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ABSTRACT

The development of high-performance speech processing systems

for low-resource languages is a challenging area. One approach to

address the lack of resources is to make use of data from multiple

languages. A popular direction in recent years is to use bottleneck

features, or hybrid systems, trained on multilingual data for speech-

to-text (STT) systems. This paper presents an investigation into the

application of these multilingual approaches to spoken term detec-

tion. Experiments were run using the IARPA Babel limited language

pack corpora (∼10 hours/language) with 4 languages for initial mul-

tilingual system development and an additional held-out target lan-

guage. STT gains achieved through using multilingual bottleneck

features in a Tandem configuration are shown to also apply to key-

word search (KWS). Further improvements in both STT and KWS

were observed by incorporating language questions into the Tandem

GMM-HMM decision trees for the training set languages. Adapted

hybrid systems performed slightly worse on average than the adapted

Tandem systems. A language independent acoustic model test on

the target language showed that retraining or adapting of the acous-

tic models to the target language is currently minimally needed to

achieve reasonable performance.

Index Terms— Multilingual, speech recognition, spoken term

detection, keyword search, neural networks

1. INTRODUCTION

In recent years there has been significant interest in the area of multi-

lingual speech technologies in particular for low resource languages.

This trend is set to continue with project funding, such as the IARPA

Babel Program the stated aim of which is developing agile and ro-

bust speech recognition technology that can be rapidly applied to

any human language in order to provide effective search capabil-

ity for analysts to efficiently process massive amounts of real-world

recorded speech [1]. In addition the development of techniques such

as Tandem systems [2] and deep neural networks (DNN) [3] offer

alternative research approaches for developing multilingual speech-

to-text (STT) systems. From a commercial perspective, multilingual

systems would allow faster and cheaper deployment of speech sys-

tems. Improvements in multilingual speech systems may also help
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us better understand the commonalities and differences across lan-

guages.

The majority of work to date has focused on multilingual STT

systems (see [4] for a recent review). However for many scenarios

STT is simply part of a pipeline for a final speech processing ap-

plication. This paper investigates these systems from an application

performance perspective. In particular this paper will examine key-

word search (KWS) performance for spoken term detection (STD).

Improvements in STT performance do not necessarily help in KWS.

Most of the systems investigated in this paper are multilingual i.e.

speech data from multiple (4) languages were used to train a single

system and then this is applied to recognition in one of the train-

ing languages or adapted to a target language not used in the initial

training. In addition the performance of these systems on a held-out

language will be investigated. This form of language-independent

system is incredibly challenging to develop, but would potentially

allow, for example, STD systems to be rapidly brought up in any

human language, even when no acoustic training data is available.

Recent STT work in this area has been dominated by sys-

tems which use an MLP as a feature extractor, trained to produce

phoneme posterior probabilities – both probabilistic features [2] and

bottleneck configurations [5] have been investigated and reported in

literature – using either the traditional GMM-HMM [6, 7, 8, 9] or

the “hybrid” HMM-MLP [10, 11, 12, 13, 14] as the back-end classi-

fier. The use of MLP features for cross-lingual/multilingual speech

recognition can be traced back to [15], which showed that con-

catenating cepstral (MFCC) features with the probabilistic features

[2] produced by an MLP trained on a different language (English)

helped to improve the recognition performance of the target lan-

guages (namely, Mandarin and Arabic).

A common issue that arises is the question of the appropriate

phone set to use. Traditionally researchers have either used uni-

versal phone sets [16, 17, 7, 6] or mapped phones between lan-

guages [18, 19]. Universal phone sets attempt to exploit the com-

monalities between the speech sounds across languages. They en-

able data with the same characteristics from multiple language train-

ing sets to be pooled to, hopefully, deliver more robust models. Map-

ping phone sets can be very difficult when the two languages are far

apart e.g. Cantonese and English. Recently it has become common

to use language dependent phone sets with associated language de-

pendent MLP output layers e.g. [20, 13, 9, 14, 12]. That has the

benefit of simply requiring the output layer to be trained for a new

language. Keeping the phone sets and output layers separate, how-

ever, does not allow full exploitation of the similarities across lan-

guages. It also does not allow recognition with no training data. For

this work, similarly to [17, 7, 6, 21], a universal phone set was there-

fore adopted.

