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Abstract

With increasing global demand for learning English as a second language, there has been considerable interest in
methods of automatic assessment of spoken language proficiency for use in interactive electronic learning tools as
well as for grading candidates for formal qualifications. This paper presents an automatic system to address the
assessment of spontaneous spoken language. Prompts or questions requiring spontaneous speech responses elicit
more natural speech which better reflects a learner’s proficiency level than read speech. In addition to the challenges
of highly variable non-native, learner, speech and noisy real-world recording conditions, this requires any automatic
system to handle disfluent, non-grammatical, spontaneous speech with the underlying text unknown. To handle these,
a state-of- the-art speech recognition system is applied in combination with a Gaussian Process (GP) grader. A range
of features derived from the audio using the recognition hypothesis are investigated for their efficacy in the automatic
grader. The proposed system is shown to predict grades at a similar level to the original examiner graders on real
candidate entries. Interpolation with the examiner grades further boosts performance. The ability to reject poorly
estimated grades is also important and measures are proposed to evaluate the performance of rejection schemes. The
GP variance is used to decide which automatic grades should be rejected. Back-off to an expert grader for the least
confident grades gives gains.

Keywords: Automatic assessment of Spoken English, Spontaneous speech, Pronunciation, Gaussian process,
Rejection scheme

1. Introduction

There is a high demand around the world for the
learning of English as a second language. Correspond-
ingly, there is a need to assess the proficiency level of
learners both during their studies and for formal quali-
fications. Given the vast number of non-native speakers
combined with its overt status as the business language
of choice nowadays, there are universally accepted tests
such as International English Language Testing System
(IELTS) and Test of English as a Foreign Language
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(TOEFL). These tests often include listening, speaking,
reading and writing sections that are marked by well-
trained human examiners who assign a score based on a
set of guidelines. To meet demand from English learn-
ers, the introduction of automatic graders for spoken
language assessment would be beneficial especially for
practice situations. The goal of an automatic grader is to
assess language competence and provide scores reflect-
ing the quality of the response from the candidates in a
manner emulating the accuracy that could be achieved
by a human grader. This could be fully automatic or
combined with a human grader to boost the reliability
of the system [1].

Compared to human graders, automated graders po-
tentially perform more consistently and offer faster
feedback times at a fraction of the marginal cost since
the process of hiring and training new expert graders is
costly and only offers a small increase in throughput.
Figure 1 shows the architecture of a typical automatic
assessment system for spoken language [2, 3, 4, 5, 6, 7].
Audio alone does not contain sufficient information to
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Figure 1: Architecture of a typical automatic assessment system for
spoken language assessment.

represent the candidates’ English proficiency. Most
automatic assessment systems contain an automatic
speech recognition (ASR) system. This allows infor-
mation from the word or phone sequences to be ob-
tained from the spontaneous and unstructured speech.
The extracted features are then used to train a grader to
give a score. Thus, the performance of the ASR sys-
tem is of great importance to the entire automatic as-
sessment system. The challenges of designing an au-
tomatic spoken language assessment system are mul-
tifold. First, the speech to be scored should contain
spontaneous sections instead of simply be readings of
a known text. This introduces difficulties to the ASR
system because spontaneous speech normally contains
disfluencies such as false starts, hesitations and partial
words. Second, spontaneous speech contains grammati-
cal errors and first language (L1) accents which depends
on the first language of the candidates. Third, the lev-
els of background noise and volume levels of the audio
recordings are likely to vary by a large amount. These
challenges make it hard for the ASR system to produce
high quality transcriptions.

A number of approaches have been proposed to as-
sess different aspects of a learner’s spoken language
proficiency. In [2], an automatic pronunciation scor-
ing method for Dutch was proposed by using features
such as acoustic scores from a Hidden Markov Model
(HMM), durations of words and phones, and informa-
tion about pauses, prosody and syllable structure. This
method was evaluated on reading utterances from non-
native speakers of Dutch. Using similar features, the
Stanford Research Institute (SRI) introduced a system
for automatic assessment of the pronunciation quality,

namely EduSpeak, in [4]. The system used an ASR sys-
tem which had been adapted to non-native speech in or-
der to reduce acoustic mismatch and it was evaluated
on a read aloud corpus. Unlike [2] and [4] which score
reading texts from candidates, the Educational Testing
Service (ETS) presented an automatic assessment sys-
tem, namely SpeechRater, in [7, 8] with a view to elicit
spontaneous speech from the candidates instead of only
text reading or repetitions. The first component of this
system was a filter which was applied to reject record-
ings which were not gradable. In addition to the au-
dio features and fluency features used in [2] and [4],
the system in [8] also exploited features that are related
to pronunciation, grammatical accuracy and ASR con-
fidence. This system was shown to give a correlation
of 0.7 with human scores on a dataset from the Test of
English as a Foreign Language (TOEFL) which con-
tains candidates’ responses to both textual and audio-
visual stimuli. Apart from the phonetic features that are
exploited in the SpeechRater system, phonetic features
can also be extracted directly from the spectrum of the
speech [9, 10] or from phonetic models [11, 12]. In [11]
and [12], monophone acoustic models were trained to
represent each vowel phoneme in the utterance and the
Bhattacharyya distances between the distributions of
each pair of vowels was used as features for the grader.

