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ABSTRACT

both speech recognition and keyword search, a series of RINNL

Recurrent neural network language models (RNNLMs) have betraining approaches featuring the efficient noise coritraststima-

coming increasingly popular in many applications such asmatic
speech recognition (ASR). Significant performance impnosets
in both perplexity and word error rate over standardram LMs
have been widely reported on ASR tasks. In contrast, puddish

tion (NCE) and variance regularisation (VR) criteria wengeisti-
gated on state-of-the-art Cambridge University BABEL aa#ibn
systems. These techniques allow large vocabulary RNNLMzeto
efficiently trained and evaluated, as well as approprid@igrage

research on using RNNLMs for keyword search systems has bed@rge amounts of mixed in-domain acoutic data and out-ofi@a

relatively limited. In this paper the application of RNNLMsr
the IARPA Babel keyword search task is investigated. In otde
supplement the limited acoustic transcription data, lameunts of
web texts are also used in large vocabulary design and LMigi
Various training criteria were then explored to improvedNRWIs’
efficiency in both training and evaluation. Significant andsistent
improvements on both keyword search and ASR tasks werenelotai
across all languages.

general web texts. Significant performance improvemente wb-
tained for both speech recognition and keyword search adis
different languages. To our best knowledge, this is the itk
dedicated to systematically designing and evaluating RMBIthat
are optimized for both speech recognition and keyword $easks.

The rest of this paper is organised as follows. RNNLMs are
briefly reviewed in Section 2. In Section 3, the task of keydvor
search for Babel project is described. Section 4 detailsrtiring

Index Terms— speech recognition, keyword search, language®f RNNLMs for keyword search in the Babel project. Experittan

model, recurrent neural network

1. INTRODUCTION

Language models are crucial components in many speech and la

guage processing applications, such as speech recogaittbma-
chine translation.n-gram LMs have been the dominant language
modelling approach for several decades. However, thetsvareell
know issues associated withhgram LMs, which are data sparsity
and then™ order Markov assumption [1]. RNNLMs provide a fea-
sible solution for the two key-gram issues. Furthermore, RNNLMs
have been shown to produce significant improvements ogmam
LMs on a wide range of applications including speech redagni
[2, 3], machine translation [4], spoken language undedstan[5].

results are presented in Section 5 and the conclusion isndiiaw
Section 6.

2. RECURRENT NEURAL NETWORK LMS

The topology of the recurrent neural network [2] used to cotap
LM probabilities Prnn (wi|wi—1, vi—2) consists of three layers. The
full history vector, obtained by concatenating_1 andv;_a, is fed
into the input layer. The hidden layer compresses the irdion
from these two inputs and computes a new representationusing

a sigmoid activation to achieve non-linearity. This is tipassed to
the output layer to produce normalised RNNLM probabilitising

In previous research, RNNLMs have been widely used to im-2 Softmax activation, as well as recursively fed back in®itiput

prove the performance of speech recognition systems. lirasin
There are only limited works on applying neural network laage
models to the task of keyword search. In [6], feedforward-neu
ral network language models (FF-NNLMs) trained with a medifi
objective function to improve predition of rare words led dig-
nificantly improvements in keyword search performance. donf
tunately, this approach also led to a degradation in spesobgr
nition performance. In order to obtain balanced improveiéor

Xie Chen is supported by Toshiba Research Europe Ltd, CdgbiRe-
search Lab. This work was supported by the Intelligence Aded Research
Projects Activity (IARPA) via Department of Defense U. S.ndy Research
Laboratory (DoD/ARL) contract number W911NF-12-C-0012heTU. S.
Government is authorized to reproduce and distribute mepfor Govern-
mental purposes notwithstanding any copyright annotati@ieon. Dis-
claimer: The views and conclusions contained herein argetbhbthe authors
and should not be interpreted as necessarily represeingfficial policies
or endorsements, either expressed or implied, of IARPA, &1, or the
U. S. Government..

layer as the “future” remaining history to compute the LMpabil-
ity for the following word Prnn (wig1|wi, vi—1).

An example RNNLM architecture with an unclustered, full-out
put layer is shown in Figure 1. RNNLMs can be trained usingkbac
propagation through time (BPTT) [7]. To reduce the compoite
cost, a shortlist [8, 9] on output layer limited to the mosiqfuent
words can be used. An out-of-vocabulary (OOV) input nodesiedu
to represent any input word not in the chosen recognitioraboe
lary. To reduce the bias to in-shortlist words during RNNLigin-
ing and improve robustness, an additional node is addeckaitt
put layer to model the probability mass of out-of-short(i&XOS)
words [10, 11, 12].

