
Department of Engineering

1

Generative Kernels and Score-Spaces for
Classi�cation of Speech: Progress Report iii

R. C. van Dalen
rcv25@cam.ac.uk

J. Yang
jy308@cam.ac.uk

M. J. F. Gales
mjfg@eng.cam.ac.uk

Technical Report cued/f-infeng/tr.699

May 2015

�is is the third and �nal progress report for epsrc Project ep/i006583/1 (Generative
Kernels and Score Spaces for Classi�cation of Speech) within the Global Uncertain-
ties Programme. �is project combines the current generative models developed in
the speech community with discriminative classi�ers. An important aspect of the ap-
proach is that the generativemodels are used to de�ne a score-space that can be used as
features by the discriminative classi�ers. �is report discusses progress in three areas.
First, e�ciently computing segmental features for segments that begin or end at adja-
cent times. Second, �nding the exact word error for discriminative training of acoustic
models. �ird, training in�nite log-linear models with a criterion for the whole model.
Experiments use a log-linear model with segmental features derived from a hidden
Markov model with neural-network output distributions.

mailto:rcv25@cam.ac.uk
mailto:jy308@cam.ac.uk
mailto:mjfg@eng.cam.ac.uk

Contents

1 Introduction . 2
1.1 Log-linear models . 4

2 Monoids for segmental features . 5
2.1 Uni-directional segmental features 6

2.1.1 Instantiation: generative score-spaces 8
2.2 Monoid features . 9

2.2.1 Instance: likelihood score-spaces 11
2.2.2 Features from �nite-state models 13

2.3 Conclusion . 14
3 �e exact word error over a lattice . 14

3.1 �e minimum edit distance 15
3.2 Incremental determinisation and minimisation 16

3.2.1 �e automaton semiring 17
3.2.1.1 Implementation 18

3.2.2 Determinisation and minimisation 19
4 Bayesian log-linear models . 20

4.1 Bayesian models . 20
4.2 Bayesian conditional models 21
4.3 A criterion for Bayesian models 22
4.4 Large-margin training . 24

5 In�nite support vector machines . 25
5.1 �e mixture of experts . 25
5.2 �e in�nite mixture of experts 26
5.3 In�nite support vector machines 28

6 Source code . 28
7 Experiments . 29

7.1 Setups . 29
7.2 Results . 30
7.3 Tandem and hybrid systems 32
7.4 Structured log-linear models 34
7.5 In�nite models . 34

8 Conclusion . 36

1

1. introduction

1 Introduction

�is is the third and �nal progress report for epsrc Project ep/i006583/1 (Generative
Kernels and Score Spaces for Classi�cation of Speech) within the Global Uncertainties
Programme.

�e aim of this project is to signi�cantly improve the performance of automatic
speech recognition systems across a wide-range of environments, speakers and speak-
ing styles. �e performance of state-of-the-art speech recognition systems is o�en ac-
ceptable under fairly controlled conditions and where the levels of background noise
are low. However for many realistic situations there can be high levels of background
noise, for example in-car navigation, or widely ranging channel conditions and speak-
ing styles, such as observed on YouTube-style data. �is fragility of speech recognition
systems is one of the primary reasons that speech recognition systems are not more
widely deployed and used. It limits the possible domains in which speech can be reli-
ably used, and increases the cost of developing applications as systems must be tuned
to limit the impact of this fragility. �is includes collecting domain-speci�c data and
signi�cant tuning of the application itself.

�e vast majority of research for speech recognition has concentrated on improv-
ing the performance of systems based on hidden Markov models (hmms). hmms are
an example of a generative model and are currently used in state-of-the-art speech re-
cognition systems. A wide number of approaches have been developed to improve the
performance of these systems under changes of speaker and noise. Despite these ap-
proaches, systems are not su�ciently robust to allow speech recognition systems to
achieve the level of impact that the naturalness of the interface should allow.