For MLP based systems there are a number of open questions

about the best MLP/HMM configuration and MLP training proce-



dure to be used in multilingual modelling including: how to train the

MLP; which parts of the system should be unilingual/multilingual;

how can the information from other languages best be exploited; is

Tandem GMM-HMM or hybrid DNN-HMM better; do multilingual

models help over simply multilingual Tandem features. This paper

presents an investigation into a number of these for the Babel STD

task. This consists of keyword and key-phrase searching on con-

versational telephone data recorded over a range of different con-

ditions including mobile phones in cars. It is therefore a far more

challenging data set than other multilingual corpora such as Global-

Phone [22] but very interesting for STD. In these experiments initial

multilingual systems were trained on four diverse languages (Can-

tonese, Pashto, Turkish and Tagalog) with Vietnamese used as the

target and held-out language. Only 10 hours of training data were

made available for each language.

Section 2 presents the spoken term detection task. The speech-

to-text and keyword search systems used are described in Sections 3

and 4 respectively, with specifics relating to the multilingual STT

systems in Section 5. Experimental setup and results are given in

Sections 6 and 7, followed by conclusions.

2. TASK DESCRIPTION

The present work addresses the STD task defined by NIST for

the 2006 STD Evaluation with some modifications introduced by

IARPA’s Babel program [1]. The task consists of finding all the

exact matches of a specific query in a given corpus of speech data.

A query is a textual phrase containing one or several terms. In this

work the system components and word indices are frozen before the

queries are provided. KWS performance is measured in terms of the

maximum term weighted value (MTWV), which is the best term-

weighted value [23] achievable given a post-hoc choice of detection

threshold.

The Babel corpora consists of transcribed telephone conversa-

tions in a range of languages. There are two database configurations

per language: full language pack (FLP) with about 100-200 hours of

transcribed audio training data (∼60-80 hours speech); limited lan-

guage pack (LLP) with ∼10 hours of transcribed audio data. The

training data is a mix of conversational and scripted speech. The

FLP and LLP share the same development set of 10 hours of conver-

sational speech data1. A phone set and phonetic lexicon covering the

training data are also supplied. Initially four development languages

were supplied - Cantonese, Pashto, Turkish and Tagalog - and a fifth

language - Vietnamese - for a surprise language evaluation.

The aim of this work is to build STT systems to optimise KWS

on the low resource Babel LLP data sets. The development lan-

guages are used for training the initial multilingual systems and the

surprise language as the target and held-out language. Following

the Babel primary condition, the acoustic and language models were

trained solely on the LLP audio data and associated transcripts. The

development language LLP data sets were combined for the multi-

lingual systems (violating the primary condition).

3. SPEECH-TO-TEXT SYSTEMS

3.1. Phone set and lexicons

The default Babel phone sets are based on X-SAMPA but some

inconsistencies were observed between languages. The relevant

1There are also evaluation data sets but these were not used for the exper-
iments reported here.

phones2 were mapped to ’standard’ X-SAMPA. Table 1 shows the

overlap across the five Babel languages. 11 phones are common to

all languages (which were mostly plosives and fricatives).

Language Id Unique 101 104 105 106 107

Cantonese 101 14 37 13 15 17 13

Pashto 104 12 44 20 28 20

Turkish 105 10 42 26 19

Tagalog 106 11 48 22

Vietnamese 107 15 41

Table 1. X-SAMPA phone set overlap across Babel languages. Viet-

namese diphthongs and triphthongs split into constituent phones.

3.2. GMM-HMMs training

The GMM-HMM acoustic models (AMs) were trained using the

procedure described in [24]. Unilingual and multilingual AMs were

each built from a flat start. Cepstral mean normalisation (CMN)

and cepstral variance normalisation (CVN) were applied to conver-

sational sides. Speaker adaptive training (SAT) was applied using

global constrained maximum likelihood linear regression (CMLLR)

transforms for an entire side, followed by a discriminative transfor-

mation of the feature space (fMPE) [25] if desired.

The standard GMM-HMMs used PLP plus pitch features. Pitch

was adopted for all languages in these experiments as initial exper-

iments showed that tonal languages benefitted from the use of pitch

of features in GMM-HMMs and there was no loss in performance

for non-tonal languages. For the Tandem GMM-HMMs, bottleneck

features were appended to the PLP plus pitch features to form the

Tandem feature vector.

For the state tying of GMMs [26], the standard approach is to

define the roots of the decision trees to be separate for each state

of each phone. With highly limited training data this can result in

some phones having insufficient data to generate many, or even any,

context-dependent models. To mitigate this issue decision trees with

state position roots (thus non-phone specific) were constructed and

the set of questions expanded to include center context questions.

