Part IA Computing Course
Lent Term Software Design Exercise

Roberto Cipolla
Department of Engineering
University of Cambridge

January 13, 2005

This handout describes the software design problem which is to be implemented
in the C4++ programming language in the Lent term laboratory sessions of the
Part TA Computing Course. In addition to this handout you will need to review
the Tutorial Guide to C++ Programming. The programming concepts needed
to implement a solution have been covered in the lecture course.

Contents

1

2

9

Introduction and Organisation

Problem Statement: A Trading Problem

The Software Design Process

Solution Specification and Problem Modularisation

High-Level Design

5.1 Modularisation
5.2 Multiple Source Files
5.3 Data Structures and the Header File
5.4 Function Names and Prototypes

Detailed Design, Implementation and Testing

6.1 Getting Startedo
6.2 Detailed Designo
6.3 Testing an implemented function
6.4 Implementation of a function and unit testing

Notes on Implementation of Functions of Part 1

7.1 Reading from files,
7.2 Displaying data with the Vogle library functions
7.3 Method of Least Squares
7.4 Analysis of Residual Errors

Notes on Implementation of Functions of Part 11

8.1 Electronic trading library functions
8.2 Sample function to initialise trading account and handle exit code.
8.3 MyTrader Function

8.4 Closing the account and writing the records to a file

8.5 Definition of trading library constants using enumeration

Integration, Final Testing and Evaluation

10 Further Reading

15
15
15
15
16

17
17
18
19
20

21
21
23
25
25
26

27

27

Part IA Computing Course Lent Term

1 Introduction and Organisation

A. Aims

The analysis of a problem and the design of a solution in the C++ programming language.
The implementation, testing and evaluation of software. The fostering of software design
and cooperative skills through teamwork.

B. Objectives

O Problem solving using abstraction and modularisation

O Structured programming and program modularisation using functions
O Reading and writing to files

O Using data structures

O Passing parameters to functions by reference

O Using library functions and handling exit codes

O Compiling programs written in multiple source files

C. Organisation and Marking

Preparation (4 hours)

You should review your lecture notes on functions and data structures and the
Tutorial Guide to C+4 Programming, including section 11, before your first Lent
term laboratory session. You should also study the problem statement and back-
ground material in this document (sections 1-5).

Timetable (8 hours)

There are 4 two hour laboratory sessions scheduled for the Lent term computing
course.

Teamwork

The software design exercise is to be completed in laboratory group pairs.

Qualification (12 marks)

Twelve coursework marks will be awarded for a working program meeting the spec-
ification. An additional four marks will be awarded for well-structured programs
demonstrating good software engineering practice and for the quality (clarity and
simplicity) and performance of the solution.

Marking

Your solutions will be marked by a laboratory demonstrator who will require a listing
of your program and a screen dump of the graphs. The demonstrator will execute
the program and evaluate its performance in the final timetabled laboratory session.

2 Problem Statement: A Trading Problem

A company building a high-tech information retrieval system is required to purchase 1000
components within 50 days.

The unit price of the components varies from day to day. At the close of trading, the
previous day, the unit price was £20. The price variation over the previous 100 days is
recorded in the file tradingData.dat and displayed in Figure 1.

The company has £20000 assigned for the purchase of the components. It can buy
and sell any volume of components over the 50 day trading period but must ensure it has
1000 components at the end of the period and remains with a positive balance throughout
the trading period.

Trading is to be performed automatically by a computer program running on a machine
networked to an electronic trading exchange. The trading strategy should aim to maximise
the balance whilst securing the purchase of 1000 components by the end of the trading
period.

You are required to design, implement, test and evaluate a program written
in C++ to display and analyse the past trading price data. Your program
should then connect to a trading exchange computer and automatically buy and
sell components over the 50 day trading period to secure the purchase of 1000
components at the lowest average price.

40

351 —

8
.: 25 — .
o
201 : - &
151 =
lO | |
~100 -50 0 50

Day

Figure 1: Price variation over the last 100 days with linear prediction.

3 The Software Design Process

Software Engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation and maintenance of software. As in other branches of
engineering, one of the central ideas is that of decomposing a large difficult problem into a
set of simpler sub-problems, these sub-problems may then be further decomposed into yet
smaller sub-problems until a level of complexity is reached at which the solution becomes
relatively trivial.

