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Spoken Language Assessment & Learning
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= Automate (English) spoken language assessment & learning
= without simplifying/limiting form of test: “free speaking”
= possibility for richer, interactive, tests
= desire to assess communication skills




CEFR - Levels of Foreign Language (L2) Learning

= Internationally agreed standard for assessing level
= Common European Framework of Reference (CEFR)

= Basic User

A1l - breakthrough or beginner
A2 - way-stage or elementary

= Independent User

B1 - threshold or intermediate
B2 - vantage or upper intermediate

= Proficient User

C1 - effective operational proficiency or advanced
C2 - mastery or proficiency
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Spoken BULATS (Linguaskill Business)

» Business Language Testing Service (BULATS) test
= includes: Reading and Listening, Speaking and Writing tests
= low-stakes test - Spoken test recorded and assessed off-line
= Example of a test of communication skills:
A Introductory Questions: your name, where you are from
B Read Aloud: read specific sentences
C Topic Discussion: discuss a company that you admire

Results of survey of 1,250 Hotel Customers

number of customer responses.

D Interpret and Discuss Chart/Slide: example above
E Answer Topic Questions: 5 questions on organising a meeting




= Assessment: spoken language assessment framework
= non-native speech recognition
= features for assessment
= form of classifier and uncertainty

= Feedback to candidate: integrate assessment and learning
= spoken “grammatical error” detection/correction

= Malpractice: detecting attempts to “game” the system
= off-topic response detection




Assessment
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Assessment Framework [18]
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Key Challenges:
= Input speech variability

= Speakers: large range of L1s, non-native speech, wide ability
= Recordings: varying background noises, channel corruptions




Assessment Framework [18]
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Key Challenges:
= Input speech variability

= Speakers: large range of L1s, non-native speech, wide ability
= Recordings: varying background noises, channel corruptions
= High word error rate (WER): propagates through system




Automatic Speech Recognition [17, 2]
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» Baseline Automatic Speech Recognition (ASR) yields:

= time aligned word/disfluencies/partial-word sequence
= time aligned phone/grapheme sequence
= word level confidence scores
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ASR System [17, 2]

= Deep-learning based ASR systems used:
= Kaldi-based lattice-free MMI acoustic models
= ensemble combination uses sequence teacher-student training
= rescoring with RNNLM and su-RNNLM based language models
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Baseline Grader Features [18]

Baseline features mainly fluency based, including:

= Audio Features: statistics about
= fundamental frequency (FO)
= speech energy and duration
Aligned Text Features: statistics about
= silence durations
= number of disfluencies (um, uh etc)
= speaking rate
= Text identity features
= number of repeated words (per word)
= number of unique word identities
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Baseline Features: Correlation with Grades
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= Examine distribution of extracted features with grade
= example box-plots for speaking rate and percentage disfluencies




Derived Features: Phone-Distances [13]

= Pronunciation is an important predictor of proficiency
= but no reference native speech for free speaking tasks

= Phone distance features are one approach

a

= each phone characterised relative to others
= independent of speaker attributes
= characterise speaker’s pronunciation of each phone




Model-based Pronunciation Features [6]
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ASR phone alignment ASR phone alignment

= Train Gaussian model for each phone x() and speaker s:
p(xDlwy) = N (xD; ), £,))

= Compute relative entropy between each phone-pair D(M,(s)




Model-based Pronunciation Features
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= Pair-wise entropies used as features in grader

= vyields small gains in assessment performance
= pattern is first language (L1) dependent
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= Pair-wise entropies used as features in grader

= vyields small gains in assessment performance
= pattern is first language (L1) dependent

= General approach = tunable approach based on deep learning




Siamese Network-based Phone Distances [3]

= Siamese networks map features to a meaningful distance space

= Train distances for classification

p(cjj=1)

y = F ([[f(x;;0) - f(x;; 0)I)

