
RECURRENT NEURAL NETWORK LANGUAGE MODELS FOR KEYWORD SEARC H

X. Chen1, A. Ragni1, J. Vasilakes1, X. Liu2, K. Knill 1, M.J.F. Gales1

1 University of Cambridge Engineering Department, Cambridge, U.K.
2 Department of Systems Engineering and Engineering Management,

Chinese University of Hong Kong, Hong Kong

ABSTRACT
Recurrent neural network language models (RNNLMs) have be-
coming increasingly popular in many applications such as automatic
speech recognition (ASR). Significant performance improvements
in both perplexity and word error rate over standardn-gram LMs
have been widely reported on ASR tasks. In contrast, published
research on using RNNLMs for keyword search systems has been
relatively limited. In this paper the application of RNNLMsfor
the IARPA Babel keyword search task is investigated. In order to
supplement the limited acoustic transcription data, largeamounts of
web texts are also used in large vocabulary design and LM training.
Various training criteria were then explored to improved RNNLMs’
efficiency in both training and evaluation. Significant and consistent
improvements on both keyword search and ASR tasks were obtained
across all languages.

Index Terms— speech recognition, keyword search, language
model, recurrent neural network

1. INTRODUCTION

Language models are crucial components in many speech and lan-
guage processing applications, such as speech recognitionand ma-
chine translation.n-gram LMs have been the dominant language
modelling approach for several decades. However, there aretwo well
know issues associated withn-gram LMs, which are data sparsity
and thenth order Markov assumption [1]. RNNLMs provide a fea-
sible solution for the two keyn-gram issues. Furthermore, RNNLMs
have been shown to produce significant improvements overn-gram
LMs on a wide range of applications including speech recognition
[2, 3], machine translation [4], spoken language understanding [5].

In previous research, RNNLMs have been widely used to im-
prove the performance of speech recognition systems. In contrast,
There are only limited works on applying neural network language
models to the task of keyword search. In [6], feedforward neu-
ral network language models (FF-NNLMs) trained with a modified
objective function to improve predition of rare words led tosig-
nificantly improvements in keyword search performance. Unfor-
tunately, this approach also led to a degradation in speech recog-
nition performance. In order to obtain balanced improvements for

Xie Chen is supported by Toshiba Research Europe Ltd, Cambridge Re-
search Lab. This work was supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Defense U. S. Army Research
Laboratory (DoD/ARL) contract number W911NF-12-C-0012. The U. S.
Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotationthereon. Dis-
claimer: The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of IARPA, DoD/ARL, or the
U. S. Government..

both speech recognition and keyword search, a series of RNNLM
training approaches featuring the efficient noise contrastive estima-
tion (NCE) and variance regularisation (VR) criteria were investi-
gated on state-of-the-art Cambridge University BABEL evaluation
systems. These techniques allow large vocabulary RNNLMs tobe
efficiently trained and evaluated, as well as appropriatelyleverage
large amounts of mixed in-domain acoutic data and out-of-domain
general web texts. Significant performance improvements were ob-
tained for both speech recognition and keyword search across five
different languages. To our best knowledge, this is the firstwork
dedicated to systematically designing and evaluating RNNLMs that
are optimized for both speech recognition and keyword search tasks.

The rest of this paper is organised as follows. RNNLMs are
briefly reviewed in Section 2. In Section 3, the task of keyword
search for Babel project is described. Section 4 details thetraining
of RNNLMs for keyword search in the Babel project. Experimental
results are presented in Section 5 and the conclusion is drawn in
Section 6.

2. RECURRENT NEURAL NETWORK LMS

The topology of the recurrent neural network [2] used to compute
LM probabilitiesPRNN(wi|wi−1,vi−2) consists of three layers. The
full history vector, obtained by concatenatingwi−1 andvi−2, is fed
into the input layer. The hidden layer compresses the information
from these two inputs and computes a new representationvi−1 using
a sigmoid activation to achieve non-linearity. This is thenpassed to
the output layer to produce normalised RNNLM probabilitiesusing
a softmax activation, as well as recursively fed back into the input
layer as the “future” remaining history to compute the LM probabil-
ity for the following wordPRNN(wi+1|wi,vi−1).

