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Abstract

We propose to leverage structural similarity of pretrained vision transformers for im-
age retrieval reranking. Vision transformers have become the dominant architecture in
many computer vision tasks. However, the usage of global representation (CLS token)
makes for the lack of interpretability. Since not all patches are equally important for
image similarity, our idea is to exploit a pretrained model for optimal spatial weights
assigned to local patch tokens. To understand the relationship between global and local
representations of vision transformers, we compare multiple transformers architectures
against ResNet using similarity as an indicative measure. Our analysis suggest that the
usage of convolutions within vision transformers is vital to learn suitable patch embed-
dings for structural similarities. We also find that local patch similarity equipped with
an optimal transport solver could improve image retrieval accuracy compared to the one
using global similarity only. Without re-training, our evaluations with off-the-shelf pre-
trained vision transformers show that the use of structural similarity not only boosts
retrieval performance, but also provides visualization cues for interpretable image sim-
ilarity. Evaluations on three benchmarks show that our proposed structural approach
outperforms the state of the art for interpretable image retrieval.

1 Introduction
Visual similarity learning is an important topic for computer vision. It is related to a range
of practical applications such as image retrieval [20, 29] and visual localization [31]. Deep
metric learning (DML), leveraging state-of-the-art deep neural networks, has advanced vi-
sual similarity research recently. However, most DML methods represent images as embed-
ding vectors and use the similarity in embedding space to encode the semantic similarity.
Although often effective, DML methods are often lacking interpretability for its output.

As one of the most successful CNN architectures, ResNet [11] is widely used as back-
bone in DML. Hierarchical design, translation invariance and local receptive field all con-
tribute to its success in computer vision domain. Recently, inspired by the success of trans-
formers in natural language processing, vision transformers (ViT) [9] and other variants are
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Images Cross Attention [35] Relevancy (Ours)
Figure 1: Different patches of an image contribute differently to the similarity score. A
comparison of DIML [35] using cross-attention and ours using transformers’ relevancy is
shown. Top matches are obtained by finding the maximum values of the weighted structural
similarity. The weights are obtained by solving optimal transport problem. (See Sec.3.3 for
details.)

quickly adopted, and demonstrate their competitive performances both in vision task (image
classification [9], semantic segmentation [18]) and in multi-modal tasks (visual question an-
swering [38]). ViT has been applied in image retrieval task and shown better performance
than CNNs [10]. However, similar to image classification, only the holistic embedding is
used. Inspired by CNNs, we argue that patch embeddings from vision transformers could
serve as better local features with global receptive field. In other words, patch tokens are
good resources to explain structural similarity and to improve retrieval performance.

On the one hand, recent works [24, 27] exploring feature correspondence have adopted
a hybrid model with modular design. Apart from the CNNs-based feature extraction mod-
ule, an attention module is appended to leverage global context. We note, the architectural
progress of vision transformers are borrowing ideas from CNNs. Examples include pyramid
architecture [30] and local self-attention using shifted windows [18]. In this work, we at-
tempt to compare CNNs and vision transformers from the structural similarity perspective.
This will not only help understand and design better models, but also provide interpretability
for the decision made by deep models.

Apart from the added interpretability, leveraging local feature maps does not require extra
learning at all. In CNNs, patch level features are available before the aggregation of global
average pooling and projection of fully connected layers. For ViT, local patch tokens are
trained together with a special CLS token. All tokens interact each other with self-attentions.
To adapt a permutation-invariant transformer to work on images, position embeddings are
added to the patch embedding.

In summary, we exploit local features of pretrained vision transformers to improve image
retrieval performance and to provide visual cues for similarity interpretability. In Fig.1, we
highlight our method by visualizing the importance map for the image similarity as well as
the top matching patches of a pair images from CUB-200. Our contributions are as follows:

1. We compare the patch representations of various vision transformers architectures with
ResNet, and find that convolution operations play an important role to learn locally
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smooth and globally discriminative patch embeddings.

2. We propose a training-free, transformer based framework to improve deep metric
learning performance through image re-ranking.

3. We apply the attention-based relevancy maps tied to vision transformers to guide op-
timal transport optimization and further validate the effectiveness of partial optimal
transport for dataset showing strong viewpoint and scale variations, such as SOP [20].

