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Spoken communication is a very rich communication medium 
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okay carl uh do you exercise yeah actually um i belong to a gym down here 
gold’s gym and uh i try to exercise five days a week um and now and then 
i’ll i’ll get it interrupted by work or just full of crazy hours you know 

ASR Output 
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Speaker1: / okay carl {F uh} do you exercise / 
Speaker2: / {DM yeah actually} {F um} i belong to a gym down here / 
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Written Text 
Speaker1:  Okay Carl do you exercise? 
Speaker2:  I belong to a gym down here,  Gold’s Gym, and I try to  
                  exercise five days a week and now and then I’ll get it  
                  interrupted by work or just full of crazy hours. 



Business Language Testing Service (BULATS) 
Spoken Tests 

•  Example of a test of communication skills 
A.  Introductory Questions: where you are from 
B.  Read Aloud: read specific sentences 
C.  Topic Discussion: discuss a company that you admire 

D.  Interpret and Discuss Chart/Slide: example above 
E.  Answer Topic Questions: 5 questions about organising a meeting 
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Speech Recognition Challenges 

•  Non-native ASR highly challenging 
•  Heavily accented 
•  Pronunciation dependent on L1 

•  Commercial systems poor! 

•  State-of-the-art CUED systems 

Training Data Word error 
rate 

Native & C-level  
non-native English 

54% 

BULATS speakers 30% 



Automatic Speech Recognition Components 

Language 
Model 

Acoustic 
Model 

Recognition 
Engine “The cat sat on …” 

Acoustic Model 
training data 

Language Model 
training data 

Pronunciation 
Lexicon 



Forms of Acoustic and Language Models 

L2 audio data L2 text data L1 text data 

+ L2 Acoustic 
Model 

L2 Language 
Model 

Used to recognise L2 speech 



Forms of Acoustic and Language Models 

L2 audio data L2 text data L1 text data 

+ L2 Acoustic 
Model 

L2 Language 
Model 

Used to recognise L2 speech 

Native (L1) 
audio data 

Native (L1)  
text data 

Native Acoustic 
Model 

Native 
Language Model 

Useful to extract features 



Deep Learning for Speech Recognition 

Speaker Dependent
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•  Fusion of HMM deep neural network and Gaussian mixture models  
•  trained on BULATS data 



Recognition Error Rate Versus Learner Progression 
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Baseline Features   

•  Mainly fluency based: 

•  Audio Features: statistics about 
•  fundamental frequency (f0) 
•  speech energy and duration 

•  Aligned Text Features: statistics about 
•  silence durations 
•  number of disfluencies (um, uh, etc) 
•  speaking rate 

•  Text Identity Features: 
•  number of repeated words (per word) 
•  number of unique word identities (per word) 



Speaking Time Versus Learner Progression 
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Pronunciation Features 

•  Hypothesis: poor speakers are weaker at making phonetic distinctions 
•  Statistical approach – learn phonetic distances from graded data 
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•  Pattern of distances different between candidates of different levels 
Candidate Grade A1 Candidate Grade C1 

•  Hypothesis: poor speakers are weaker at making phonetic distinctions 
•  Statistical approach – learn phonetic distances from graded data 
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•  Use automatic grader 
•  for grading practice tests/learning process 
•  in combination with human graders 

•  combination: use both grades 
•  back-off process: detect challenging candidates 



Gaussian Process Grader 

•  Currently have 1000s candidates to train grader 
•  limited data compared to ASR frames (100,000s frames) 
•   useful to have confidence in prediction 

Gaussian Process is a natural choice for this configuration  



Form of Output 

Graders Pearson Correlation 
Human experts 0.85 
Automatic GP 0.83 – 0.86 



Combining Human and Automatic Graders 

•  Interpolate between human and automated grades 
•  Higher correlation i.e. more reliable grade produced 

•  Content checking can be done by the human grader 
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Detecting Outlier Grades 

•  Standard (BULATS) graders handle standard speakers very well 
•  non-standard (outlier) speakers less well handled 
•  use Gaussian Process variance to automatically detect outliers 
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•  Back-off to human experts 
•  Reject 10%: performance 0.83 è 0.88  

Random rejection 

Ideal rejection 



Assessing Content 

•  Grader correlates well with expert grades 
•  features do not assess content – primarily fluency features 

•  Train a Recurrent Neural Network Language Model for each question 
•  assess whether the response is consistent with example answers 
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Spoken Language Assessment 

•  Automatically assess: 
•  Message realisation 

•  Fluency, pronunciation 

•  Message construction 
•  Construction & coherence of response 
•  Relationship to topic 
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Spoken Language Assessment 

•  Automatically assess: 
•  Message realisation 

•  Fluency, pronunciation 
Achieved (with room for improvement) 
•  Message construction 

•  Construction & coherence of response 
•  Relationship to topic 

Unsolved – active research areas 
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Spoken Language Assessment and Feedback  

Error Detection 
& Correction 

•  Automatically assess: 
•  Message realisation 

•  Fluency, pronunciation 

•  Message construction 
•  Construction & coherence of response 
•  Relationship to topic 

•  Provide feedback: 
•  Feedback to user: realisation, construction 
•  Feedback to system: adjust to level 

 
 

 

Feedback 



Recognition Error Rate Versus Learner Progression 



Time Alignment and Pronunciation Feedback 

•  Lightly supervised:  
•  No pronunciation labelling required – trained just on grades  



Conclusions 

•  Automated machine-learning for spoken language assessment 
•  important to keep costs down 
•  able to be integrated into the learning process  

•  Current level – assessment of fluency  
•  ongoing research into assessing communication skills:  

•  appropriateness and acceptability 

•  Error detection and feedback is challenging  
•  high precision required in detecting where errors have occurred 
•  supplying feedback in appropriate form for learner 
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