An example RNNLM architecture with an unclustered, full out-
put layer is shown in Figure 1. RNNLMs can be trained using back
propagation through time (BPTT) [7]. To reduce the computational
cost, a shortlist [8, 9] on output layer limited to the most frequent
words can be used. An out-of-vocabulary (OOV) input node is used
to represent any input word not in the chosen recognition vocabu-
lary. To reduce the bias to in-shortlist words during RNNLM train-
ing and improve robustness, an additional node is added at the out-
put layer to model the probability mass of out-of-shortlist(OOS)
words [10, 11, 12].

The full output layer based RNNLMs can be efficiently trained
with the CUED-RNNLM toolkit [13, 14] on GPU with bunch mode.
Besides the standard cross entropy criterion, two improvedtraining
criteria: variance regularisation (VR) and noise contrastive estima-
tion (NCE), are supported in the CUED-RNNLM toolkit.

Input layer

...

...
...

sigmoid

...

linear

softmax

OOV input node

OOS output node

Hidden layer Output layer

wi−1

vi−2

vi−1

vi−1

PRNN(wi|wi−1,vi−2)

Fig. 1. A full output layer RNNLM with OOS nodes.

2.1. Cross Entropy (CE)

The conventional objective function used in RNNLM trainingis
based on cross entropy (CE),

J
CE(θ) = −

1

Nw

Nw
∑

i=1

lnPRNN(wi|hi) (1)

whereNw is the number of words in training corpus. Full output
layer RNNLMs with moderate output layer size (e.g. 20K) can be
trained on GPU efficiently [15]. However, if the output layersize
increases to more than 100K, the computation of normalisation term
for softmax is time-consuming, as shown in Eqn (2), whereai is
the weight vector associated with wordwi in the output layer. The
computation of normalisation termZ(hi) is slow in both training
and test time.

PRNN(wi|hi) =
ev

T
i−1ai

∑

j
e
vT
i−1

aj

=
ev

T
i−1ai

Z(hi)
(2)

One solution to this issue is to learn a constant, history inde-
pendent softmax normalisation term during RNNLM training.If the
normalisation termZ(hi) could be approximated as constantC, un-
normalised RNNLM probabilities are be used in test time as,

PRNN(wi|hi) ≈
ev

T
i−1ai

C
(3)

2.2. Variance Regularisation (VR)

Variance regularisation explicitly adds the variance of normalisation
term into the standard CE objective function [16]. The associated
objective function is given by

J
VR(θ) = J

CE(θ) +
γ

2

1

Nw

Nw
∑

i=1

(ln(Z(hi))− (lnZ))2 (4)

wherelnZ is the mean of log normalisation term. The second term
added to the CE objective function models the variance of thelog
normalisation term.γ is a parameter to tune the effect of variance
term over the CE criterion. In test time, RNNLM probabilities can
be approximated as unnormalised probabilities in Eqn (3) and fast
evaluation speed can be obtained.

2.3. Noise Contrastive Estimation (NCE)

In NCE training, each word in the training corpus is assumed to be
generated by two different distributions [17]. One is data distribu-
tion, which is RNNLM, and the other is noise distribution, where
unigram is normally used. The objective function is to discriminate
these two distributions over the training data and a group ofran-
domly generated noise samples. This is given by,

J
NCE(θ) = −

1

Nw

Nw
∑

i=1

(

lnP (CRNN

wi
= 1|wi, hi)

+
k

∑

j=1

lnP (Cn
w̌i,j

= 1|w̌i,j , hi)
)

(5)

wherewi is the ith target word,w̌i,j is thejth noise word gener-
ated for wordwi, andk is the number of noise samples.P (CRNN

wi
=

1|wi, hi) is the posterior probability of wordwi is generated by the
RNNLM, andP (Cn

w̌i,j
= 1|w̌i,j , hi) the posterior probability of

wordw̌i,j is generated by a noise distribution. During NCE training,
the normalisation termZ(hi) is constrained to be constant implic-
itly. The training is only associated to the target word andk samples
in the output layer, instead of the whole output layer. Hence, the out-
put layer computational cost is no longer sensitive to vocabulary size
and can be reduced significantly. In common with variance regular-
isation, unnormalised probabilities in Eqn. (3) can be usedin test
time. Hence, a large speedup on both training and test time can be
achieved. More details about NCE training can be found from [18].

