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Automated Language Teaching & Assessment Institute

• Virtual Institute for
cutting-edge research on non-native English assessment
• Machine Learning and Natural Language Processing
• Develop technology to enhance assessment and learning
• Look to benefit learners and teachers worldwide
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Spoken Language Assessment & Learning
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Spoken Language Assessment & Learning

• Automate (English) spoken language assessment & learning
• without simplifying/limiting form of test: “free speaking”
• possibility for richer, interactive, tests
• desire to assess communication skills
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CEFR - Levels of Foreign Language (L2) Learning

• Internationally agreed standard for assessing level
• Common European Framework of Reference (CEFR)

• Basic User
A1 - breakthrough or beginner
A2 - way-stage or elementary

• Independent User
B1 - threshold or intermediate
B2 - vantage or upper intermediate

• Proficient User
C1 - effective operational proficiency or advanced
C2 - mastery or proficiency
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Spoken BULATS (Linguaskill Business)

• Business Language Testing Service (BULATS) test
• includes: Reading and Listening, Speaking and Writing tests
• low-stakes test - Spoken test recorded and assessed off-line

• Example of a test of communication skills:
A Introductory Questions: your name, where you are from
B Read Aloud: read specific sentences
C Topic Discussion: discuss a company that you admire

D Interpret and Discuss Chart/Slide: example above
E Answer Topic Questions: 5 questions on organising a meeting
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Overview

• Assessment: spoken language assessment framework
• non-native speech recognition
• features for assessment
• form of classifier and uncertainty

• Feedback to candidate: integrate assessment and learning
• spoken “grammatical error” detection/correction

• Malpractice: detecting attempts to “game” the system
• off-topic response detection
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Assessment
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Assessment Framework [18]

Key Challenges:
• Input speech variability

• Speakers: large range of L1s, non-native speech, wide ability
• Recordings: varying background noises, channel corruptions
⇒ High word error rate (WER): propagates through system
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Automatic Speech Recognition [17, 2]

• Baseline Automatic Speech Recognition (ASR) yields:
• time aligned word/disfluencies/partial-word sequence
• time aligned phone/grapheme sequence
• word level confidence scores
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ASR System [17, 2]

• Deep-learning based ASR systems used:
• Kaldi-based lattice-free MMI acoustic models
• ensemble combination uses sequence teacher-student training
• rescoring with RNNLM and su-RNNLM based language models
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Grader features
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Baseline Grader Features [18]

• Baseline features mainly fluency based, including:

• Audio Features: statistics about
• fundamental frequency (F0)
• speech energy and duration

• Aligned Text Features: statistics about
• silence durations
• number of disfluencies (um, uh etc)
• speaking rate

• Text identity features
• number of repeated words (per word)
• number of unique word identities
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Baseline Features: Correlation with Grades

• Examine distribution of extracted features with grade
• example box-plots for speaking rate and percentage disfluencies
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Derived Features: Phone-Distances [13]

• Pronunciation is an important predictor of proficiency
• but no reference native speech for free speaking tasks

• Phone distance features are one approach

• each phone characterised relative to others
• independent of speaker attributes
• characterise speaker’s pronunciation of each phone
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Model-based Pronunciation Features [6]
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• Train Gaussian model for each phone x(i) and speaker s:
p(x(i)∣ωφ) = N (x(i); µφ
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• Compute relative entropy between each phone-pair Dφ,ψ(s)
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Model-based Pronunciation Features

Candidate Grade A1 Candidate Grade C1

• Pair-wise entropies used as features in grader
• yields small gains in assessment performance
• pattern is first language (L1) dependent

• General approach ⇒ tunable approach based on deep learning
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Siamese Network-based Phone Distances [3]

• Siamese networks map features to a meaningful distance space
• Train distances for classification

y = F (∣∣f (x i ; θ) − f (x j ; θ)∣∣)

• maps features x i and x j to new space
• parameters of mapping network the same θ

• Easy to define training targets
• y = 1 if x i and x j different classes
• y = 0 if x i and x j same class

• For phone-distance system
• can use KL-divergence targets
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Deep Learning Pronunciation Features [7]
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Grader

• Supervision data assessment is a score (0-6)
• assessment run as a regression task: p(y ∣x⋆; θ)
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Assessment: Gaussian Process [14, 16]

• Gaussian process
• non-parametric model based on joint-Gaussian assumption

• GP mean is used as the score prediction
• GP variance is a standard aspect of the model

• gives measure of confidence in assessment
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Deep Learning: Deep Density Networks [1, 9]

• Deep Density Networks predict parameters of a distribution

p(y ∣x⋆; θ) = N (y ; fµ(x⋆; θ), fσ(x⋆; θ))

• flexible framework for any form of distribution
• distribution variance gives measure of confidence in assessment
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Grader Uncertainty: Ensembles of DDNs [10]

• Generate distribution over distributions
• Ensemble diversity yields more reliable uncertainty estimates
• Sources of uncertainty can be split ⇒ better decision making
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Assessment System Performance

