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FIERY: Future Instance Prediction in Bird’s-Eye View
from Surround Monocular Cameras
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Abstract

Driving requires interacting with road agents and pre-
dicting their future behaviour in order to navigate safely.
We present FIERY: a probabilistic future prediction model
in bird’s-eye view from monocular cameras. Our model pre-
dicts future instance segmentation and motion of dynamic
agents that can be transformed into non-parametric future
trajectories. Our approach combines the perception, sen-
sor fusion and prediction components of a traditional au-
tonomous driving stack by estimating bird’s-eye-view pre-
diction directly from surround RGB monocular camera in-
puts. FIERY learns to model the inherent stochastic nature
of the future directly from camera driving data in an end-to-
end manner;, without relying on HD maps, and predicts mul-
timodal future trajectories. We show that our model outper-
forms previous prediction baselines on the NuScenes and
Lyft datasets."

1. Introduction

Prediction of future states is a key challenge in many
autonomous decision making systems. This is particularly
true for motion planning in highly dynamic environments:
for example in autonomous driving where the motion of
other road users and pedestrians has a substantial influence
on the success of motion planning [10]. Estimating the mo-
tion and future poses of these road users enables motion
planning algorithms to better resolve multimodal outcomes
where the optimal action may be ambiguous knowing only
the current state of the world.

Autonomous driving is inherently a geometric problem,
where the goal is to navigate a vehicle safely and correctly
through 3D space. As such, an orthographic bird’s-eye view
(BEV) perspective is commonly used for motion planning
and prediction based on LiDAR sensing [38, 49]. Recent
advances in camera-based perception have rivalled LIDAR-
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based perception [48], and we anticipate that this will also
be possible for wider monocular vision tasks, including pre-
diction. Building a perception and prediction system based
on cameras would enable a leaner, cheaper and higher reso-
Iution visual recognition system over LiDAR sensing.

Most of the work in camera-based prediction to date has
either been performed directly in the perspective view coor-
dinate frame [1, 23], or using simplified BEV raster rep-
resentations of the scene [28, 12, 10] generated by HD-
mapping systems such as [29, 16]. We wish to build predic-
tive models that operate in an orthographic bird’s-eye view
frame (due to the benefits for planning and control [34]),
though without relying on auxiliary systems to generate a
BEV raster representation of the scene.

A key theme in robust perception systems for au-
tonomous vehicles has been the concept of early sensor
fusion, generating 3D object detections directly from im-
age and LiDAR data rather than seeking to merge the pre-
dicted outputs of independent object detectors on each sen-
sor input. Learning a task jointly from multiple sources
of sensory data as in [50], rather than a staged pipeline,
has been demonstrated to offer improvement to perception
performance in tasks such as object detection. We seek
similar benefits in joining perception and sensor fusion to
prediction by estimating bird’s-eye-view prediction directly
from surround RGB monocular camera inputs, rather than a
multi-stage discrete pipeline of tasks.

Further, traditional autonomous driving stacks [13]
tackle future prediction by extrapolating the current be-
haviour of dynamic agents, without taking into account pos-
sible interactions. They rely on HD maps and use road
connectivity to generate a set of future trajectories. FIERY
learns to predict future motion of road agents directly from
camera driving data in an end-to-end manner, without re-
lying on HD maps. It can reason about the probabilistic
nature of the future, and predicts multimodal future trajec-
tories (see blog post and Figure 1).

To summarise the main contributions of this paper:
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Figure 1: Multimodal future predictions by our bird’s-eye view network. Top two rows: RGB camera inputs. The predicted
instance segmentations are projected to the ground plane in the images. We also visualise the mean future trajectory of
dynamic agents as transparent paths. Bottom row: future instance prediction in bird’s-eye view in a 100m x 100m capture
size around the ego-vehicle, which is indicated by a black rectangle in the center.

1. We present the first future prediction model in bird’s- modal futures of the dynamic environment.
eye view from monocular camera videos. Our frame- 3. We demonstrate quantitative benchmarks for future
work explicitly reasons about multi-agent dynamics by dynamic scene segmentation, and show that our
predicting temporally consistent future instance seg- learned prediction outperforms previous prediction
mentation and motion in bird’s-eye view. baselines for autonomous driving on the NuScenes [5]
2. Our probabilistic model predicts plausible and multi- and Lyft [25] datasets.