In many applications, RNNLMs are linearly interpolated with
n-gram LMs to obtain both a good context coverage and strong gen-
eralisation [2, 19, 8]. The interpolated LM probability is given by

P (wi|hi) = λPNG(wi|hi) + (1− λ)PRNN(wi|hi) (6)

whereλ is the weight of then-gram LM PNG(·), and is kept fixed
at 0.5 in this paper. In the above interpolation, the probability mass
of OOS words assigned by the RNNLM component is re-distributed
with equal probabilities among all OOS words.

3. KEYWORD SEARCH FOR BABEL PROJECT

The keyword search in the Babel program is a speech processing
task based on speech recognition technology to find all occurrences
of a word or word sequence, in a large audio corpus. Lattices are
first generated from the ASR system and the query (i.e. keyword)
is searched among all possible paths in lattices. The indexing and
search of our KWS system are based on the weight finite state trans-
ducer (WFST) framework [20, 21].

During search, a query is represented as a weighted finite state
acceptor (WFSA), and subsequently the composition operation is
carried out to retrieve detection postings. More specifically, each
in-vocabulary (IV) query term is converted to a word WFSA, and
composed with the word index. If one IV term does not get any
return, it is converted to a grapheme WFSA and searched againin
the grapheme index. This is known as cascade search. On the other
hand, the search for out-of-vocabulary (OOV) term are operated only
on the grapheme level, i.e., all OOVs are represented as grapheme
WFSAs, and composed with the grapheme index. Language model
scores are ignored in OOV search. To further boost the OOV detec-
tion performance, a query expansion using grapheme-to-grapheme
confusability (NBestP2P) [22] is applied. NBestP2P is set to 100 in
all the experiments for this paper. Finally the IV and OOV search

posting lists are merged and STO score normalisation is applied to
generate the final KWS output.

The performance of keyword search is evaluated using maxi-
mum term-weighted value (MTWV), to reflect the weighted costof
miss error and false alarm during keyword search. It is worthnot-
ing that the system is built for both speech recognition and keyword
search, and the language model scale is tuned separately forspeech
recognition and keyword search.

4. RNNLMS FOR KEYWORD SEARCH

As stated in the above section, lattices are generated first by using
a n-gram LM for first-pass decoding. RNNLMs are then used for
lattice rescoring withn-gram approximation [23]. The resulting lat-
tices from RNNLM rescoring are then used for keyword search.

Two sources of text are used to build language models. One is
from the acoustic transcription, which is referred as FLP data. The
other is obtained from the web using search engines, e.g. Wikipedia,
Ted talk and Tweets. In [24], additional WEB data was used for
language modelling and significant improvement was obtained on
both the MTWV and WER metrics. The amount of the FLP data
is normally much smaller than that of the WEB data. The statistics
of the FLP and WEB data used in this paper can be found in Table
1. In order to reduce the OOV rate for both speech recognitionand
keyword search systems, a large vocabulary was also produced by
using the additional WEB data.

The WEB data can be viewed as out-of-domain data and the FLP
data as in-domain data. This can be reflected from the interpolation
weight of the FLP data during the construction ofn-gram LMs (6th
column in Table 1). Given the in-domain and out-of-domain corpora,
RNNLMs can be efficiently adapted with fine-tuning or incorpora-
tion of topic feature as discussed in [25]. Considering thatthe WEB
data was collected by Columbia University and provided utterance
by utterance, there is no explicit boundary for each document to train
a topic model. Hence, the fine-tune method is adopted. RNNLMs
are trained with two stages. They are first trained with all training
data (denoted as WEB data) and then fine-tuned on the FLP data for
adaptation purpose.

As discussed above, a larger output layer vocabulary signifi-
cantly increases the CE training time for RNNLMs. In practice this
may take up to one week to complete for some languages. Further-
more, these models are also computationally expensive in test time.
One solution to improve the training and evaluation time efficiency
is to use alternative training criteria such as variance regularisation
(VR) [16] and noise contrastive estimation (NCE) [18]. Variance
regularisation explicitly minimizes the variance of the softmax nor-
malization term during RNNLM training, the normalization term at
the output layer can be ignored during testing time thus gaining sig-
nificant improvements in speed. The NCE algorithm further allows
the output layer normalization term to be ignored also during train-
ing time, and provides a dual purpose solution to improve both the
training and evaluation efficiency for RNNLMs. Three fine-tuning
procedures were proposed to improve the RNNLMs efficiency.

