to train the network is the weighted loss between Lshape and
Lscale:

Lscale = LHuber(l − l̂; δscale) (5)

L = wshapeLshape + wscaleLscale (6)

Architecture. The model has a 3-stage architecture (Fig 5): encoding, combin-
ing and decoding. The encoder is given a silhouette and camera pose (θ and t)
as inputs and it computes a 1D feature vector. The encoder can be replicated as
many times as there are number of views. Since the parameters of all encoders are
shared, memory is saved by running the encoder sequentially over input views.
The N feature vectors are combined into a single feature vector by a pooling
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layer. Finally, the decoder regresses the PCA coefficients, the two deformation
scaling factors (kw and kh) and foot length through two fully connected layers.
Linear activation functions are applied to all 13 output units. The reconstructed
shape is obtained by applying the inverse PCA to the coefficients, scaling the
vertices horizontally and vertically by kw and kh respectively (Eq. 1), and finally
scaling the overall foot according to the predicted length. A major advantage
of this framework is its ability to take into account any number of images and
the prediction is not affected by the order of input views since the features are
combined by pooling operations.

The encoder (Fig 6) consists of two branches: the image branch and camera
branch. The silhouette is passed through the image branch which is a CNN based
on MobileNet. The top fully connected layer and softmax layer of the MobileNet
are removed so that it outputs a 7×7×1024 tensor. The camera branch computes
the sin and cos of the three camera angles (θ), combines them with the camera’s
position vector (t) and passes them through two fully connected layers. The
output of the camera branch is broadcast and concatenated to the image branch.
Two further convolutional layers are applied to encode the combined output of
the two branches to a single 1D feature vector. Dropout at rate 0.5 is applied to
the two fully connected layers in the camera branch as well as the output from
each encoder before they are combined in the pooling layer. These layers are
added to help mitigate noise in camera pose and encourage the network to do
well on all views. By incorporating the camera pose, we want the model to learn
which specific views of the foot are responsible for specific parts or features of
the foot.

Fig. 6: Encoder architecture.

5 Data

5.1 Synthetic silhouettes

We generate synthetic foot silhouettes to train the model as it enables us to
project the foot with any camera pose desired. We also aim to cover the “foot
shape space” more thoroughly by randomly sampling foot shapes in the space,
rather than being restricted to those scanned using MVS. A foot silhouette is
generated by randomly sampling model parameters, scale and camera pose. The
model is then rendered using a perspective projection.
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Fig. 7: Examples of randomly sampled foot shapes.

Examples of these randomly generated foot shapes are displayed in Fig 7.
To project the sampled foot mesh, we use a pipeline illustrated in Fig 8. The
camera pose is sampled such that it points approximately at the foot centre.
The ranges from which the parameters for silhouette generation are uniformly
sampled from are shown in Table 1. For each foot, 7 silhouettes are generated
and we ensure that α is roughly uniformly distributed across the 7 views so that
different sides of the foot are covered in a set of silhouettes. 12500 silhouette sets
are generated and split 75/10/15 into train/val/test. Sample sets are shown in
Fig 9.

Fig. 8: Pipeline for sampling a foot pose and camera pose. A silhouette is pro-
duced by perspective projection of the foot mesh.

5.2 Real foot image datasets

We collected 2 datasets of real foot images along with camera extrinsics recovered
from the smart phone. The 3-view dataset consists of 22 sets of foot images, each
containing 3 views (inside, top, outside) of the foot from 11 people. The 20-view
dataset consists of 5 sets of foot images, each containing 20 views. For each set
of images, the foot is fixed in the same position and the view angles are roughly
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Table 1: Ranges of parameters for sampling a foot pose and camera pose using
the pipeline in Fig 8.

Parameter Range

Foot length 19 to 32 cm
kw, kh 0.93 to 1.07

∆xfoot, ∆yfoot −3 to +3 cm
φ −5◦ to +5◦

d 45 to 75 cm
α −70◦ to +70◦

β, γ −10◦ to +10◦

∆xcam −5 to +5 cm
∆ycam −10 to +10 cm

Fig. 9: Sample sets of synthetic silhouettes.

uniformly distributed from the inside to outside of the foot. The length and
width are measured by hand. Camera pose is estimated using the AR features
(visual inertial odometry) on current smart phones and foot segmentation is
conducted using the pretrained deep neural network described previously.

6 Experiments

Evaluation metrics. For synthetic silhouettes where the ground truth 3D
models of the feet are available, the 3D vertex error (Eq. 2) and width error,
after scaling the vertices to a fixed foot length of 25 cm (roughly the length of
an average foot), are used for evaluation of the shape performance. The width is
defined as the ball-joint width, i.e., the 2D distance between the inner and outer
extrema (Fig 2b). For the real image datasets, only the width error is used for
shape performance evaluation since we do not have the ground truth 3D vertices.
For scale, the results are reported using the l1-loss between the predicted and
ground truth lengths, for both real and synthetic data.