Developing computer software involves a design process with the following distinct
activities:

Step 1: Requirements analysis and specification (section 4)
Step 2: High-level design (section 5)
O Modularisation — dividing the problem into parts (modules) and sub-parts (com-
ponents) which will be implemented by calls to functions
O Using multiple source files

O Design and specification of key data structures

O Specifying the interface between different parts of the program and choosing the
names of functions and the parameters to be passed

O Specifying the user interface for writing prompts, printing error messages and
displaying data.

O Agreeing on a consistent style for writing C++ code, comment statements and
the indentation after each set of braces.

Step 3: Detailed design (sections 6-8)

O Specifying the function prototype: function name, parameters and return type.
O Specifying the algorithm (computational steps from input to output) for each
function.

Step 4: Implementation of each function and unit testing (sections 6-8)

O Beginning with the function header, comments and the first and last statement
O Writing the C++ code for the body of the function

O Mentally checking that it fits the requirements

O Compiling and removing syntax errors

O Checking for errors in logic and algorithm

O Checking that the specification is met
Step 5: Integration and system testing (section 9)

Step 6: Evaluation and enhancement (section 9)

The following information will guide you through these activities and help you to design
and implement a working solution. Step 1 has already been carried out for you and is
described in section 4. Suggestions for step 2 are given in section 5.

4 Solution Specification and Problem Modularisation

You should design a solution with the following specification. The program should:

1. Read the trading price data
Read the data (price over the previous 100 days) from the file tradingData.dat and
store as a data structure (e.g. ModelData).

2. Display the trading price data
Display the trading data graphically using Vogle library functions.

3. Analyse the price variation over the past 100 days

Estimate the parameters of a linear model by fitting a straight line to the data using
the method of least-squares. Output the equation of the line to the screen.
Superimpose the straight line on the display of the data.

4. Compute the statistics of the residual errors

Compute the mean and variance of the errors between the actual price and the
model’s prediction. Output these values to the screen. Check that the data agrees
with the model.

5. Initialise trading account

Use the trading exchange library function TE_InitialiseTrading() to establish a
connection with the electronic trading exchange server.

6. Perform trading

Use the trading exchange library functions TE_GetPrice() to get each day’s price
(for day 1 to 50).

Devise your own trading strategy to determine when to buy and sell and the volume
of the transaction.You must ensure a positive balance at all times and the purchase
of 1000 units by the end of the trading period (i.e. on day 50).

Implement your strategy for each day by calling a function that decides on whether
to buy or sell (i.e. transaction type) and the volume of the transaction. Use the
trading exchange library function TE_Trade () to perform the transaction.

At the end of trading on each day determine the new stock and balance and update
your accounts (e.g. using the TradingAccount data structure).

7. Display trading accounts and compare to exchange records

Output a record of your trading accounts (day, price, transaction type and volume,
stock and balance) to a file. The trading exchange library function TE_CloseTrading ()
will compute your balance and the number of components (stock) at the end of trad-
ing. Check that these agree with your own accounts.

Timetable

Session number

Objectives and exercises

Time required

Session 1
(Day 1 morning)

Session 2
(Day 1 afternoon)

Session 3

(Day 2 morning)

Session 4
(Day 2 afternoon)

Review section 1 to 4 with partner

Teamwork and understanding problem and specifications
Understanding of environment and data structures

List of function prototypes (section 5.4)

Testing of implemented functions (section 6.3)

Marking of teamwork and design (steps 1 to 3)3

Implementation of functions

Implementation of remaining functions

Shipping working functions to team directory
Testing on test data sets

Final evaluation on unseen data

Marking

30 minutes
30 minutes
30 minutes
30 minutes

60 — 120 minutes

60 — 120 minutes

60 minutes

5 High-Level Design

5.1 Modularisation

Your program must be constructed modularly by dividing it into two parts (modules):
data analysis and trading. Each part will be implemented independently with calls to
functions. The following is an example of the modular structure of the final program.