The first approach (CE+VR) performs standard CE training on
the WEB data, and then VR based training on the FLP data for fine-
tuning. The model trained with VR was used for fast lattice rescoring
without computing the normalisation term at the output layer.

In order to further improve the training efficiency on the WEB
data, the second method (NCE+VR) performs NCE training on the
WEB data first before VR based training on the FLP data. As dis-
cussed above, in addition to improve the evaluation time efficiency,

NCE training also produced significantly faster training speed on
larger WEB data set.

A third approach investigated in this paper performs NCE train-
ing on both the WEB and FLP data. As many vocabulary words orig-
inally selected from the WEB data do not appear in the FLP data,
and the weight matrix parameters associated with these words can
not be robustly trained, it is problematic to perform NCE based fine-
tuning on the limited FLP data. This was found in practice lead to
performance degradation. The same issue exists using noisesamples
drawn either from an interpolated unigram model trained on both the
FLP and WEB data or a unigram model trained on FLP data only. In
order to handle this issue and assigning sufficient weighting to the
in-domain FLP data during RNNLM training, 9 copies of the FLP
data were appended to the end of the WEB data to construct a “ex-
tended” corpus. NCE training is then performed on this “extended”
corpus. All the three methods mentioned above were investigated
on the Babel corpora and experimental results are presentedin the
following section.

5. EXPERIMENTS

In this paper, a total of 5 languages from the IARPA Babel pro-
gram were chosen for experiments. Their corpora IDs in the Babel
language releases are Pashto (104, IARPA-babel104b-v0.4bY),
Igbo (306, IARPA-babel306b-v2.0c), Mongolian (401, IARPA-
babel401b-v2.0b), Javanese (402, IARPA-babel402b-v1.0b) and
Georgian (404, IARPA-babel404b-v1.0a) respectively.

5.1. Acoustic Models

The full language pack (FLP) in the Babel Program contains about
100-200 hours of transcribed audio training data (∼60-80 hours
speech) for acoustic model training. Tandem and Hybrid systems
were built with speaker adaptation using CMLLR transferredfea-
tures [26]. To obtain better performance, a 4-way joint decoding
system [27], combining two Tandem and two Hybrid systems, was
build using HTK toolkit [28]. The multi-lingual bottleneckfeatures
[29] provided by IBM and Aachen University were incorporated. A
detailed description of the acoustic models can be found in [27].

5.2. Language Models

As mentioned before, two sources of data, the WEB data and FLP
data, are used to construct language models. Description ofthese
5 languages is shown in Table 1. The vocabulary size varies from
28K (in Igbo) to 376K (in Pashto) and the amount of the WEB data
varies from 2M (in Igbo) to 141M (in Mongolian). The size of FLP
data is stable among these 5 languages, which lies in the range of
400K to 500K words. 3-gram LMs were first built on each source
of text and then interpolated. The interpolation weights ofthe FLP
data on each language are also given in the Table. For the training
of RNNLMs, all train data is first used, and then fine-tuned on the
FLP data. The vocabulary was chosen as the input layer and thethree
fourths most frequent words of the vocabulary modelled at the output
layer. All RNNLMs were parallel trained with a spliced bunchmode
on GPU [15] with a hidden layer of 100 hidden nodes. The bunch
size is set to 128 at the first stage of training (on all data) and 64
at the second stage (on FLP data only). The empirically weighting
parameterγ in equation (4) ranging from 0.5 to 2 was chosen for VR
based training. For NCE training, 1000 noise samples were drawn
from a unigram distribution and shared within each bunch. The 3-

gram approximation described in [23] is used for RNNLM rescoring
of lattices initially generated by 3-gram back-off LMs.

