

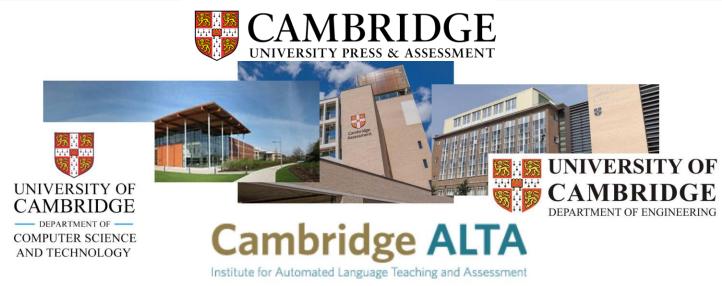
Automated Learning Teaching and AssessmentSpoken Language Processing Technology Project

Dr Mengjie Qian

ALTA Institute, Machine Intelligence Lab, Cambridge University Engineering Department

18th June 2024

Cambridge Automated Language Teaching and Assessment Institute



Virtual Institute for

cutting-edge research on second language (L2) English assessment

- Machine Learning and Natural Language Processing
- Develop technology to enhance assessment and learning
- Look to benefit learners and teachers worldwide

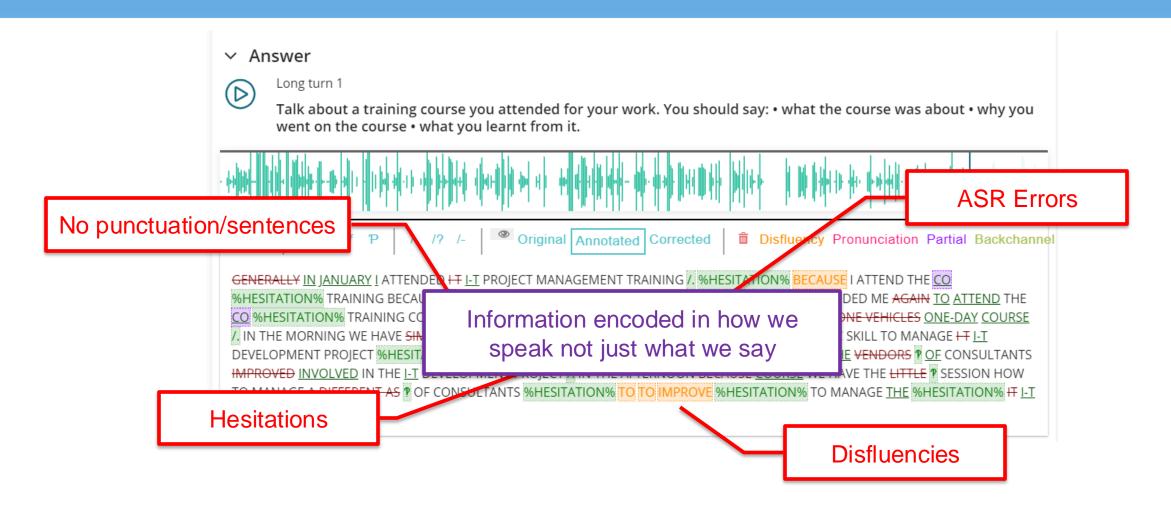
ALTA SLP Project Team

- Principal Investigators: Dr Kate Knill, Prof Mark Gales
- Postdocs: Dr Mengjie Qian, Dr Stefano Bannò, Dr Simon McKnight, Dr Hari Vydana
- Research Assistant: Siyuan Tang
- PhD students: Charles McGhee, Rao Ma, Yassir Fathullah, Adian Liusie, Potsawee Manakul, Vatsal Raina, Vyas Raina
- 4th year Engineering students

 Public webpage: http://mi.eng.cam.ac.uk/~mjfg/ALTA/index.html

Bold = (part)-funded by ALTA

L2 learner speech data is challenging!