4. We demonstrate the effectiveness of the proposed method on three benchmarks of
fine-grained image retrieval and one visual place recognition task.

2 Related work
Deep Metric Learning: Deep metric learning (DML) has recently become one of the pri-
mary frameworks for vision tasks such as image retrieval, person re-identification and face
recognition. The basic idea of DML is to learn image embeddings to reflect the seman-
tics among samples. Towards this goal, most proposed approaches focus on one of two
aspects: loss functions [6, 14, 20, 25] or sampling strategies [23, 32, 36]. As the state-of-
the-art methods advance performance on several benchmarks, they also become deeper and
obscure, leading to over-fitting and brittle performance. Thus, there is an increasing need
to interpret the decision made by the models. However, methods using embedding vectors
alone often lack this interpretability. Inspired by DIML [35], we leverage the spatial structure
for improved and interpretable metric learning.

Vision Transformers: Transformers have shown outstanding results in natural language
understanding and computer vision. The pioneering work, Vision Transformers (ViT) [9],
directly applied transformer architectures from NLP to image classification. To improve the
training efficiency of ViT, DeiT [28] introduced token-based distillation with Convolutional
Neural Networks (CNNs) as the teacher. Follow-up works explore the direction to com-
bine CNNs and ViT. PVT [30] introduced the pyramid structure into ViT, which generates
multi-scale feature for dense prediction tasks. CvT [33] leveraged convolutional patch em-
bedding and convolutional attention projection to combine the best aspects of both CNNs
and transformers. The Swin Transformer [18] introduced a shifted window scheme to limit
self-attention within windows while allowing interaction between windows. In [10], image
descriptors generated by vision transformers are used for the image retrieval task. Although
improvements over CNNs are reported, it is not clear why vision transformers perform bet-
ter. Unlike [10] which uses transformers’ class token only, we consider both CLS token and
patch tokens for image retrieval to improve interpretability and accuracy.

Optimal Transport for Feature Matching: Similar to image retrieval, inputs to feature
matching are image pairs. The goal of feature matching is to establish pointwise corre-
spondence using local features. Recently, methods combining the attention mechanism with
CNNs features are the state of the art. Given keypoint descriptors, SuperGlue [24] uses
a graph neural network and attention layers to solve an assignment problem. In [17], an
Optimal Transport (OT) layer is adopted to obtain the semantic correspondence. Matching
quality is improved by suppressing one-to-many matchings. LoFTR [27] proposes a two-
stage method using coarse and fine level features with optimal transport. Given the feature
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maps of two images, COTR [13] concatenate and feed feature maps to a transformer with
query point as input. The output is further fed into a decoder to infer the correspondence.
Among these approaches, we find two common differences with image retrieval. First, all
methods require CNNs backbone for feature extraction. Second, feature matching heavily
depends on datasets with dense feature correspondence for training. Examples are ScanNet
[8] and MegaDepth [16]. In our work, unlike feature matching, optimal transport is exploited
within a metric learning framework, in which only image level labels are available.

Interpretable Deep Vision Models: With deep learning dominating various tasks in com-
puter vision, improving the explainability and interpretability has attracted more attention
recently. For CNNs, mainstream methods either visualize feature representations [26, 37],
or disentangle mixed patterns learned in each layer of CNNs [34]. Beyond classification
tasks, a gradient-weighted method [26] is also adapted to embedding network in [5]. For
vision transformers, a common class-agnostic method to understand its predictions is to con-
sider the attentions as relevancy scores. Instead of taking a single attention layer, attention
rollout [1] proposed to combine all attention maps in a linear way and to reassign all attention
scores. A class-specific visualization method for self-attention models is proposed in [4]. It
incorporates both relevancy and gradient information. Apart from visualization methods, re-
cent work [21, 22] tried to analyze the internal representation structure of CNNs and vision
transformers using classification task. We focus on improving metric learning by leveraging
the representation structure of transformers. Finally we note, our method gives an indication
of learning semantic feature correspondences using image labels alone.

3 Proposed Approach
We now present our approach based on the structural similarity of vision transformers for the
metric learning task. First, we describe the framework called structural deep metric learning
in Sec.3.1 and then review vision transformers especially the variants with convolutions in
Sec.3.2. We detail our proposed method in Sec.3.3, with a novel attention-based relevancy
maps and a partial extension of the optimal transport solver.