Table 1. Statistics for 5 languages in Babel corpora.
Language LM #Data FLP OOV

Words Vocab Wgt ASR KWS

Pashto FLP 535K 14.4K - 1.96 11.38
WEB 105M 376.3K 0.98 0.68 3.05

Igbo FLP 549K 16.9K - 2.59 11.97
WEB 2M 28K 0.98 2.33 10.74

Mongolian FLP 511K 24.0K - 4.19 12.19
WEB 139M 199.8K 0.93 2.10 5.62

Javanese FLP 409K 16.5k - 4.84 12.75
WEB 73M 268.1K 0.98 2.13 4.18

Georgian FLP 406K 34.3K - 8.16 14.93
WEB 137M 278.6K 0.91 3.02 5.22

The Pashto language is used to investigate the performance of
RNNLMs first. Table 2 shows the perplexity (PPL) and WER results
of the 3-gram LM and RNNLM. RNNLM gave an absolute 1.0%
reduction in WER and 21% relative reduction in PPL. However,the
RNNLM for Pashto contains 282k words in the output layer. It is
time-consuming to train and evaluate RNNlms with CE due to the
explicit normalisation at the RNNLM output layer. The time infor-
mation can be found from the first row in the Table 3.

Table 2. PPL and WER results of RNNLM on Pashto.
LM PPL WER

3-gram 172 43.8
+RNN 136 42.8

In order to address the training and evaluation efficiency issues
associated with CE training of large vocabulary RNNLMs, thethree
methods discussed in Section 4 were evaluated on the Pashto data
for keyword search. The training and evaluation time of these three
methods are shown in Table 3. It can be clearly seen that NCE sig-
nificantly speeds up the training time on the WEB data by more than
10 times. VR also improves the evaluation speed on a similar scale.

Table 3. Train and evaluation time of various criteria on Pashto.
Train Crit Times (Hrs)

WEB FLP Train Eval

CE CE 125.0 23.0
CE VR 130.0 1.6

NCE VR 10.7 2.0

The WER and MTWV metric scores obtained using various
RNNLM training criteria are shown in Table 4. The 1st block (i.e.
1st line) gives the baseline results using the 3-gram LM. The2nd
block shows results with RNNLMs. The 2nd to 4th lines present
the performance of RNNLM trained with CE in the first stage, but
different strategies for fine-tuning. The 2nd line is the result without
fine-tuning on the FLP data, the 3rd line used CE criterion andthe
4th line applied VR for fine-tuning. It can be seen that fine-tuning
improved performance in both WER and MTWV performance. The
first approach (CE+VR) discussed in Section 4 gave slight degra-
dation in WER and MTWV compared to the CE fine-tuning in the
3rd line, but a large speedup in test time as shown in Table 3. The
5th and 6th lines adopted NCE in the first stage and compare perfor-
mance with and without fine-tuning. Similar as CE training inthe

first stage, fine-tuning gives consistent improvement in WERand
MTWV. The results of the second training method (NCE+VR) are
shown in the 6th line in the Table. It gave comparable WER and
MTWV scores as the RNNLM trained with CE (3rd line), while sig-
nificant speedup in both training and evaluation time was obtained,
as shown earlier in Table 3. The results of the third method (NCE on
WEB + 9 copies of FLP data) are shown in the last line in Table 4.
This system is also benefited from the large training and evaluation
efficiency improvements of NCE, though further degradationin both
WER and MTWV scores were also found.

Table 4. WER and MTWV results of RNNLM on Pashto.
LM Train Crit WER MTWV

WEB FLP IV OOV Total

3-gram - 43.8 0.4828 0.4083 0.4750

+RNN

- 43.6 0.4852 0.4034 0.4842
CE CE 42.8 0.4975 0.4048 0.4871

VR 43.0 0.4958 0.4010 0.4853

NCE
- 43.7 0.4916 0.4068 0.4824

VR 43.0 0.4975 0.3953 0.4862
NCE 43.2 0.4936 0.4038 0.4835

Considering the improvements on both system performance and
efficiency, the second RNNLM training approach NCE+VR pro-
vided the best solution among all the three methods. It was then
applied to the remaining 4 languages. The corresponding PPL, WER
and MTWV results are presented in Table 5. It can be seen that con-
sistent and significant improvements over 3-gram LMs in terms of
WER and MTWV were obtained across all 4 languages.