2. Related Work

Bird’s-eye view representation from cameras. Many
prior works [51, 47] have tackled the inherently ill-posed
problem [17] of lifting 2D perspective images into a bird’s-
eye view representation. [35, 33] dealt specifically with the
problem of generating semantic BEV maps directly from
images and used a simulator to obtain the ground truth.

Recent multi-sensor datasets, such as NuScenes [5] or
Lyft [25], made it possible to directly supervise models on
real-world data by generating bird’s-eye view semantic seg-
mentation labels from 3D object detections. [39] proposed
a Bayesian occupancy network to predict road elements and
dynamic agents in BEV directly from monocular RGB im-
ages. Most similar to our approach, Lift-Splat [37] learned a
depth distribution over pixels to lift camera images to a 3D
point cloud, and project the latter into BEV using camera
geometry. Fishing Net [19] tackled the problem of predict-
ing deterministic future bird’s-eye view semantic segmen-
tation using camera, radar and LiDAR inputs.

Future prediction. Classical methods for future predic-
tion generally employ a multi-stage detect-track-predict
paradigm for trajectory prediction [8, 20, 46]. However,
these methods are prone to cascading errors and high la-
tency, and thus many have turned to an end-to-end approach
for future prediction. Most end-to-end approaches rely
heavily on LiDAR data [32, 11], showing improvements by
incorporating HD maps [7], encoding constraints [6], and
fusing radar and other sensors for robustness [43]. These
end-to-end methods are faster and have higher performance
as compared to the traditional multi-stage approaches.

The above methods attempt future prediction by produc-
ing a single deterministic trajectory [7, 19], or a single dis-
tribution to model the uncertainty of each waypoint of the
trajectory [6, 11]. However, in the case of autonomous driv-
ing, one must be able to anticipate a range of behaviors for
actors in the scene, jointly. From an observed past, there
are many valid and probable futures that could occur [21].
Other work [8, 46, 36] has been done on probabilistic multi-
hypothesis trajectory prediction, however all assume access
to top-down rasterised representations as inputs. Our ap-
proach is the first to predict diverse and plausible future ve-
hicle trajectories directly from raw camera video inputs.

3. Model Architecture
An overview of our model is given in Figure 2.

3.1. Lifting camera features to 3D

For every past timestep, we use the method of [37] to
extract image features from each camera and then lift and
fuse them into a BEV feature map. In particular, each im-
age is passed through a standard convolutional encoder

(we use EfficientNet [45] in our implementation) to obtain
a set of features to be lifted and a set of discrete depth prob-
abilities. Let O; = {I}, ..., I]'} be the set of n = 6 camera
images at time . We encode each image I} with the en-
coder: ef = E(IF) € RICHD)xHexWe with C' the number
of feature channels, D the number of discrete depth val-
ues and (H.,W,) the feature spatial size. D is equal to
the number of equally spaced depth slices between Dy,
(the minimum depth value) and Dy, (the maximum depth
value) with size Dy, = 1.0m. Let us split this feature
into two: ef = (ef,c»ef,D) with ef,c € RO*HxWe gng
efp € RP*HexWe A tensor uf € REXPHxWe s
formed by taking the outer product of the features to be
lifted with the depth probabilities:

uf =ej el (1)

The depth probabilities act as a form of self-attention,
modulating the features according to which depth plane
they are predicted to belong to. Using the known camera in-
trinsics and extrinsics (position of the cameras with respect
to the center of gravity of the vehicle), these tensors from
each camera (u;}, ..., u?) are lifted to 3D in a common ref-
erence frame (the inertial center of the ego-vehicle at time

t).
3.2. Projecting to bird’s-eye view

In our experiments, to obtain a bird’s-eye view feature,
we discretise the space in 0.50m x 0.50m columns in a
100m x 100m capture size around the ego-vehicle. The
3D features are sum pooled along the vertical dimension to
form bird’s-eye view feature maps z; € RE*H*W  with
(H,W) = (200, 200) the spatial extent of the BEV feature.

