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DNNs for Speech Processing

Overview

• Part 1:

– Motivation
– Basics of Neural Networks
– Voice Activity Detection
– Automatic Speech Recognition

• Part 2:

– Neural Networks for ASR Features and Acoustic Models
– Neural Networks for Language Modelling
– Other Neural Network Architectures
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Motivation
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DNNs for Speech Processing

Speech processing sequence-to-sequence mapping tasks

Speech (continuous time series) → Speech (continuous time series)

– Speech Enhancement, Voice Conversion

Speech (continuous time series) → Text (discrete symbol sequence)

– Automatic speech recognition (ASR), Voice Activity Detection (VAD)

Text (discrete symbol sequence) → Speech (continuous time series)

– Text-to-speech synthesis (TTS)

Text (discrete symbol sequence) → Text (discrete symbol sequence)

– Machine translation (MT)
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DNNs for Speech Processing

Speech sequence-to-sequence mapping commonalities

• Variable length sequences

• Highly non-linear relationship

• Increasing quantities of data for training

– Google Now, Siri, Cortana have gathered 1000s of hours of audio
– A lot of the data is untranscribed or only has approximate labels

• Increasing diversity in the data

– broader range of speakers - accents, first language
– broader range of environmental noises

• Lots of room for improvement still!

Deep Neural Networks are very much part of the solution (cause?)
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DNNs for Speech Processing

(Deep) Neural Networks

• Neural networks have increasingly been applied in speech since 2009

– initially applied to speech recognition [1, 2, 3, 4]
– “Neural Networks” in title of 8% INTERSPEECH 2015 sessions:

feature extraction, modelling, speaker recognition, speech synthesis etc

• But we’ve been here before haven’t we?

– alternative to GMM-HMMs for ASR in 1980s/early 90s
e.g. [5, 6, 7, 8, 9, 10, 11]

X smaller footprint than GMM-HMM-based systems
× did not perform as well - limited context modelling, adaptation

• What’s changed?

– Significant increase in computing power: CPU and GPU
– Big data
→ More powerful networks:

more layers (deep) and finer targets (wide)
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DNNs for Speech Processing

Success of neural networks in ASR and TTS

• Speech recognition

– Systems from Google and IBM reported in [12]

Task Hours of % Word error rate (WER)
data HMM-DNN HMM-GMM HMM-GMM

w/ same data w/ more data

Voice Input 5,870 12.3 N/A 16.0
YouTube 1,400 47.6 52.3 N/A
Switchboard 300 12.4 14.5 N/A

Current best: Switchboard 10.4% using joint CNN/DNN and iVector features [13]

• Parametric speech synthesis [14]

– Speech samples kindly provided by Heiga Zen, Google
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DNNs for Speech Processing

Basics of Neural Networks
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DNNs for Speech Processing

Where it started

• Early work by MuCulloch and Pitts [15]

• The Perceptron (Rosenblatt) [16] (early 1960s)

Source: rutherfordjournal.org

R. Neurocomputing (Reading, Mass.: Addison−Wesley, 1990)

Source: Arvin Calspan Advanced Technology Center; Hecht−Nielsen

• Mostly halted by publication of “Perceptrons” by Minsky and Papert 1969 [17]

• Error back propagation training for multi-layer perceptrons mid 80s [18]
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DNNs for Speech Processing

Neural Network
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• Aim: map an input vector x into an output vector y

– Non-linear units “neurons” combined into one or more layers
– Intuition: each layer produces a higher level feature representation and

better classifier than its input
– Combine simple building blocks to design more complex, non-linear systems
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DNNs for Speech Processing

Hidden Layer Neuron

• Linearly weighted input is passed to a general activation function

• Assume n units at previous level (k − 1): x
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where φ() is the activation function

• Note: activation function could be linear BUT then linear net i.e. lose power!
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DNNs for Speech Processing

Traditional Activation Functions

• Sigmoid (or logistic regression) function:

yi(x) =
1

1 + exp(−zi)