Initial experiments were run on the Babel corpora with decision trees

with state position roots. For large quantities of training data min-

imal difference in performance was observed between the two tree

types. However, when less data was present, as in the 10 hour Babel

LLP training sets, the state position root tree outperformed the phone

root tree. In addition tying at the state position root allows the sim-

ple combination of data from multiple languages. State position root

trees were therefore used for all experiments reported in this paper.

The decision tree questions were automatically derived from a

SAMPA-based phone attribute file and the lexicon. The former listed

all the attributes, such as vowel or nasalised, associated with each

phone in the training set. Further attributes were derived from the

lexicon, such as word boundaries. Phone, attribute, tone and word

boundary questions were asked in these experiments.

3.3. Bottleneck features and hybrid MLP training

For this paper bottleneck features in a Tandem configuration and hy-

brid systems have been investigated. The MLPs in each case were

deep neural network (DNN) multi-layer perceptrons (MLP) [27].

The bottleneck MLPs used a narrow hidden layer (the bottleneck

2In Cantonese, Pashto and Turkish.
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Fig. 1. Stacked hybrid MLP architecture [27].

layer) prior to the output layer, as shown in the top network in Fig-

ure 1. Following MLP training the bottleneck features were ap-

pended to PLP and pitch features to form the Tandem feature vector.

Prior to recognition, Tandem GMM-HMMs must be trained based on

the new Tandem features as described in Section 3.2. In the hybrid

MLPs the hidden layers were all the same size, as shown in the bot-

tom network in Figure 1. For recognition, the hybrid system directly

uses the DNN to produce likelihoods for an HMM-based recogni-

tion system, replacing the GMMs. No further training is therefore

required. For this work, the hybrid DNN was trained in a “stacked”

configuration as shown in Figure 1. Following data normalistion the

Tandem features were used as training inputs for the hybrid (or 2nd

Tandem) MLP. The data was normalised through feature space pro-

jections such as heteroscedastic LDA (HLDA), CMLLR and fMPE.

The alignment of the context-dependent output states to the

training data frames (required for the supervised MLP training)

was derived from the PLP+pitch GMM-HMM systems. This align-

ment was left fixed during training. Sigmoid and softmax functions

were used for the nonlinearities in the hidden and output layers,

respectively. All the training data was presented to the network

and randomised at the frame level. The objective function used for

optimization was the cross-entropy criterion. The parameters of

the network were initialised using a discriminative layer-by-layer

pre-training algorithm [28]. This was followed by fine tuning of the

full network using the error back propagation algorithm.

4. KEYWORD SEARCH SYSTEM

The KWS system was based on using weighted finite state trans-

ducers (WFSTs) to represent both the recognition lattice in an

pre-processing indexing phase and also the query key-words/key-

phrases. The search was performed at the word level for in-

vocabulary search terms. For out-of-vocabulary (OOV) search

items the recognition lattice was converted to phonetic form and

the phonetic form of the query was expanded with a transducer

that models phone-to-phone confusions. The KWS search returned

approximate posterior probabilities of each search term occurring at

a particular point in time. Before MTWV scoring these values were

further normalised using a sum-to-one approach which ensures that

the sum over the test set of the the scores for each keyword sum to

unity. More details of the approach are given in [29].

The arc costs included both the language model and scaled

acoustic model log likelihoods. For OOV terms, experiments

showed excluding the word level language model scores from the

arc costs could improve KWS performance.

5. MULTILINGUAL SYSTEMS

5.1. Speech-to-text

A common X-SAMPA phone set was adopted for the multilingual

systems here. The phone set covered the 4 multilingual training lan-

guages (Cantonese, Pashto, Turkish and Tagalog) ( 3.1).
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Fig. 2. Tandem multilingual structure.

Figure 2 shows the Tandem multilingual structure. The context

dependent output targets were created with the multilingual phone

set. This meant the output layer (and all other layers) was common

to all the languages. All the multilingual training data was presented

to the DNN at the same time and joint optimisation took place across

all the multilingual training languages. The order of presentation of

data to the MLP was randomised at the frame level across all the lan-

guages [13, 9]. Unlike the language dependent output layer systems,

fine tuning did not require any modifications to the standard back

propagation algorithm as all data samples contributed to optimising

all network parameters.