3.3. Learning a temporal representation

The past bird’s-eye view features (1, ..., x;) are trans-
formed to the present’s reference frame (time t) using
known past ego-motion (a1, ...,a;—1). ar—1 € SE(3) cor-
responds to the ego-motion from ¢ — 1 to ¢, i.e. the transla-
tion and rotation of the ego-vehicle. Using a Spatial Trans-
former [22] module S, we warp past features x; to the
present fori € {1,...,t — 1}:

ot =Sz, ai 1 ai_2-...-a;) 2)

Since we lose the past ego-motion information with this
operation, we concatenate spatially-broadcast actions to the
warped past features x!.

These features are then the input to a temporal model 7
which outputs a spatio-temporal state s;:

St = ’T(mﬁ,xé,...,xﬁ) 3)

with xt = z;. T is a 3D convolutional network with
local spatio-temporal convolutions, global 3D pooling lay-
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Figure 2: The architecture of FIERY: a future prediction model in bird’s-eye view from camera inputs.
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At each past timestep {1, ..., ¢}, we lift camera inputs (Oy, ...
over pixels and using known camera intrinsics and extrinsics.
These features are projected to bird’s-eye view (z1,...,2¢). Using past ego-motion (aq, ..., a;—1), we transform the
bird’s-eye view features into the present reference frame (time ¢) with a Spatial Transformer module S.

A 3D convolutional temporal model learns a spatio-temporal state s;.

We parametrise two probability distributions: the present and the future distribution. The present distribution is con-
ditioned on the current state s;, and the future distribution is conditioned on both the current state s; and future labels
(Y1, o Yot 1)

We sample a latent code 7, from the future distribution during training, and from the present distribution during infer-
ence. The current state s; and the latent code 7); are the inputs to the future prediction model that recursively predicts

, O) to 3D by predicting a depth probability distribution

future states ($¢41, ..., St+0)-

6. The states are decoded into future instance segmentation and future motion in bird’s-eye view (J¢, ..., G+ 1 )-

ers, and skip connections. For more details, please see Ap-
pendix B.

3.4. Present and future distributions

Following [21] we adopt a conditional variational ap-
proach to model the inherent stochasticity of future predic-
tion. We introduce two distributions: a present distribution
P which only has access to the current spatio-temporal state
s¢, and a future distribution F that additionally has access
to the observed future labels (yi41, ..., Yr+m ), with H the
future prediction horizon. The labels correspond to future
centerness, offset, segmentation, and flow (see Section 3.6).

We parametrise both distributions as diagonal Gaussians
with mean ;1 € R” and variance 02 € R”, L being the
latent dimension. During training, we use samples 7, ~
N (11t future 07 fyqure) from the future distribution to enforce

predictions consistent with the observed future, and a mode
covering Kullback-Leibler divergence loss to encourage the
present distribution to cover the observed futures:

Lirovavitisic = DL(F (|56, Y1y - Yerrr) || P(:[5¢)) (4)

During inference, we sample 7, ~ N (14t present, U?,presem)
from the present distribution where each sample encodes a
possible future.

3.5. Future prediction in bird’s-eye view

The future prediction model is a convolutional gated re-
current unit network taking as input the current state s; and
the latent code 7, sampled from the future distribution F’
during training, or the present distribution P for inference.
It recursively predicts future states (841, ..., $t4-1)-
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(b) Centerness. (c) Segmentation. (d) Offset. (e) Future flow. (f) Instance segmentation.

Figure 3: Outputs from our model. (b) shows a heatmap of instance centerness and indicates the probability of finding an
instance center (from blue to red). (c) represents the vehicles segmentation. (d) shows a vector field indicating the direction
to the instance center. (e) corresponds to future motion — notice how consistent the flow is for a given instance, since it’s a
rigid-body motion. (f) shows the final output of our model: a sequence of temporally consistent future instance segmentation
in bird’s-eye view where: (i) Instance centers are obtained by non-maximum suppression. (ii) The pixels are then grouped to
their closest instance center using the offset vector. (iii) Future flow allows for consistent instance identification by comparing
the warped centers using future flow from ¢ to ¢t 4 1, and the centers at time ¢ 4+ 1. The ego-vehicle is indicated by a black

rectangle.

3.6. Future instance segmentation and motion

The resulting features are the inputs to a bird’s-eye view
decoder D which has multiple output heads: semantic seg-
mentation, instance centerness and instance offset (similar-
ily to [9]), and future instance flow. For j € {0, ..., H}:

Ut+j = D(5¢45) &)

with §t = S¢.