The full output layer based RNNLMs can be efficiently trained
with the CUED-RNNLM toolkit [13, 14] on GPU with bunch mode.
Besides the standard cross entropy criterion, two improragding
criteria: variance regularisation (VR) and noise conivasestima-
tion (NCE), are supported in the CUED-RNNLM toolkit.
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Fig. 1. Afull output layer RNNLM with OOS nodes.

2.1. Cross Entropy (CE)

The conventional objective function used in RNNLM trainiigy
based on cross entropy (CE),
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2.3. Noise Contrastive Estimation (NCE)

In NCE training, each word in the training corpus is assunoclet
generated by two different distributions [17]. One is daitribu-
tion, which is RNNLM, and the other is noise distribution, eva
unigram is normally used. The objective function is to disanate
these two distributions over the training data and a groupanf
domly generated noise samples. This is given by,
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wherew; is theith target word,w;,; is the jth noise word gener-
ated for wordw;, andk is the number of noise sampleB(C{™ =
1|ws, h;) is the posterior probability of word); is generated by the
RNNLM, and P(Cy, ;. = 1|, hi) the posterior probability of
wordw; ; is generated by a noise distribution. During NCE training,
the normalisation tern¥ (h;) is constrained to be constant implic-
itly. The training is only associated to the target word &reghmples
in the output layer, instead of the whole output layer. Hetfoeout-
put layer computational cost is no longer sensitive to vatzly size
and can be reduced significantly. In common with variancelezg
isation, unnormalised probabilities in Eqn. (3) can be usetst
time. Hence, a large speedup on both training and test timéea

where N,, is the number of words in training corpus. Full output achieved. More details about NCE training can be found frb&j.[

layer RNNLMs with moderate output layer size (e.g. 20K) can b

trained on GPU efficiently [15]. However, if the output lay@ee
increases to more than 100K, the computation of normatisaérm
for softmax is time-consuming, as shown in Eqn (2), wheyes
the weight vector associated with woad in the output layer. The
computation of normalisation teriff(h;) is slow in both training
and test time.
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One solution to this issue is to learn a constant, historg-ind
pendent softmax normalisation term during RNNLM trainitfghe
normalisation tern¥ (h;) could be approximated as constéhtun-
normalised RNNLM probabilities are be used in test time as,

Prnn(wilhi) =

@)

T
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2.2. Variance Regularisation (VR)

Variance regularisation explicitly adds the variance ahmalisation
term into the standard CE objective function [16]. The asded
objective function is given by
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In many applications, RNNLMs are linearly interpolated twit
n-gram LMs to obtain both a good context coverage and strong ge
eralisation [2, 19, 8]. The interpolated LM probability isgn by

(6)

where\ is the weight of thex-gram LM Pyc(-), and is kept fixed
at 0.5 in this paper. In the above interpolation, the prditglihass
of OOS words assigned by the RNNLM component is re-disteithut
with equal probabilities among all OOS words.

P(wl|h1) = )\PNg(wi|h¢) + (1 — )\)PRNN(w¢|h¢)

3. KEYWORD SEARCH FOR BABEL PROJECT

The keyword search in the Babel program is a speech progessin
task based on speech recognition technology to find all oecces

of a word or word sequence, in a large audio corpus. Lattices a
first generated from the ASR system and the query (i.e. keywor
is searched among all possible paths in lattices. The indexind
search of our KWS system are based on the weight finite state-tr
ducer (WFST) framework [20, 21].

During search, a query is represented as a weighted finte sta
acceptor (WFSA), and subsequently the composition operas
carried out to retrieve detection postings. More speclficaach
in-vocabulary (V) query term is converted to a word WFSAdan
composed with the word index. If one IV term does not get any
return, it is converted to a grapheme WFSA and searched &gain
the grapheme index. This is known as cascade search. Orntie ot
hand, the search for out-of-vocabulary (OOV) term are dpdranly

whereln Z is the mean of log normalisation term. The second termon the grapheme level, i.e., all OOVs are represented ahemap

added to the CE objective function models the variance oldge

WFSASs, and composed with the grapheme index. Language model

normalisation term:y is a parameter to tune the effect of variance scores are ignored in OOV search. To further boost the OO¥tdet

term over the CE criterion. In test time, RNNLM probabilgiean
be approximated as unnormalised probabilities in Egn (8) fast
evaluation speed can be obtained.

tion performance, a query expansion using grapheme-fghgrae
confusability (NBestP2P) [22] is applied. NBestP2P is e€tQ0 in
all the experiments for this paper. Finally the IV and OOVrsha



posting lists are merged and STO score normalisation iSeapfD
generate the final KWS output.