The state position root decision trees from multilingual GMM-

HMMs with PLP plus pitch input features were used to provide the

MLP output targets and tie the HMM states. As in Section 3.2,

phone, attribute, tone and word boundary questions were asked, de-

rived from an attribute file across all the training languages and all

the training lexicons. All the multilingual training data was jointly

used to optimise the decision trees. The attribute questions per-

formed a similar role to the articulatory features in e.g. [30] but with-

out the explicit attribute detectors of these systems. The same phone

symbol could correspond to different realisations of the associated

phone across languages, especially when co-articulations are taken

into account. With the joint training of the decision trees, questions

could also be asked about the language the state came from. This is

illustrated in the decision tree in Figure 2.

Unlike the phone sets, the lexicons were not merged across lan-

guages, both in training and at recognition. In the Babel scenario the

speaker’s language is assumed to be known and any code switching3

is already encapsulated in that language’s lexicon. Phonetic align-

ments for all the multilingual AM trainings were generated using

language specific lexicons. This avoided an explosion in cross-word

contexts and incorrect pronunciations being learned for words that

appear in more than one language. A multilingual language model

(LM) built from the transcriptions from all 4 training languages was

used for alignments. At recognition time a language specific LM,

trained on the transcriptions from the language under test was used.

The same LM was used for unilingual experiments.

3Any code switching takes the form of imported words rather than long
phrases in another language.



5.2. Keyword search

Keyword search was carried out on each language separately. No

changes were required to the unilingual set-up.

6. EXPERIMENTAL SETUP

Release B of the Babel LLP corpora described in Section 2 was used

for these experiments. Multilingual MLPs and AMs were trained on

Cantonese (babel101b-v0.4c), Pashto (babel104b-v0.4bY), Turkish

(babel105b-v0.4) and Tagalog (babel107b-v0.7) data. Vietnamese

(babel107b-v0.7) was used as a target or held-out language. In each

case, the STT system configurations used for these experiments were

designed to optimise KWS performance. They are therefore not op-

timal in terms of raw STT performance, for example currently the

best KWS MTWV is achieved with a bigram LM rather than a tri-

gram LM which yields a lower recognition error rate.

6.1. STT systems

The STT systems were trained and decoded using HTK [31]. SAT,

Minimum Phone Error (MPE) discriminative training and fMPE fea-

tures were applied in training and CMLLR and maximum likelihood

linear regression (MLLR) were applied at decoding. For the GMM-

HMM systems, 1000 tied state AMs were trained for unilingual sys-

tems and 3000 for multilingual systems. Each state had an average

of 16 Gaussian components with 32 components for silence.

All decision tree roots were state position based. Phonetic, at-

tribute and tonal questions were asked in each tree. Questions relat-

ing to the language of the training/development data were also asked

for a subset of the multilingual AMs. For the hybrid multilingual

system 3 silence targets were used corresponding to a 3 emitting

state HMM. No changes were made to the supplied pronunciation

lexicons except for mapping of a small subset of Cantonese, Pashto

and Turkish phones to a ’standard’ X-SAMPA phone set.

The base GMM-HMMs were trained with PLP plus pitch fea-

tures. 52-dimensional PLP+∆+∆∆+∆∆∆ features were projected

down to 39 by HLDA. Pitch+∆+∆∆ features were appended. For

the Tandem systems 26 bottleneck (BN) features were also ap-

pended.

The DNN MLPs were trained on an extended version of ICSI’s

QuickNet [32] software. The key changes made were to sup-

port multiple hidden layers and layer-by-layer pre-training. For

the non-stacked BN features, the input feature vector had 468 di-

mensions. This was produced by splicing4 the 52-dimensional

PLP+∆+∆∆+∆∆∆ features. The MLP targets were context

dependent states, tied with decision trees generated in the base

GMM-HMM ML training. The unilingual BN MLPs had 3 hidden

layers plus the BN layer in configuration 468-1000-2x500-26-403

and the multilingual MLPs 4 hidden layers plus the BN layer 468-

4x1000-26-3000. For the stacked hybrid and BN MLPs (Figure 1)

the 26-dimensional BN features are de-correlated using a global

semi-tied covariance transform.The 26 decorrelated BN features are

appended to 39-dimensional HLDA normalised PLP features and 3-

dimensional pitch (pitch+∆+∆∆) features to form a 68-dimensional

feature vector per frame. As before, 9 frames are spliced together to

form a 612-dimensional input vector. The multilingual stacked BN

MLP had the same configuration as before. In the hybrid MLP the

4i.e., concatenating the current frame with a certain number of frames in
the left and right contexts, for example, ±4.

