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Abstract

Three-dimensional reconstruction of objects from shading information is a challeng-
ing task in computer vision. As most of the approaches facing the Photometric Stereo
problem use simplified far-field assumptions, real-world scenarios have essentially more
complex physical effects that need to be handled for accurately reconstructing the 3D
shape. An increasing number of methods have been proposed to address the problem
when point light sources are assumed to be nearby the target object.

To understand the capability of the approaches dealing with this near-field scenario,
the literature till now has used synthetically rendered photometric images or minimal
and very customised real-world data. In order to fill the gap in evaluating near-field
photometric stereo methods, we introduce LUCES the first real-world ’dataset for near-
fieLd point light soUrCe photomEtric Stereo’ of 14 objects of different materials. 52
LEDs have been used to lit each object positioned 10 to 30 centimeters away from the
camera. Together with the raw images, in order to evaluate the 3D reconstructions, the
dataset includes both normal and depth maps for comparing different features of the
retrieved 3D geometry. Furthermore, we evaluate the performance of the latest near-
field Photometric Stereo algorithms on the proposed dataset to assess the state-of-the-art
method with respect to actual close range effects and object materials.

1 Introduction
Since the introduction of the Photometric Stereo problem (PS) by Woodham in the early ’80s
[40], a wide variety of approaches tackled the very same problem of reconstructing 3D ge-
ometry of an object under varying illumination from the same view point. Despite the very
simplified assumption in [40] to make the PS problem solvable as an (over-determined) lin-
ear system, similar simplifications are often still considered nowadays to make the problem
applicable to real-world scenarios. Nonetheless, diffuse material assumption was relaxed in
[15, 36, 39], camera perspective viewing was modelled in [23, 38], and robust optimisation
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Figure 1: From left to right:(1) the stage of our Photometric Stereo setup (2) a top view of a
sample object (Squirrel), (3) acquisition with the GOM scanner (4) the 3D scanned mesh.

methods were employed by [10, 14] to increase robustness to outliers. Light calibration
assumption was also relaxed by [27, 29].

One of the most challenging aims of more recent PS methods is realistic illumination
modelling, as uniform directional lighting is hard to achieve in practice. For this purpose,
several methods have proposed using point light sources instead of directional ones [8, 16,
18, 20, 24, 26, 32]. As LED illumination based technology has spread widely, point light
source has become by far the more adopted alternative to directional lighting. However,
point light sources require non-linear modeling of light propagation and attenuation, but they
are a more realistic assumption than directional lights for near-field photometric imaging
acquisitions. Note that proximity of the camera and lights to the object are very favorable in
order to capture detailed geometry and minimise the ambient light interference. For example,
near-field photometric stereo has been used in practice with handheld acquisition devices
[12] and in endoscope-like inspections [9]. Whereas, the far-field assumptions do not allow
to combine PS with multi-view for volumetric reconstruction [19].

However, despite the increased contribution from the computer vision community to
tackle the near-field PS problem, the evaluation of such methods has relied on synthetic [20]
or very minimal real-world datasets [32, 35]. The lack of shared data has prevented detailed
and fair comparisons across the different methods. The aim of this work is to provide a
comprehensive near-field PS benchmark with a variety of objects having different materials
in order to evaluate several algorithms and understand their strengths and weaknesses. For
this purpose, ground truth normal map and depth are provided for each object.

Our contribution is as follows:

• introducing the first near-field PS dataset of 14 real objects having a wide variety of
materials;

• evaluating most relevant algorithms for the near-field PS problem and establish the
actual state-of-the-art method.

The dataset (including all images, light and camera calibration parameters and ground
truth meshes) and the evaluation of the methods are available for download at:
http://www.robertomecca.com/psdataset.html.

2 Related Work
A number of approaches for the PS problem has been proposed since it was first introduced
[40]. We refer to some fairly recent surveys [3, 11] to cover the initial evolution of the PS
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Figure 2: Top view of the objects captured for this dataset. Below every object the acquisition
distance between the object and the camera, and the material of the object are reported.

methodologies. Here we discuss more contemporary algorithms as this work focuses on
evaluating their performances on the proposed dataset.

2.1 PS datasets

Across the years, a number of custom real-world PS datasets have been created to suit the
purposes of the proposed approaches. Alldrin et al. [4] proposed a dataset consisting of 3
objects lit by roughly a hundred distant light directions. The light calibration in terms of
positioning and intensity has been performed by using respectively a mirror sphere and a
diffuse sphere. Xiong et al. [41] have proposed a dataset of 7 objects using 20 directional
lights calibrated with two chrome spheres. As the approach was mostly modeling PS images
with Lamberitan irradiance equations, the material of the objects was quite diffuse. A limited
number of PS data has been released by Quéau et al. to prove the working principle of an
edge preserving method [28] and a multi-spectral PS approach [30].