Baseline - optimisation method We compare our model to a traditional 3D
optimisation approach of fitting the PCA model to the silhouette data. This
approach aims to minimise the overlap of the model projected silhouette with
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that of the predicted silhouette. We use a differentiable renderer [19] and a
silhouette reprojection based on L2 distance between the model and predicted
silhouettes. This loss function is optimised using Adam [30] jointly across all
camera views.

6.1 Shape-only model

As an initial experiment, we first test our model for shape reconstruction by
removing the scale prediction. This gives us insight into the model’s ability to
first obtain the correct shape, regardless of scale. The training loss is now only
the shape loss Lshape (Eq. 4). Since the model is not regressing the foot scale,
we centre and scale the foot in the silhouettes such that the foot size relative to
the image is fixed. Max-pooling is used for combining the feature vectors from
different viewpoints. For each training instance, we sample 3 random views of
the same foot. The network is trained using Adam optimiser, batch size of 32,
learning rate of 1× 10−3 and δshape = 3 mm. The steps per epoch is calculated
such that the model on average “sees” every possible combination for every foot.

Table 2: Average vertex error and width error for the shape-only model from
different number of views.

Number of views Vertex error (mm) Width error (mm)

1 0.9 0.9
2 0.6 0.5
3 0.6 0.4
4 0.5 0.4
5 0.5 0.4
6 0.5 0.4
7 0.5 0.4

On synthetic test data, Table 2 shows that the model achieves very small
average errors (< 1 mm). For reference, if a model only predicts the mean foot
shape, the average errors would be 3.7 mm and 2.6 mm for vertex and width
respectively. Even though our model is trained on 3-view inputs, it generalises
to other number of viewpoints and the performance generally improves as we
increase the number of viewpoints. This is because it is less likely that a part
of the foot is hidden when more views are given. As we further increase the
number of views, the improvement in vertex accuracy decreases and it eventually
converges to a vertex error of 0.5 mm.

The best width error is achieved with only 3 views; further increasing the
number of views result in a similar or worse width error. This is because the
model is trained to minimise the average vertex error and at any time the model
does not know or care about the width error. As more views are given, the model
is able to compute a set of PCA coefficients that results in a smaller vertex error,
i.e., better overall shape reconstruction, but in return a slight amount of width
accuracy is sacrificed.
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We can see how the model makes use of different views to predict the foot
shape by looking at how the vertex error is distributed across the foot. Fig 10
shows that with just a top-down silhouette, the model tends to produce larger
errors around the foot dorsum (top surface of the foot) due to the lack of in-
formation of its shape. By incorporating more viewpoints, the overall error is
reduced and more evenly distributed across the foot. For both types of input,
relatively large error is made on toe and heel regions. This is because the vertices
in these areas are more dense and have more variation across different feet.

(a) Single top-down input (b) Random 3-view input

Fig. 10: Vertex error distribution for the model tested on (a) single top-down
silhouettes and (b) random 3-view silhouettes. The heatmaps have the same
colorscale.

6.2 Full model (shape and scale)

We now include the length output unit and use the weighted loss (Eq. 6) as
training loss. No processing (centering/scaling) is done to the silhouettes. The
network is trained on 3-view inputs using Adam optimiser, batch size of 32,
wshape = 1, wscale = 0.05, learning rate = 1×10−3, δshape = 3 mm and δscale = 5
mm.

Synthetic test data. On synthetic test data, our model achieves a vertex
error of 1.2 mm, width error of 0.9 mm and length error of 2.1 mm. The length
predictions are more accurate than the half-size increments (4.2 mm) in the UK
and US shoe sizing systems. Note that there is an increase in the vertex error,
from 0.6 mm with the shape-only model. This is mainly due to the fact that the
foot is no longer centred in the silhouettes and the size of the foot relative to
the image varies, making the task more difficult.

Real test data. To optimise the performance on real data, we split the 3-view
real foot image dataset into validation and test sets, with 10 and 11 sets of
images respectively, and retrained the network using the same set of hyperpa-
rameters except that the learning rate is reduced to 5× 10−4 and early stopping
is applied on the real validation set. We select the epoch that has the lowest
sum of length error and width error on the real validation set as the final model.
In addition, we address the domain gap through image augmentation including
different degrees and types of blurring for estimating segmentation confidence
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scores at silhouette periphery, and pixel noise to emulate incorrect segmenta-
tion. These augmentations are found to always improve the model performance
on real data.