BN layer was replaced by another hidden layer to give a configura-

tion 612-5x1000-3000. Note, no unilingual stacked MLP systems

were built.

Word based bigram language models were used in decoding.

They were trained on the LLP transcripts with modified Kneser-Ney

smoothing using the SRI LM toolkit [33]. The language specific

training set lexicons were used. At decoding time the language was

assumed known and the language specific lexicon and LM applied.

The decoding parameters were kept fixed across all systems.

6.2. Keyword search

The IBM KWS system was run [29, 34] without the system com-

bination component. As for decoding, each language was treated

separately with KWS parameters fixed across languages and AMs.

The OOV lattices were pruned to reduce the search space. Unless

otherwise noted, the language model was ignored in the OOV search

(i.e. LM weight set to 0). This was essential for the Hybrid systems

to eliminate dynamic range mismatches but also beneficial for the

Tandem systems.

7. EXPERIMENTAL RESULTS

All STT results are Viterbi bigram results. Percentage token error

rate (%TER) is presented where a token is a character for Cantonese,

a word for Pashto, Turkish and Tagalog, and a Vietnamese syllable

or foreign word for Vietnamese. In the tables † indicates this lan-

guage was not used for the multilingual MLP, AM and/or decision

tree training.

7.1. Multilingual MLP features

Unilingual systems were built with Tandem features comprised of

PLP, pitch and matched language or multilingual MLP bottleneck

features. Table 2 shows the STT and KWS performance for dis-

criminative speaker adaptive trained systems with fMPE. As can be

seen the multilingual MLP features reduce the error rate for all the

languages, including Vietnamese which was not included in the mul-

tilingual BN features training. This concurs with previously reported

results. For all the languages in the multilingual training set, the im-

provements in STT are carried through to KWS with gains in the

MTWV score being observed. However, for Vietnamese the KWS

performance degrades with the multilingual MLP feature system.

Language Id %TER MTWV

uni multi uni multi

Cantonese L101 65.7 63.9 0.3295 0.3445

Pashto L104 68.8 67.7 0.1494 0.1621

Turkish L105 68.5 67.7 0.3479 0.3630

Tagalog L106 66.6 65.4 0.2607 0.2737

Vietnamese† L107 71.3 71.1 0.1634 0.1576

Table 2. Comparison of matched language (uni) and multilingual

(multi) MLP features.

7.2. Multilingual features and acoustic models

The ability to further exploit commonalities between the sounds of

different languages to share data to train more robust systems was in-

vestigated through combining multilingual MLP features with mul-

tilingual acoustic models. Experiments considered whether it is ben-

eficial to ask language questions (LQ) in the MLP and AM decision

trees or to have language independent (LI) trees.



Language Id multi MLP/ multilingual: MLP/AM

uni AM LI/LI LI/LQ LQ/LQ

Cantonese L101 63.9 63.8 63.6 63.9

Pashto L104 67.7 68.3 67.8 68.0

Turkish L105 67.7 68.2 67.7 68.0

Tagalog L106 65.4 67.6 66.4 66.4

Vietnamese† L107 71.1 91.4 91.8 91.9

Table 3. % TER STT performance of unilingual and multilingual

AMs with multilingual MLP features.

Language Id multi MLP/ multilingual MLP/AM

uni AM LI/LI LI/LQ LQ/LQ

Cantonese L101 0.3309 0.3395 0.3449 0.3275

Pashto L104 0.1606 0.1471 0.1528 0.1459

Turkish L105 0.3595 0.3555 0.3685 0.3676

Tagalog L106 0.2612 0.2560 0.2722 0.2589

Vietnamese† L107 0.1440 0.0250 0.0011 0.0004

Table 4. MTWV KWS performance of unilingual and multilingual

AMs with multilingual MLP features. KWS OOV LM was non-zero.

The tied state outputs for the multilingual MLP in Table 2 did

not ask any language specific questions (i.e. language independent

(LI)). As seen in Tables 3 and 4 training multilingual AMs using LI

decision trees (LI/LI) results in a degradation in both STT and KWS

performance across all languages except for Cantonese KWS. For

the multilingual training languages, introducing language questions

(LQ) into the AMs achieves equivalent STT performance (LI/LQ) to

the multilingual MLP features-only case (except for Tagalog where

it is 1% worse). Gains are also seen for all languages but Pashto in

KWS. Additionally asking language questions in the MLP features

trees (LQ/LQ) produces slightly worse STT and lower KWS perfor-

mance than the LI/LQ system but error rates are lower than for LI/LI.