For each future timestep j, the instance centerness indi-
cates the probability of finding an instance center (see Fig-
ure 3b). By running non-maximum suppression, we get a
set of instance centers. The offset is a vector pointing to the
center of the instance (Figure 3d), and can be used jointly
with the segmentation map (Figure 3c) to assign neighbour-
ing pixels to its nearest instance center and form the bird’s-
eye view instance segmentation (Figure 3f). The future flow
(Figure 3e) is a displacement vector field of the dynamic
agents. It is used to consistently track instances over time
by comparing the flow-warped instance centers at time ¢+ j
and the detected instance centers at time ¢ + 5 + 1 and run-
ning a Hungarian matching algorithm [27].

A full description of our model is given in Appendix B.

3.7. Losses

For semantic segmentation, we use a top-k cross-entropy
loss [48]. As the bird’s-eye view image is largely domi-
nated by the background, we only backpropagate the top-k
hardest pixels. In our experiments, we set k = 25%. The
centerness loss is a Lo distance, and both offset and flow
losses are L, distances. We exponentially discount future
timesteps with a parameter v = 0.95.

4. Experimental Setting
4.1. Dataset

We evaluate our approach on the NuScenes [5] and Lyft
[25] datasets. NuScenes contains 1000 scenes, each 20 sec-
onds in length, annotated at 2Hz. The Lyft dataset con-
tains 180 scenes, each 25 — 45 seconds in length, anno-
tated at 5Hz. In both datasets, the camera rig covers the full
360° field of view around the ego-vehicle, and is comprised
of 6 cameras with a small overlap in field of view. Cam-
era intrinsics and extrinsics are available for each camera in
every scene.

The labels (v, ..., y++ 1) are generated by projecting the
provided 3D bounding boxes of vehicles into the bird’s-eye
view plane to create a bird’s-eye view occupancy grid. See



Appendix B.2 for more detail. All the labels (¢, ..., Yi+1)
are in the present’s reference frame and are obtained by
transforming the labels with the ground truth future ego-
motion.

4.2. Metrics

Future Video Panoptic Quality. We want to measure the
performance of our system in both:

(1) Recognition quality: how consistently the instances
are detected over time.

(ii) Segmentation quality: how accurate the instance seg-
mentations are.

We use the Video Panoptic Quality (VQP) [26] metric
defined as:

H

> 0.qs)ETP; IoU(pt, gt)
VPQ —_ Z (Pt )16 . (6)
TP+ JFPI+ 1N

t=0
with T'P, the set of true positives at timestep t (correctly
detected ground truth instances), ' P, the set of false posi-
tives at timestep ¢ (predicted instances that do not match any
ground truth instance), and F' IV, the set of false negatives at
timestep ¢ (ground truth instances that were not detected).
A true positive corresponds to a predicted instance segmen-
tation that has: (i) an intersection-over-union (IoU) over 0.5
with the ground truth, and (ii) an instance id that is consis-
tent with the ground truth over time (correctly tracked).

Generalised Energy Distance. To measure the ability of
our model to predict multi-modal futures, we report the
Generalised Energy Distance (Dggp) [44]. Let (f’, V4 ) be
samples of predicted futures from our model, (Y, Y') be
samples of ground truth futures and d be a distance metric.
DgEp is defined as:

Daep = 2E[d(Y,Y)] = E[d(Y,Y")] — E[d(Y,Y")] (7)

We set our distance metric d to d(x,y) = 1—VPQ(x, y).
Since we only have access to a unique ground truth future
Y, the Generalised Energy Distance simplifies to:

Dgep = 2E[d(Y,Y)] — E[d(Y,Y")] (8)
4.3. Training

Our model takes 1.0s of past context and predicts 2.0s
in the future. In NuScenes, this corresponds to 3 frames of
past temporal context and 4 frames into the future at 2Hz. In
the Lyft dataset, this corresponds to 6 frames of past context
and 10 frames in the future at SHz.