// OurTradingMain.cc
// Sample program layout for Lent Term software design exercise

// Standard library header files
#include <iostream>

#include <fstream>

#include <cstdlib>

#include <cmath>

#include <vogle.h>

#include <vogleextras.h>
#include <trading.h>

using namespace std;

// User-defined constants, data structures and function declarations
#include "OurTradingHeader.h"

int main()

{
// Declare data to be a structure of type ModelData
// Declare account to be a structure of type TradingAccount
// Call to function to read trading price data from file (100 days)
// Call to function to display data using Vogle library
// Call to function to calculate linear model by method of least-squares
// Call to function to analyse mean and variance of residual errors
// Call to function to initialise trading account
// Call to function to trade and update accounts over next 50 days
// Call to function to close trading account and output accounts
return O;

X

// Function definitions of part 1 and 2 are in separate source files
// called OurTradingFunctionsl.cc and OurTradingFunctions2.cc

Each partner will be responsible for the implementation and testing of different parts
(modules) of the program. Divide the required functions between you. For example, the
first partner may choose to implement the 4 functions of part/module 1 (up to the analysis
of the mean and variance of the residual errors).

5.2 Multiple Source Files

The design exercise will require you to create a program for which different parts of the
C++ source code will be in different files (called project files), all with the same base
name, OurTrading.

1. The main program file — QurTradingMain. cc — will contain the main () routine with
function calls to implement the different parts of the program (see example above).

2. The header file — OurTradingHeader.h — will contain the definitions of the data
structures and the declaration of all user-defined functions (i.e. a list of func-
tion prototypes developed by you and your team partner). See next section for an
example.

3. The function definitions will be placed in two separate source files. The source
code for the function definitions of part 1 (first partner) should be placed in the file
OurTradingFunctionsl.cc.

4. The source code for the function definitions of part 2 (second partner) should be
placed in a separate file called OurTradingFunctions2.cc.

Editing Project Files

C++ source files can be grouped into the same project by giving them the same base name
and by selecting them (by clicking on their file icons using the middle mouse button)
in the File Manager. Dragging one of these file icons on the C++ Compiler icon in
the Applications window will load all the project files into the C++ Programming
Enviroment.

The project files should be edited using a single Emacs window. Select the main
project file, QurTradingMain.cc, in the C++ Programming Environment (xcc window) !
and click on the Edit button. To edit any of the project files, use the Emacs Files and
Buffers menus to change the edited file from OurTradingMain.cc to any of the other
project files.

Compiling and Linking using MAKE

Programs which use multiple source files can be compiled and linked by clicking the Make
button on the C++ Programming Environment (xcc) window.

The complete program can be compiled by loading the file OurTradingMain.cc which
contains the main() function. Clicking the Make button will first compile the functions in
the files OurTradingFunctionsl.cc and OurTradingFunctions2.cc and then link their
object code with the routines from the standard libraries and the compiled version of
OurTradingMain.cc — see Figure 2. Clicking Run will execute the complete and integrated
program.

Printing Project Files

You may print any file (including the header) by dragging the file icon onto the Plotview
icon in the applications window.

!The environment has been modified to include an additional Make button.

EDIT

OurTradingMain.cc OurTradingFunctionsl.cc| |OurTradingFunctions2.cc OurTradingHeader.h
Source Code Source Code Source Code Header Files
_OMPILE
OurTradingMain.o | | OurTradingFunctionsl.o | |OurTradingFunctions2.0 Tradi ng Library
_ . . Machine Code
Machine Code Machine Code Machine Code
Vogle Graphics
Machine Code
INK ; Maths Library
. . Machine Code
OurTradingMain
Executable Code
XECUTE
CPU

Figure 2: Multiple source files can be grouped into a project and are compiled and linked
with the MAKE command.

10

5.3 Data Structures and the Header File

You will need to select key variables and data structures for processing the data. For
this design exercise two data structures have already been designed for you (defined below)
and can be used without modification.

The ModelData structure

The ModelData structure type is made up of 8 fields and can be used for the first part of
the project to store the trading data and the linear model parameters and least squares
analysis.

struct ModelData{
int numPoints;
float x[MAXSIZE];
float y[MAXSIZE];
float a;
float b;
float residual [MAXSIZE];
float mean;
float variance;

};

The day and price data can be stored as arrays in the x and y fields.

The model parameters (y = a 4 bz) can be stored in the a and b fields.

The remaining fields can be used to store the residual errors (also an array) between
the model data and actual data and the mean and variance of these errors.

Remember that the data members of a structure are accessed and assigned values by
specifying the field and using the dot operator. For example:

ModelData data;

data.x[0]
data.y[0]

1.0;
30.6;

declares data to be a structure of type ModelData and assigns 1.0 and 30.6 to the first
elements of the x and y arrays respectively.