3.1 Background: Structural Deep Metric Learning
Deep Metric Learning (DML): Given a pair of images, DML uses deep neural networks
to find the distance metric so that the embedding similarity reflects the semantic similarity
defined by image classes. In particular, given source image xs and target image xt , the global
similarity is given by:

Sglobal( f s, f t) = s( f s, f t), (1)

where f s and f t ∈ RD are global representation of dimension D, and s(·, ·) is a similarity
function (eg. Cosine similarity). For CNNs such as ResNet, f is obtained by global average
pooling and fully connected layer on the feature maps of the final convolutional layer.

Structural Similarity using Optimal Transport: In order to take advantage of the spatial
structures of images, a structural matching scheme called DIML was proposed in [35]. The
idea is to consider both the global and structural cost for metric learning. In particular,
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ResNet-50 was adopted as the backbone, and then the structural cost is computed based on
the feature maps f s and f t ∈ Rhw×D of the final convolutional layer, where h and w are the
height and width of the feature maps. Given structural cost matrix Ci j ∈ Rhw×hw, now the
aim is to minimize the overall matching cost as ∑

hw
i=1 ∑

hw
j=1 Ci jTi j, where T is the optimal

matching flow, indicating the pairwise weight towards the final similarity. In the discrete
case, this problem can be formalized as an optimal transport one, in which the goal is to find
the optimal transport plan. Given the two corresponding discrete distributions µs ∈ Rhw and
µ t ∈ Rhw, the optimization problem becomes:

T̂ = argmin
T

(
hw

∑
i=1

hw

∑
j=1

Ci jTi j), subject to T̂ 1 = µ
s and T̂ T1 = µ

t (2)

To solve the above problem, Sinkhorn divergence algorithm [7] using an entropic regularizer
is used to enable fast convergence. As suggested in [35], the cross-correlation between
global feature and local feature maps is considered as the marginal distribution µs and µ t

for optimal transport. Once the optimal transport T̂ is obtained, we define the structural
similarity as follows:

Sstruct( f s, f t) = ∑
1≤i, j≤hw

s( f s
i , f t

j)T̂i, j (3)

Based on the top K candidates returned by global similarity Sglobal, the final retrieval results
using structural matching can be obtained by combining Sglobal and Sstruct together.

3.2 Vision Transformer with Convolutions
We first revisit the basics of vision transformers. Then, we describe the variant that uses con-
volution and show that the introduction of convolution is vital for structural metric learning.

Transformer encoders consist of alternatively stacked multi-head self-attention (MSA)
and multi-layer perceptron (MLP) blocks. The layer normalization (LN) and residual con-
nection are applied before and after each block, respectively. Specifically, let tl ∈ RN×D

denote the output of the lth transformer layer, where N is the number of tokens, and D is the
feature dimension. Specifically:

t̃l = MSA(LN(tl−1))+ tl−1, tl = MLP(LN(t̃l))+ t̃l (4)

where 0 < l ≤ L denotes the transformer layer and t0 is the input.
In order to compare the local patch embedding of vision transformers to CNNs, we

choose three variants of vision transformer architectures: DeiT [9], Swin Transformer [18]
and CvT [33].The main difference between DeiT and CvT is the spatial awareness for trans-
former attention. While DeiT use pure self-attention, CvT introduces two convolution-based
operations into the vision transformer, namely Convolutional Token Embedding and Con-
volutional Projection for attention. Both SwinT and CvT adopt a multi-stage hierarchical
design similar to ResNet. Given an image represented by H ×W non-overlapping patches,
we visualise the cross patch similarity map in Fig.2. For all variants, H = W = 7. Please
refer to Supp.Mat. for the zoom-in version of patch-patch similarity maps and CLS-patch
similarity maps.