The performance of keyword search is evaluated using maxi-

mum term-weighted value (MTWYV), to reflect the weighted aafst
miss error and false alarm during keyword search. It is wodh
ing that the system is built for both speech recognition azmadnord
search, and the language model scale is tuned separatelpdech
recognition and keyword search.

4. RNNLMS FOR KEYWORD SEARCH

As stated in the above section, lattices are generated firssing

NCE training also produced significantly faster trainingeep on
larger WEB data set.

A third approach investigated in this paper performs NCiira
ing on both the WEB and FLP data. As many vocabulary words orig
inally selected from the WEB data do not appear in the FLP,data
and the weight matrix parameters associated with thesesnwead
not be robustly trained, it is problematic to perform NCEdzhfine-
tuning on the limited FLP data. This was found in practicellea
performance degradation. The same issue exists usingsaigaes
drawn either from an interpolated unigram model trainedath the
FLP and WEB data or a unigram model trained on FLP data only. In
order to handle this issue and assigning sufficient weightiinthe
in-domain FLP data during RNNLM training, 9 copies of the FLP

an-gram LM for first-pass decoding. RNNLMs are then used fordata were appended to the end of the WEB data to construct-a “ex
lattice rescoring witth-gram approximation [23]. The resulting lat- tended” corpus. NCE training is then performed on this “esttsl”

tices from RNNLM rescoring are then used for keyword search.

corpus. All the three methods mentioned above were inasiiy

Two sources of text are used to build language models. One isn the Babel corpora and experimental results are presentbe

from the acoustic transcription, which is referred as FLRaddahe
other is obtained from the web using search engines, e.gp@dia,

following section.

Ted talk and Tweets. In [24], additional WEB data was used for

language modelling and significant improvement was obthine

5. EXPERIMENTS

both the MTWYV and WER metrics. The amount of the FLP data

is normally much smaller than that of the WEB data. The gtesis

In this paper, a total of 5 languages from the IARPA Babel pro-

of the FLP and WEB data used in this paper can be found in Tablgram were chosen for experiments. Their corpora IDs in theeBa

1. In order to reduce the OOV rate for both speech recognéiah

keyword search systems, a large vocabulary was also prdduce

using the additional WEB data.

language releases are Pashto (104, IARPA-babell04b¥).4b
Igho (306, IARPA-babel306b-v2.0c), Mongolian (401, IARPA
babel401b-v2.0b), Javanese (402, IARPA-babel402b-yldta

The WEB data can be viewed as out-of-domain data and the FLF€0rgian (404, IARPA-babel404b-v1.0a) respectively.

data as in-domain data. This can be reflected from the intgipo
weight of the FLP data during the constructionre§ram LMs (6th
columnin Table 1). Given the in-domain and out-of-domairpooa,
RNNLMs can be efficiently adapted with fine-tuning or incago
tion of topic feature as discussed in [25]. Considering thatWEB
data was collected by Columbia University and providedrattee
by utterance, there is no explicit boundary for each docurteetnain

5.1. Acoustic Models

The full language pack (FLP) in the Babel Program contairsiib
100-200 hours of transcribed audio training date6Q-80 hours
speech) for acoustic model training. Tandem and Hybridesgst
were built with speaker adaptation using CMLLR transferfea-

a topic model. Hence, the fine-tune method is adopted. RNNLMsures [26]. To obtain better performance, a 4-way joint diéog

are trained with two stages. They are first trained with alining

system [27], combining two Tandem and two Hybrid systems wa

data (denoted as WEB data) and then fine-tuned on the FLPatata fbuild using HTK toolkit [28]. The multi-lingual bottlenedeatures

adaptation purpose.