For each past timestep, our model processes 6 camera
images at resolution 224 x 480. It outputs a sequence of

100m x 100m BEV predictions at 50cm pixel resolution in
both the = and y directions resulting in a bird’s-eye view
video with spatial dimension 200 x 200. We use the Adam
optimiser with a constant learning rate of 3 x 10~%. We train
our model on 4 Tesla V100 GPUs with a batch size of 12
for 20 epochs at mixed precision.

5. Results
5.1. Comparison to the literature

Since predicting future instance segmentation in bird’s-
eye view is a new task, we begin by comparing our model
to previous published methods on bird’s-eye view semantic
segmentation from monocular cameras.

Many previous works [30, 35, 39, 37, 42] have proposed
a model to output the dynamic scene bird’s-eye view seg-
mentation from multiview camera images of a single time-
frame. For comparison, we adapt our model so that the past
context is reduced to a single observation, and we set the fu-
ture horizon I = 0 (to only predict the present’s segmenta-
tion). We call this model FIERY Static and report the results
in Table 1. We observe that FIERY Static outperforms all
previous baselines.

Intersection-over-Union (IoU)

Setting 1 ~ Setting 2 Setting 3
VED [30] 8.8 - -
PON [39] 24.7 - -
VPN [35] 25.5 - -
STA [42] 36.0 - -
Lift-Splat [37] - 32.1 -
Fishing Camera [19] - - 30.0
Fishing Lidar [19] - - 443
FIERY Static 39.9 36.7 -
FIERY 41.1 38.2 58.5

Table 1: Bird’s-eye view semantic segmentation on

NuScenes in the settings of the respective published meth-
ods.

Setting 1: 100m x 50m at 25cm resolution. Prediction of
the present timeframe.

Setting 2: 100m x 100m at 50cm resolution. Prediction of
the present timeframe.

Setting 3: 32.0m x 19.2m at 10cm resolution. Prediction
2.0s in the future. In this last setting we compare our model
to two variants of Fishing Net [19]: one using camera in-
puts, and one using LiDAR inputs.

We also train a model that takes 1.0s of past observations
as context (FIERY) and note that it achieves an even higher
intersection-over-union over its single-timeframe counter-
part that has no past context. We hypothesise this is due to
our model’s ability to accumulate information over time and
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Figure 4: Qualitative comparison of bird’s-eye view prediction with published methods. The predictions of our model are
much sharper and more accurate. Contrary to previous methods, FIERY can separate closely parked cars and correctly predict
distant vehicles (i.e. > 40m, near the top of the bird’s-eye view image).

better handle partial observability and occlusions. Qual-
itatively, as shown in Figure 4, our predictions are much
sharper and more accurate.

Finally, we compare our model to Fishing Net [19],
where the authors predicts bird’s-eye view semantic seg-
mentation 2.0s in the future. Fishing Net proposes two vari-
ants of their model: one using camera as inputs, and one
using LiDAR as inputs. FIERY performs much better than
both the camera and LiDAR models, hinting that computer
vision networks are starting to become competitive with Li-
DAR sensing for the prediction task.

5.2. Future instance prediction

In order to compare the performance of our model for
future instance segmentation and motion prediction, we in-
troduce the following baselines:

Static model. The most simple approach to model dy-
namic obstacles is to assume that they will not move and
remain static. We use FIERY Static to predict the instance
segmentation of the present timestep (time ¢), and repeat
this prediction in the future. We call this baseline the Static
model as it should correctly detect all static vehicles, since
the future labels are in the present’s reference frame.

Extrapolation model. Classical prediction methods [14,
15] extrapolate the current behaviour of dynamic agents in
the future. We run FIERY Static on every past timesteps
to obtain a sequence of past instance segmentations. We
re-identify past instances by comparing the instance centers
and running a Hungarian matching algorithm. We then ob-
tain past trajectories of detected vehicles, which we extrap-



Intersection-over-Union | Video Panoptic Quality

Short Long Short Long
Static model 479 30.3 43.1 24.5
Extrapolation model 49.2 30.8 43.8 249
No temporal context 51.7 32.6 40.3 24.1
No transformation 53.0 33.8 41.7 24.6
No unrolling 554 349 44.2 26.2
No future flow 58.0 36.7 44.6 26.9
Uniform depth 57.1 36.2 46.8 27.8
Deterministic 58.2 36.6 48.3 28.5
FIERY 59.0 37.0 49.7 29.5

Table 2: Future instance segmentation in bird’s-eye view for 2.0s in the future on NuScenes. We report future Intersection-
over-Union (IoU) and Video Panoptic Quality (VPQ), evaluated at different ranges: 30m x 30m (Short) and 100m x 100m
(Long) around the ego-vehicle. Results are reported as percentages.

olate in the future and transform the present segmentation
accordingly.