ResNet-50 shows smooth but blurry changes when moving to nearby patches. On the
contrary, different transformer architectures demonstrate strikingly interesting patterns. For
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Input ResNet-50 Deit-Small Swin-Tiny CvT-13
Figure 2: We show the pairwise patch similarity for a single image in each row. Consider an
image I consisting of 4 patches, P1 . . .P4, we show the block similarity matrix B1 . . .B4, where
B1 is the pairwise similarity of P1 to all patches, e.g. B1 = [s11,s12;s21,s22], where si j is the
cosine similarity between Pi and Pj. Adjacent patches in Swin and CvT demonstrate smooth
transitions and translation invariance (see also the emerging segmentation using CvT). While
with DeiT, background patches show unexpected variations (see top-left of row 1)

DeiT, position embedding is added to the patch embedding to form the input tokens, leading
to better discriminative representation. However, this does not show as good smoothness as
ResNet. Shifted window scheme of SwinT limits attention to neighbouring patches. How-
ever, the corner patches show extreme similarity due to artefacts of the shifted window par-
tition. CvT manages to separate background from the foreground in this example. Notice,
semantic intra-class features are correlated in CvT while inter-class semantics are distin-
guished. For structural similarity learning, good properties of the representation should be
locally smooth and semantically discriminative. Comparing to ResNet and vanilla ViT, we
hypothesize that the introduction of convolution to ViT satisfies the two requirements.

3.3 Structural Metric Learning using Transformers
We now show how to perform structural metric learning using vision transformers. For two
images xs and xt , we first obtain global and local feature maps. Global representation {gs,
gt} ∈ RD correspond to CLS token of the transformers. Spatial Feature maps { f s, f t} ∈
Rhw×D are patch tokens. Next, we compute both global similarity Sglobal and structural
similarity Sstruct as follows:

Sglobal = s(gs,gt) ∈R, Sstruct = s( f s, f t) ∈Rhw×hw (5)

where s(·, ·) is a similarity function. With the structural similarity, we follow [35] to use an
optimal transport solver to maximize the total similarity under the optimal assignment plan
T as follows:

T = Sinkhorn(Sstruct ,µ
s,µ t) (6)

where µs,µ t are corresponding discrete marginal distributions. Intuitively, µs,µ t reflect the
importance of each location for the optimization.

Relevancy Score as Marginal Distribution At the core of our method is how to choose
the marginal distribution for vision transformers. Cross-correlation is proposed in [35], to
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exploit the global and local feature maps of CNNs. It is trivial to apply this similarly to ViT,
using the CLS token as global feature and the patch tokens as local features. However, one
issue with cross-correlation is that the it assumes that object foreground and background is
well-defined. On the contrary, vision transformers take advantage of self-attention of ViT
and therefore are supposed to have learnt which parts are more important for the metric
learning task. We propose to leverage the idea of relevancy scores [4] as the importance map
for optimal transport distributions.

Aggregated attention is obtained by multiplying attention maps from all attention layers.
It was originally used for the purpose of interpreting transformers classification [1]. In our
method, the relevancy map is used to guide the optimal transport optimization for structural
similarity. The relevancy map can be obtained by a forward pass of transformers, and it
is theoretically applicable to almost all the transformers architectures [1] that use global
attentions such as DeiT and CvT.

Given a Transformer with L layers, we compute the attention from all positions in last
layer lL−1 to all positions in input l0. To compute the attentions from li to l j, we recursively
multiply the attention weights matrices as below:

Ã(li) = norm(A(li)+ I)Ã(li−1) if i > j (7)

with Ã(l0) = A(l0). We denote Ã as attention rollout and A as raw attention. To account
for residual connection in Transformers, identitiy matrix I is added to the attention map and
then L2 normalized. When hierarchical structure is used in Transformers such as CvT-13,
attention maps are resized to the dimension of final layer attention. To handle that the CLS
token is only introduce in the last stage of CvT-13, we discard the CLS token attention from
the final stage attentions by A(li) = A(li)[1 :,1 :], where li ∈ Stage2. Finally, we average the
attentions of all spatial patches to obtain the approximated marginal distributions µs = Ãs

and µ t = Ãt .

Partial Optimal Transport As we notice that the assumption of standard OT may not be
valid for images under strong viewpoint and scale changes, such as Stanford Online Prod-
ucts (SOP). In other words, enforcing full matching flow for positive image pairs but without
enough semantic correspondence is difficult to optimize. To alleviate this issue, OT is ex-
tended to its partial version to allow flexible amount of matching flow.