[29] provided by IBM and Aachen University were incorpoihté

As discussed above, a larger output layer vocabulary signifidetailed description of the acoustic models can be foun@h [

cantly increases the CE training time for RNNLMs. In praetibis

may take up to one week to complete for some languages. Furth

more, these models are also computationally expensivesiritee.
One solution to improve the training and evaluation timecificy
is to use alternative training criteria such as varianceleggsation
(VR) [16] and noise contrastive estimation (NCE) [18]. ‘ate
regularisation explicitly minimizes the variance of thétsw@x nor-
malization term during RNNLM training, the normalizaticerin at
the output layer can be ignored during testing time thusiggisig-
nificant improvements in speed. The NCE algorithm furth&ves
the output layer normalization term to be ignored also dptiain-
ing time, and provides a dual purpose solution to imprové bog
training and evaluation efficiency for RNNLMs. Three finaing
procedures were proposed to improve the RNNLMs efficiency.

%.2. Language Models

As mentioned before, two sources of data, the WEB data and FLP
data, are used to construct language models. Descriptitinese

5 languages is shown in Table 1. The vocabulary size varigs fr
28K (in Igbo) to 376K (in Pashto) and the amount of the WEB data
varies from 2M (in Igbo) to 141M (in Mongolian). The size of PL
data is stable among these 5 languages, which lies in the @ing
400K to 500K words. 3-gram LMs were first built on each source
of text and then interpolated. The interpolation weightshef FLP
data on each language are also given in the Table. For thengai

of RNNLMs, all train data is first used, and then fine-tuned lom t
FLP data. The vocabulary was chosen as the input layer arldrées

The first approach (CE+VR) performs standard CE training orfourths most frequent words of the vocabulary modelledebtitput
the WEB data, and then VR based training on the FLP data for finelayer. All RNNLMs were parallel trained with a spliced buntiode

tuning. The model trained with VR was used for fast latticeming
without computing the normalisation term at the output ftaye

on GPU [15] with a hidden layer of 100 hidden nodes. The bunch
size is set to 128 at the first stage of training (on all data) G

In order to further improve the training efficiency on the WEB at the second stage (on FLP data only). The empirically wigigh
data, the second method (NCE+VR) performs NCE training en th parametery in equation (4) ranging from 0.5 to 2 was chosen for VR
WEB data first before VR based training on the FLP data. As disbased training. For NCE training, 1000 noise samples wealr

cussed above, in addition to improve the evaluation timeiefity,

from a unigram distribution and shared within each bunche Bh



gram approximation described in [23] is used for RNNLM regup
of lattices initially generated by 3-gram back-off LMs.

first stage, fine-tuning gives consistent improvement in 4ER
MTWV. The results of the second training method (NCE+VR) are
shown in the 6th line in the Table. It gave comparable WER and

Table L Statistics for 5 languages in Babel corpora. MTWYV scores as the RNNLM trained with CE (3rd line), while sig

nificant speedup in both training and evaluation time wasiobtl,
L LM #D FLP \
anguage Words | at\jlocab Wt ASRO|OKWS as shown earlier in Table 3. The results of the third methd@ENn
WEB + 9 copies of FLP data) are shown in the last line in Table 4.
Pashto | FLP || 535K | 14.4K | - | 1.96 | 11.38 | 1his system is also benefited from the large training anduetisin
WEB || 105M | 376.3K | 0.98 | 0.68 | 3.05 efficiency improvements of NCE, though further degradaimmoth
y imp g g
Igho V'\:/II_EPB 5;&'( 12(5é?<K 0-98 ;gg 1331 WER and MTWV scores were also found.
Mongolian | FLP 511K 24.0K - 4,19 | 12.19
Table 4. WER and MTWV results of RNNLM on Pashto.
WEB 139M | 199.8K | 0.93 | 2.10 | 5.62 LM Train Crit WER MTWV
Javanese | FLP 409K 16.5k - 484 | 12.75 WEB | ELP [\ | OO0V | Total
WEB 73M 268.1K | 0.98 | 2.13 | 4.18
Georgian | FLP || 406K | 343K | - | 616 | 1403] L>9@M] - | 438 || 0.4828] 0.4083] 04750
WEB || 137M | 278.6K | 0.91 | 3.02 | 5.22 - || 436 | 0.4852) 0.4034 0.4842
CE CE 42.8 || 0.4975| 0.4048 | 0.4871
The Pashto language is used to investigate the performance p +RNN VR || 43.0 || 0.4958 | 0.4010 | 0.4853
RNNLMs first. Table 2 shows the perplexity (PPL) and WER resul NCE | - 43.7 |1 0.4916 | 0.4068 | 0.4824
of the 3-gram LM and RNNLM. RNNLM gave an absolute 1.0% VR || 43.0 || 04975 0.3953 | 0.4862
reduction in WER and 21% relative reduction in PPL. Howettee, NCE 43.2 || 0.4936 | 0.4038 | 0.4835

RNNLM for Pashto contains 282k words in the output layer.slt i
time-consuming to train and evaluate RNNIms with CE due ® th
explicit normalisation at the RNNLM output layer. The tinréar-
mation can be found from the first row in the Table 3.