Table 3 shows that there is a large generalisation error going from synthetic to
real data for all metrics, which could be due to noise in segmentation and camera
pose. The best performance is achieved when the model is trained with max-
pooling, and at test time we replace the max-pooling with average-pooling. On
synthetic test data, however, doing the same thing would worsen the performance
in both the length and shape prediction (length error: from 2.1 to 3.0 mm,
vertex error: from 1.2 to 1.5 mm). For the case of synthetic silhouettes, Wiles
and Zisserman [23] demonstrated that max-pooling outperforms average-pooling
for combining the feature vectors as the former allows the combined features to
be jointly recorded by different inputs views and important features from each
viewpoint can be passed directly to the decoder so that the model can exploit
information from specific views to reconstruct specific parts of the foot. With
average-pooling, the important features are averaged out by other views and the
model is forced to reconstruct every part of the foot with information from all
given views. However for real data, average-pooling outperforms max-pooling
because there is a lot more noise in the data (e.g. faulty segmentation/camera
calibration). In this case, average-pooling helps reduce the effect of these errors
by averaging them out, whereas max-pooling could allow noisy information to
flow directly to the decoder.

There is also a big gap between the validation and test performance which is
mainly due the the small amount of real data available (22 sets of images) and
can be overcome by collecting a larger set of data so that the validation results
are more reliable.

Table 3: Average length and width errors (mm) on real val/test data.

Trained with
Validation set Tested with max-pool Tested with avg-pool

Length error Width error Length error Width error Length error Width error
max-pool 5.3 4.4 8.4 4.0 6.5 4.3
avg-pool 5.4 4.2 12.2 3.7 8.3 3.4

6.3 Effect of silhouette accuracy

To investigate the error introduced by the imperfect predicted segmentation, we
manually segmented 4 sets of foot images from the 3-view real foot image dataset
and tested our model (trained with max-pooling) on these ground truth silhou-
ettes. Results are reported in Table 4 and sample reconstructions are displayed
in Fig 11.

In terms of shape, we see from the sample reconstructions that the feet re-
constructed using hand-segmented silhouettes are much closer to the actual foot
because the shape prediction is heavily influenced by the input silhouettes. For
both types of silhouette, the projections of the reconstructed feet fit almost per-
fectly to the input silhouettes so it is hard for the model to produce an accurate
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shape prediction when the silhouettes do not represent the actual foot shape due
to error by the segmentation network. In terms of length, hand-segmentation in
fact worsens the model performance which suggests that there are error sources
other than the segmentation network, such as noise in the camera poses and
occlusion of the heel by the ankle or leg.

Table 4: Average length and width errors (mm) on 4 sets of test silhouettes
for two different segmentation methods (segmentation network in deep network
predicted and hand-segmentation), using the model trained with max-pooling.

Pool at test time
Predicted segmentation Hand segmentation
Length error Width error Length error Width error

max-pool 4.5 3.0 5.5 3.8
avg-pool 6.9 5.5 9.1 8.0

6.4 Number of views

We compare our model with the baseline method on the 20-view real foot image
dataset, from 1 to 20 views. For each number of views, the viewpoints are chosen
such that the view angles are approximately uniformly distributed. This allows
us to analyse the stability of the methods to camera angles. It is found that to
achieve good performance consistently, a uniform sample of 3 views is sufficinet
for our model whereas the baseline requires at least 6. Table 5 records the mean
errors from 6 views onwards which is when both methods have enough views to
work at their best. On average, our network outperforms the optimiser in both
length and width accuracy.

Table 5: Average length and width errors from 6 to 20 views on the 20-view real
foot image dataset.

Method Length error (mm) Width error (mm)

FootNet (ours) 4.3± 0.4 6.9± 0.3
Optimisation 6.4± 1.9 7.9± 0.5

Prediction time. For one view, our model and the optimiser take 27 ms and
27000 ms respectively on average to make one reconstruction. For 20 views, our
model and the optimiser on average take 435 ms and 98000 ms respectively. The
optimiser requires GPUs for its computation whereas our model was tested on
a CPU and is still 2 to 3 orders of magnitude faster as it only requires a single
forward pass through the network. This shows that our network is capable of
reconstructing the foot using only the computation power of a smart phone in a
much quicker time.
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Fig. 11: Sample reconstructions from deep network predicted segmentation (left)
and hand segmentation (right). The reconstructed feet are reprojected to the
original image and the silhouettes for comparison.

7 Conclusion

The aim of this paper is to develop a framework that reconstructs the foot from
2D images on mobile devices. Using PCA, we compress the foot shape to only 10
parameters. We propose a CNN architecture that regresses the shape parameters
given multiple foot silhouettes and corresponding camera poses. On synthetic
silhouettes, the model achieves very high accuracy (vertex error close to 1mm and
length error of 2mm) and we demonstrate that it generalises to different number
of input views at test time. On real data our model outperforms a classical
optimisation-based method both in accuracy and inference speed. Future work
will involve improving generalisation of our method to real data.
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