11

The TradingAccount structure

The TradingAccount structure type can be used for the second part of the project to keep
a record of the price and transactions performed with the electronic trading exchange.

struct TradingAccountq{

int today;

float price[MAXSIZE];

int transaction[MAXSIZE];

int volume[MAXSIZE];

int stock[MAXSIZE];

float balance[MAXSIZE];
};

The today field should record the number of valid entries in the arrays. This should
be set to the number of days in which trading has taken place. The remaining fields can
be used to record the price, transaction type (buy, sell or pass), volume of trading and the
stock and balance at the end of each day of trading. The index of these arrays refers to
the trading day.

For example:

TradingAccount account;

account.price[0] = 20.0;
account.balance[0] = 20000.0;

declares account to be a structure of type TradingAccount and sets the value of the first
element of the price and balance arrays (day 0) to be 20.0 and 20000.0 respectively.

Passing by reference

In this design exercise the data members of data structures of these types should be
processed by passing them to functions using passing by reference. This allows the function
to read and change the value of any of the data members. Passing by reference is indicated
by including the symbol & before the structure name in the function header and prototype.
For example the function header:

void ReadDataFile(ModelData &data)

indicates that a structure of type ModelData is passed to the function ReadDataFile ()
and that the function can read and reassign the values of any of the data members.

You should review your lecture notes and also section 7.8 and 11 of the Tutorial
Guide to C4++ Programming if you are unsure about passing by reference or assigning and
accessing values of the data members of a structure.

12

The Project Header File

Structure definitions and declarations of constants should be placed in the project header
file OurTradingHeader.h (by using the #include "OurTradingHeader.h" directive at
the top of the program file). 2 A working copy of OurTradingHeader.h can be found in
the 1ATrading examples directory (see Getting Started section).

// OurTradingHeader.h

// Project header file for trading exercise. Contains definitions of constants,
// data structures and function declarations (prototypes)

// Included at top of all project files

// Constants
const int MAXSIZE = 100;
const int LABGROUP = 150;

// User definition of a data structure for least squares analysis
// x, y and residual are arrays of type float
struct ModelData{

int numPoints;

float x[MAXSIZE];

float y[MAXSIZE];

float a;

float b;

float residual [MAXSIZE];

float mean;

float variance;

};

// User definition of a data structure for the trading accounts
struct TradingAccount{

int today;

float price[MAXSIZE];

int transaction[MAXSIZE];

int volume [MAXSIZE];

int stock[MAXSIZE];

float balance[MAXSIZE];
+;

// User-defined function declarations for part 1
void ReadDataFile(ModelData &data);

// User-defined function declarations for part 2
void InitialiseAccount(int dataSet, int labGroup, TradingAccount &account);
void HandleExitCode(int errorCode);

2An include directive enclosed in quotes instead of angle brackets (< and >) indicates that the file is in
the same directory as the program file.

13

5.4 Function Names and Prototypes

After selecting the key variables and data structures you should agree with your partner
on the interface between different parts of the program. In particular you must specify
the interface between all the functions.

For each function this will require you to fix:

1. Function parameters: Specify the type and name of all parameters and whether
they will be passed by value or reference.

2. Return type: Agree on the type of the value returned. If no value is returned by
the function the return-type will be void.

3. Function name: Choose a name for your function.

For example, a suitable function header for the function to read the trading price data
from a file is:

void ReadDataFile(ModelData &data)
A suitable header for the function to initialise an electronic trading account is:
void InitialiseAccount(int dataSet, int labGroup, TradingAccount &account)

Specify the function header of all of the functions for part 1 and part 2, listed below.
You and your team partner are required to implement the following functions.

Part I

O Function to read trading price data from file (already implemented)
O Function to display data using Vogle library routines

O Function to calculate linear model by method of least-squares

O Function to analyse mean and variance of residual errors

Part 11

O Function to initialise trading account (already implemented)
O Functions to trade and update accounts over next 50 days
O Function to close trading account, check final stock and balance and display account.

Ask a demonstrator to check your list before proceeding. A copy of each header (the
function prototype) should be placed in the project header file, OurTradingHeader .h. Each
separate source file (e.g. OurTradingFunctionsl.cc) should also include a copy of this
header file.

14

6 Detailed Design, Implementation and Testing

6.1 Getting Started

After working through section 4 and 5 with your partner you are in a position to begin the
implementation. If you have not already done so, log onto the teaching system by typing
in your user identifier and password. Start the File Manager environment by typing:

start 1AComputinglent

The above command will create a directory called 1ATrading. This contains incom-
plete, but working copies of the following files:

1. A data file called tradingData.dat which contains the price data over the last 100
days.

2. A sample header file, OurTradingHeader .h, which contains the definitions of sample
data structures which should be used in the implementation of the solution.