= maps features x; and Xj to new space
= parameters of mapping network the same 6

= Easy to define training targets

= y=1if x; and x; different classes
= y=0if x; and x; same class

= For phone-distance system
= can use KL-divergence targets




Deep Learning Pronunciation Features [7]
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= Supervision data assessment is a score (0-6)

= assessment run as a regression task: p(y|x*;0)




Assessment: Gaussian Process [14, 16]

= Gaussian process
= non-parametric model based on joint-Gaussian assumption

Mean

Variance

Grade

Training data

Input features

= GP mean is used as the score prediction
= GP variance is a standard aspect of the model

= gives measure of confidence in assessment




Deep Learning: Deep Density Networks [1, 9]
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= Deep Density Networks predict parameters of a distribution

p(y|x*:0) = N(y; fu(x"; ), f:(x: 9))

= flexible framework for any form of distribution
= distribution variance gives measure of confidence in assessment




Grader Uncertainty: Ensembles of DDNs [10]

(c) Uncertain far from training data

= Generate distribution over distributions

= Ensemble diversity yields more reliable uncertainty estimates
= Sources of uncertainty can be split = better decision making




Assessment System Performance

= Accurately annotated corpus for system development
= 220 speakers over 6 L1 languages (3 Asian, 3 European)
= accurate manual transcriptions, ASR evaluation (WER%)
= expert (CA) CEFR grading, grader evaluation
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Assessment System Performance

= Accurately annotated corpus for system development

= 220 speakers over 6 L1 languages (3 Asian, 3 European)

= accurate manual transcriptions, ASR evaluation (WER%)
= expert (CA) CEFR grading, grader evaluation

» Non-Native ASR: real-time decoding (non-RNNLM)

| AL A2 Bl B2 C |Awg
Baseline ASR | 338 27.7 212 1909 165 | 21.3
+RNNLM | 318 254 196 180 147 | 195

= “basic users” (A1/A2) highly challenging data
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Assessment System Performance

= Accurately annotated corpus for system development
= 220 speakers over 6 L1 languages (3 Asian, 3 European)
= accurate manual transcriptions, ASR evaluation (WER%)
= expert (CA) CEFR grading, grader evaluation

» Non-Native ASR: real-time decoding (non-RNNLM)
| A1 A2 Bl B2 C |Ag
Baseline ASR | 33.8 277 21.2 199 165|213
+RNNLM 318 254 196 180 14.7 | 195

= “basic users” (A1/A2) highly challenging data

= Assessment: using complete test
PCC  MSE | %<05 %<1.0
0.888 0.31 | 68.2 94.2

= < 1.0 indicates within one CEFR grade-level
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Expert Predictions
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Incorporating Assessment Uncertainty
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= Use uncertainty measures to detect “high” error predcitions
= these can be tagged for manual checking




Speak and Improve: https:speakandimprove.com

Cambridge English
Speak&Improve

a research project

Practise
speaking
English with
me!

Get your grade and improve
it.

Start Speaking

It's free!

= Current beta of free speaking web-application
= collaboration between ALTA, Cambridge Assessment and
Industrial partners
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Feedback:

Spoken Learner
'Grammatical’ Errors
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Candidate Feedback

= Feedback to the candidate is important for language learning

= many aspects of spoken language contribute to overall grade
= performance on each aspect varies between candidates

» Message Realisation (Fluency):
= is the pronunciation correct?
= is the correct intonation pattern used?
= is the speech delivered in a coherent fashion?

= Message Construction:
= is the response relevant to the prompt?
= is the message grammatically correct (in speech context)?
= is the message using the appropriate vocabulary?