Continuous output, 0 ≤ yi(x) ≤ 1

• Softmax (or normalised exponential or generalised logistic) function:

yi(x) =
exp(zi)

∑n
j=1 exp(zj)

Positive output, sum of all outputs at current level is 1, 0 ≤ yi(x) ≤ 1

• Hyperbolic tan (tanh) function:

yi(x) =
exp(zi)− exp(−zi)

exp(zi) + exp(−zi)

Continuous output, −1 ≤ yi(x) ≤ 1
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DNNs for Speech Processing

Activation functions
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• step activation function (green)

• sigmoid activation function (red)

• tanh activation function (blue)

Sigmoid or softmax often used at output layers as sum-to-one constraint enforced
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DNNs for Speech Processing

Possible Decision Boundaries
• Nature of decision boundaries produced varies with network topology

• Using a threshold (step) activation function:

(3)(2)(1)

1. Single layer: position a hyperplane in the input space (SLP)

2. Two layers: surround a single convex region of input space

3. Three layers: generate arbitrary decision boundaries

• Sigmoid: arbitrary boundaries with two layers if enough hidden units
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DNNs for Speech Processing

Number of Units per Layer

How many units to have in each layer?

• Number of output units = number of output classes

• Number of input units = number of input dimensions

• Number of hidden units - design issue

– too few - network will not model complex decision boundaries
– too many - network will have poor generalisation
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DNNs for Speech Processing

Training Criteria (1)

Variety of training criteria may be used.

• Assume we have supervised training examples

{{x1, t1} . . . , {xn, tn}}

• Compare outputs y with correct answer t to get error signal

• Least squares error: one of the most common training criteria

E =
1

2

n
∑

p=1

||y(xp)− tp)||
2

=
1

2

n
∑

p=1

K
∑

i=1

(yi(xp)− tpi)
2
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DNNs for Speech Processing

Training Criteria (2)

• Cross-Entropy for two classes: consider case when t is binary (softmax output)

E = −
n
∑

p=1

(tp log(y(xp)) + (1− tp) log(1− y(xp)))

Goes to zero with the “perfect” mapping

• Cross-Entropy for multiple classes:

E = −
n
∑

p=1

K
∑

i=1

tpi log(yi(xp))

– minimum value is non-zero
– represents the entropy of the target values
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DNNs for Speech Processing

Single Layer Perceptron Training (1)

• Consider single layer perceptron initially
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• Minimise (for e.g.) square error between target tp and current output y(xp)

• Least squares criterion with sigmoid activation function

E =
1

2

n
∑

p=1

(y(xp)− tp)
T(y(xp)− tp)) =

n
∑

p=1

E(p)

• Simplify notation: single observation x, target t, current output y(x)

Cambridge University

Engineering Department
17



DNNs for Speech Processing

Single Layer Perceptron Training (2)

• How does the error change as y(x) changes?
∂E

∂y(x)
= y(x)− t

BUT we want to find the effect of varying the weights

• Calculate effect of changing z on the error using the chain rule

∂E

∂z
=

(

∂E

∂y(x)

)(

∂y(x)

∂z

)

• What we really want is the change of the error with respect to the weights

– the parameters that we want to learn

∂E

∂wi
=

(

∂E

∂z

)(

∂z

∂wi

)
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DNNs for Speech Processing

Single Layer Perceptron Training (3)
• The error function therefore depends on the weight as

∂E

∂wi
=

(

∂E

∂y(x)

)(

∂y(x)

∂z

)(

∂z

∂wi

)

• Noting that (the bias term b can be treated as the d+ 1 element)

∂y(x)

∂z
= y(x)(1− y(x))

∂E

∂wi
= (y(x)− t)y(x)(1− y(x))xi

• In terms of the complete training set

∇E =

n
∑

p=1

(y(xp)− tp)y(xp)(1− y(xp))x̃p

• So for single layer can use gradient descent to find the “best” weight values
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DNNs for Speech Processing

