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Abstract

Reconstructing the 3D shape of an object using several images under different
light sources is a very challenging task, especially when realistic assumptions
such as light propagation and attenuation, perspective viewing geometry and
specular light reflection are considered. Many of works tackling Photometric
Stereo (PS) problems often relax most of the aforementioned assumptions. Es-
pecially they ignore specular reflection and global illumination effects. In this
work, we propose the first CNN based approach capable of handling these realis-
tic assumptions in Photometric Stereo. We leverage recent improvements of deep
neural networks for far-field Photometric Stereo and adapt them to near field
setup. We achieve this by employing an iterative procedure for shape estimation
which has two main steps. Firstly we train a per-pixel CNN to predict surface nor-
mals from reflectance samples. Secondly, we compute the depth by integrating
the normal field in order to iteratively estimate light directions and attenuation
which is used to compensate the input images to compute reflectance samples
for the next iteration. To the best of our knowledge this is the first near-field
framework which is able to accurately predict 3D shape from highly specular ob-
jects. Our method outperforms competing state-of-the-art near-field Photometric
Stereo approaches on both synthetic and real experiments.

1 Introduction

Retrieving the 3D shape of an object from observations under varying illumination
is a very challenging problem in Computer Vision introduced by [32] under the
name of Photometric Stereo (PS). The mathematical model of the Photometric Stereo
problem proposed in this work relied on four main assumptions: orthographic
viewing geometry, diffuse light reflection, uniform light propagation and the lack of
ambient nuisance. Due to restrictive assumptions, the method of [32] was limited to
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Object - Bulldog Quéau et. al Proposed

Figure 1: Our proposed approach accurately reconstructs highly specular objects,
clearly outperforming the previous state-of-the-art [25].

very narrowly specified scenarios. Since then an extensive research has been carried
out to relax these assumptions.

With the aim of solving the PS problem under more realistic conditions, re-
searchers have modelled perspective viewing geometry [22, 23, 30], specular light
reflections [21] and point light sources parameterising radial propagation of light
[6, 11]. These effects lead to highly non-linear models requiring sophisticated opti-
misation strategies [25, 31]. As the complexity of the models becomes intractable,
especially when dealing with realistic material properties, a lot of recent works have
opted to neglect specular highlights and instead rely on robust optimisation tech-
niques [9, 10]. Furthermore, materials that reflect light in a non-diffuse manner are
prone to a number of complex physical effects which make the explicit mathematical
modeling very hard to invert.

In fact, these global illumination effects (cast shadows, self reflections, ambi-
ent light) are one of the most challenging aspects of PS. [15, 34] tackle the case of
fixed ambient light which however is too simple of a model to cover realistic inter-
reflections. The global illumination issue is firstly adequately addressed in [8] by
employing a Convolutional Neural Network (CNN). This method works by arrang-
ing reflectance (BRDF) samples into a fixed size observation map for each pixel.
Observational maps are then provided as an input to the CNN which is trained to
output a surface normal per pixel. [18] extends this work and shows how a training
data augmentation strategy can be used to deal with general reflectance BRDF such
as MERL dataset [19] or Disney BSDF [3] and global illumination effects in the far-
field setting. However, these approaches are only directly applicable to the far-field
photometric stereo since the nonlinear light attenuation of near-field images does
not allow to directly compute valid observation maps.

We propose to overcome the aforementioned limitations by using a three step
process. Firstly, the effect of the light attenuation is compensated using an esti-
mate of the object geometry, to produce the equivalent far-field reflectance samples.
Secondly, a CNN is used to regress pixel normals from these samples. Finally, a
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numerical integration is used to update the estimate of the object geometry for the
next iteration step. In addition, since during test time the observation map sample
space is highly limited due to a fixed LED capture setup, we render our training
observational maps from a virtual copy of this near-field image capture device. In
this way we significantly reduce the training data variation and allow ourselves for
various geometric augmentations such as pixel depth variation.