With the advent of deep neural networks (DNN) in
speech recognition [13], a number of automatic assess-
ment systems that deploy DNN based speech recogni-
tion systems have been proposed [14, 15, 16, 17, 1]. For
example, in [14] the DNN-based ASR system gave 31%
relative word error rate (WER) reduction on the data
from the Arizona English Language Learner Assess-
ment (AZELLA) test, which is composed of a variety
of spoken tasks developed by professional educators.
The use of this ASR system gave an increase in the final
grader performance in terms of machine-human correla-
tion from 0.795 to 0.826. Speaker adaptation can further
improve ASR which can lead to improved grader per-
formance, [1] applied linear transforms and [18] used
i-vector based speaker adaptation.

In this paper, an automatic assessment system for
spontaneous speech of English language learners is pro-
posed using data from the Business Language Testing
Service (BULATS) Online Speaking Test of Cambridge
English Language Assessment. In the proposed system,
a state-of-the-art deep learning based ASR system is
used. From the ASR system an set of audio and fluency
features that extends the features in [1] are extracted. In
addition to this set of features and the confidence fea-
tures that are widely used in [2, 3, 4, 5, 6, 7], in this
paper the use of two new features related to grammar
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and pronunciation is explored. For each feature set, a
Gaussian Process (GP) is trained on the new set of fea-
tures. As well as predicting the candidate’s score, the
GP variance is also used in scheme to reject potentially
erroneous predicted scores. To assess the performance
of the rejection scheme, in this paper two measures are
used. One is associated with a particular operating point
of an existing measure. The other one gives an overall
rejection performance score.

The paper is organized as follows. Section 2 will in-
troduce the BULATS test. Section 3 will describe the
state-of-the-art ASR system. Section 4 will introduce
the features which are used to train the automatic grader.
Section 5 will describe the automatic grader and the re-
jection of scores. Finally Section 6 will give the experi-
mental results and Section 7 will give conclusions.

2. Data

2.1. BULATS data

Business Language Testing Service (BULATS),
which is provided by Cambridge English Language As-
sessment, is a multilingual set of workplace language
assessment, training and benchmarking tools that is
used internationally: for business and industry recruit-
ment; to identify and deliver training; for admission to
study business-related courses; and for assessing the ef-
fectiveness of language courses [19]. The BULATS test
has five sections, all with material appropriate to busi-
ness scenarios [20]. The first section (A) contains eight
questions about the candidate and their work (e.g. “How
do you use English in your job?”). The second section
(B) is a read-aloud section in which the candidates are
asked to read eight sentences. The last three sections (C,
D and E) have longer utterances of spontaneous speech
elicited by prompts. In section C the candidates are
asked to talk for one minute about a prompted business
related topic. In section D, the candidate has one minute
to describe a business situation illustrated in graphs or
charts, such as pie or bar charts. The prompt for sec-
tion E asks the candidate to imagine they are in a spe-
cific conversation and to respond to questions they may
be asked in that situation (e.g. advice about planning
a conference). The last three sections are the most in-
teresting from an automatic assessment perspective as
they consist of unstructured, spontaneous speech at the
level of multiple sentences. Each section is scored be-
tween 0 and 6; the overall score is therefore between 0
and 30. These can be binned into CEFR (Common Eu-
ropean Framework of Reference) ability levels A1, A2,
B1, B2, C1, and C2 [21] as detailed in Table 1.

Table 1: Equivalence between BULATS scores and CEFR levels.
BULATS score range Level description CEFR level

29-30 Upper advanced C2
25-28.5 Advanced C1
20-24.5 Upper intermediate B2
15-19.5 Intermediate B1
10-14.5 Elementary A2
5-9.5 Beginner A1

Correct

Crowd-sourcer 1 Crowd-sourcer 2

Speech recogniser

Figure 2: Venn diagram of combining transcriptions: most errors
are different between ASR and crowd-sourcers, and between crowd-
sourcers.

2.2. Transcription generation

A significant factor for the performance of a speech
recogniser is the quality of the transcriptions of the
training data. Transcribing non-native speakers’ En-
glish is highly challenging even for professional tran-
scribers [22]. Compared to obtaining professional man-
ual transcriptions, crowd-sourcing is much cheaper (for
the transcriptions used in this work, by a factor of 10),
and has produced results not much worse than profes-
sionals [23, 24]. In this work, two independent crowd-
sourced transcriptions for each utterance are combined
using the method proposed in [22]. The idea behind
this method is illustrated as a Venn diagram in Fig-
ure 2. The ellipse in the middle stands for the cor-
rect (gold-standard) transcriptions, which are unavail-
able. Three different types of transcriptions, from two
crowd-sourcers and one ASR system, overlap with the
gold-standard transcriptions, but also have different er-
rors. Thus, the intersection between the different tran-
scriptions is of a higher quality than any single tran-
scription. The idea is to use a ASR system to constrain
the hypotheses using the word network that is gener-
ated from the combination of transcriptions. In this way
the speech recogniser is forced to find a consistent hy-
pothesis in the network. This method was found in [22]
to give a transcription WER of around 28% when com-
bining two crowd-sourced transcriptions, which is about
21% relative better than a modified Rover combination
algorithm [25].
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Figure 3: Joint decoding speech recognition system used in this paper.
The Bottleneck (BN) DNN is trained for extracting features, which
are then combined with the plp features to train a GMM-HMM sys-
tem (Tandem system) and DNN-HMM system (Hybrid system). Joint
decoding of the two systems is performed by combining the likelihood
at frame level.

3. Speech Recognition System

The first stage of the proposed automatic assess-
ment system is a ASR system. As stated in Section 1,
ASR systems have more trouble processing sponta-
neous speech than prepared speech such as read-aloud
speech. In this work, a state-of-the-art joint decoding
system, which is illustrated in Figure 3, has been imple-
mented. The joint system consists of a speaker adapted
Tandem GMM-HMM system [26] and a stacked Hybrid
system [27]. Both the Tandem and Hybrid systems are
discriminatively trained.