Single Layer Perceptron Training - Review
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DNNs for Speech Processing

Error Back Propagation Algorithm
• Training Goal: minimise the cost between predicted output and target values

• Error back propagation [18] is an effective way to achieve this

with target to get

1
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y (x)k

Inputs

Layer
Output

Hidden Layers

Back−propagate error signal
to get derivatives for learning

Compare outputs

Feed−forward input values

error signal

x

Input
Layer

• Use Gradient Descent to optimise the weight values

– i.e. activation function must be differentiable
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DNNs for Speech Processing

Training schemes

Modes

• Batch - update weights after all training examples seen

• Sequential - update weights after every sample
Advantages:

– Don’t need to store the whole training database
– Can be used for online learning
– In dynamic systems weight updates “track” the system

• Mini-batch - update weights after a subset of examples seen
Practical compromise:

– Estimate based on more data than sequential
– Avoids expensive batch computation if poor current weight values
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DNNs for Speech Processing

Voice Activity Detection
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DNNs for Speech Processing

Voice Activity Detection

• Detect periods of human speech in an audio signal
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DNNs for Speech Processing

Samples from MGB Challenge 2015 [19]
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DNNs for Speech Processing

Voice Activity Detection

• Detect periods of human speech in an audio signal

SIL SPEECH SILSPEECHSILSIL SP

• Sequence classification task

– 2-class problem: speech or non-speech

• Standard approaches:

– Unsupervised - threshold against a value e.g. energy, zero-crossing rate
– Supervised - train a classifier with features such as MFCCs or PLPs

e.g. Gaussian mixture models (GMMs), support vector machines
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DNNs for Speech Processing

VAD stages

1. Feature extraction

• compact representation of signal
• “uncorrelated” to allow diagonal
covariance Gaussians

2. Decision making

• probability of being speech/non-
speech computed each frame

3. Hangover

• smooth decisions
• 2-state HMM in Viterbi decoding

Windowing

Signal

FFT

Mel Filterbank

DCT
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DNNs for Speech Processing

Gaussian Mixture Models

• Gaussian mixture models (GMMs) are based on (multivariate) Gaussians

– form of the Gaussian distribution:

p (x) = N (x;µ,Σ) =
1

(2π)
d/2 |Σ|1/2

exp

(

−
1

2
(x− µ)

T
Σ

−1 (x− µ)

)

• For GMM each component modelled using a Gaussian distribution

p (x) =

M
∑

m=1

P (cm)p(x|cm) =

M
∑

m=1

P (cm)N (x;µm,Σm)

– component prior: P (cm)
– component distribution: p(x|cm) = N (x;µm,Σm)

• Highly flexible model, able to model wide-range of distributions
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DNNs for Speech Processing

GMM-HMM based VAD

Source: Robust Speaker Diarization for Meetings, X.Anguera, Phd Thesis

X Work well under stationary noise conditions

× Do not generalise to diverse domains e.g. meetings, YouTube
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DNNs for Speech Processing

DNN based VAD

• Replace GMM probability density function in HMM with DNN output [20]

– First must convert output posteriors to likelihoods

p(xt|spch) =
P (spch|xt)p(xt)

P (spch)

x t−n

spchsil

x t+n

X Significantly more accurate in challenging environments

e.g. 20% frame-wise error rate on YouTube vs 40% GMM system [21]

Cambridge University

Engineering Department
30



DNNs for Speech Processing

DNN-based VAD - training considerations

• Input features

– Can use same MFCC or PLP features as for GMM
– Gains shown when extending context [21]
– Filterbanks show further gains [22]

• Targets

– Each training frame is tagged as speech/non-speech
– Following DNN training, data can be realigned including unlabelled data

• Example system: Cambridge University MGB Challenge 2015 VAD [22]