3. A program file called OurTradingMain.cc which contains a sample main() routine.
This sample outlines the modules required and shows how they will be implemented
by calls to functions.

4. Two source files, OurTradingFunctionsl.cc and OurTradingFunctions2.cc, con-
taining the definitions of some of the functions that will be called from the main()
routine. Each partner will add the C++4 source code of the functions they implement
to these files.

This command will also set up a directory called 1ASoftwareDesign which can be read
and written to by members of your team. This directory will be used for testing the final
integrated product.

6.2 Detailed Design

Sections 7 and 8 give suggestions and details on the algorithms that need to be imple-
mented for each function and how to interface with the trading library routines. Read
section 7.1 or 8.1 and 8.2 now so that you can test the functions that have been imple-
mented for you already.

6.3 Testing an implemented function

Two functions have already been designed and implemented in C++ for you. The functions
ReadDataFile() and InitialiseAccount () are defined in the source files OurTradingFunctionsl.cc
and OurTradingFunctions?2.cc respectively.

You can test them by:

1. Source code in OurTradingFunctions

Check that the source code for the functions is in the project file OurTradingFunctionsl.cc
or OurTradingFunctions2.cc.

Make sure you understand the C++ source code of the function definitions and how
they use the data members of the data structures, data and account. Note that

15

6.4

the data structures are passed to the functions by reference. Ask a demonstrator for
help if you are unsure of any of the details.

. Declaring the function in the project header file

Check that a copy of the function header (function prototype) is in the project header
file OurTradingHeader.h.

. Adding a Function Call

Call the functions from the main () routine in the main project file, OurTradingMain.cc.
For example, by adding the statements:

ReadDataFile(data);
InitialiseAccount (TEST1, LABGROUP, account);

You will also have to declare the data structures that you will use (e.g. data and
account).

. Compiling and linking the project files using MAKE

Compile and link the project files (OurTradingMain. cc, OurTradingFunctionsl.cc
and OurTradingFunctions2.cc) using the Make button.

. Executing the binary

Run the program OurTradingMain and check that the two functions execute cor-
rectly.

Implementation of a function and unit testing

You are now ready to implement your first function (e.g. function to display the data
graphically). Follow these steps for each function that you implement:

1.

oo W

© »®» N>

Begin the implementation of each function by typing in the function header (a copy
should already have been included in header file) and opening and closing braces in
one of the source files, e.g. OurTradingFunctionsl.cc.

Type in the body of the function and check the syntax of each statement.
Mentally check that the function fits the requirements.
Compile the file containing the function definition and check for syntax errors.

Check that the function has been correctly declared (function prototype) in the
project header file, OurTradingHeader.h.

Call the function from the main() routine in OurTradingMain.cc.
Compile and link the project files using the MAKE button.
Run the executable OurTradingMain to test the algorithm implemented.

Proceed with the development cycle of editing, compiling and testing for syntactical
and logical errors.

16

7 Notes on Implementation of Functions of Part I

7.1 Reading from files

The following function uses an ifstream (input file stream) object called fin to read the
trading data from a file and store it in a user-defined data structure of type ModelData.
The data structure is passed by reference. The function definition has been placed in the
source file, QurTradingFunctionsl.cc

// Function that loads trading data from file
// Price data is stored in the y field of a structure of type ModelData
// Structure is passed by reference (&)

void ReadDataFile(ModelData &data)
{
char fileName[80] = "tradingData.dat";
int number = 100;
int i, day;
float price;

// Associate file name with fin object of class ifstream
ifstream fin;
fin.open(fileName) ;

// Prompt for new file name if not able to open
while(!fin.good())
{
cout << "Unable to open trading data file. Enter a new name: ";
cin >> fileName;
fin.open(fileName) ;

data.numPoints = number;
for(i=0; i< number; i++)
{
fin >> day >> price;
data.x[i] = day;
data.y[i] = price;
}

fin.close();

17

7.2 Displaying data with the Vogle library functions

The Vogle (Very Ordinary Graphics Learning Environment) graphics package provides
C++ functions for doing simple graphics and plotting data.
The function prototypes and an explanation of the parameters are listed.