Table 5. PPL, WER and KWS results of RNNLMs on 5 languages.
Language LM PPL WER MTWV

IV OOV Total

Pashto 3-gram 172 43.8 0.4828 0.4083 0.4750
+RNN 136 43.0 0.4975 0.3953 0.4862

Igbo 3-gram 110 54.6 0.4079 0.3635 0.4030
+RNN 94 53.7 0.4101 0.3718 0.4061

Mongolian 3-gram 134 47.0 0.5606 0.5171 0.5559
+RNN 105 46.0 0.5708 0.5343 0.5666

Javanese 3-gram 219 50.1 0.5182 0.4801 0.5138
+RNN 172 49.3 0.5229 0.4768 0.5173

Georgian 3-gram 472 37.8 0.7325 0.7300 0.7322
+RNN 377 37.1 0.7386 0.7309 0.7375

6. CONCLUSION

In this paper, we present our recent work on recurrent neuralnetwork
language models (RNNLMs) to improve the performance of Babel
keyword search evaluation systems. In order to efficiently train and
evaluate large vocabulary RNNLMs and appropriately use on large
amounts of mixed in-domain and out-of-domain training data, a
series of RNNLM training approaches featuring the efficientnoise
contrastive estimation and variance regularisation criteria were in-
vestigated on a combined corpus containing both general webtexts
and in-domain acoustic data. Significant improvements in both
speech recognition and keyword search performance metricswere
obtained across five different languages. To our best knowledge,
this is the first work dedicated to systematically designingand eval-
uating RNNLMs that are optimized for both speech recognition and
keyword search tasks.

7. REFERENCES

[1] Joshua Goodman, “A bit of progress in language modeling,”
Computer Speech & Language, vol. 15, no. 4, pp. 403–434,
2001.

[2] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ,
and Sanjeev Khudanpur, “Recurrent neural network based lan-
guage model.,” inProc. ISCA INTERSPEECH, 2010.

[3] Tomas Mikolov, Stefan Kombrink, Lukas Burget, J.H. Cer-
nocky, and Sanjeev Khudanpur, “Extensions of recurrent neu-
ral network language model,” inProc. ICASSP. IEEE, 2011.

[4] Shujie Liu, Nan Yang, Mu Li, and Ming Zhou, “A recursive
recurrent neural network for statistical machine translation.,”
in ACL, 2014, pp. 1491–1500.

[5] Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang, Yangyang
Shi, and Dong Yu, “Recurrent neural networks for language
understanding.,” inProc. ISCA INTERSPEECH, 2013, pp.
2524–2528.

[6] Ankur Gandhe, Florian Metze, Alex Waibel, and Ian Lane,
“Optimization of neural network language models for keyword
search,” inProc. ICASSP. IEEE, 2014, pp. 4888–4892.

[7] David Rumelhart, Geoffrey Hinton, and Ronald Williams,
Learning representations by back-propagating errors, MIT
Press, Cambridge, MA, USA, 1988.

[8] Holger Schwenk, “Continuous space language models,”Com-
puter Speech & Language, vol. 21, no. 3, pp. 492–518, 2007.

[9] Ahmad Emami and Lidia Mangu, “Empirical study of neural
network language models for Arabic speech recognition,” in
ASRU, IEEE Workshop on. IEEE, 2007.

[10] Junho Park, Xunying Liu, Mark Gales, and Phil Woodland,
“Improved neural network based language modelling and
adaptation,” inProc. ISCA INTERSPEECH, 2010.

[11] Hai-Son Le, Ilya Oparin, Alexandre Allauzen, J Gauvain, and
François Yvon, “Structured output layer neural network lan-
guage models for speech recognition,”Audio, Speech, and
Language Processing, IEEE Transactions on, vol. 21, no. 1,
pp. 197–206, 2013.

[12] Xunying Liu, Yongqiang Wang, Xie Chen, Mark Gales, and
Phil Woodland, “Efficient lattice rescoring using recurrent neu-
ral network language models,” inProc. ICASSP. IEEE, 2014.

[13] Xie Chen, Xunying Liu, Mark Gales, and Phil Woodland,
“CUED-RNNLM an open-source toolkit for efficient training
and evaluation of recurrent neural network language models,”
in Proc. ICASSP. IEEE, 2015.