– Input: 40-d filterbanks, 55 frames (±27)
– Layers: 1000 × 2005 × 2
– Activation functions: sigmoid
– Targets: alignments derived from lightly supervised recognition
– Training criterion: frame-based cross-entropy (CE)
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Language Identification
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DNNs for Speech Processing

Automatic Speech Recognition
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DNNs for Speech Processing

Speech Production

Nasal Cavity

Tongue

Vocal Cords

Velum

Air from Lungs

Teeth

Lip

Oral Cavity

Pharynx

• Excitation source

– vocal cords vibrate producing
quasi-periodic sounds (voiced
sounds)

– turbulence caused by forcing air
through a constriction in the vocal
tract (fricative sounds)

• Acoustic tube

– articulators move:
alter the shape of the vocal tract
enable/disable nasal cavity

– co-articulation effect.

• Speech

– sound pressure wave.
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DNNs for Speech Processing

Automatic Speech Recognition - Theory

• Speech recognition based on Bayes’ Decision Rule

ŵ = max
w

{P (w|O)}

O = {x1, . . . ,xT} and w = {w1, . . . , wL}

• Two forms of classifier used:

– Generative model: model joint distribution p(O,w)

P (w|O) =
p(O,w)

p(O)
∝ p(O|w)P (w)

– Discriminative model: directly model posterior distribution P (w|O)

Machine Learning underpins all ASR systems
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DNNs for Speech Processing

Automatic Speech Recognition - Modules

Recognised 
Hypothesis

Model

Processing
Frontend

Lexicon

Language

Speech

Models

Algorithm

Acoustic 

Recognition

• Front-end processing: transforms waveform into acoustic vectors

• Acoustic model: probability of observations given a word sequence

• Lexicon: maps from word to phone sequence

• Language model: computes the prior probability of any word sequence

Statistical approaches used to combine information sources
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Front End Processing

Windowing

Signal

FFT

Mel Filterbank

DCT
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DNNs for Speech Processing

Acoustic Modelling

Nasal Cavity

Tongue

Vocal Cords

Velum

Air from Lungs

Teeth

Lip
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Pharynx

(a) Speech Production

2 3 4 5

o o o3 4 T2

12a

a a33

a a34 a

a22

23

44

45

oo1

b b
3 4() ()b2

1

()

(b) HMM Generative Model

• Not modelling the human production process!
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DNNs for Speech Processing

Hidden Markov Model “Production”

2 3 4 5
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3 4() ()b2

1

()

• State evolution process

– discrete state transition after each
“observation”

– probability of entering a state only
dependent on the previous state

• Observation process

– associated with each state is a
probability distribution

– observations are assumed
independent given the current
state

• Speech representation

– feature vector every 10ms
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Hidden Markov Model
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(c) Standard HMM phone topology

ot ot+1

t+1qqt

(d) HMM Dynamic Bayesian Network

• The likelihood of the data is

p(x1, . . . ,xT ) =
∑

q∈QT

P (q)p(x1, . . . ,xT |q) =
∑

q∈QT

P (q0)

T
∏

t=1

P (qt|qt−1)p(xt|qt)

q = {q0, . . . , qT+1} and QT is all possible state sequences for T observations

• Poor model of the speech process - piecewise constant state-space.
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DNNs for Speech Processing

HMM Acoustic Units
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DNNs for Speech Processing

State Tying - Decision Tree
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DNNs for Speech Processing

State Output Distribution: Gaussian Mixture Model

A common form of distribution associated with each state:

• the Gaussian mixture model (or mixture of Gaussians).

• linear combination of components

p(xt) =

M
∑

m=1

c(m)N (xt,µ
(m),Σ(m))

• Good modelling power:

– implicitly models variability

• No constraints on component choice 0
5
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DNNs for Speech Processing

HMM Training using EM

• Need to train HMM model parameters, λ, on 100s of millions of frames

– transition probabilities
– state output distribution

• Standard training criterion for generative models: Maximum Likelihood

Fml(λ) =
1

R

R
∑

r=1

log(p(O(r)|w
(r)
ref;λ))

– yields most likely model parameters to generate training data!