e void vogleinit(float xlo, float xhi, float ylo, float yhi);
Creates a window with default background (WHITE), default foreground (BLACK)
and a default margin around the graph. The parameters specify the minimum and
maximum x and y values to be plotted.

e void xaxis(float xlo, float xhi, int nxticks, float y, float ticksize,
char title[], float labello, float labelhi);
Draw an axis between (xlo, y) and (xhi, y). The axis should have nxticks of
length ticksize, and a title (char array) which is placed under the axis. The
ticks themselves are labelled with values ranging from labello to labelhi.

e void yaxis(float ylo, float yhi, int nyticks, float x, float ticksize,
char title[], float labello, float labelhi);
Draw an axis between (x, ylo) and (x, yhi). The axis should have nyticks of
length ticksize, and a title (char array) which is placed at the side of the axis.
The ticks themselves are labelled with values ranging from labello to labelhi.

e void color(int color);
Options for color include BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE.

e void point2(float x, float y);
Draw a point at x, y.

e void move2(float x, float y);
Move graphics position to point (x, y).

e void draw2(float x, float y);
Draw from current graphics position to point (x, y).

e int getkey();
Return the character (ASCII ordinal) of the next key typed at the keyboard.

e void vexit();
Reset the window /terminal (must be the last Vogle function called).

An example of a program which uses these functions can be found in PlotNormal.cc in
the 1AC++Examples directory. The PlotResultsVogle () function can be easily modified
to display the trading data and linear model.

For example, to draw an x-axis at y=0.0 from x10=0 to xhi=100 with nxticks=6 ticks
at 0,20, ...100 and labelled with the text Day, the Vogle library function xaxis() can be
called with the following arguments:

xaxis(0, 100, 6, 0.0, 0.005, "Day", O, 100);

18

7.3 Method of Least Squares

The method of least squares can be used to fit a straight line y = a + bz to a discrete set
of data points (z1,41) ... (%n,yn) where n > 2. The values of the model, a and b, which
minimise the sum of the squares of the errors (measured in the y-direction) of the data
points to the straight line satisfy:

b = Y (1)
=1 =1

n n n
aY wi+by xp = > iy (2)
i=1 i=1 i=1

y =a+ bx

Figure 3: Method of Least Squares

Do not worry about the derivation of these equations. To determine the straight-line
(model) parameters, a and b, you will need to solve the two linear simultaneous equations
above after evaluating the sum of the x-values, y-values, 22 values and zy values (e.g. S,
Sy, Szo and Sy, respectively).

(SzaSy — SzSzy)
(nsxy — SxSy)
(nSyz — Sz Sz)

19

7.4 Analysis of Residual Errors

After fitting the straight line to the data, we can analyse the residual errors ¢;. The error
for each measurement, ¢;, is given by the difference between the measured value, y;, and
the prediction based on the model:

€ =y — (a+ bx;) (5)
The sample mean (x) and the sample variance (02) of the residual errors are given by:

1 n

n = EZEZ (6)
i=1

g =

(e — p)° (7)

n—l.l

n
9 1
1=

The mean should be approximately zero if the linear model fits the data correctly.
Use the fields (residual, mean and variance) of the ModelData structure to record the
residual errors (¢;), mean (u) and variance (02) respectively.

20

8 Notes on Implementation of Functions of Part II

8.1 Electronic trading library functions

The second part of the design exercise requires that you devise a trading strategy for the
next 50 days. Trading is to be carried out automatically under computer control. You will
need to call the following library functions to interface with a networked trading server
that handles buying and selling of the components:

1. TE_InitialiseTrading() — Establishes communication with the trading exchange
server and initialises an account for the 50 day trading period.

2. TE_GetPrice() — Gets the quoted price for the component (to be called at the
beginning of each day).

3. TE_Trade() — Makes a transaction (buying or selling an integer volume of compo-
nents).

4. TE_CloseTrading() — Closes the trading account and disconnects from the electronic
exchange. The function will return the final balance and stock at the end of the
trading period recorded by the exchange.

You do not need to know how these library functions have been implemented. You
are only required to understand how your program should interface with them. This
information is readily available from the function prototypes (found in the header file
trading.h and listed below) for the electronic trading library functions.

Below each prototype is a list of parameters. All these library functions return the
integer value of an exit (error) code which is set to TE_OKAY (i.e. 0) if the function execution
was successful. Any other return value indicates that an error has occurred.