Feedback Framework
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= Key Challenges:
= speaker and speech variability
* wide range of abilities, L1-specific errors
= requires high precision but WER is high
* don’t want to give feedback on system errors

= lack of annotated data




Grammatical Error Detection and Correction

Learner ‘ she say me what i should do it
GED c i c i c c c c
GEC | she told me how i should do it

» Grammatical Error Detection (GED)
= standard sequence labelling problem
= Grammatical Error Correction (GEC)

= standard sequence-to-sequence translation problem
* no unique solution

NIVERSITY OF




Grammatical Error Detection and Correction

Learner ‘ she say me what i should do it
GED c i c i c c c c
GEC | she told me how i should do it

» Grammatical Error Detection (GED)
= standard sequence labelling problem
= Grammatical Error Correction (GEC)

= standard sequence-to-sequence translation problem
* no unique solution

» Lots of data for training GED/GEC systems for writing
= fine-tune writing models to speech data
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Grammatical Error Detection (GED)

word embedding

= Predict whether word is correct (c) or incorrect (1)
= initial word embedding followed by classifier




Handling Rare/Missing Words [15]

gating

character embedding

word embedding




Spoken “Grammatical Error” Detection [5, 8]

= Problem for speech: no agreed grammar

= native speakers use non-grammatical constructs
= native speakers hesitate, repeat, false start etc

= Redefine task as

= “feedback that is useful for spoken message construction”




Spoken “Grammatical Error” Detection [5, 8]

= Problem for speech: no agreed grammar

= native speakers use non-grammatical constructs
= native speakers hesitate, repeat, false start etc

= Redefine task as

= “feedback that is useful for spoken message construction”

= Some overlap with written GEC and GED, but not the same




Modified Spoken GED Criterion [5, 8]

= Have to take impact of ASR into account

Word Error Rate
g
*

Al A2 Bl B2 cCyc2 ’(“’"i,(b@é‘é o§°
Speaker Grade Word Class
Learner | she say me what i should do it
ASR | she may me what i should do it
GED c i c i c c c
GED;s c c c i c c c

» Modified GED criterion (GEDs) - more challenging

NIVERSITY OF




BULATS GED Performance [8]
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» Significant drop from manual (MAN) to ASR transcriptions
= even after fine-tuning to limited spoken language data

= Can use ASR confidence to select high precision GED:
= useful information for feedback eg > 90% missed determiners




Malpractice:

Off-Topic Response
Detection
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Relevance Detection

= Off-topic response (relevance) takes:
= wP: prompt (question) from script
wP={Discuss a company that you admire}

": response from candidate derived from speech recognition

" w
w’'={Cambridge Assessment is wonderful, it ...}

and derives probability of relevance

P(rellw", wP)

= Two standard options for model:

= Generative Model of Responses
= Discriminative Model of Relevance




Generative Model of Responses

. 5]
pepsico ~  profit rose by

= Prompt topic-adapted RNN Language Model
= Probability of relevance derived from:

" P(w'|t,)P(tp)

P(rellw", w”) ~ P(w”|w") ~ P(t,|w") =
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Discriminative Response Model [12]

= Directly model the probability of relevance
P(rellw’, wP)

= Split the process into sequence of steps:
1. wP > A" prompt embedding
2. wr|hp — ¢": response encoding (given prompt encoding)
3. P(rel|w’,wP) =P(rel|c") = f(c"): probability of relevance

NIVERSITY OF




Attention-Based Model

classifier

encoder

attention

w R

prompt embedding
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T=1

= The prompt embedding can be applied to any prompt

= naturally handles unseen (in training data) prompts
NIVERSITY OF
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Results: Seen & Unseen Prompts ROC Curves
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= ROC curve for performance with Seen and Unseen prompts
= against balanced set of seen/unseen prompt responses




Conclusions
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Conclusions

= Spoken language learning and assessment important
= increasing need for automated (and validated) systems

= Deep learning is central to current state-of-the-art systems
= all assessment and feedback stages make use of approaches

= The lack of annotated data is a big challenge
= very hard to annotate (and agree) spoken learner data




= Thanks to Cambridge Assessment, University of Cambridge,
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