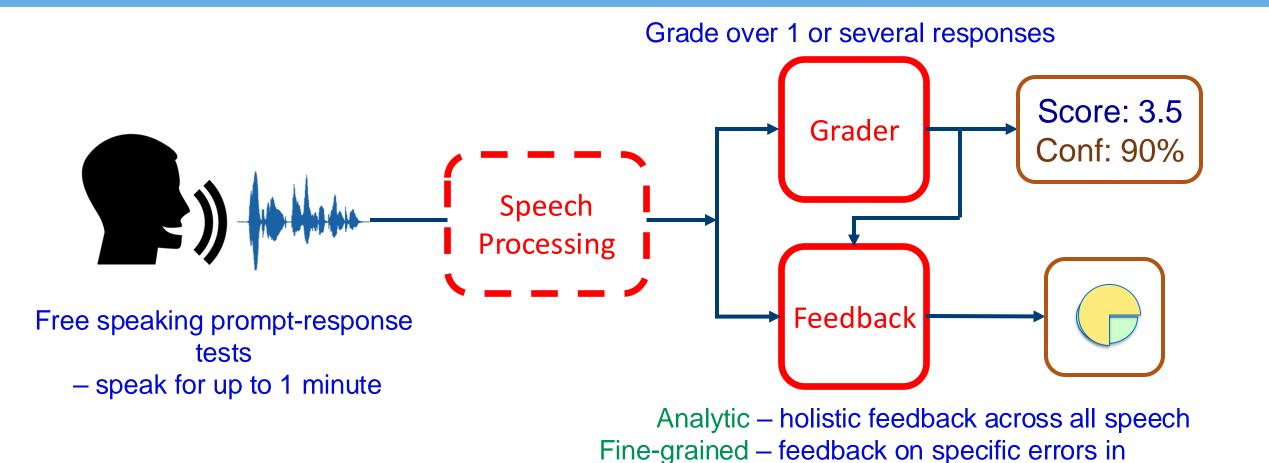
ALTA Spoken Language Processing Technology Project

>300k SUBMISSIONS April 2023

https://speakandimprove.com

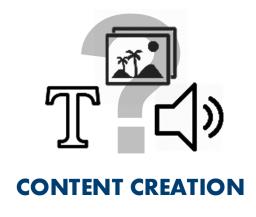
- Achieved through medium to long-term research at ALTA SLPTP
 - with technology transfer and collaboration with CUP&A and technology partners

Spoken Language Assessment and Feedback Pipeline



words/phrases

ALTA SLPTP Research Strands



Learner Oriented Feedback

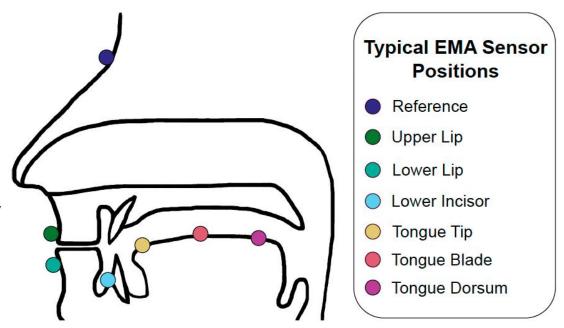
Pronunciation Training

Objective

 Show an English language learner movement of their tongue, lips and jaw to aid non-native (L2) speech sound acquisition

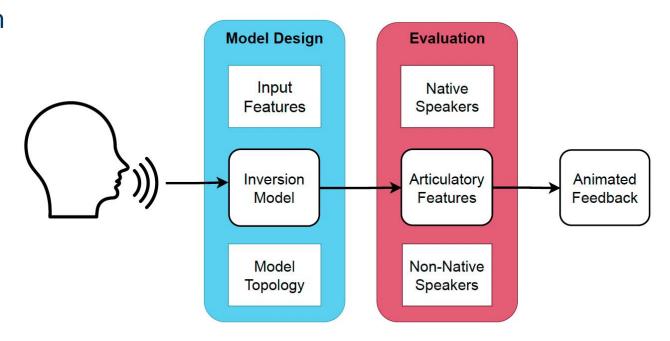
Problem

- Measuring articulatory movements with sensors, as in Electromagnetic Articulography (EMA), can be invasive and expensive
- EMA, ultrasound etc not suitable for general practice e.g. through web-based app



Pronunciation Training

- Solution (Charlie McGhee)
 - Use Acoustic-to-Articulatory Inversion
 (AAI) to predict articulatory features, such as EMA positions, from speech
 - Provide learner with animated feedback
- What we would like to learn about:
 - How best to animate?
 - What is most useful?
 - What to avoid?
 - Real-time or on playback?