1. Initialise trading

int TE_InitialiseTrading(int dataSet, int groupNo);

//

// Parameters list:

// dataSet Which set of prices to use? (TEST1, ... TEST10, FINAL)
// groupNo Lab Group Number

//

// Return values:

// TE_OKAY trading session initialised (no error)

// TE_ALREADY_CONNECTED already connected to server

// TE_AUTH_FAILED authorisation failed

2. Get today’s price

int TE_GetPrice(int day, float &price);
//

// Parameter list:

21

// day trading day, starting at 1

// price the price for today (passed back by reference)

//

// Return values:

// TE_OKAY price will be valid (no error)

// TE_NOT_CONNECTED you weren’t trading anyway

// TE_TOO_EARLY cannot look into the future! - you must

// make a transaction before incrementing the day.

3. Make a transaction

int TE_Trade(int transaction, int volume) ;

//

// Parameter list:

// transaction buy, sell or pass (TT_BUY, TT_SELL or TT_PASS)

// volume how many components to buy or sell (ignored for TT_PASS)
//

// Return values:

// TE_OKAY transaction succeeded (no error)

// TE_NOT_CONNECTED you weren’t trading anyway

// TE_NO_FUNDS insufficient funds to buy that many

// TE_NO_STOCK insufficient stock for sale

// TE_TOO_LATE you have already made a transaction today

4. Close trading account

int TE_CloseTrading(float &finalbalance, int &finalstock);

//

// Parameter list:

// finalbalance balance at close of trading (passed by reference)

// finalstock number of components held at close of trading (by reference)
//

// Return values:

// TE_OKAY balance and stock are valid

// TE_NOT_CONNECTED you weren’t trading anyway

Note that the parameters which are passed by reference (indicated by the symbol
& before the variable name in the function header) will have their values assigned or
changed by the library function. For example, to get the price on day=1 we can call the
TE_GetPrice() function:

ec = TE_GetPrice(day, price);

and check that the return value of the function is ec == TE_Q0OKAY.

22

8.2 Sample function to initialise trading account and handle exit code.

An example of the implementation of a function to initialise the trading account and to
establish a connection with the exchange is given below and listed in the file
OurTradingFunctions2.cc

The function is passed a data structure of type TradingAccount. The today data
member of the data structure is used to record the trading day (e.g. on the first trading
day today = 1). The other fields are used to record the price, transaction type (buy, sell
or pass), number of components bought/sold, stock at the end of each transaction and the
balance after each transaction. Trading can take place from day=1 to day=50.

The exit code (return value) of the library function is checked and an appropriate error
message is produced if a connection was not established. The system library function,
exit (), is used to terminate the program instead of the conventional return from the
main function. This forces the program to terminate after detecting an error in one of the
function calls.

The symbolic constants (integers) (e.g. TE_OKAY, TT_PASS) are defined in the following
sub-section using enumerations.

// Function to initialise trading account and connect to exchange
// Structure is passed by reference
void InitialiseAccount(int dataSet, int labGroup, TradingAccount &account)

{

int ec, day= O0;

// Set data members of TradingAccount structure for day = 0
account.today = day;

account.pricelday] = 20.0;

account.transaction[day] = TT_PASS;

account.volume[day] = O;

account.stock[day] = 0;

account.balance[day] = 20000.0;

// Call trading library function and handle exit (return) code
ec = TE_InitialiseTrading(dataSet, labGroup);

HandleExitCode(ec);

23

// Function definition to display error messages from trading exchange
// The program is terminated with exit(-1) if there is an error
void HandleExitCode(int errorCode)
{

switch(errorCode)

{

case TE_OKAY:
break;

case TE_FAIL:
cout << "Trading error: bad parameter." << endl;
exit(-1);

case TE_ALREADY_CONNECTED:
cout << "Trading error: already connected to server." << endl;
exit(-1);

case TE_NOT_CONNECTED:
cout << "Trading error: not connected to server." << endl;
exit(-1);

case TE_AUTH_FAILED:
cout << "Trading error: authorisation failed." << endl;
exit(-1);

case TE_TOO_EARLY:
cout << "Trading error: must agree price every day." << endl;
exit(-1);

case TE_TOO_LATE:
cout << "Trading error: transaction already made for today." << endl;
exit(-1);

case TE_NO_FUNDS:
cout << "Trading error: insufficient funds for purchase." << endl;
exit(-1);

case TE_NO_STOCK:
cout << "Trading error: insufficient stock for sale." << endl;
exit(-1);

default:
cout << "Trading error: trading system failure." << endl;
exit(-1);

24

8.3 MyTrader Function

For each day of the trading period (from day=1 to day=50) you are required to:

1. Get today’s price by calling the trading library function TE_GetPrice (). The quoted
price is passed back by reference.