We evaluate our method on both artificial and real near-field image datasets. We
significantly outperform competing approaches [16, 25] on both datasets ,improving
by more than 6° on the average angular error of the synthetic one.

The rest of this work is divided as follows. Section 2 discusses relevant work in
Photometric Stereo. Section 3 provides details of our proposed method. Sections 4
and 5 describe the experiment setup and corresponding results.

2 Related Work

In this section we provide an overview of the relevant latest improvements. For a
detailed, fairly recent PS survey, refer to [1].

Near-Field PS. Differently from the classical far-field PS, near-field approaches as-
sume that the illumination is non-linear with respect to the position of the light
sources, thus making analytical models a lot more complicated and harder to solve
in practice. Some works embedded these non-linearities in a PDE-based formula-
tion so the depth is directly calculated without passing through the computation of
the normal field [20]. [13, 27] took advantage of image ratios in order to eliminate
the dependence on the surface albedo and thus reduce the number of unknowns.
Image ratios were also used in the variational framework of [21] in order to make the
approach more robust to specular highlights by unifying diffuse and Blinn-Phong
specular [2] reflections into a single mathematical formulation. This general varia-
tional framework is also applicable in a weekly calibrated setting [16] or even a vol-
umetric one [17]. Recently, the LED-based approach introduced by Quéau et al. [25]
presented a convoluted variational approach based on alternating weighted least-
square scheme also capable of calibrating the light brightness of the light sources.
Finally, [14] exploited a circular LED setup to compute the relative mean distance
between the camera and the object.

Deep Learning based approaches for PS. Computer graphics is a well understood
topic and many tools capable of rendering highly non-linear irradiance equations are
publicly available! [19]. This allowed to create reliable datasets for supervised DL
approaches. The potential of DL for solving the PS problem can be divided in two
main advantages. Firstly, CNNs have the capability of inverting highly non-linear
reflectance models comprising of numerous physically based parameters. Secondly,
CNNs can be made to deal with the complicated real world imperfection (shadows,
self reflections, noise) through the use of data augmentation. So far, several DL
approaches have been proposed. A preliminary work by [7, 28] considered diffuse
reflection only. [33] proposed a library where set of novel layers can be incorporated
into a generic neural network to embed explicit models of photometric image forma-
tion. More recently, several approaches have tackled the problem of reconstructing
complex objects. [26] proposed a method to find correspondences between simu-

lwww.blender.org and www.disneyanimation.com/technology/brdf.html
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STEP 1. Training a CNN from artificial observational STEP 2. Iteratively predicting normals on observational maps generated using
maps depth initialisations

Observational Maps

Figure 2: This figure illustrates two key steps of our proposed approach. On the left,
the network training is illustrated consisting of sampling points inside the camera’s
frustrum and rendering the respective observation maps. As the depth will only
be approximately known at test time, this is slightly perturbed before mapping
resulting to a structured change of the map (shown at bottom left: middle is actual
depth (10 cm), left and right correspond to £1cm respectively. On the right, the
reconstruction process is shown. Images ij---ix—1 are used with conjuction with
previous depth estimate to compensate for light attenuation (jo--- jxk—1), compute
observation maps (shown for pixel at image center here), regress normals and finally
update the shape. Note the improvement of the shape of frogs beak (red square)
from iteration 1 to iteration 2.

lated observation rendered by the MERL BRDF dataset [19] and the normal map of
the target object, handling non-local effects using a dropout strategy. [12] leveraged
DL to learn the information from multispectral images to get RGB information. [29]
proposed generating training data on the go to minimise the image re-projection
error. Although this method is a training data free approach, the whole procedure is
slow. Recently, [4] proposed rendering patches of different surface materials in order
to get training data. This method is also extended in [5] for solving the uncalibrated
PS. Finally, [8] proposed arranging all the reflectance samples of a pixel (i.e. different
illumination images in the far-field setting) into a fixed size observation map which is
used by a CNN to regress pixel normals. The CNN is essentially learning to invert
the BRDF with added robustness to global illumination effects, as training data are
made with physics based renderer. In [18], this method was extended by simplifying
the training procedure. However, none of these DL approaches is directly applicable
to the NFPS problem and non-linear attenuation from point light sources together
with the viewing direction dependency drastically increase the problem space ex-
ploding the training data requirements. To address this issue, the NF problem is
re-arranged appropriately into a far-field one allowing the use of the observation
maps. Finally, to maximise performance, only the appropriate subset of maps is
sampled at train time.
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3 Method