The systems are trained on data from BULATS con-
sisting of about 108 hours of audio (1075 Gujarati L1
speakers) using the HTK toolkit [28, 29]. Transcrip-
tions for the data are obtained by combining two crowd-
sourced transcriptions using the algorithm described in
Section 2.2.

Transformed features are needed for both Tandem
and stacked Hybrid systems. A bottleneck (BN) DNN
is trained with context-dependent state targets on the
AMI meeting corpus [30]. The AMI database is se-
lected because it is a larger dataset comprising (mostly)
non-native English speakers and the dataset is manu-
ally transcribed, thus making the DNN training more
robust. The BN DNN has a structure 720 × 10004 ×

39 × 1000 × 6000. The input to the DNN consists of
9 consecutive frames of 40-dimensional filterbank fea-
tures with delta appended to each frame feature. This
yields an input vector size of 720. The BN DNN is
first pre-trained with context-dependent targets gener-
ated by aligning the training data with a Perceptual Lin-
ear Prediction (PLP) feature trained GMM-HMM sys-
tem. The pretrained model is then fine tuned using

the frame-level cross-entropy (CE) criterion. The 39
dimensional bottleneck features are then extracted for
BULATS data and transformed using a global semi-tied
covariance matrix [31]. The transformed BN features
are appended to 39-dimensional heteroscedastic linear
discriminant analysis (HLDA) [32] projected PLP fea-
tures with ∆, ∆2 and ∆3 . Cepstral mean normalisation
(CMN) and cepstral variance normalisation (CVN) are
applied at the speaker level. This yields a per-frame fea-
ture vector of dimension 78 for input to the tandem and
hybrid models.

Two sets of Tandem GMM-HMM models are con-
structed. One is a speaker-independent (SI) model
which is trained using the minimum phone error (MPE)
criterion [33]. The other is a speaker-dependent model
which is built using Speaker Adaptive Training (SAT).
SAT is performed using constrained maximum like-
lihood linear regression (CMLLR) on the input fea-
tures [34], followed by discriminative training using the
MPE criterion [35]. The CMLLR transforms are esti-
mated using the hypotheses produced by the Tandem
SI models. Each tandem model set has approximately
6000 context-dependent states, with an average of 16
Gaussians components per state.

The Hybrid HMM system uses a DNN to estimate
the posterior probabilities of the states of the HMM.
The input to the stacked Hybrid DNN is a concatena-
tion of 9 consecutive transformed bottleneck and PLP
feature vectors. This gives a total input size of 702. The
DNN has a structure of 702 × 10005 × 6000. Its output
targets are context dependent states from the BULATS
data. The number of states and decision tree for state
tying are the same as the Tandem systems. Initialisation
is performed using discriminative layerwise pre-training
with context-dependent targets generated by aligning
the training data with the Tandem SAT system. The pre-
trained model is then fine-tuned using the frame-level
CE criterion. Sequence discriminative training using the
MPE criterion is then applied.

In this work, a joint decoding algorithm is used [36].
It combines the Tandem and stacked Hybrid system at
the frame level. The advantage of this joint approach
is that it can leverage the strengths of both systems
without needing to generate decoded transcriptions or
lattices for each system. This makes it more efficient
at decoding time. During decoding, each observation
log-likelihood is calculated as the weighted sum of the
log-likelihoods from the tandem system and hybrid sys-
tem. The weights for the Tandem systems are set to
0.25 and those for the stacked Hybrid system are set
to 1.0. This combined acoustic score is then used in
Viterbi decoding. A Kneser-Ney trigram LM is trained
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on 186K words of BULATS test data and interpolated
with a general English LM trained on a large broadcast
news corpus, using the SRILM toolkit [37]. The joint
decoding system gives WER 30.8% on a manually tran-
scribed held-out test set from BULATS, using a trigram
language model for decoding. Compared to the ASR
system used in [1], this system gives about 18% relative
improvement in WER.

4. Grader Features

The automatic grader used in this work has the ar-
chitecture shown in Figure 1. A set of audio and flu-
ency related features [1] are used as the baseline in-
put feature set (Section 4.1). Extensions to this set
based on ASR confidence scores, statistical parser out-
put and pronunciation scores are also considered in Sec-
tions 4.2, 4.3, 4.4 respectively.

4.1. Audio and fluency features

Similar to a number of other systems, including [2,
4, 7, 8], the baseline grader uses a series of features
based on the speaker’s audio and fluency. Examples
of the features used are shown in Table 2. Audio fea-
tures are extracted directly from the audio signal. Flu-
ency features are derived from the speech recognition
system hypothesis, time aligned to the audio. Proxies
for speaker fluency, such as the speaking rate and mean
duration of words and silences, are computed. The Pear-
son correlation coefficients (PCC) in the right-hand col-
umn of Table 2 shows the correlation of individual fea-
tures with score measured on the spontaneous speech
sections of the BULATS data. A number of the individ-
ual features show high correlation with the scores, the
remainder have been found to contribute to grader per-
formance when used in combination with other features.
Compared to the audio features that are used in [1], in
this work 5 new features were added relating to disflu-
encies, recording duration and vowel frequency, leading
to a 33-dimensional feature set for baseline grader train-
ing.

4.2. Confidence features

The ASR system can provide scores of how confident
the system is that a word, phone or utterance has been
correctly recognised. Assuming that the speech was in-
vocabulary, low confidence is likely to be the result of
a poor acoustic match resulting from an unclear or in-
correct pronunciation and/or strong L1 accented speech.
Additionally, low confidence can also be the result of
grammatical errors and disfluencies which make ASR

Table 2: Sample of input features for the baseline grader and their
Pearson correlation coefficient (PCC) with scores on the training data.