Although initially designed for evaluating multi-view approaches, the datasets released
by Aanæs et al. [1, 2] are useful for evaluating PS approaches as they also contain images
under varying illumination.

As most of the methods aimed at tackling the PS problem deal with the far-field setting,
recently Shi et al. [36] introduced the first dataset in this category, namely DiLiGenT aimed
at evaluating reconstruction methods over a wide variety of materials for 10 different objects.
This work also contains a well discussed taxonomy for non-Lambertian and uncalibrated PS
approaches. Their setup consists of 96 LEDs placed several meters away from the objects
to approximate directional illumination and the camera (with a 50mm lens) was placed at
1.5m from the object. Such distance between the object and the camera/lights system does
not provide to this dataset the near-field light variation studied in many recent approaches.

Near-field datasets: There are very limited, proper near-field labeled data including a sin-
gle object from [32] and 3 simple objects from [35].
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2.2 Near-field PS
The near-field setting is intrinsically more complicated to model than the far-field one as it
requires handling not only different type of BRDFs [5, 25] but also anisotropic light propa-
gation [26], inconsistent light intensity among the set of LEDs [18, 31] and finally the un-
calibrated case [27]. Given this wide variety of difficulties, most of the proposed near-field
PS methods have presented custom PS data.

With the aim to tackle all these issues simultaneously for the near-field PS, latest ap-
proaches have been exploiting deep learning capability training their networks with syn-
thetically rendered data and data driven rendered data [22]. In particular, Logothetis et al.
[20] used a per-pixel training strategy that allows to render unlimited data without carrying
any training dataset. The sim-to-real gap is then filled by augmenting the data with phys-
ical effects such as noise, ambient light, interreflections, etc. Finally, the far to near field
compensation is performed by integrating the normal field to compute the depth. By doing
so iterativelly, the method converges to an estimate of the 3D geometry. Santo et al. [35]
have recently introduced a near-field PS method where the near-field compensation is com-
puted after computing the far-field normals map from PSFCN [6]. The surface optimisation
is performed through a differentiable renderer which fuses the normal predictions and the
lighting model to re-project to the original images. This step limits the evaluation of the
method to small images due to very high requirements of GPU RAM (around 20GB for
0.5Mpx images). Furthermore, despite the near-field setting, the camera viewing is assumed
orthographic.

3 Data Capture
This section gives an overview of the data capture and calibration procedure.

3.1 Photometric Stereo Data Capture
The Photometric Stereo setup. Our setup (see Figure 1, left) consists of the following
main components:

• RGB camera FLIR BFS-U3-32S4C-C with 8mm lens

• 52 LED Golden Dragon OSRAM

• variable voltage for adjustable LED power

• Arduino Mega 2560

A custom printed circuit board (PCB) has been designed to host 52 bright LED controlled
with by an Arduino Mega. The configuration of the LEDs was planar around the camera.
A set of 52 images was captured per object. The camera parameters (aperture and shutter
speed) and LED voltage were adjusted to achieve the best object exposure, which is very
critical for specular objects. In particular, ISO sensitivity was set to zero and the exposure
time has been changed depending on the shininess of the object (between 9 and 500 ms). We
also changed the power of the LEDs for particularly specular objects to avoid over saturated
images. We used the maximum color-depth possible for the camera which was 12-bit. All
camera prepossessing was turned off during the acquisition, including white-balance and
analog gain.
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Figure 3: Demonstration of the processing steps performed per object. Firstly, compen-
sation for radial distortion and demosaicing is performed on raw images to get RBG ones
(left). Laser-scanned ground truth meshes are aligned with RGB images and ground truth
normal maps are rendered (middle). Segmentation masks are generated (removing the pixels
corresponding to markers)(right).

Several optomechanical tools have been used for holding the camera and the PCB jointly.
A manual XYZ translation stage with differential adjusters has been used to positioning the
camera accurately through the printed circuit board.

In order to limit interreflections and ambient light, the walls surrounding the setup have
been covered with black, polyurethane-coated nylon fabric.

Camera Intrinsics. This is performed using 100 checkerboard images and the OpenCV
calibration toolbox. Fourth degree radial distortion is estimated and this is used to rectify all
the images. The calibration re-projection error was 0.42px. The RAW data (before demo-
saicing and rectification) will also be made available.