2. Determine whether to buy, sell or not trade at this price (i.e. transaction-type) and
the volume of trading. This should be implemented with a call to a function which
will return the transaction type and the volume of trading. Begin with a simple
strategy to ensure the purchase of 1000 components.

3. Perform the transaction by calling the trading library function TE_Trade(). The
transaction must be one of TT_SELL, TT_PASS or TT_BUY. The volume must be an
integer.

4. Record the transaction by setting the price, transaction type, volume, stock and
balance entries in the account data structure.

This can be done by defining a function, for example MyTrader () below, which has
additional function calls.

void MyTrader(TradingAccount &account)

{
// Call library function to get today’s price
// Call user-defined function to decide on transaction and volume
// Call library function to trade
// Call user-defined function to update accounts
b

8.4 Closing the account and writing the records to a file

At the end of the trading period (on day 50) you should close the trading account by calling
the TE_CloseTrading() library function. The final balance and final stock recorded by
the electronic trading exchange will be returned by reference. You must compare these
values with the balance and stock entries for day 50 in your own records.

Call a function to record the accounts in a file (i.e. write a file, see lecture notes or
section 11.6 of the Tutorial Guide). Include price, transaction, volume, stock and balance
details for each day.

25

8.5 Definition of trading library constants using enumeration

The following symbolic constants are used in the electronic trading library functions. They
have already been defined for you using enumeration statements. These definitions are
found in the header file trading.h.

1. Trading error codes

enum TrError {
TE_OKAY = 0,
TE_FAIL,
TE_ALREADY_CONNECTED,
TE_NOT_CONNECTED,
TE_AUTH_FAILED,
TE_TOO_EARLY,
TE_TOO_LATE,
TE_NO_FUNDS,
TE_NO_STOCK,
TE_NUM_ERROR_CODES

};

The enumeration is simply assigning integer values (0 to 9) to the symbolic constants
(TE_OKAY,TE_NUM_ERROR_CODES). You should use the symbolic constant names
in your programs to make them more readable.

2. Training data sets

enum TrDataSet {
TEST1 = 1,
TEST2,
TEST3,
TEST4,
TEST5,
TEST6,
TEST7,
TESTS,
TEST9,
TEST10,
FINAL = -1

};

3. Transaction types

enum TrTransType {

TT_SELL = -1,
TT_PASS = O,
TT_BUY = 1

};

26

9 Integration, Final Testing and Evaluation

Integration of Part 1 and 2

The final program should integrate all the tested and working functions. When the func-
tions have been successfully tested the source file should be copied (shipped) to the team
directory, 1ASoftwareDesign. The two files containing the working functions
(OurTradingFunctionsl.cc and OurTradingFunctions2.cc) can be copied into the team
directory (1ASoftwareDesign) by dragging the program file icon in the file manager win-
dow (e.g. OurTradingFunctionsl.cc) onto the ship icon in the applications window.

The ship command delivers a copy of the file to the group directory where it can
be read and rewritten by any member of the team. You will also have to ship the
OurTradingHeader.h header file (after adding a complete list of function prototypes) and
the trading data file. You will have to create a new, integrated version of QurTradingMain.cc
to call all of the functions of the program.

Final Testing and Evaluation

10 sets of sample/training data are available for testing by calling TE_InitialiseTrading()
with the dataSet parameter set to one of TEST1, ...TEST10. Final testing will be on
unseen data and will only be available once for the final evaluation.

Record the final balance and average price obtained with each data set. In the final lab-
oratory session it will be executed on unseen data (with the same statistical characteristics
as the test data and historical data) with the dataSet parameter set to FINAL.

The performance of different groups on the same data will be compared. Four ad-
ditional marks will be awarded for the quality of the solution (including simplicity and
clarity), evidence of teamwork and the performance during evaluation on the unseen data
and on the test data.

10 Further Reading

The following references provide a comprehensive treatment of the C++ Programming
Language and useful tips on good programming practice.

1. C++ How to Program, Deitel, H.M and Deitel, P.J.
Prentice Hall, Englewood (NJ), 1994.

2. Code Complete: a Practical Handbook of Software Construction, McConnell, S.
Microsoft Press, 1993.

27