Item Feature PCC
Audio features

Energy mean -0.05
standard deviation -0.03
Fluency features

Silence duration mean -0.34
duration standard deviation -0.52

Long silence duration mean -0.52
Words number 0.70

frequency 0.66
Phone duration mean −-0.54

duration duration median -0.53

systems difficult to recognise. Thus, confidence score
is indicative of proficiency level of spontaneous non-
native speakers’ English, with better speakers having
higher confidence scores. In this paper, word posterior
probabilities are used as the confidence score of word
hypotheses. The confidence scores are extracted from
the confusion network that is constructed from the word
lattice. To compensate for the effects of the lattice size
and the resulting overestimation of the word posteriors,
a global piecewise linear mapping function then maps
the scores to a standard (0:1) scale across speakers [38].
These scores are then weighted by the average number
of frames to yield an average frame confidence score for
each word. The confidence features consist of the aver-
age word confidence on each individual section of the
test script.

4.3. Linguistic features

The grader features described above are not directly
related to the content of a speaker’s responses. This sec-
tion describes a set of linguistic features motivated by
their effectiveness demonstrated on written texts [39].
A range of lexical and grammatical features derived
from statistical parses of text data have been shown
to discriminate proficiency level. For example, word
and part-of-speech (PoS) n-grams and syntax represen-
tations such as phrase structure rules. In spontaneous
spoken language assessment there is no text but if the
extracted linguistic features are robust to the errors in
the ASR output then it is hoped that the assessment can
also benefit from the addition of those features.

In the text systems in [39], training and test data
are parsed using the Robust Accurate Statistical Pars-
ing (RASP) system [40] with the standard tokenisation
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Figure 4: Parse trees generated from manual (left) and ASR (right)
transcriptions.

and sentence boundary modules. Since the transcrip-
tions produced by a speech recognition system differ
from written texts this presents a number of challenges.
Firstly, as with grading written text, the spontaneous
non-native English may not conform to standard gram-
mar. Secondly, spoken English contains hesitations,
disfluencies and more mistakes than written English.
Thirdly, the ASR output has no punctuation or capi-
talisation. Finally, ASR is not perfect, particularly for
strongly accented and spontaneous speech. This means
that even perfectly grammatical sentences can lead to
incorrect transcriptions.

Parse trees represent the syntactic structure of a sen-
tence using context-free grammars. Figure 4 shows
parse trees computed from manual and ASR transcrip-
tions of a fragment of spontaneous speech. The trees are
generated from the output of the RASP system. The root
node represents the label of the utterance, the branch
nodes represent phrase or auxiliary part and the termi-
nal nodes represent the PoS tags. Having generated a
parse tree there are two options on how to incorporate
them as grader features. The best case would be to make
use of information throughout the tree. However, as
shown in Figure 4, a concern with generating parse trees
from the ASR output of non-native spontaneous speech
is whether the statistical parser will be able to capture
the syntactic structure with a high enough level of accu-
racy. As an alternative, features could be derived from
information at the leaves only, in effect a detailed PoS
tagger.

4.3.1. Parse tree features
A number of different features can be derived from

parse trees including word n-grams, PoS n-grams, and
syntax such as phrase structure [39]. To assess whether
parse trees would be sufficiently robust to extract lin-
guistic features the quality of the parse trees from ASR
transcriptions has to be determined. The similarity
between the ASR transcription based parse trees and
those based on manual transcriptions were assessed us-
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Figure 5: Relationship between word error rate and parse tree similar-
ity.

ing Convolution Tree Kernels [41] to calculate the simi-
larities between the parse trees from each transcription.

Consider there are n unique subtrees in the training
data. Each tree is represented by a n dimensional fea-
ture vector where the ith element counts the number of
the occurrences for the ith subtree. This is analogous to
the bag of words representation commonly used in other
Natural Language Processing tasks. Formally, a tree T
can be represented as a vector

h (T ) = [h1 (T ) , h2 (T ) , . . . , hn (T )]T ,

where hi (T ) is the number of occurrences of the ith sub-
tree in tree T . The tree kernel is then defined as the
inner product between two trees T1 and T2

k (T1, T2) = h (T1) ·h (T2) . (1)

Because the value k (T1, T2) greatly depends on the size
of the trees, the kernel is normalised to obtain a similar-
ity score in the range [0, 1] using the equation

knorm (T1, T2) =
k (T1, T2)

√
k (T1, T1) k (T2, T2)

. (2)

A subset of 16 BULATS test candidates were selected
for this test, spread over 3 CEFR levels. Parses of the
manual and recognised transcriptions were generated
using RASP for the utterances from each speaker on
the spontaneous sections C, D and E. The tree kernel
similarity score for the entire set is computed using (2),
yielding

ε =

∑
i k

(
T̃i, T̂i

)
∑

i

√
k
(
T̃i, T̃i

)
k
(
T̂i, T̂i

) , (3)

where ε represents the defined tree similarity score and
T̃i and T̂i represent the parse trees obtained from the
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manual transcriptions and ASR transcriptions of the ith

utterance, respectively.
An average tree kernel score of 0.84 was observed

on the test data. However, as shown in Figure 5, which
plots the values of the tree similarity and the WER for
each speaker, the tree similarity is inversely correlated
with increasing WER. Given that the speakers in this
test set were selected for their high quality, tree parses
on lower quality speakers can be expected to shown
even more degradation from the manually transcribed
parse trees. Due to this lack of robustness it was decided
to apply linguistic features extracted from the leaves of
the trees.