In this section we describe our method for tackling the near field Photometric Stereo
problem. In particular, we provide both the details of the assumed image formation
model and how normals can be predicted for near-field images by using CNN’s
trained on far-field reflectance samples (also see Figure 2) .

Near field Modeling. Similar to [20], we assume calibrated point light sources
at positions P, (w.r.t the camera center at 0) resulting in variable lighting vectors
L, =P, —X. Here X = [x,y,z]T is the 3D surface point coordinates. We also model the
light attenuation considering the following non-linear radial model of dissipation

am(X) = P

[ .S, \Hm
(L (X)-8,)0e 0

[ (X))

where L, = H]Ij—”:H is the lighting direction, ¢, is the intrinsic brightness of the light

source, S,, is the principal direction (i.e. the orientation of the LED point light source)
and 1, is an angular dissipation factor. Defining V = —ﬁ as the viewing vector,

the general image irradiance equation becomes:
im = amB(N, I:my Va P) 2)

Here N is the surface normal. B is assumed to be a general BRDF and p is the
surface albedo (allowing for the most general case, images and p are RGB and the
reflectance is different per channel). In addition, we allow for the possibility of global
illumination effects (shadows, self reflections) which are incorporated into B. This
can be re-arranged into a BRDF inversion problem as:

o .
Jm = = = B(NaLmavyp)- (3)

m

We note that V is known but L,, and a,, are unknowns due to the nonlinear depen-
dence on z. Our objective is to recover the surface normals N and depth z

Normal Prediction. The first step of our method includes training a CNN for
per-pixel normal prediction using BRDF samples. This is done through the the
observational map parameterisation introduced by [8] in order to tackle the far-field
photometric stereo problem. Note that this is equivalent to BRDF inversion under the
special case of V= [0,0,1]. As described in [8] an observational map records relative
pixel intensities (BRDF samples) on a 2D grid (e.g. 32 x 32) of discretised light
directions. Such a representation is highly convenient for use with classical CNN
architectures as it provides a 2D input and is of fixed shape despite a potentially
varying number of lights. While [8] proposes to train CNNs on rendered images
of objects, it is shown in [18] that simpler per-pixel renderers can be used instead,
making the training procedure much faster and simpler. We use the latter approach
in this work. In addition, the known viewing direction can be incorporated by
augmenting the map with another two channels, set to V, and V, respectively.
Adapting to the near-field setup. In order to solve the near-field PS problem for a
specific capture setup, we adapt the training procedure to only sample observation
maps which are plausible at test time. We note that our capture hardware has a fixed
number of 15 lights rigidly attached to a circuit board around the camera looking at
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Object - Halloween Iteration 1 Iteration 2
Normals from CNN Shape Normals from Shape: Normals from CNN Shape Normals from Shape
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Figure 3: Iterative refinement of the geometry for the Halloween synthetic object.
On the left, a sample image and GT shape are shown. The other 2 sections show
2 steps of the iterative refinement with the respective normals (both raw network
predictions and differentiated ones), normal error maps and depth error maps. As
the difference is minimal between steps 1 and 2, the process is converged.

objects at a limited depth range of around 10-20 cm?. Therefore, instead of sampling
a random set of light directions as in [18], we sample 3D points inside the camera
frustrum. Surface normal and material parameters are sampled independently from
the point position so as to be able to deal with general surfaces. After the point
parameters are sampled, the 15 images are rendered using the renderer of [18] with
the addition of near-field light attenuation (Eq. 1). Additional global illumination
augmentations for shadows, reflections and ambient light are also applied as in [18].
In order to get robustness to imprecise depth initialisation at test time, the training
procedure involves perturbing the ground truth depth value z by 8z ~ N (0,4mm)3
so that the light directions L. (determining the sparsity pattern of the map) and
attenuation (determining the values-Eq. 3) are slightly perturbed. See Step 1 in
Figure 2 for an illustration.