McGhee, Charles, Kate Knill, and Mark Gales. "Towards Acoustic-to-Articulatory Inversion for Pronunciation Training." in *Proc. of Speech and Language Technology in Education (SLaTE)*. Workshop 2023.

Spoken Grammar Error Correction (Spoken GEC)

Objective

- Correcting errors within spoken language
- Typical approach:
 - step1: automatic speech recognition (ASR) system
 - step2: disfluency detection (DD) module
 - step3: GEC model

Written GEC:

- Original: Learning several languages is very better.
- Corrected: Learning several languages is way better.
- Spoken GEC:
 - Original: um learning several languages is very bi- better
 - Fluent: learning several languages is very better
 - Corrected: learning several languages is way better

Spoken Grammar Error Correction (Spoken GEC)

Cascaded system
 Audio
 Problem

Audio ASR
DD
GEC
Grammatically correct results

um learning several languages is very bi- better

BART Encoder

BART Decoder

learning several languages is way better

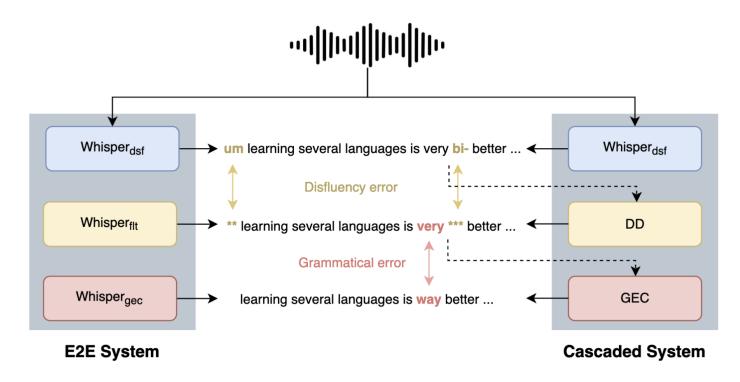
loss of information (emotion, intonation, etc.)

errors propagate in pipeline

training-evaluation mismatch

Spoken Grammar Error Correction

- Solution (Dr Stefano Bannò, Rao Ma, Mengjie Qian)
 - Whisper foundation model
 - Fine-tune to target targets
 - End-to-end spoken GEC
 - Translate audio to GEC text
 - Also
 - E2E disfluency detection and correction model
 - Disfluent speech recognition



Bannò, Stefano, et al. "Towards end-to-end spoken grammatical error correction." in ICASSP.

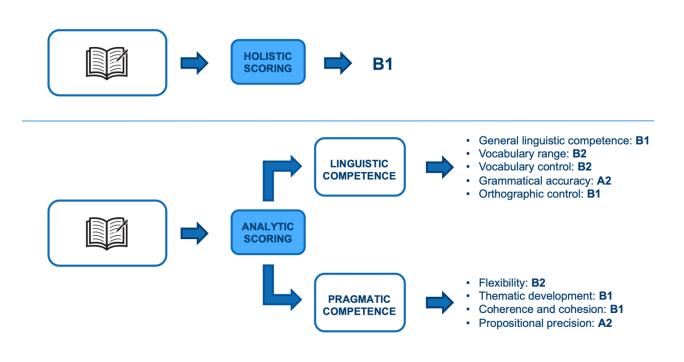
Can GPT-4 do L2 analytic assessment?