However, the KWS performance compared to LI/LI is mixed.

Stacked LQ/LQ systems were trained to compare Tandem

GMM-HMM and Hybrid DNN-HMM modelling. The input fea-

tures in each case were taken from the bottleneck output of the LQ

MLP above. Table 5 presents experiments for the multilingual train-

ing set languages. The Tandem system out-performed the Hybrid

except for Turkish. Further optimisation of both systems is required

e.g. due to time constraints phone level re-alignment of the training

data was not performed.

Language Id %TER MTWV

Tandem Hybrid Tandem Hybrid

Cantonese L101 64.3 65.6 0.3301 0.3174

Pashto L104 68.4 69.3 0.1543 0.1297

Turkish L105 69.3 67.7 0.3493 0.3535

Tagalog L106 67.9 68.5 0.2946 0.2624

Table 5. %TER STT performance of multilingual Tandem and Hy-

brid LQ/LQ MLP/AM systems.

7.3. Analysis of language independent models

Tables 3 and 4 show that for the non-training set language, Viet-

namese, the performance of the multilingual AM systems was very

poor. There are two possible sources for this poor performance. The

first is that the acoustic data associated with Vietnamese, even if re-

lated to the same X-SAMPA symbol, may be mismatched to that of

the multi-lingual training languages. Second, the decision tree used

for tying the acoustic model may not be appropriate for Vietnamese.

For example there are 15 phones in Vietnamese that will not be seen

in decision tree construction, so the leaves will be determined by the

broad class questions.

To investigate these effects unilingual systems were constructed

using the multilingual decision tree. To ensure robust parameter es-

timation, CMLLR, MLLR and MAP adaptation approaches were

used and for simplicity a basic PLP+pitch, ML trained system was

used. From Table 6 the TER performance using the multilingual tree

(multi) is comparable to the unilingual tree. It is interesting that Can-

tonese, with more unique phones than the other training languages,

has the least non-zero multilingual tree leaves. However the TER

performance of the Vietnamese system is poor, approximately mid

way between the Vietnamese single language system and the multi-

lingual Vietnamese performance. This degradation in performance

must be due to the tree, as the acoustic training data is the same. As

can be seen in Figure 3 the Vietnamese data is concentrated in far

fewer leaf nodes, resulting in poor discrimination.

Language Id # states %TER

uni multi uni multi

Cantonese L101 1038 1119 75.7 75.4

Pashto L104 1038 1623 76.7 76.1

Turkish L105 1048 1698 77.1 76.2

Tagalog L106 1033 1698 74.8 74.5

Vietnamese† L107 1028 1169 78.5 84.9

Table 6. Use of unilingual (uni) and multilingual (multi) decision

trees in a PLP+pitch ML system. # states indicates the number of

stated (uni) and used (non-zero count) states of the 2985 multi-state

system. No language questions were asked in the multilingual trees.

Fig. 3. Cumulative PDF of state coverage.

8. CONCLUSIONS AND DISCUSSION

The development of high performance speech processing systems

for low resource languages is challenging. This paper has con-

sidered spoken term detection (STD) of conversational telephone

speech data. Experiments were run using the IARPA Babel limited

language pack corpora (∼10 hours/language) with 4 languages for

initial multilingual system development and an additional held-out

or target language, Vietnamese. Multilingual bottleneck features in

a Tandem configuration yielded gains over unilingual systems for

both speech-to-text (STT) and STD. Further improvements were

observed in both STT and STD by training multilingual Tandem

GMM-HMM acoustic models with language questions incorporated

into the GMM decision trees. Adapted Hybrid systems performed

slightly worse on average than the adapted Tandem systems.



A language independent acoustic model test on the target lan-

guage showed that retraining or adapting of the acoustic models to

the target language is currently essential. It was seen that approxi-

mately half the degradation of the multilingual AM systems applied

to Vietnamese is due to the decision trees. The ability to handle both

decision tree and X-SAMPA label acoustic data mismatches is an

important aspect of language independent work and will be consid-

ered further in the future.

The best performing Cantonese system achieved 63.6% CER

and 0.3449 MTWV. By contrast an equivalent Cantonese unilingual

system trained on the full language pack with approximately 8x as

much data achieved 46.4% CER and 0.5469 MTWV. As the Babel

program goes forward the planned increase in the quantity of re-

sources and languages should facilitate the development of multilin-

gual systems in some configuration.
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