Iterative refinement of depth and normals. Assuming an estimate of normals, the
depth can be estimated with numerical integration. This is performed using the ¢;
method of [24]. The variational optimisation includes a Tikhonov regulariser z = zg
(weight A = 107%) and is solved in a ADMM scheme*. As the BRDF samples j (see
Equation 3) depend on the unknown depth, they cannot be directly computed to be
input to the network. To overcome this issue, we employ an iterative scheme were
the previous estimate of the geometry is used. The procedure involves comput-
ing the near to far conversion as described, obtaining a new normal map estimate
through the CNN and finally numerical integration. See Figure 3 for an example of
intermediate results of our iterative procedure.As it is the case in competing clas-
sical methods [16, 25], this iterative procedure is initialised with a flat plane at the
approximate mean distance.

2When objects are too close to the camera, their images are out of focus; while when being too far, surface
details cannot be resolved.

3The Gaussian distribution encourages the network to be more accurate when 9z is small and thus get an
improvement in the iterative setting.

¢Code ported from https://github.com/yqueau/normal_integration.
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Method Armadillo  Halloween Queen | AVG Norm | AVG Depth

_ GT normals - NfS 5.62 35 475 | 4.62 2.04
8- ) Naive - CNN-PS [8] - NFCNN 17.25 17.37 2062 | 1841 -

22 \iA, Naive - CNN-PS [8] - NfS 18.15 16.39 21.16 | 1857 429
.. § ‘r"\’\j’ LW e Nl o Adapted - CNN-PS [8] - NFCNN 112 19.06 1061 | 13.62 -

g Adapted - CNN-PS [8] - NfS 12.37 17.85 11.74 | 13.99 3.04
S0\ Mk Adapted - PX-Net [18] - NFCNN 13.11 18.66 742 | 13.06 -

B oo VAP NN Adapted - PX-Net [18] - NfS 13.87 18.03 85 | 1347 2.10
oot Proposed - GT Depth - NFCNN 9.03 11.33 631 | 8.89 -
S 0 B Proposed - Iteration 1 - NFCNN 9.05 1147 658 | 9.03 -

H VNN AN ) b 15 Proposed - Tteration 1 - NfS 10.82 11.8 8.16 | 10.26 2.65
s 5 o o & o Proposed - Iteration 2 - NFCNN 9.04 11.38 6.39 | 8.94 -

Epoch # Proposed - Iteration 2 - NfS 10.81 11.7 8.02 | 10.18 2.63

T Quéau et. al [25] 15.919 24.85 868 | 1648 2.98

Armadillo-it. 2 — Halloween-It. 2 Queen-t.1 —- Average-It.2 Logothetis et. al [16] 16.07 28.53 6.32 16.97 275

(@ V ®

Figure 4: (a) MAE evolution (during training) curves illustrate the performance of
our network (PX-NET) on predicting normals (NfCNN) at first and second iteration
. (b) Full quantitative comparison on synthetic data. For out method, we report
raw normal prediction error as NfCNN and numerically differentiated normals as
NIfS. Also report NfCNN error when the GT depth is used as initialisation and also
NIS error for integrating the GT normals. We compare against state of the art NF
methods [25], [16] and naive usage of far field method of [8].

4 Experimental Setup

In this section we provide various experimental setup details related to CNN training
and datasets used for evaluation.