Near Lighting Model. The lighting model is the anisotropic point light sources [24] which
is used for all SOTA methods ([18, 20, 32, 35] evaluated in Section 4). This model assumes
that a light source m, has a position Pm ∈ R3, principal direction Dm ∈ R3, RGB brightness
Φm ∈ R3 and angular dissipation factor µm ∈ R. Therefore, a point X ∈ R3 has a lighting
vector Lm(X) = Pm −X and assuming L̂m = Lm

||Lm|| as the normalised light direction, we
consider the following light attenuation:

am(X) =
(L̂m(X) · D̂m)

µm

||Lm(X)||2
. (1)

Light Calibration. The aim here is not only to estimate the point light position Pm [34],
but also the other LED parameters Dm, Φm and µm. Instead of employing methods that aim
at estimating these parameters while reconstructing the geometry [18, 31, 32], we developed
a custom method that accurately estimates Pm, Dm, Φm and µm from PS images of a purely
diffuse reflectance plane. To do so, we used a plane with 99% nominal reflectance in UV-
VIS-NIR wavelength range (350 - 1600nm). To have an initial estimate of Φm, we measured
the LED brightness with a LuxMeter.

For every object, the calibration plane was captured twice, at different distances, in or-
der to get data redundancy and produce a more accurate calibration. Thus, the Lambertian
calibration object with albedo ρ and surface normal N, should satisfy the resulting image
irradiance equation:

Im = ΦmamρL̂m · N̂. (2)

The irradiance Equation 2 was implemented into a differentiable renderer (using Keras of
Tensorflow v2.0) with the LED parameters being the model weights thus allowing refinement
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from a reasonable initial estimate. The parameters were initialised as follows: Φm from the
LuxMeter, Dm = [0,0,1], µm = 0.5, Pm from the schematic of the printed circuit board of
the LEDs and ρ = 1. We used L1 loss function for 30 epochs and converged to around 0.005
error i.e 0.5% of the maximum image intensity. The complete calibration parameters are
included in the dataset.

3.2 3D Ground Truth Capture
3D capturing device. 3D ground-truth has been acquired with the optical 3D scanner
GOM ATOS Core 80/135 with a reported accuracy of 0.03mm (see Figure 1). The GOM
scanner uses a stereo camera set-up and more than a dozen scans were performed and fused
per object. In order to keep the geometry of the object consistent with the PS data, no spray
coating has been used to ease the acquisition. Indeed, coating material can fill up those
regions of the objects that are prone to interreflection and that are noticeably harder to re-
construct. Instead, markers were used for some objects.

Alignment. The laser scans of the objects were aligned and merged using MeshLab [7].
Some manual removal of noisy regions was performed and finally screened Poisson recon-
struction [17] was used in order to obtain full continuous surfaces (which are both useful
for rendering normal maps and for mutual information alignment). As expected, not all
parts of the surfaces of all objects have the same amount of noise, especially the metal-
lic objects (Bell, Cup). Meshes were aligned with the photometric stereo images follow-
ing the same procedure as in [37]. This involved manual initialisation and then refinement
using the mutual information registration filter of MeshLab. This was performed repeat-
edly until the projection of the mesh on the images was visually ‘pixel perfect’ (using the
semi-transparent overlay). Using the aligned meshes, ground truth normal maps were ren-
dered (using Blender). In addition, manual segmentation was performed to remove regions
where the GT was unreliable (markers on the objects, holes etc), those masks are provided
in the dataset. Furthermore, the dataset contains meshes that have been interpolated in the
marker/hole regions. The steps per object are summarised in Figure 3.

3.3 Dataset Overview
For each of the 14 object, 52 PS images have been acquired using the BayerRG16 RAW
format. The total amount of PS images amounts then to 728. For all objects, rectified RGB
PS images will be released (by compensating for the radial distortion). We note that color
balancing was not performed on the images as this will distort the saturated pixels (which
is an important feature for CNN-based PS methods [13, 21]). Instead, RGB light source
brightness are provided along with the rest of point light source parameters. Both normal
map and depth ground truth will be provided in order to evaluate the accuracy of near-field
PS methods with either cases.