Objective

- Analytic assessment allows for a more detailed evaluation and more informative feedback
- Can enhance scoring validity

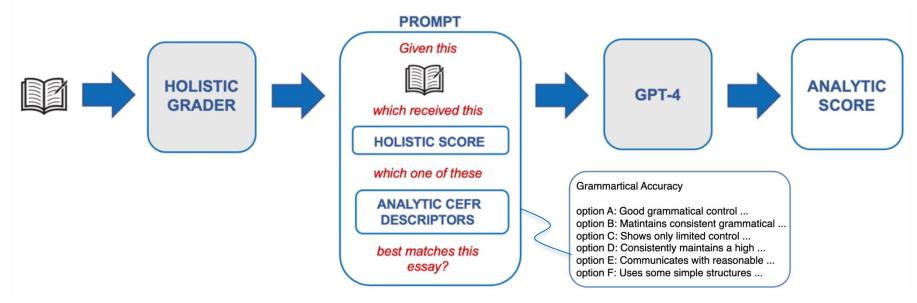
Problem

- Less time efficient and more cognitively demanding than holistic assessment
- Halo effect: raters may fail to distinguish between different aspects
- No L2 learner datasets annotated with analytic scores available



Can GPT-4 do L2 analytic assessment?

- Solution (Dr Stefano Bannò)
 - Extract information about analytic aspects from L2 learner essays and their assigned holistic scores using GPT-4?
- What we would like to learn about
 - Can GPT-4 perform L2 analytic assessment?



Bannò, Stefano, et al. "Can GPT-4 do L2 analytic assessment?." arXiv preprint arXiv:2404.18557 (2024).

Speaking Assessment

Comparative Assessment

- Objectives
 - Natural language generative assessment
 - Automatic Speech Recognition: Single reference

Neural Machine Translation: many valid references

你还好吗? — How are you?

Are you okay?

Summarization: Vast number acceptable summaries

Man enters burning house to save child Heroic person saves young boy

Home burns, child makes it out safe

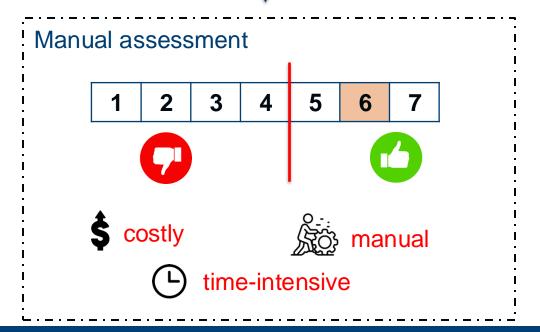
Comparative Assessment

News article: A G4S security van has been robbed outside a branch of royal bank of Scotland in Glasgow city centre. Police said three armed men took a five-figure sum from the vehicle in the city's Sauchiehall street on Monday at about 21:45. A spokesman said no-one had been injured [...]

Summary
Generation System

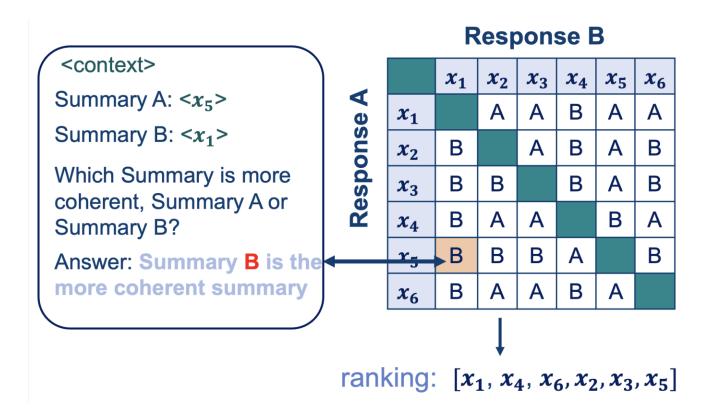
Summary: Two security guards have been threatened during a bank robbery in Scotland.

Can we replace manual evaluation with effective automatic methods?



Comparative Assessment

- Solutions (Adian Liusie, Potsawee Manakul)
 - Prompt LLM to make pairwise comparisons for NLG assessment
 - Debias
 - Win-ratio / average probabilities



Liusie, Adian, et al. "LLM comparative assessment: Zero-shot nNLG evaluation through pairwise comparisons using large language models." In *Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 139-151. 2024.