4.3.2. PoS tag features
Intuitively, it is easy to see how PoS tag based fea-

tures would be useful. A candidate who is able to use
the correct tense of verbs or understands when to use
singular or plural nouns is more competent that one
who makes these mistakes. In this paper PoS unigram
features are used as these are likely to be most robust
to speech recognition errors. In this work, the term
frequency-inverse document frequency (TFIDF) [42] of
each PoS tag are used as features based on initial ex-
periments comparing a number of weighting schemes.
The TFIDFs are computed over all the test sections
where the candidate is required to produce spontaneous
speech. Other sections are ignored since they do not
relate to grammatical proficiency.

Prior to generating the statistical parse, the ASR tran-
scriptions are processed to remove special marker la-
bels indicating foreign words, unknown phrases, partial
words and hesitations such as “um”, “er”. Each section
is processed using the RASP system [40]. PoS tags are
extracted from the RASP output and the transcripts con-
verted to a bag of words representation using unigram
features. That is, each training instance is represented
by a n-dimensional feature vector where n is the num-
ber of features. A sample transcription from the ASR
system with the PoS tags from the best parse by RASP
is

sometime it can connect or it every party
RR PPH1 VM VV0 CC PPH1 AT1 NN1

A large number of the PoS-based features are redun-
dant or irrelevant. Feature selection was therefore per-
formed using Pearson correlation of each individual fea-
ture against the training data scores. The top 10 features,
the best 5 of which are shown in Table 3, are selected for
the grader. The influence on the final score of features
such as NN2 and RR is easy to interpret. The correlation

Table 3: Top 5 most correlated linguistic features.
Feature Feature PCC
Name Description
NN2 plural common noun (e.g. books) 0.66
NN1 singular common noun (e.g. book) 0.65
RR general adverb 0.61
II general preposition 0.59
AT article (e.g. the, no) 0.57

scores suggest that speakers with good scores are adept
at using the correct singular or plural form of common
nouns and general adverbs. Similarly the use of arti-
cles “a, an, the” substantiates the speaker’s ability to
communicate ideas on complex topics by constructing
grammatically correct sentences.

4.4. Pronunciation Features
As a candidate progresses up the CEFR levels their

pronunciation becomes more native, with commensu-
rate reduction in strain to the listener caused by L1 ef-
fects [21]. Explicit features to represent pronunciation
in the grader should therefore help assessment. How-
ever, there are two difficulties associated with extracting
pronunciation features from spontaneous speech. First,
since the aim of the system is to elicit spontaneous
speech, more general non-native reference approaches
need to be used. Second, acoustic models of the phones
are not a robust predictor of proficiency due to the large
variation across speakers with different accents and L1s
but of otherwise similar level.

To overcome these issues this paper uses features
based on distances between phones [43, 44]. Dis-
tances between acoustic models should be more robust
to speaker variability than the models themselves. Un-
like the work in [12], the pronunciation features consist
of a set of phone-pair distances covering all 47 phones
in English instead of only vowels. This yields 1081 dis-
tances in total. A set of statistical models is trained to
represent the manner of pronunciation of each phone in
the English language. For each possible phone pair, the
distance between the phone models is measured by the
symmetric Kullback-Leibler (K-L) divergence [45] in-
stead of Bhattacharyya distance in [12]. Suppose the
statistical models for phones φi and φ j are p

(
φi

)
and

p
(
φ j

)
, respectively, the K-L divergence between the

two phones is defined as

DKL

(
pi||p j

)
=

∫
p
(
φi

)
log

 p
(
φi

)
p
(
φ j

)  dφi. (4)
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Figure 6: Map of phone-to-phone K-L divergences for vowel phones
for two speakers of Gujarati with human assigned fluency scores of
10 (left) and 25 (right) out of 30.

Since the K-L divergence is not symmetric and the dis-
tance measure should be invariant of the order in which
the distributions are taken, one type of the symmetric
K-L divergence (also known as Jensen–Shannon diver-
gence [46]) is used, which can be written as

DJS

(
pi||p j

)
=

1
2

[
DKL

(
p j||pi

)
+ DKL

(
p j||pi

)]
, (5)

Each phone is modelled by a single multivariate
Gaussian with a mean, µ, and diagonal covariance ma-
trix, Σ. The 39-D input vector consists of MFCCs, ∆

and ∆2. For each speaker, a model set is trained on all
the speech from that speaker. Full recognition is run
to acquire 1-best hypotheses from which time aligned
phone sequences are generated. Single Gaussian mod-
els for each phone are then trained given these align-
ments. The K-L divergence of DJS

(
pi||p j

)
is calculated

as

DKL

(
pi||p j

)
=

1
2

[
tr

(
Σ−1

j Σi

)
+

(
µi − µ j

)T
Σ−1

j

(
µi − µ j

)
− d + ln

(
detΣ j

detΣi

)]
, (6)

where tr (·) and det (· ) are the operators for the trace and
determinant of the matrix, respectively.

To illustrate the difference between the phone dis-
tance features from good and poor speakers, 9 vowel
phones and the corresponding 9×9 phone pair distance
maps are shown in Figure 6 for a poor/good speaker
pair. It can be seen that the poor speaker’s vowel pairs
have considerably higher K-L divergences, i.e. are
further apart from each other than those of the good
speaker. Although the phone distance features are more
robust to speaker variability, they still depend on a
speaker’s L1. Table 4 shows the 5 phone pairs that have
the highest correlation with scores of the candidates on
a mixed L1 data set. From this table, it can be seen
that there are some strong negative correlations with the

Table 4: Top 5 phone pairs with highest correlations with scores.
Phone pair PCC

f-aw -0.538
v-jh -0.533
v-em -0.527
zh-el -0.513
t-oy -0.512

scores4. Furthermore it was observed that a high K-L
divergence correlates with lower scores. Some of the
expected positive correlation of reduced vowel confu-
sions with increasing proficiency was also observed but
at a much lower correlation.