We also report the results of various ablations of our pro-
posed architecture:

* No temporal context. This model only uses the fea-
tures x; from the present timestep to predict the future
(i.e. we set the 3D convolutional temporal model to the
identity function).

* No transformation. Past bird’s-eye view features
(21, ...,x¢) are not warped to the present’s reference
frame.

* No future flow. This model does not predict future
flow.

* No unrolling. Instead of recursively predicting the
next states 5;; and decoding the corresponding in-
stance information g;y; = D(8;4,), this variant di-
rectly predicts all future instance centerness, offset,
segmentation and flow from s;.

 Uniform depth. We lift the features from the encoder
(ef,...,e?) with the Orthographic Feature Transform
[40] module. This corresponds to setting the depth
probability distribution to a uniform distribution.

* Deterministic. We remove the probabilistic mod-
elling.

We report the results in Table 2 (on NuScenes) and Ta-
ble 3 (on Lyft) of the mean prediction of our probabilistic
model (i.e. we set the latent code 7; to the mean of the
present distribution: 7y = fi¢ present)-

5.3. Analysis

FIERY largely outperforms the Static and Extrapolation
baselines for the task of future prediction. Figure 5 shows
the performance boost our model gains from different parts
of the model.

No temporal

No transformation
No unrolling

No future flow
Uniform depth
Deterministic 28.5

FIERY 29.5

20 22 24 26 28 30

Figure 5: Performance comparison of various ablations of
our model. We measure future Video Panoptic Quality 2.0s
in the future on NuScenes.

Temporal model. The No temporal context variant per-
forms similarly to the static model. That is to be expected
as this model does not have any information from the past,
and cannot infer much about the motion of road agents.

Transformation to the present’s reference frame.
There is a large performance drop when we do not trans-
form past features to the present’s reference frame. This
can be explained by how much easier it is for the temporal
model to learn correspondences between dynamic vehicles
when the ego-motion is factored out.

Past prediction models either naively fed past images to a
temporal model [4, 21], or did not use a temporal model al-
together and simply concatenated past features [31, 19]. We
believe that in order to learn temporal correspondences, past
features have to be mapped to a common reference frame
and fed into a high capacity temporal model, such as our
proposed 3D convolutional architecture.



ToU|VPQ
Short Long
Static model 35.3]36.4 24.1]20.7
Extrapolation model 37.4|37.5 24.8)21.2
FIERY 58.1/49.9 36.6|29.5

Table 3: Future instance prediction in bird’s-eye view for
2.0s in the future on the Lyft dataset. We report future
Intersection-over-Union and Video Panoptic Quality.

Predicting future states. When predicting the future, it is
important to model its sequential nature, i.e. the prediction
at time ¢ + j + 1 should be conditioned on the prediction at
time t 4 j.

The No unrolling variant which directly predicts all fu-
ture instance segmentations and motions from the current
state sy, results in a large performance drop. This is because
the sequential constraint is no longer enforced, contrarily to
our approach that predicts future states in a recursive way.

Future motion. Learning to predict future motion allows
our model to re-identify instances using the predicted flow
and comparing instance centers. Our model is the first to
produce temporally consistent future instance segmentation
in bird’s-eye view of dynamic agents. Without future flow,
the predictions are no longer temporally consistent explain-
ing the sharp decrease in performance.

Lifting the features to 3D Using a perfect depth model
we could directly lift each pixel to its correct location in
3D space. Since our depth prediction is uncertain, we in-
stead lift the features at different possible depth locations
and assign a probability mass at each location, similar to
[37]. The Uniform depth baseline uses the Orthographic
Feature Transform to lift features in 3D, by setting a uni-
form distribution on all depth positions. We observe that
such a naive lifting performs worse compared to a learned
weighting over depth.