Core Technology

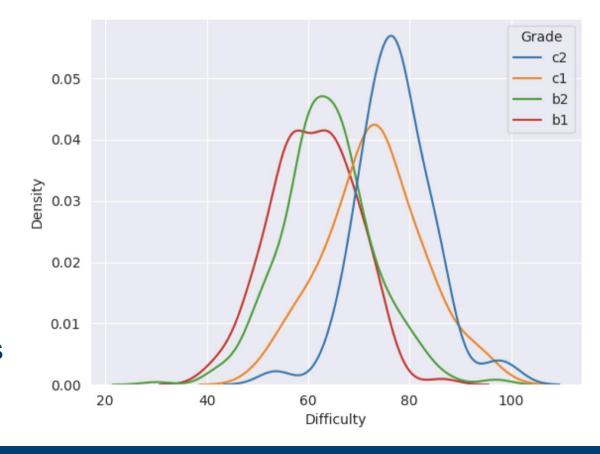
Question Difficulty Ranking

Objectives

- Multiple-choice (MC) tests are efficient to assess English learners
- Rank candidate MC questions by difficulty

Problems

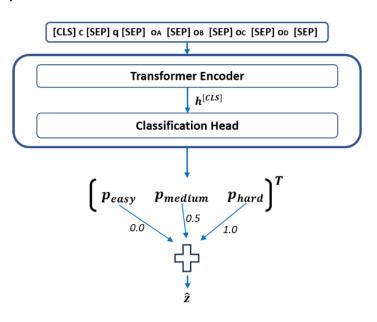
 Determining the difficulty level of questions with human test taker trials is expensive and not scalable



Question Difficulty Ranking

Solutions (Vatsal Raina)

Task transfer



Level Classification

Reading Comprehension

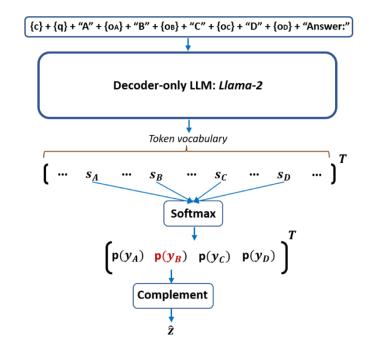
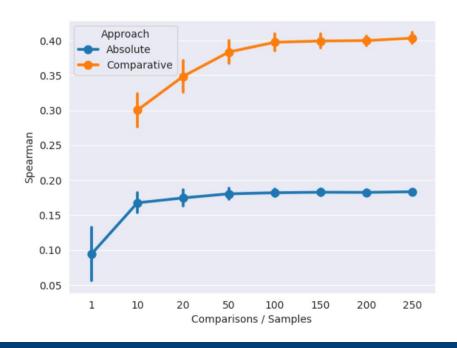


Figure 1: Task transfer for difficulty estimation with context, c, question, q and options, o.

Raina, Vatsal, and Mark Gales. "Question Difficulty Ranking for Multiple-Choice Reading Comprehension." arXiv preprint arXiv:2404.10704 (2024).

Question Difficulty Ranking

- Solutions (Vatsal Raina)
 - Zero-shot with ChatGPT



Absolute

{context}

{question}

A) {option_A}

B) {option_B}

C) {option_C}

D) {option_D}

Provide a score between 1 and 10 that measures the difficulty of the question. Return only a single score."

Comparative

l. Coonto

{context_1}

{question_1}

A) {option_A_1}

B) {option_B_1}

C) {option_C_1}

D) {option_D_1}

2:

{context_2}

{question_2}

A) {option_A_2}

B) {option_B_2}

C) {option_C_2}

D) {option_D_2}

Which reading comprehension question is more difficult, 1 or 2? Return only 1 or 2. ",

Conclusions

 ALTA SLP Technology Project aims to advance language assessment using Machine Learning and Natural Language Processing techniques

Research on speaking assessment, learner-oriented feedback, and core technology

• On-going work leverages foundation models to develop more robust and efficient approaches

Questions?

Thanks to:

Diane Nicholls and the Humannotator team at ELiT for Linguaskill Speaking annotations.

This presentation reports on research supported by Cambridge University Press & Assessment, a department of The Chancellor, Masters, and Scholars of the University of Cambridge.