Considering the improvements on both system performante an
efficiency, the second RNNLM training approach NCE+VR pro-
vided the best solution among all the three methods. It wes th
applied to the remaining 4 languages. The corresponding WER

Table 2. PPL and WER results of RNNLM on Pashto and MTWV results are presented in Table 5. It can be seendimat ¢

[ LM [ PPL| WER] sistent and significant imprc_)vements over 3-gram LMs in teoh
3gram | 172 | 43.8 WER and MTWYV were obtained across all 4 languages.
+RNN || 136 | 42.8
Table 5. PPL, WER and KWS results of RNNLMs on 5 languages.
In order to address the training and evaluation efficiensyds Language | LM PPL | WER MTWV
associated with CE training of large vocabulary RNNLMs, timee IV ] OOV [ Total
methods discussed in Section 4 were evaluated on the Paststo d Pashto | 3-gram || 172 | 43.8 || 0.4828] 0.4083| 0.4750
for keyword search. The training and evaluation time of ¢htbsee +RNN || 136 | 43.0 || 0.4975| 0.3953 | 0.4862
methods are shown in Table 3. It can be clearly seen that NGE si Igbo 3-gram || 110 | 54.6 || 0.4079| 0.3635| 0.4030
nificantly speeds up the training time on the WEB data by miuaia t +RNN 94 53.7 || 0.4101| 0.3718| 0.4061
10 times. VR also improves the evaluation speed on a sintkdes Mongolian | 3-gram || 134 | 47.0 || 0.5606 | 0.5171| 0.5559
+RNN || 105 | 46.0 || 0.5708 | 0.5343| 0.5666
. . ) o Javanese | 3-gram || 219 | 50.1 || 0.5182| 0.4801 | 0.5138
Table 3. Train and evaluation time of various criteria on Pashto. +RNN || 172 | 493 || 0.5229| 0.4768| 0.5173
WTErg'”| CFrII_tP TTr';‘rﬁ (';\r/z)l Georgian | 3-gram || 472 | 37.8 || 0.7325| 0.7300 | 0.7322
+RNN || 377 | 37.1 || 0.7386| 0.7309| 0.7375
CE CE || 125.0| 23.0
NCCEE xg 11%9'70 %8 6. CONCLUSION

. . . ~Inthis paper, we present our recent work on recurrent neetatork
The WER and MTWV metric scores obtained using variouslanguage models (RNNLMs) to improve the performance of Babe

RNNLM training criteria are shown in Table 4. The 1st blocle(i
1st line) gives the baseline results using the 3-gram LM. Zine

keyword search evaluation systems. In order to efficiemdintand
evaluate large vocabulary RNNLMs and appropriately useacgel
block shows results with RNNLMs. The 2nd to 4th lines presentamounts of mixed in-domain and out-of-domain training data

the performance of RNNLM trained with CE in the first staget bu series of RNNLM training approaches featuring the efficienise

different strategies for fine-tuning. The 2nd line is theufewithout

fine-tuning on the FLP data, the 3rd line used CE criterion thed

4th line applied VR for fine-tuning. It can be seen that finektg

contrastive estimation and variance regularisation réaitevere in-
vestigated on a combined corpus containing both generaltext®
and in-domain acoustic data. Significant improvements ith bo

improved performance in both WER and MTWV performance. Thespeech recognition and keyword search performance metgos
first approach (CE+VR) discussed in Section 4 gave slightadeg obtained across five different languages. To our best krinyele
dation in WER and MTWV compared to the CE fine-tuning in the this is the first work dedicated to systematically desigrang eval-
3rd line, but a large speedup in test time as shown in Tableh® T uating RNNLMs that are optimized for both speech recognitind
5th and 6th lines adopted NCE in the first stage and compaferper keyword search tasks.

mance with and without fine-tuning. Similar as CE traininghe
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