Present and future distributions. A deterministic model
has a hard task at hand. It has to output with full confidence
which future will happen, even though the said future is un-
certain. In our probabilistic setting, the model is guided
during training with the future distribution that outputs a
latent code that indicates the correct future. It also encour-
ages the present distribution to cover the modes of the fu-
ture distribution. This paradigm allows FIERY to predict
both accurate and diverse futures as we will see in section
Section 5.4.

Further analyses on understanding the structure of the
learned space and on the temporal horizon of future pre-

diction is available in Appendix A.
5.4. Probabilistic modelling

We compare our probabilistic future prediction model to
the following baselines:

e M-Head. The M-head model inspired by [41] outputs
M different futures. During training, the best perform-
ing head backpropagates its loss with weight (1 — ¢)
while the other heads are weighted by ;5. We set
e = 0.05.

* Bayesian Dropout. We insert a dropout layer after
every 3D temporal convolution in the temporal model.
We also insert a dropout layer in the first 3 layers of the
decoder, similarly to [2]. We set the dropout parameter
top = 0.25.

* Classical VAE. We use a Centered Unit Gaussian to
constrain our probability distribution similarly to the
technique used in [3]. Different latent codes are sam-
pled from N'(0, I1) during inference.

We report the results in Table 4.

Generalised Energy Distance ()
Short Long
M-Head 96.6 122.3
Bayesian Dropout 92.5 116.5
Classical VAE 93.2 109.6
FIERY 90.5 105.1

Table 4: Generalised Energy Distance on NuScenes, for
2.0s future prediction and M = 10 samples, showing that
our model is able to predict the most accurate and diverse
futures.

6. Conclusion

Autonomous driving requires decision making in mul-
timodal scenarios, where the present state of the world is
not always sufficient to reason correctly alone. Predictive
models estimating the future state of the world — particu-
larly other dynamic agents — are therefore a key compo-
nent to robust driving. We presented the first prediction
model of dynamic agents for autonomous driving in bird’s-
eye view from surround RGB videos. We posed this as an
end-to-end learning problem in which our network mod-
els future stochasticity with a variational distribution. We
demonstrated that FIERY predicts temporally consistent fu-
ture instance segmentations and motion and is able to model
diverse futures accurately. In future work, we would like to
jointly train a driving policy to condition the future predic-
tion model on future actions. Such a framework would en-
able effective motion planning in a model-based reinforce-
ment learning setting.



A. Additional Results
A.1. Visualisation of the learned states

We run a Principal Component Analysis on the states
s¢ and a Gaussian Mixture algorithm on the projected fea-
tures in order to obtain clusters. We then visualise the in-
puts and predictions of the clusters in Figures 6, 8 and 9.
We observe that examples in a given cluster correspond to
similar scenarios. Therefore, we better understand why our
model is able to learn diverse and multimodal futures from
a deterministic training dataset. Since similar scenes are
mapped to the same state s;, our model will effectively ob-
serve different futures starting from the same initial state.
The present distribution will thus learn to capture the differ-
ent modes in the future.

A.2. Temporal horizon of future prediction

Figure 7 shows the performance of our model for differ-
ent temporal horizon: from 1.0s to 8.0s in the future. The
performance seems to plateau beyond 6.0s in the future. In
such a large future horizon, the prediction task becomes in-
creasingly difficult as (i) uncertainty in the future grows fur-
ther in time, and (ii) dynamic agents might not even be vis-

ible from past frames.

T
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Video Panoptic Quality

20

Future time (s)

Figure 7: Future prediction performance for different tem-
poral horizons. We report future Video Panoptic Quality
on NuScenes at different capture sizes around the ego-car:
30m x 30m (Short) and 100m x 100m (Long).

(a) Approaching an intersection.

Figure 6: An example of cluster obtained from the spatio-temporal states s; by running a Gaussian Mixture algorithm on
the NuScenes validation set. Our model learns to map similar situations to similar states. Even though the training dataset
is deterministic, after mapping the RGB inputs to the state s;, different futures can be observed from the same starting state.
This explains why our probabilistic paradigm can learn to predict diverse and plausible futures.
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(b) Driving on open road.

Figure 8: More example of clusters.
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(b) Turning right at an intersection.