5. Grader

There are a number of options in using an automatic
assessment system. One very useful attribute of any au-
tomated system is for it to yield not only a score, but a
measure of how confident that score is. For low confi-
dence scores it is then possible to, for example, back-off

to human graders. This paper employs the GP grader
introduced in [1]. Gaussian processes [47] are a math-
ematically consistent method for approximating an un-
known function that also provides a measure of the un-
certainty around this estimate (see [48] [49] for applica-
tions to speech processing). In a grader the function to
be approximated is that which maps a feature vector rep-
resenting a candidate’s spoken English into a score. The
variance of the function can be used to assign a measure
of confidence to a score. This section will briefly out-
line the basic theory of GPs, and the form of GP used in
this work.

A GP is a non-parametric model, that is the functions
themselves are not parameterised. The covariance be-
tween any two inputs, x and x′ is given by a function
k(x, x′). All the training data points are stored. When
a prediction is required for a new candidate, the covari-
ance between the new point and each training point is
computed. The prediction, in the form of a Gaussian, is
then computed from this set of covariances.

Figure 7 illustrates for a 1-dimensional case a GP
trained on five data points (the dots). The horizontal
and vertical axes represent the input and target values,

4As all phone pairs are not present in all data, here the Pearson cor-
relation coefficients are only given for those speakers for which these
phone pairs are present. This means that the correlations are slightly
lower than if data from all speakers were considered and should be
taken as indicative.
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Figure 7: A Gaussian process trained on a few data points. The mean
and variance contours are indicated. When the test point is further
away from the training data, the predicted mean and variance revert to
the prior.

respectively. The bands show the predicted Gaussian
distribution for any input point. The middle line indi-
cates the mean, and the coloured band the variance con-
tours at 1

2 , 1 and 2 times the variance around the means.
The predictions have a low variance when close to data
points and the mean interpolates, and to some degree
extrapolates, between the points. The data is assumed
to be observed with noise, so the mean does not exactly
go through the training points.

When the prediction is requested for points further
away from the training data points, the predicted dis-
tribution increases in variance. The predicted Gaussian
will revert to the prior probability, as when there are no
training data points in the vicinity of the test point there
is little to base a prediction on leading to great uncer-
tainty. This is key to the ability to use the GP grader to
both predict and reject scores.

When used in an automatic grader, the function maps
a feature vector into a score. A GP is defined over func-
tions f and is fully specified by its mean function m(x)
and covariance function k(x, x′). The mean function
m (x) and the covariance function k (x, x′) of a process
f (x) are defined as

m (x) = E
[
f (x)

]
k
(
x, x′

)
= E

[
( f (x) − m (x))

(
f
(
x′

)
− m

(
x′

))]
where E (· ) is the expectation operator. Therefore, the
Gaussian process can be written as

f (x) ∼ GP
(
m (x) , k

(
x, x′

))
In order to make predictions on unseen data, the pos-

terior has to be calculated over the function f . The prob-

lem of GP regression can be stated as: given a set of
observations y =

{
y1, y2,...,yN

}
and the corresponding in-

put X = {x1, x2, . . . , xN}, what is the best estimate of the
value of the function at test point x∗. The observed out-
puts are assumed to be Gaussian distributed around the
real function values f (x) with Gaussian additive noise
N

(
0, σ2

)
:

yn ∼ N
(

f (xn) , σ2
)

The joint distribution of the observed outputs y and the
output f (x∗) to be predicted is

[
y

f (x∗)

]
, N

(
0,

[
K (X,X) + σ2I k (x∗,X)

k (x∗,X)T k(x∗, x∗)

])
(7)

where I is the identity matrix, and the functions k (x∗,X)
and K (X,X) consist of the following elements by ap-
plying the covariance function k (· , · ) to the inputs:

k (x∗,X) ,


k (x∗, x1)

...
k (x∗, xN)

 ;

K (X,X) ,


k (x1, x1) · · · k (xN , x1)

...
. . .

...
k (x1, xN) · · · k (xN , xN)

 .
Because y and f (x∗) are jointly Gaussian distributed as
given in (7), the conditional distribution of f (x∗) given
y is also Gaussian [50]:

f (x∗) |y ∼ N
(
k (x∗,X)T

(
K (X,X) + σ2I

)−1
y,

k(x∗, x∗) − k (x∗,X)T
(
K (X,X) + σ2I

)−1
k (x∗,X)

)
(8)

From (8) the prediction for the score can be obtained
as the mean of the distribution and the variance of the
score is also given. The calculation of the score depends
on the training output y and the covariance k(x∗,X) be-
tween the training input sequence X and the new input
x∗. A number of types of covariance function can be
selected [47] and in this work we deploy the often-used
radial basis function (RBF) which is defined for two in-
puts, x and x′ as

k
(
x, x′

)
, σ2

y exp
(
−
||x − x′||2

2l2

)
, (9)

The shape of the RBF is parameterised by two parame-
ters, namely l and σ2

y . l is the length scale, which con-
trols the how the distance between x and x′ influences

9



the covariance. σ2
y is the pre-set output variance which

determines the average distance of the function away
from its mean.