CNN training. We use the exact architecture of PX-NET [18] which is heavily
inspired by CNN-PS [8]. More specifically, the network includes 7 convolutional,
4 dropout (20%) and 3 fully connected layers as well as a special log layer. See
[18] for more detail. The total number of parameters is ~ 4.5 million. The network
was implemented in Keras of Tensorow 2.0 The training batch size was set at 1600
with 10000 batches per epoch (16 million maps). We trained for 100 epochs which
took around one day on 3x NVIDIA GeForce 1080. We trained the network using
the mean squared error loss function on the normals. The Adam optimiser with
basic LR of 10~ and LR decay of 0.1% per epoch after epoch 10 was used. The
model test performance evolution over time (epochs) can be seen in Figure 4(a).
The reconstruction computation time was 2-3 minutes with the bottleneck being the
python implementation of the numerical integration.

Datasets. We evaluate our method on real data captured with a custom made
setup. This consists of a printed circuit board with 15 white bright LEDs rigidly
attached to a camera FLEA3 3.2 MegaPixel with a 8mm lens. The LEDs are evenly
spaced around the camera at a maximum distance of 6.5cm and are placed to be co-
planar with the image plane. We captured four image sequences namely a metallic-
silver Bulldog statue (Figure 1), a metallic-gold Bell, a porcelain Frog as well as a
mutli-object scene featuring a shiny wooden elephant statue in front of a porcelain
Squirrel (Figure 6). The objects are placed around 15cm away from the camera
and the initial depth estimate is approximately measured with a ruler. As there is
no ground truth available for these objects, the evaluation on this dataset is only
qualitative. Quantitative evaluation is performed using a synthetic dataset rendered
with Blender. This artificial light source configuration closely mimics our real capture
setup. The Cycles render engine with the Disney BRDF is used to generate realistic
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Object - Halloween Shape - Quéau et. al Normal Error - Shape - Logothetis et. al Normal Error— Shape - Naive CNN-PS  Normal Error - Naive CNN-PS  Shape - Proposed  Normal Error — Proposed
Quég®. al ? Logothgais et. al

Y}

o
Object - Armadillo

‘K )S‘; Y

Object - Queen

Figure 5: Visualisation of the results of Figure 4(b). Optimisation based methods
of Logothetis et. al [16] and Quéau et. al [25] fail on the reflectance of the metallic
Halloween and so they exhibit very high MAE. In contrast, the dielectric specular
Queen is more consistent with their assumed reflectance model and thus exhibit
smaller MAE. The naive far-field method CNN-PS [8] also has significant global
deformation as it does not model the light attenuation effect. The proposed approach
is able to cope with all, highly different, materials and achieves the state-of-the-art
performance.

global illumination effects such as cast shadows and self reflections. We present three
objects here namely Queen, which is has a dielectric specular material, Halloween
is purely metallic and Armadillo which has an intermediate material. The materials
are chosen to match the far-field dataset of [18].

Evaluation Protocol. We compare our method against the far-field CNN approaches
of [8] and [18], and the near field methods of [16]° and [25]° (disabling the light
source calibration parameter). For the synthetic experiments, the evaluation metric
is the mean angular error (MAE) of the normal map (degrees) as well as the average
depth error (mm). We note that the depth error is less meaningful as all these
methods assume a continuous surfaces and thus a systematic error is introduced in
the occlusion boundaries.

5 Experiments

In this section we present various experiments on the synthetic and real datasets
introduced in the previews section. These include an ablation study of the numerical
integration method, a naive usage of far-field state-of-the-art networks as well as
qualitative and quantitative comparison with NF competitors.

5Code from https://github.com/fotlogo/semi_calib_ps_cvpr2017
6Code from https://github.com/yqueau/near_ps


Citation
Citation
{Logothetis, Mecca, and Cipolla} 2017

Citation
Citation
{Qu{é}au, Durix, Wu, Cremers, Lauze, and Durou} 2018

Citation
Citation
{Ikehata} 2018

Citation
Citation
{Logothetis, Budvytis, Mecca, and Cipolla} 2020

Citation
Citation
{Ikehata} 2018

Citation
Citation
{Logothetis, Budvytis, Mecca, and Cipolla} 2020

Citation
Citation
{Logothetis, Mecca, and Cipolla} 2017

Citation
Citation
{Qu{é}au, Durix, Wu, Cremers, Lauze, and Durou} 2018

https://github.com/fotlogo/semi_calib_ps_cvpr2017
https://github.com/yqueau/near_ps