[14] Xie Chen, Xunying Liu, Yongqiang Wang, Mark Gales, and
Phil Woodland, “Two efficient lattice rescoring methods using
recurrent neural network language models,”IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 24,
no. 11, pp. 2146–2157, 2016.

[15] Xie Chen, Yongqiang Wang, Xunying Liu, Mark Gales, and
P. C. Woodland, “Efficient training of recurrent neural network
language models using spliced sentence bunch,” inProc. ISCA
INTERSPEECH, 2014.

[16] Xie Chen, Xunying Liu, Mark Gales, and Phil Woodland, “Im-
proving the training and evaluation efficiency of recurrentneu-
ral network language models,” inProc. ICASSP, 2015.

[17] Andriy Mnih and Yee Whye Teh, “A fast and simple algo-
rithm for training neural probabilistic language models,”Proc.
ICML, 2012.

[18] Xie Chen, Xunying Liu, Mark Gales, and Phil Woodland, “Re-
current neural network language model training with noise
contrastive estimation for speech recognition,” inProc.
ICASSP, 2015.

[19] Martin Sundermeyer, Ilya Oparin, Jean-Luc Gauvain, Ben
Freiberg, Ralf Schluter, and Hermann Ney, “Comparison of
feedforward and recurrent neural network language models,”
in Proc. ICASSP, 2013.

[20] Brian Kingsbury, Jia Cui, Xiaodong Cui, Mark Gales, Kate
Knill, Jonathan Mamou, Lidia Mangu, David Nolden, Michael
Picheny, Bhuvana Ramabhadran, et al., “A high-performance
Cantonese keyword search system,” inProc. ICASSP. IEEE,
2013, pp. 8277–8281.

[21] Cyril Allauzen, Mehryar Mohri, and Murat Saraclar, “General
indexation of weighted automata: application to spoken utter-
ance retrieval,” inProc. HLT-NAACL, 2004, pp. 33–40.

[22] Lidia Mangu, Hagen Soltau, Hong-Kwang Kuo, Brian Kings-
bury, and George Saon, “Exploiting diversity for spoken term
detection,” inProc. ICASSP. IEEE, 2013, pp. 8282–8286.

[23] Xunying Liu, Xie Chen, Yongqiang Wang, Mark Gales, and
Phil Woodland, “Two efficient lattice rescoring methods using
recurrent neural network language models,”IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 24,
no. 8, pp. 1438–1449, 2016.

[24] Gideon Mendels, Erica Cooper, Victor Soto, Julia Hirschberg,
Mark Gales, Kate Knill, Anton Ragni, and Haipeng Wang,
“Improving speech recognition and keyword search for low
resource languages using web data,” inProc. ISCA INTER-
SPEECH, 2015.

[25] Xie Chen, Tian Tan, Xunying Liu, Pierre Lanchantin, Mo-
quan Wan, Gales Mark, and Phil Woodland, “Recurrent neural
network language model adaptation for multigenre broadcast
speech recognition.,” inProc. ISCA INTERSPEECH, 2015.

[26] Mark Gales, “Maximum likelihood linear transformations for
HMM-based speech recognition,”Computer Speech & Lan-
guage, vol. 12, no. 2, pp. 75–98, 1998.

[27] Haipeng Wang, Anton Ragni, Mark Gales, Kate Knill, Phil
Woodland, and Chao Zhang, “Joint decoding of tandem and
hybrid systems for improved keyword spotting on low resource
languages,” inProc. ISCA INTERSPEECH, 2015.

[28] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain,
Dan Kershaw, Xunying Liu, Gareth Moore, Julian Odell, Dave
Ollason, Dan Povey, Anton Ragni, Valtcho Valtchev, Phil
Woodland, and Chao Zhang, “The HTK book (for HTK ver-
sion 3.5),” Cambridge University Engineering Department,
2015.

[29] Zoltan Tuske, David Nolden, Ralf Schluter, and HermannNey,
“Multilingual MRASTA features for low-resource keyword
search and speech recognition systems,” inProc. ICASSP.
IEEE, 2014, pp. 7854–7858.