6. Experiments

In this section, the proposed automatic assessment
system will be evaluated using a dataset containing mul-
tiple first languages. The grader training set consists of
994 candidates distributed evenly over 6 first languages
(Polish, Vietnamese, Arabic, Dutch, French, Thai) and
over CEFR ability levels A1, A2, B1, B2 and C (C1
and C2 are merged because of limited data). For each
candidate, for training the GP grader the audio and ex-
aminer grade are used. The scores provided by the ex-
aminer graders are used as the GP training targets. The
evaluation set has 226 candidates which are distributed
similarly to the training set with the difference that the
candidates are re-scored by experts. The expert graders
are very experienced and were asked to give accurate
scores. The expert scores give very high score correla-
tion (0.95−0.98) and therefore are used as a gold stan-
dard. Thus, in the experiments scores from three differ-
ent types of graders can be used: gold standard expert
graders, examiner graders, and automatic graders. It is
worth noting that although the expert scores are used for
evaluating the grader, the grader is trained on the scores
given by the examiners. These expert scores allow the
performance of examiners and its combination with the
automatic graders to be assessed. In Section 6.1, the
proposed GP graders trained on the features introduced
in 4 are evaluated. Section 6.2 will evaluate the perfor-
mance of the interpolation between the GP graders and
the examiner graders. Section 6.3 will give the perfor-
mance of a rejection scheme that automatically detects
the automatic scores which should back off to expert
graders. Also, in this section we will propose measures
to assess the performance of rejection schemes.

6.1. Grader performance

The GP grader is trained using the features described
in Section 4. The word-level transcriptions of the train-
ing and test sets are produced using the ASR system
described in Section 3 and the phone-level transcrip-
tions are generated by force alignment. The output vari-
ance, σ2

y , in (9) is set to 0.2 and the length scale of
the covariance function given in (9) are trained using
the maximum-likelihood criterion [47] with an initial
value of 1.0. The GP grader performances using dif-
ferent features are listed in Table 5. The graders are
evaluated using PCC and Mean Squared Error (MSE)

Table 5: Performance of various graders compared to the gold-
standard expert graders on the evaluation set.

Features PCC MSE
Baseline 0.843 12.0

+ Conf 0.855 10.9
+ RASP 0.850 11.2
+ Pron 0.854 11.3
+ RASP+Conf 0.860 10.4
+ RASP+Conf+Pron 0.865 10.1

criteria. The PCC and MSE values are calculated be-
tween all the scores predicted by the GP and the expert
scores on the evaluation set. The MSE is calculated over
the scores 0 to 30.

In Table 5, it can be seen that the performance shown
by the MSE values is well correlated with that indicated
by the PCC values. Using the baseline features, the GP
grader gives a PCC of 0.843 and an MSE of 12.0. By
adding the confidence (Conf) features, the grader gives
a PCC improvement of 0.012 over the baseline features.
The pronunciation (Pron) features give a similar im-
provement as the confidence features. Because pronun-
ciation features are sensitive to L1, experiments on an-
other single-L1 dataset with similar number of speakers
show bigger improvement in PCC by adding pronuncia-
tion features. Appending RASP features gives the least
improvement and PCC is 0.850. In addition to incorpo-
rating single type of features with the baseline features,
we also combine multiple types of features. As can be
seen from Table 5, the combination of the RASP fea-
tures and the confidence features gives a PCC improve-
ment of about 0.017 and an MSE improvement of 1.6
over the baseline features and appending the pronunci-
ation features gives an additional improvement of 0.005
in PCC and 0.3 in MSE.

6.2. Interpolation with examiner grader

Because the automatic graders are potentially more
consistent but less sophisticated than the examiner
graders, combining the two types of graders may lever-
age the advantages of both. One such approach is to
interpolate between scores of both graders. In Figure 8,
the PCC and MSE values are shown for interpolating the
GP grader, which is trained on baseline features, confi-
dence, RASP and pronunciation features, with the ex-
aminer grader using weights ranging from 0 to 1. When
the interpolation weight is equal to 0, only the examiner
scores are evaluated and it yields a PCC of 0.847 and
an MSE of 14.2. When the weight is equal to 1, only
the GP scores are evaluated. In between, each grade
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Figure 8: Effect on PCC and MSE of interpolation between examiner
graders and proposed GP graders.

is obtained by interpolating the two types of scores us-
ing different weights. The left axis (in blue) shows the
values of the PCC and the best interpolation weight is
0.56 which yields a PCC of 0.891. On the other side,
the right axis shows the values of the MSE. It can be
seen that the performance given by the MSE broadly
mirrors that given by the PCC and the best interpola-
tion weight is 0.66 which gives an MSE of 8.6. For
both measures, the best interpolation weights indicate
that the GP grader receives higher weights because its
performance is better than the examiner grader.

6.3. Rejection of scores
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Figure 10: Scatter plot of scores given by proposed automatic grader
versus expert grader. Red crosses represent the 10% candidates which
are rejected using the GP variances.

Although the proposed GP grader gives good perfor-
mance in predicting the scores as shown in the previ-
ous sections, the accuracy of the prediction varies. This
gives rise to the idea that a number of candidates who
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Figure 9: Rejection of automated scores by GP variance. Rejecting
the scores or re-scoring according to variances by experts gives bet-
ter grader performance than rejecting scores randomly. The upper
bound corresponds that the scores that deviate most from the expert
scores are replaced first. The areas denoted by AUCvar and AUCmax
illustrate the calculation of the Area under the Curve Rejection Ratio
(AUCRR) measure for evaluating the rejection schemes. AUCvar rep-
resents the absolute improvement of the rejection scheme over ran-
dom rejection and AUCmax represents the upper bound of improve-
ment that any rejection scheme can achieve over random rejection.
AUCRR is calculated as the ratio of AUCvar to AUCmax.

are difficult to grade can be re-scored by exploiting an
expert grader. Ideally the system could be able to au-
tomatically detect which candidates should be sent to
an expert grader. This can save time (and money) com-
pared to an expert grading all candidates. One advan-
tage of using a GP for the automated grader is that as
well as predicting a score, it provides a measure of the
uncertainty of its prediction, which can be used to de-
cide which automatic scores should be re-scored by ex-
perts.