LOGOTHETIS ET AL.: A CNN BASED APPROACH FOR THE NF-PS PROBLEM 9

Object - Bell Shape - Quéauet.al  Normals from Shape Shape — Logothetis et. Normals from Shape — Shape - Proposed  Normals from Shape —

- Quéau et. al al Logothetis et. al Proposed
- b g £ = S . A
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Object - Frog

Object - Squirrel-Elephant

f ;

Figure 6: Qualitative comparison of the proposed method to Quéau et. al [25] and
Logothetis et. al [16]. The first column shows the average Photometric Stereo image.
In contrast to competition, the proposed approach has no visible deformation on the
metallic object or the specular highlight in the middle of the elephant. In addition,
there is a smooth recovery of belly of the Frog despite the shadows, as well as the
bottom of Squirrel despite self reflection.

Shape integration. The first experiment we conducted aimed at calibrating the
quality of the numerical integration of the normal map. As no realistic depth map
is C2 continuous, GT normals are not compatible with the GT depth. Indeed, inte-
grating the GT normals and then re-calculating them with numerical differentiation
introduces 4.62° (Figure 4(b) top) MAE on average which is by no means negligible.
Therefore, for the rest of the experiments we present two figures namely MAE on
the raw network predictions (NfCNN) and MAE after differentiation of the surface
(NfS). Since the network is trained to regress normals, the first figure tends to be
slightly lower.

Naive usage of far-field networks. The next experiment consists of naively using the
far-field methods [8] [18] with near field images without any attenuation compensa-
tion and by using the average light direction for each LED. The predicted normals are
also integrated using our method in order to have a qualitative shape comparison
(Figure 5). As expected, the networks are able to cope with the complicated re-
flectance and global illumination effects (no bumps at specular highlights); however,
not accounting for the variable lighting direction and attenuation results to severe
distortion, which is also depicted in larger MAE. To add to this point, using these
network as part of our iterative process drastically improves the result and in fact
they outperform the classical optimisation methods of [16] and [25]. See Table 4(b).

Near field competitors. Then, we present comparison against the state of the art of
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NF methods and [16] [25]. They both consist of complex variational optimisations
which are assuming simplified reflectance models (mostly diffuse for [25] using a
robust Cauchy estimator) and Blinn-Phong specular for [16] using an ¢ loss function.
As expected, they are both severely outperformed on the Halloween and Armadillo
objects and compare favorably on the dielectric specular Queen. In fact, [16] achieve
the minimum MAE for the Queen which is not surprising as this material is mostly
consistent with the assumed Blinn-Phong model.

Real Data evaluation. Finally, we present qualitative comparison with [16] and
[25] on our challenging real data in Figure 1 and 6. As expected, we outperform
the competition and our reconstructions do not exhibit any visible deformation in
specular highlights (middle of bell and elephant) or cast shadow regions (belly of frog
and bottom of squirrel). The superiority comes from the fact that the network was
trained using realistic BRDF samples (Disney and MERL) and a data augmentation
strategy was also used to account for shadows and self reflections.

6 Conclusion

In this work we presented the first CNN approach tackling the near-field Photometric
Stereo problem. We leveraged the capability of CNNs to learn to predict surface
normals from reflectance samples for a wide variety of materials. In order to deal
with global effect such as shadows and interreflection, we used an augmentation
strategy which allowed our method to handle these physical effects. Finally, to
address near-field effects such as radial light propagation of point light sources, light
attenuation and viewing dependency of the light reflection, we iteratively integrate
the normal map so to let the problem depend on the depth. The main limitation
of the proposed approach is the lack of any explicit surface optimisation hence the
accuracy is limited by the network predictions. An interesting future work would
be to avoid the integration step and let the network directly predict surface depth.
Additionally, a future direction of research would be to relax the assumption of
training on specific light positions and employ weaker light calibration setting.
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