ALTA SLPT Project publications can be found at: http://mi.eng.cam.ac.uk/~mjfg/ALTA/index.html

Appendix

SelfCheckGPT and CrossCheckGPT

Objectives

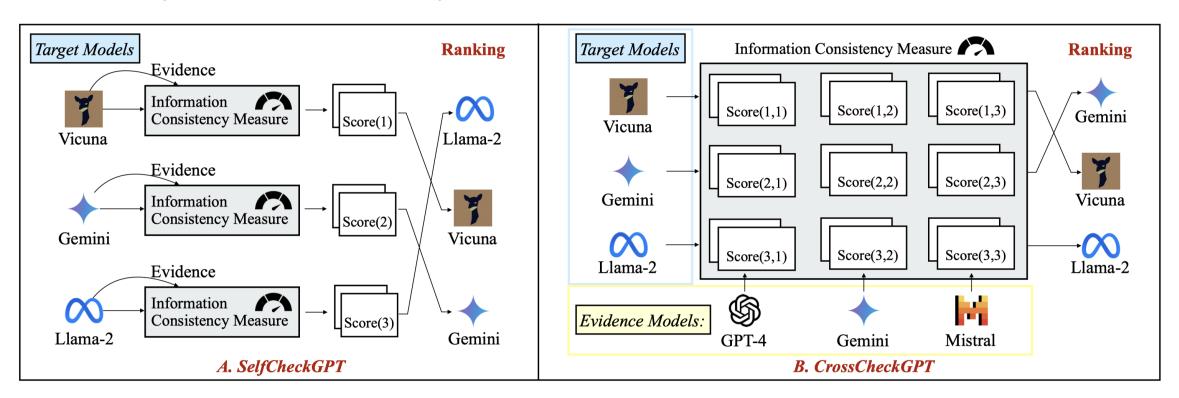
- Foundation models "hallucinate"
 - the generated outputs, while seemingly credible, are either inconsistent with the provided context or contradict established factual knowledge
- Quantify a system's susceptibility to hallucination

Problems

- Current benchmarks are designed for particular tasks
- Assume access to gold-standard labels

SelfCheckGPT and CrossCheckGPT

Solution (Potsawee Manakul)



Sun, Guangzhi, Potsawee Manakul, et al. "CrossCheckGPT: Universal Hallucination Ranking for Multimodal Foundation Models." arXiv preprint arXiv:2405.13684 (2024).

Emergent Audio Classification Ability of Whisper

Objective

- OpenAl whisper trained on ASR, speech translation tasks
- This a sound of *class_label*.
- Emergent ability of foundation speech models?

Zero-shot prompting of

Whisper models

The speaker is feeling *class_label*.

This is an audio of *class_label* music.

In the audio, *class_label* people are speaking.

Foundation ASR Model Acoustic Scene Classification

home / tram / office / ...

Vocal Sound Classification

cough / sniff / laugh / ...

siren / wind / dog / ...

Sound Event Classification

Emotion Recognition

angry / happy / sad / ...

Music Genre Classification

blues / jazz / pop / ...

Speaker Counting

0/1/2/3/4/5/...

Ma, Rao, et al. "Investigating the Emergent Audio Classification Ability of ASR Foundation Models." arXiv preprint arXiv:2311.09363 (2023).

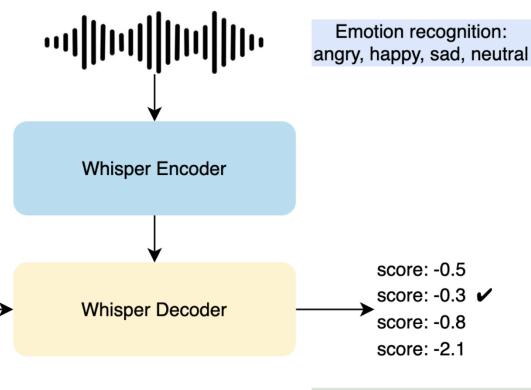
Solution (Rao Ma)

Emergent Audio Classification Ability of Whisper

Solution (Rao Ma)

Zero-shot prompting of Whisper models

The speaker is feeling *angry*.
The speaker is feeling *happy*.
The speaker is feeling *sad*.
The speaker is feeling *neutral*.



Model prediction: happy