One of themajor problemswith applying traditional classi�ers, such as support vec-
tor machines, to speech recognition is that data sequences of variable length must be
classi�ed.�is project combines the current generativemodels developed in the speech
recognition community with discriminative classi�ers used both in speech processing
and in machine learning. Figure 1 gives a schematic overview of the approach that this
project takes. �e shaded part of the diagram indicates the generative model of a state-
of-the-art speech recogniser. In this project, the generative models are used to de�ne
a score-space. �ese scores then form features for the discriminative classi�ers. �is

Test dataO

Canonical
model λ ′

Adaptation/
compensation

Recognition

λ Hypotheses

Generative
score-space

λ

Classi�er
Hypotheses

φ(O;λ)

Final
hypotheses

Figure 1 Flow diagram of the project plan. �e shaded region encompasses the
components of a state-of-the-art speech recogniser.

2

1. introduction

approach has a number of advantages. It is possible to use current state-of-the-art ad-
aptation and robustness approaches to compensate the acoustic models for particular
speakers and noise conditions. As well as enabling any advances in these approaches to
be incorporated into the scheme, it is not necessary to develop approaches that adapt
the discriminative classi�ers to speakers, style and noise. Using generative models also
allows the dynamic aspects of speech data to be handled without having to alter the
discriminative classi�er. �e �nal advantage is the nature of the score-space obtained
from the generative model. Generative models such as hmms have underlying con-
ditional independence assumptions that, whilst enabling them to e�ciently represent
data sequences, do not accurately represent the dependencies in data sequences such
as speech. �e score-space associated with a generative model does not have the same
conditional independence assumptions as the original generative model. �is allows
more accurate modelling of the dependencies in the speech data.

While the projectwas taking place, the state of the art in speech recognition changed.
A current-day speech recogniser still uses a hiddenMarkovmodel, but neural network
are used in addition to or instead of the traditional Gaussian mixture models. In tan-
dem systems, outputs from a neural networks are appended to each feature ector, and
otherwise the system is a standardgmm-hmm system.�is has the advantage thatmany
methods for adaptation still apply. It also means that generative score-spaces designed
for gmm-hmms can be used. �e second type of model is a hybrid system. Its out-
put distributions are not Gaussian mixture models, but neural network outputs. �e
neural network maps from the acoustic input to a distribution over hmm states. �is
“posterior”, given the acoustic input, is then converted to something resembling an
hmm output density using the state prior. If is possible to extract some types of score-
spaces from this sort of model, and this will be discussed. However, not all types of
score-spaces translate. �e conclusion will look forwards to work in this area.

�is report will report on work performed since the previous two progress reports
(van Dalen et al. 2012b; 2013b). �ese covered the three components in �gure 1: adapt-
ation/compensation, score-space computation, and classi�ers.

In the �rst component, Progress Report i introduced a novel variational method
for compensating hmm speech recognisers for noise, which does not assume that the
resulting distribution is Gaussian (van Dalen and Gales 2011).

�e second component is score-space computation, the e�ciency of which is im-
portant. Progress Reports i and ii presented aspects of a method to compute scores
from generative models for all segmentations in amortised constant time (van Dalen
et al. 2012a; 2013a). Section 2 of this report will generalise thismethod and show exactly
what propertymakes it so e�cient by analysing the feature extraction as a computation
on a monoid (van Dalen and Gales 2013). It will then sketch how this insight can be
exploited to extract features in score-spaces derived from hmm systems that use neural
networks.

�e third and main component is the discriminative classi�ers. �ese are trained
with a discriminative criterion. Apopular criterion, theminimumBayes’ risk, is usually
approximated using �xed segmentations of words or phones. �is is impossible with
segmental models where the criterion needs to marginalise out over all segmentations.
Section 3 of this report therefore introduces a method to mark lattices with the exact
word or phone error which is much more memory-e�cient than the state of the art,
and can error-mark much larger lattices.