Figure 9 shows the PCC as the scores from the GP
grader are rejected and replaced by expert scores. The
GP grader is trained on the combination of baseline
features with confidence, RASP and pronunciation fea-
tures. On the vertical axis of the graph is the PCC with
the expert scores. On the left side of the graph, all can-
didates are scored by the GP grader, with 0.865 corre-
lation, respectively, to the expert scores. On the hori-
zontal axis is the fraction of candidates whose predicted
scores are rejected, and replaced by the expert scores.
At the right hand side of the graph all scores have been
replaced by expert scores, thereby the PCC with them-
selves is 1. In between, the performance depends on the
rejection scheme which is shown by the envelope. The
straight line indicates the expected performance if can-
didates are chosen for re-scoring randomly. The curve
at the top indicates the upper bound: scores that devi-
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ate the most from the expert scores are replaced first.
This is not a practical scheme, but it indicates the best
performance any rejection scheme can reach in theory.

The rejection scheme proposed in [1] is to use the
uncertainty measure that the grader itself provides. As
discussed in Section 5, a prediction from a GP gives a
distribution over the outputs of a function, with a mean
and a variance. The mean is used as the predicted grade
and the variance indicates the confidence in the grade.
The curve labelled by “GP” in Figure 9 shows the per-
formance as GP scores are rejected in order of the high-
est variances, i.e. where the predicted scores have least
certainties. The performance is better than random re-
jection.

Since rejection schemes are important to practical use
of the automatic grader, it would be useful to explore
a single-value measure to represent the performance
of rejection schemes. In this paper, two measures are
used, termed PCC10 and Area Under Curve Rejection
Ratio (AUCRR), to assess the performance of rejection
schemes based on the rejection envelope shown in Fig-
ure 9. These two measures were proposed in [51]. The
first measure, PCC10, is defined as the PCC achieved
when the 10% ‘weakest’ automatic scores are replaced
by expert scores, which is a operating point for the
trade-off between cost and quality in practical scenarios.
The second measure, AUCRR, aims to measure the over-
all performance of the rejection scheme, as illustrated
in Figure 9. The AUCvar given in the graph is the area
between the curve from the rejection scheme being as-
sessed and the random rejection curve. It represents the
absolute improvement of the rejection scheme over ran-
dom rejection. AUCvar is then normalised by AUCmax,
which represents the upper bound of improvement that
any rejection scheme can achieve over random rejection
given the automatic scores. Thus, the proposed AUCRR
can be written as

AUCRR =
AUCvar

AUCmax
. (10)

The overall AUCRR score is a measure of rejection per-
formance that is less dependent on the absolute PCC
performance. The value of AUCRR is in the range from
0 to 1 where AUCRR = 0 corresponds to random re-
jection and AUCRR = 1 corresponds to the ideal re-
jection scheme (with upper bound performance). The
AUCRR of the GP graders trained using the features de-
scribed in Section 4 are given in Table 6. It can be
seen that although adding more features results in bet-
ter grader performance when evaluated with PCC and
PCC10, the grader trained on the baseline features gives
better AUCRR.

Table 6: The values of PCC, PCC10 and AUCRR of proposed GP
graders.

Features PCC PCC10 AUCRR

Baseline 0.843 0.894 0.406
+ RASP+Conf+Pron 0.865 0.897 0.262

In order to further investigate the performance of the
GP grader and the rejection scheme applied, Figure 10
shows the scatter plot of the GP score versus the expert
score of each candidate in the evaluation set. In this
graph each dot or cross represents a pair of GP score
and expert score for one candidate. The red crosses rep-
resent the first 10% GP scores (22 scores) which are
rejected. It can be seen that the largest outlier scores
are detected, although a number of GP scores that are
actually closest to the expert scores are also rejected.
Furthermore, it can be seen that most of the scores that
are rejected are low and therefore come from poor can-
didates who are likely to be harder to mark. This justi-
fies the proposition that the candidates with highest GP
variance are those candidates which are hard to score
and may need expert grading.

7. Conclusions

This paper has described an automatic assessment
system for spontaneous English. This systems uses a
state-of-the-art speech recognition system to generate
transcriptions from which a set of features are extracted.
In addition to audio and fluency features, we also ex-
plored the use of three features for automatically grad-
ing spontaneous English. These features include confi-
dence, RASP and the pronunciation features. The per-
formance of the proposed system has been evaluated us-
ing PCC and MSE measures and the best combination
of features gives a PCC of 0.865 and a MSE of 10.2
when compared with expert scores. Interpolation be-
tween the automatic graders and the original examiner
graders can further boost the PCC to 0.887 and the MSE
to 9.0.

In addition to the predicted scores, the GP grader de-
ployed in the proposed system can also provide a mea-
sure of the uncertainty of its predictions, the variance,
which can be used to detect candidates who should be
rejected and regraded by experts. In order to evalu-
ate the performance of rejection schemes, we have pro-
posed two measures. One is associated with a operating
point of PCC for the trade-off between cost and qual-
ity in practical scenarios. The other one is to give an
overall performance score which is less dependent on
the absolute PCC performance.
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