4 Experiments
In this section, we evaluate four competing near-field methods namely [18, 20, 32, 35]. In
addition, we also evaluate with [13], the best performing far-field method (on the far-field
benchmark [36]) to demonstrate the need for a near-field method.
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Method Error Bell Ball Buddha Bunny Die Hippo House Cup Owl Jar Queen Squirrel Bowl Tool Average

L17-[18]
MAE 28.25 9.77 11.5 20.15 11.95 15.42 29.69 30.76 13.77 10.56 13.05 15.93 12.5 15.1 17.03
MZE 4.45 0.81 4.67 7.51 4.58 3.19 6.99 2.67 3.64 6.56 1.89 1.82 4.37 3.25 4.02

Q18-[32]
MAE 25.8 12.12 14.07 13.73 13.77 18.51 30.63 37.63 14.74 15.66 13.16 14.06 11.19 16.12 17.94
MZE 12.03 2.5 9.28 7.06 5.91 6.8 8.02 4.83 5.83 16.87 6.92 2.55 6.48 6.69 7.27

S20-[35]
MAE 9.5 25.42 19.17 12.5 5.23 23.12 28.02 14.22 13.08 9.27 16.62 14.07 12.44 17.42 15.72
MZE 1.9 5.5 5.53 6.02 2.76 7.04 6.15 1.62 3.75 6.09 3.91 2.81 5.22 4.68 4.5

L20-[20]
MAE 14.74 12.43 10.73 8.15 6.55 7.75 30.03 23.35 12.39 8.6 10.96 15.12 8.78 17.05 13.33
MZE 1.53 0.67 3.27 2.49 4.44 1.82 9.14 2.04 3.44 3.86 1.94 1.01 2.80 5.90 3.17

I18-[13]
MAE 23.55 44.29 35.29 36 41.52 44.9 49.05 35.78 40.27 40.66 32.89 41.09 28.04 31.71 37.5
MZE 5.93 6.59 10.92 6.88 7.83 7.59 8.98 3.17 8.67 15.54 8.08 5.8 6.69 12.45 8.22

GT Diff-MAE 2.5 2.69 2.69 2.93 2.49 3.2 9.19 2.85 4.3 1.79 4.22 3.26 2.27 2.34 3.34
Int[28]-MZE 0.08 0.22 3.28 2.30 0.56 1.28 7.43 0.02 3.51 0.12 3.25 1.12 0.12 0.13 1.67

Table 1: Complete evaluation of five methods on all objects. Mean angular error MAE
(degrees) and mean depth error MZE (mm) are reported. The last two lines contain the error
obtained after differentiation and integration of GT depth and normals respectively.

Evaluation hyper-parameters. [18, 32] and [35] have publicly available code whereas for
[20] the code has been provided. Indeed, [20] has the disadvantage that the light configu-
rations has to be known at train time therefore specific light positions had to be assigned to
the networks to be trained for the dataset. [18] performs best with a priori initialisation of
the specularity parameter c (0 is fully specular, 1 fully Lambertian) we used 0.1 for the Cup,
0.2 for the Bell, 0.25 for the Bawl and Tool, 0.5 for the Ball, Die, Hippo, Jar and Squirrel,
0.75 for the Bunny and 1 for the rest. For [32], we used the Cauchy estimator with 0.5
on the respective hyper-parameter. For both [18] and [32] we disabled the lighting calibra-
tion parameter. For all methods, we evaluated on full resolution images (2048x1536) except
for [35], which is severely limited by GPU RAM so we had to subsample to (512x384)
which was the maximum we could fit on 24GB Nvidia Titan RTX. All other approaches are
CPU RAM limited but ‘only’ require around 120GB. The computation time was varied from
around 15 minutes (the fastest was [18] on the Bowl) to around two hours (the slowest was
[20] on the Jar). For all of the methods, the initialisation was a flat plane at the mean depth
computed exactly using the GT depth map.

Finally, we also evaluated the far-field method [13]. The assumed lighting direction was
set the average one for each light and numerical integration was used on the output normal
map to be able to compare surfaces. It is worth to mention that our 52 lights is within the
range of lights the model in [13] is trained for.