• Challenging to handle vast amounts of data

– Expectation Maximisation (EM) offers a solution
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DNNs for Speech Processing

HMM Training using EM

• EM an iterative scheme involving two stages:

– Expectation: accumulate statistics given current model parameters
– Maximisation: estimate new model parameters

• Update formulae for GMM state output distributions

µ
[l+1]
j =

∑T
t=1 γ

[l]
j (t)xt

∑T
t=1 γ

[l]
j (t)

Σ
[l+1]
j =

∑T
t=1 γ

[l]
j (t)xtx

T
t

∑T
t=1 γ

[l]
j (t)

− µ
[l+1]
j µ

[l+1]T
j

where

γ
[l]
j (t) = P (qt = sj|x1, . . . ,xT ,λ

[l])
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DNNs for Speech Processing

Advantages of EM training

• EM is one of the reasons GMM-HMM systems dominated for many years

– guaranteed not to decrease log-likelihood at each iteration
– expectation stage can be parallelised

• Parallelising the expectation stage crucial

– Enables handling of vast quantities of data
– Can distribute across many cheap machines

• Would like ASR system to run in real-time

– HMM structure enables this - Viterbi algorithm
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Language Model

NP

S

VP

NPV

Det N

ballthehitJohn

(e) Syntactic Parse Tree

P( John hit the ball ) =
P( John ) x
P( hit  | John ) x 
P( the | John hit ) x
P( ball| hit the )

(f) Trigram Model

• Syntactic/semantic information important

– but hard to model robustly (especially for conversational style speech)

• Simple n-gram model-used: P (w1w2...wn) ≈
∏n

i=1P (wi|wi−2wi−1)

– don’t care about structure - just the probability - discuss later
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Automatic Speech Recognition - Modules
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DNNs for Speech Processing

Recognition Algorithm - Viterbi

• An important technique for HMMs (and other models) is the Viterbi Algorithm

– here the likelihood is approximated as (ignoring dependence on class ω)

p(x1, . . . ,xT ) =
∑

q∈QT

p(x1, . . . ,xT , q) ≈ p(x1, . . . ,xT , q̂)

where

q̂ = {q̂0, . . . , q̂T+1} = argmax
q∈QT

{p(x1, . . . ,xT , q)}

• This yields:

– an approximate likelihood (lower bound) for the model
– the best state-sequence through the discrete-state space
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DNNs for Speech Processing

Viterbi Algorithm

• Need an efficient approach to obtaining the best state-sequence, q̂,

– simply searching through all possible state-sequences impractical ...

2 3 4 5

x x x3 4 72
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xx1

b b
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()

S
ta

te

Time

• Consider generating the observation sequence x1, . . . ,x7

– HMM topology - 3 emitting states with strict left-to-right topology (left)
– representation of all possible state sequences on the right
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DNNs for Speech Processing

Best Partial Path to a State/Time
S

ta
te

Time

• Red possible partial paths

• Green state of interest

• Require best partial path to state s4 at time 5 (with associated cost φ4(5))

– cost of moving from state s3 and generating observation x5: log(a34b4(x5))
– cost of staying in state s4 and generating observation x5: log(a44b4(x5))

• Select “best: φ4(5) = max {φ3(4) + log(a34b4(x5)), φ4(4) + log(a44b4(x5))}
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DNNs for Speech Processing

Viterbi Algorithm for HMMs

• The Viterbi algorithm for HMMs can then be expressed as:

– Initialisation: (LZERO= log(0))
φ1(0) = 0.0, φj(0) = LZERO, 1 < j < N ,
φ1(t) = LZERO, 1 ≤ t ≤ T

– Recursion:
for t = 1, . . . , T
for j = 2, . . . , N − 1

φj(t) = max1≤k<N {φk(t− 1) + log(akj)}+ log(bj(xt))

– Termination:
log(p(x1, . . . ,xT , q̂)) = max1<k<N {φk(T ) + log(akN)}

• Can also store the best previous state to allow best sequence q̂ to be found.
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DNNs for Speech Processing

Discriminative Training Criteria

• Bayes’ decision rule yields the minimum probability of error if:

– infinte training data
– models have the correct form
– appropriate training criterion

None of these are true for ASR!