Figure 9: More example of clusters.
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B. Model and Dataset
B.1. Model description

Our model processes ¢ = 3 past observations each
with n = 6 cameras images at resolution (Hi,, Wi,) =
(224 x 480), i.e. 18 images. The minimum depth value
we consider iS Dy, = 2.0m, which corresponds to the
spatial extent of the ego-car. The maximum depth value
iS Dpax = 50.0m and the size of each depth slice was set to
Dsize = 1.0m.

We use uncertainty [24] to weight the segmentation, cen-
terness, offset and flow losses. The probabilistic loss is
weighted by )\probabilistic = 100.

Our model contains a total of 8.1M parameters and trains
in a day on 4 Tesla V100 GPUs with 32GB of memory. All
our layers use batch normalisation and a ReLU activation
function.

Bird’s-eye view encoder. For every past timestep, each
image in the observation O, = {I},...,I]'} is encoded
ef = BE(IF) € RICTP)xHexWe e use the EfficientNet-
B4 [45] backbone with an output stride of 8 in our imple-
mentation, so (He, W,) = (hg‘“, WT) = (28,60). The
number of channel is C' = 64 and the number of depth
slicesis D = % = 48.

These features are then lifted and projected to bird’s-eye
view to obtain a tensor z; € REXH*W with (H,W) =
(200, 200). Using past ego-motion and a spatial transformer
module, we transform the bird’s-eye view features to the
present’s reference frame.

Temporal model. The 3D convolutional temporal model
is composed of Temporal Blocks. Let C},, be the number of
input channels and Cj,, the number of output channels. A
single Temporal block is composed of:

* a 3D convolution, with kernel size (ki, ks, ks) =
(2,3,3). ki is the temporal kernel size, and k the spa-
tial kernel size.

* a 3D convolution with kernel size (1, 3, 3).

e a 3D global average pooling layer with kernel size
(2, H,W).

Each of these operations are preceded by a feature com-
pression layer, whichis a (1,1, 1) 3D convolution with out-
put channels <

All the resulting features are concatenated and fed
through a (1,1,1) 3D convolution with output channel
Cous- The temporal block module also has a skip connec-
tion. The final feature s, € R84*200x200

Present and future distributions. The architecture of the
present and future distributions are identical, except for the
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number of input channels. The present distribution takes
as input sy, and the future distribution takes as input the
concatenation of (s¢,yi+1,...,Yi+m). Let Cp = 64 be
the number of input channel of the present distribution and
Cy = 64+ Cy - H = 88 the number of input channels of
the future distribution (since C, = 6 and H = 4). The
module contains four residual block layers [18] each with
spatial downsampling 2. These four layers divide the num-
ber of input channels by 2. A spatial average pooling layer
then decimates the spatial dimension, and a final (1,1) 2D
convolution regress the mean and log standard deviation of
the distribution in R* x R* with L = 32.

Future prediction. The future prediction module is made
of the following structure repeated three times: a convo-
lutional Gated Recurrent Unit [4] followed by 3 residual
blocks with kernel size (3, 3).

Future instance segmentation and motion decoder.
The decoder has a shared backbone and multiple output
heads to predict centerness, offset, segmentation and flow.
The shared backbone contains:

* a 2D convolution with output channel 64 and stride 2.

* the following block repeated three times: four 2D
residual convolutions with kernel size (3, 3). The re-
spective output channels are [64, 128, 256] and strides
[1,2,2].

* three upsampling layers of factor 2, with skip connec-
tions and output channel 64.

Each head is then the succession two 2D convolutions
outputting the required number of channels.

B.2. Labels generation

We compute instance center labels as a 2D Gaussian cen-
tered at each instance center of mass with standard deviation
0, = o, = 3. The centerness label indicates the likelihood
of a pixel to be the center of an instance and is a RM*HxW
tensor. For all pixels belonging to a given instance, we cal-
culate the offset labels as the vector pointing to the instance
center of mass (a R2*#*W tensor). Finally, we obtain fu-
ture flow labels (a R2**W tensor) by comparing the posi-
tion of the instance centers of gravity between two consec-
utive timesteps.

We use the vehicles category to obtain 3D bounding
boxes of road agents on both the NuScenes and Lyft
datasets.

We report results on the official NuScenes validation
split. Since the Lyft dataset does not provide a validation
set, we create one by selecting random scenes from the
dataset so that it contains roughly the same number of sam-
ples (6,174) as NuScenes (6,019).
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