Given a cost function C ∈ Rm,n and the corresponding marginal distributions u ∈ Rm and
v ∈ Rn. Assuming u and v are unit length, so that ∥u∥1 = ∥v∥1 = 1. Following [3], the OT
problem is converted to a partial one by adding a dummy point to both images with fraction
0 ≤ s ≤ 1 . The mass of the dummy point is set such that um+1 = 1− s and vn+1 = 1− s.
We extend cost matrix C̄ with ū = [u,um+1], v̄ = [v,vn+1]. Then we solve the extended
OT to obtain T̄ = Sinkhorn(C̄, ū, v̄). Finally, the partial optimal transport T is obtained by
discarding the last row and last column of T̄ . We validate the effectiveness of this extension
on SOP dataset considering the dataset bias towards viewpoint and scale variations.

4 Experiments
To evaluate the performance of the proposed method, we conduct experiments on three
datasets used widely in the image retrieval task: CUB200-2011 [29], Cars196[15], and Stan-
ford Online Products (SOP)[20]. Details about datasets are included in the Supp. Mat.
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Table 1: Comparison of multiple ViT on image retrieval. Base variants use global represen-
tation, and struct variants use structural similarity to rerank top-100 candidates.

Method Stage
CUB200-2011 Cars196 Online Products

P@1 RP M@R P@1 RP M@R P@1 RP M@R

DIML
Base 62.12 34.50 23.40 77.43 34.25 23.57 77.41 45.09 41.74
Struct 64.97 35.28 24.45 83.17 35.10 25.60 78.86 46.22 43.00

Deit-S
Base 70.39 39.96 29.22 76.27 32.31 21.57 78.13 45.96 42.77
Struct 70.12 38.19 26.80 72.74 31.51 18.97 77.65 44.60 41.40

CvT-13
Base 71.75 41.94 31.19 80.55 35.30 24.80 77.15 44.74 41.53
Struct 73.72 42.68 32.12 83.66 35.63 25.82 77.15 44.45 41.36

Swin-T
Base 74.47 43.43 32.86 83.32 37.51 27.22 79.42 47.42 44.33
Struct 74.98 43.19 32.78 85.07 37.79 27.87 80.02 47.90 44.86

Following [35], we adopt the three evaluation metrics used in [19]: Precision@1 (P@1),
R-Precision (RP), and MAP@R (M@R). We also evaluate our method on one visual place
recognition benchmark MSLS[31].

It is worth noting that our method assumes a pretrained global model exists and no further
training is needed for structural reranking. The global model is pretrained on ImageNet and
finetuned on target datasets using global features only. In this section, we compare vision
transformers of multiple variants to state-of-the-art method DIML using ResNet-50. For
all the experiments, we set the truncation number K = 100, feature map size h = w = 7,
embedding size D = 128. Margin loss is used in base model training. See Supp. Mat. for
additional results.

CNNs vs. Transformers We report baseline results using global similarity only and struc-
tural similarity for reranking in Tab.1. First, Transformers shows better performance than
ResNet-50 on all datasets using global representation. Second, baseline results can be im-
proved when structural similarity is incorporated. Both CvT and SwinT benefit from struc-
tural similarity. We also see that vanilla ViT (DeiT) does not work well. This is consistent
to our finding that convolution operations boost learning smooth and discriminative patch
features inside ViT, as shown in Fig.2. Cross-attention weighting similar to [35] is used in
this experiment.

Effects of Spatial Weighting To focus on areas of interest, spatial weighting is used to
provide marginal distribution µs and µ t . Different spatial weighting strategies are evaluated
in Tab.2. Applying cross-attention already enhances the retrieval quality by attending to
foreground patches. Furthermore, relevance map is less noisy and focus more on the object
patches. In particular, it is shown to be especially beneficial for SOP, on which uniform
and cross-attention do not significantly improve. In Fig.1, we visualize the spatial weighting
maps with example image pair.

Partial Optimal Transport In Tab.1, applying structural similarity on the SOP dataset
does not improve retrieval results significantly. We hypothesize this is due to viewpoints and
scale variations. We use the partial optimal transport (OT) [3] to handle maximum a amount
of the total mass, where 0 ≤ a ≤ 1. We empirically find that setting a = 0.9 gives the best
results on the SOP as shown in Fig.3.
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Table 2: Effects of spatial weighting schemes used by Optimal Transport. Baseline method
without weighting is a CvT-13 with global similarity. Structural methods with uniform,
cross-attention and relevance map are compared.