• Motivates other discriminative criteria

– use discrimative criteria to train generative models
– ML people not that happy with use and term!

• Forunately schemes relared to EM can still be used

– large scale discriminative training common for ASR
– acoustic model still an HMM - Viterbi still possible
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DNNs for Speech Processing

Simple MMIE Example

• HMMs are not the correct model - discriminative criteria a possibility
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• Discrimnative criteria a function of posteriors P (w|O;λ)

– NOTE: same generative model, and conditional independence assumptions
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Discriminative Training Criteria

• Discriminative training criteria commonly used to train HMMs for ASR

– Maximum Mutual Information (MMI) [23, 24]: maximise

Fmmi(λ) =
1

R

R
∑

r=1

log(P (w
(r)
ref|O

(r);λ))

– Minimum Classification Error (MCE) [25]: minimise

Fmce(λ) =
1

R

R
∑

r=1



1 +





P (w
(r)
ref|O

(r);λ)
∑

w 6=w
(r)
ref

P (w|O(r);λ)





̺



−1

– Minimum Bayes’ Risk (MBR) [26, 27]: minimise

Fmbr(λ) =
1

R

R
∑

r=1

∑

w

P (w|O(r);λ)L(w,w
(r)
ref)
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MBR Loss Functions for ASR

• Sentence (1/0 loss):

L(w,w
(r)
ref) =

{

1; w 6= w
(r)
ref

0; w = w
(r)
ref

When ̺ = 1, Fmce(λ) = Fmbr(λ)

• Word: directly related to minimising the expected Word Error Rate (WER)

– normally computed by minimising the Levenshtein edit distance.

• Phone/State: consider phone/state rather word loss

– improved generalisation as more “errors” observed
– this is known as Minimum Phone Error (MPE) training [28, 29].

• Hamming (MPFE): number of erroneous frames measured at the phone level
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Summary of Standard ASR Systems

• HMMs

– efficiency of model training/decoding
– approximate approach to modelling the signal
– has limitations on features that can be used due to GMMs

• GMMs

– OK but make lots of assumptions about feature vector
- decorrelated and Gaussian
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[23] P.S. Gopalakrishnan, D. Kanevsky, A. Nádas, and D. Nahamoo, “An inequality for rational

functions with applications to some statistical estimation problems,” IEEE Trans. Information

Theory, 1991.

Cambridge University

Engineering Department
60



DNNs for Speech Processing

[24] P. C. Woodland and D. Povey, “Large scale discriminative training of hidden Markov models

for speech recognition,” Computer Speech & Language, vol. 16, pp. 25–47, 2002.

[25] B.-H. Juang and S. Katagiri, “Discriminative learning for minimum error classification,”

IEEE Transactions on Signal Processing, 1992.

[26] J. Kaiser, B. Horvat, and Z. Kacic, “A novel loss function for the overall risk criterion based

discriminative training of HMM models,” in Proc. ICSLP, 2000.

[27] W. Byrne, “Minimum Bayes risk estimation and decoding in large vocabulary continuous

speech recognition,” IEICE Special Issue on Statistical Modelling for Speech Recognition,

2006.

[28] D. Povey and P. C. Woodland, “Minimum phone error and I-smoothing for improved

discriminative training,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Orlando,

FL, May 2002.

[29] D. Povey, Discriminative Training for Large Vocabulary Speech Recognition, Ph.D. thesis,

Cambridge University, 2004.

Cambridge University

Engineering Department
61