• Accurately annotated corpus for system development
• 220 speakers over 6 L1 languages (3 Asian, 3 European)
• accurate manual transcriptions, ASR evaluation (WER%)
• expert (CA) CEFR grading, grader evaluation

• Non-Native ASR: real-time decoding (non-RNNLM)
A1 A2 B1 B2 C Avg

Baseline ASR 33.8 27.7 21.2 19.9 16.5 21.3
+RNNLM 31.8 25.4 19.6 18.0 14.7 19.5

• “basic users” (A1/A2) highly challenging data

• Assessment: using complete test
PCC MSE %≤ 0.5 %≤ 1.0
0.888 0.31 68.2 94.2

• ≤ 1.0 indicates within one CEFR grade-level
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Performance Analysis
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Incorporating Assessment Uncertainty

• Use uncertainty measures to detect “high” error predcitions
• these can be tagged for manual checking
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Speak and Improve: https:speakandimprove.com

• Current beta of free speaking web-application
• collaboration between ALTA, Cambridge Assessment and

Industrial partners
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Feedback:
Spoken Learner

’Grammatical’ Errors
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Candidate Feedback

• Feedback to the candidate is important for language learning
• many aspects of spoken language contribute to overall grade
• performance on each aspect varies between candidates

• Message Realisation (Fluency):
• is the pronunciation correct?
• is the correct intonation pattern used?
• is the speech delivered in a coherent fashion?

• Message Construction:
• is the response relevant to the prompt?
• is the message grammatically correct (in speech context)?
• is the message using the appropriate vocabulary?
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Feedback Framework

• Key Challenges:
• speaker and speech variability

• wide range of abilities, L1-specific errors
• requires high precision but WER is high

• don’t want to give feedback on system errors
• lack of annotated data
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Grammatical Error Detection and Correction

Learner she say me what i should do it ...
GED c i c i c c c c ...
GEC she told me how i should do it ...

• Grammatical Error Detection (GED)
• standard sequence labelling problem

• Grammatical Error Correction (GEC)
• standard sequence-to-sequence translation problem
• no unique solution

• Lots of data for training GED/GEC systems for writing
⇒ fine-tune writing models to speech data
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Grammatical Error Detection (GED)

1 1x x </s>

word embedding

c i c

• Predict whether word is correct (c) or incorrect (i)
• initial word embedding followed by classifier
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Handling Rare/Missing Words [15]
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Spoken “Grammatical Error” Detection [5, 8]

• Problem for speech: no agreed grammar
• native speakers use non-grammatical constructs
• native speakers hesitate, repeat, false start etc

• Redefine task as
⇒ “feedback that is useful for spoken message construction”

• Some overlap with written GEC and GED, but not the same
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Modified Spoken GED Criterion [5, 8]

• Have to take impact of ASR into account

Learner she say me what i should do it ...
ASR she may me what i should do it ...
GED c i c i c c c c ...

GEDf c c c i c c c c ...
• Modified GED criterion (GEDf) - more challenging
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BULATS GED Performance [8]

• Significant drop from manual (MAN) to ASR transcriptions
• even after fine-tuning to limited spoken language data

• Can use ASR confidence to select high precision GED:
• useful information for feedback eg > 90% missed determiners
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Malpractice:
Off-Topic Response

Detection
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Relevance Detection

• Off-topic response (relevance) takes:
• wp: prompt (question) from script

wp={Discuss a company that you admire}
• w r : response from candidate derived from speech recognition

w r={Cambridge Assessment is wonderful, it ...}
and derives probability of relevance

P(rel∣w r ,wp)

• Two standard options for model:
• Generative Model of Responses
• Discriminative Model of Relevance
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Generative Model of Responses

t1pepsico
t1profit

t1rose
t1by

pepsico
profit
rose
by

• Prompt topic-adapted RNN Language Model
• Probability of relevance derived from:

P(rel∣w r ,wp) ≈ P(wp ∣w r) ≈ P(tp ∣w r) = P(w r ∣tp)P(tp)
∑i P(w r ∣ti)P(ti)
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Discriminative Response Model [12]

• Directly model the probability of relevance

P(rel∣w r ,wp)

• Split the process into sequence of steps:
1. wp → h̃

p
: prompt embedding

2. w r ∣h̃p → c r : response encoding (given prompt encoding)
3. P(rel∣w r ,wp) = P(rel∣c r) = f (c r): probability of relevance
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Attention-Based Model
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• The prompt embedding can be applied to any prompt

• naturally handles unseen (in training data) prompts
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Results: Seen & Unseen Prompts ROC Curves

• ROC curve for performance with Seen and Unseen prompts
• against balanced set of seen/unseen prompt responses
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Conclusions
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Conclusions

• Spoken language learning and assessment important
• increasing need for automated (and validated) systems

• Deep learning is central to current state-of-the-art systems
• all assessment and feedback stages make use of approaches

• The lack of annotated data is a big challenge
• very hard to annotate (and agree) spoken learner data
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