Weighting
CUB200-2011 Cars196 Online Products

P@1 RP M@R P@1 RP M@R P@1 RP M@R
None 71.75 41.94 31.19 80.55 35.30 24.80 77.15 44.74 41.53

Uniform 73.22 42.51 31.87 83.38 35.59 25.64 77.05 44.39 41.28
Cross 73.72 42.68 32.12 83.66 35.63 25.82 77.15 44.45 41.36

Relevancy 73.85 43.15 32.68 83.92 35.70 25.91 77.95 45.15 42.06

Figure 3: Effects of partial optimal transport amount a on the SOP. When a= 1, it is identical
to standard optimal transport. We found that allowing partial OT improves the retrieval
performance on the SOP.

Visual Place Recognition We also evaluate the proposed method on Mapillary Streets
dataset (MSLS) [31], which features variations of season, time of day, date, viewpoint and
weather. Training from scratch on such a huge dataset is time-consuming and does not con-
verge to satisfactory performance. Thus, we follow feature-based knowledge distillation
approach and use ImageNet-pretrained CvT-13 as our student model. Next, we train it on
MSLS similar to [12]. For the teacher model, we use MSLS-pretrained NetVLAD [2] model.
Both teacher and student models use 128 dimension features. Note, inputs to teacher model
are resized to 640×480, while inputs to student model are resized to 224×224. As shown in
Tab.3, structural reranking massively improves Recall1 by 15.66% and 5.67%, when train-
ing scratch and with distillation. We also observe that training with distillation improves
accuracy by a large margin.

Table 3: Place recognition results on MSLS. Our model is based on CvT-13. We demonstrate
that structural similarity consistently improves accuracy when the model is trained from
scratch or using distillation.

Method Struct Recall@1 Recall@5 Recall@10
NetVLAD - 52.97 70.54 75.54

Ours (Scratch)
✗ 40.95 64.05 72.30
✓ 56.62 73.24 78.38

Ours (Distill)
✗ 60.68 74.59 79.46
✓ 66.35 78.24 81.76

Qualitative Visualization We follow DIML and evaluate interpretability qualitatively. Specif-
ically, we justify improved interpretability from two aspects: 1) object is more important than
background; 2) similarity of semantic corresponding parts matters more. We visualize some
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example images from CUB200. Cross-attention spatial weighting is used for both DIML
and CvT. In Fig.4, the heatmaps indicate the spatial weighting for patches. DIML (col.1-
2) produces coarse and blurry weighting, sometimes focusing on background. In contrast,
our method shows only objects are considered important. The top matching patches de-
noted by the depicted boxes of DIML are error-prone, while our method prioritise semantic
corresponding parts using the same query image. In Fig.5, we show failed semantic corre-
spondence of CvT and emphasise that the use of OT does not resolve symmetry ambiguity.

(a) DIML Query (b) DIML Match (c) Our Query (d) Our Match
Figure 4: Each row shows a comparison of DIML and our method. Col. (a-b) show a positive
pair using DIML. The heatmaps indicating spatial importance for similarity are blurry and
not accurately targeting objects. Our results shown in columns (c-d) suggest that importance
maps are accurate and focused on birds. Please see Supp. Mat. for additional results.

Figure 5: CvT examples of the Cars196 and SOP datasets are shown. Notice, our OT is not
aware of missing features or similarities in the object.

5 Conclusions
We investigate the problem of whether pretrained vision transformers can be used for struc-
tural image reranking. We find that convolutions inside vision transformers are important
to learn globally discriminative patch embeddings. We propose to use attention-based rel-
evancy maps of vision transformers to guide optimal transport optimization. The approach
demonstrates robust performance and improved interpretability on multiple benchmarks. Al-
though vanilla ViT could not benefit from the structural similarity, it is possible to replace
attention layer and MLPs with a convolutional variant. We justify improved interpretability
qualitatively in this work. Some datasets such as CUB-200 provide part annotations and a
quantitative analysis could further demonstrate the interpretability strength of Transformers.
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