Evaluation metrics. As it is the standard in PS literature, we first evaluate the compet-
ing approaches using the angular error on normal maps. We note that [18] and [32] output
surfaces as dense depth maps, therefore the normals have been estimated using first order
(forward and downward) finite differences. The other 3 methods output both surfaces and
normals. It is very important to mention, that normal evaluation has two major limitations.
Firstly, for real data, there can be regions where the ground truth normal uncertainty is non-
negligible. This is inevitable due to capturing surfaces with a laser scanner that only pro-
vides very dense point clouds. Even micro-meter accuracy on the surface can generate a few
degress uncertainty of normals in regions of complicated geometry. The second important
issue with evaluating on normals is that even on synthetic data, ground truth normals are not
fully consistent with the ground truth depth [33, 42]. This is inevitable due to the fact that for
any non-trivial object, the projection operation generates a depth map that is discontinuous
and non-differentiable for a significant portion of the pixels. In fact, to quantify this discon-
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L17-[19] Q18-[27] S20-[32] L20-[17]
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Figure 4: Normal error map comparison for all objects and all near-field methods.

tinuity measure, we compared the ground truth normals with the normals that are obtained
with differentiation of the ground truth depth and indeed observed a 3.3o error on average
over the whole dataset (varying from 1.8o on the Jar to 9.2o on the House, as shown on the
penultimate row of Table 1). Conversely, numerical integration (using [28]) of GT normals
has an average error of 1.67mm with repsect to the ground truth.
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Figure 5: Output surface comparison for 6 objects and all methods. This is shown qualita-
tively through the 3D meshes and well as depth Z error maps (errors in mm).

5 Results

In this section, we analyse the performance of [13, 18, 20, 32, 35] which is shown quantita-
tively at Table 1 and qualitatively at Figures 4 and 5.

We first of all observe that the far-field method [13] fails to produce accurate results as
expected. The two classical optimisation methods [18, 32] are outperformed by the deep
learning approaches [35] and [20] on the normal error metric for most scenarios although
[18] is not significantly worse for a few objects and indeed achieves the minimum depth
error on the Queen and Tool objects. Despite the fact that [20] is the best overall performer,
we emphasise that it requires knowledge of the setup at train time. [35] achieves the best
performance on object with specular and metallic materials (Die & Cup both normals &
depth, Bell normals only), because of the use of a patch-based network that extract the most
information of the metallic object. It also achieves best MAE on the Bell. The orthographic
camera assumption of [35] in terms of error translates to a growing inaccuracy towards the
external part of the reconstruction (see Bell, Cup and Jar in Figure 4).

We also notice that the normal predictions are more noisy as opposed to depth prediction.
This could be due to actual noisy estimates of the normals from ground truth meshes which
is inevitable for any laser scanner (see in particular the Ball in Figure 4). As the ground
truth depth is more reliable, it is a better evaluation metric compared to the ‘ground truth’
normals. See Figure 5 for depth evaluation.

By looking at Figure 4 it can be seen that even the best methods perform poorly for
recovering the geometry of very oblique regions. This is observable for the Jar, Owl and
Cup in Figure 4. Therefore these represent quite hard regions to retrieve.

An interesting observation is that for both CNN-based methods [20, 35], the material’s
specularity does not seem be a significant factor of performance. Indeed, convex regions
(where self reflections are negligible) are consistently recovered correctly regardless of the
material: diffuse head of Queen, bronze Bell, plastic Hippo, wooden Bowl; with the only
exception being the aluminium Cup. This is a clear advantage of CNN methods against the
classical ones that require diffuse or mostly diffuse materials.

We observe that the hardest regions are the ones containing high frequency details (sharp
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boundaries) such as House, bottom part of the Squirrel, details of the Queen etc.

6 Conclusion
In this work we proposed the first dataset for the near-field PS problem. Differently from
the far-field assumption, when the target object is close to the camera/light setup several
non-linear physical effects as anisotropic light propagation, light attenuation and perspective
viewing geometry occur. Current PS datasets, mostly consider scenarios where such effects
are negligible as they provide directional light coordinates and use quite long-focus lenses
giving orthographic viewing geometry.

Recent research trends on 3D reconstruction using PS have shown an increasing interest
to deal under near-field settings. However, the lack of a dataset for this topic has prevented
to fairly compare different approaches. For this reason, we benchmark the recent near-
field PS approaches and analyse their performance over our dataset which include objects
with a wide variety of materials. We also provide a discussion about appropriate ways of
evaluation (depth vs normals). In addition, as we noticed that most of the error is expectedly
concentrated on the edges and discontinuity regions we conclude that future research has
to improve the interpretation of the PS imaging data in these specific areas and possibly
exploiting networks with edge detection capability to better deal with interreflctions.

Finally, it is worth investigating the possibility of using completely raw image data with-
out demosicing or radial distortion compensation. This requires incorporating the radial dis-
tortion into the image irradiance equation and treating the images as pure intensity and ignor-
ing the potential of recovering colours. The advantage of skipping these two pre-processing
steps is the potential of eliminating some image artefacts, especially around image edges,
which currently achieve the least accuracy.
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