�e actual discriminative models are of interest in this project. Progress Report i

3

1. introduction

reported on log-linearmodels, both for acousticmodelling (work related to the project,
Ragni and Gales 2011b;a) and language modelling. Another model of interest is large-
margin classi�ers. Progress Reports i and ii discussed use of the structured support
vector machine (svm) (work related to the project, Zhang and Gales 2011b;a) and the
kernelised structured svm (Zhang and Gales 2013).

svms or log-linear models can be used as experts in a Bayesian mixture of experts.
Progress Report i discussed Bayesian non-parametric approach to classi�cation using
in�nite Gaussianmixturemodels. Progress Report ii applied the in�nite svm to speech
recognition (Yang et al. 2013). �is report introduces sequence classi�ers as experts in
the in�nite mixture. Section 4 of this report will discuss how to train the whole model
with either a Bayesian criterion, or a Bayesian large-margin criterion (Yang et al. 2015).
In practice, it is possible to train with a per-expert large-margin criterion, which leads
to in�nite structured svms (Yang et al. 2014).

1.1 Log-linear models

State-of-the-art speech recognisers are usually based onhiddenMarkovmodels (hmms).
�ey model a hidden symbol sequence with a Markov process, with the observations
independent given that sequence. �ese assumptions yield e�cient algorithms, but
limit the power of the model.

Recently, there has been interest in discriminative log-linear models that can deal
with a wide range of features extracted from spans longer than one frame and of vari-
able length (e.g., Layton 2006; Zweig and Nguyen 2009; Gales and Flego 2010). When
using longer-span features to recognise continuous speech, segmentations into, e.g.,
wordsmust be found explicitly. Existing approaches for structuredmodels o�en derive
a segmentation from a conventional speech recogniser. However, these segmentations
are not optimal for the structured model, and may limit the performance gains from
moving to a more powerful model. It is therefore desirable for the decoding process to
�nd the optimal combination of word sequence and segmentation.

Discriminative models (Gales et al. 2012) are probabilistic models that can operate
on a wide range of features derived from the same segment of audio. Unlike a generat-
ive model, a discriminative model for speech recognition directly yields the posterior
probability of the word sequencew given the observation sequenceO. Here, each of
the elementswi ofw is equal to one element vj from the vocabulary v. To enable com-
pact discriminative models to be trained, the input sequence must be segmented into,
e.g., words. Let s = {si}

|w|
i=1 denote a segmentation. �is paper will use a log-linear

model that gives the joint probability of the word sequence and segmentation given
the observation:

P(w, s|O;α) ,
1

Z(O,α)
exp

(
αTφ(O,w, s)

)
. (1)

Here,Z(O,α) is the normalisation constant.φ(O,w, s) is the score function that re-
turns a score vector characterising the whole observation sequence. α is the parameter
vector.

�e score function will in this report be assumed to contain acoustic features, ex-
tracted with functionφa, and a language model score, extracted with functionφl:

4

2. monoids for segmental features

φ(O,w, s) ,

[
φa(O,w, s)
φl(w)

]
. (2)

�e part of the distribution related to the acoustic model then factorises over the seg-
ments of the audio, i.e. the score function is a sum of scores for each segment:

φa(O,w, s) ,
∑

i

φa(Osi , wi), (3)

whereOsi indicates the observations in segment si.
For decoding, it is in theory possible tomarginalise out the segmentation. However,

this is infeasible, so instead the segmentation and word sequence that maximise the
posterior in (1) will be found. For clarity, assume there is no language model. �en,

argmax
w,s

P(w, s|O;α) = argmax
w,s

1

Z(O,α)
exp

(
αTφ(O,w, s)

)
= argmax

w,s

(
αTφ(O,w, s)

)
= argmax

w,s

∑

i

αTφ(Osi , wi). (4)

To perform this type of decoding, features for all possible segments must be available.

2 Monoids for segmental features

Ragni and Gales (2012); Van Dalen et al. (2013a) proposed an e�cient method for ex-
tracting features for one word (or other unit of speech) from every possible contiguous
segment of audio.�e speci�c features are in generative score-spaces.�ese contain log-
likelihoods for word hmms (Ragni and Gales 2012) and their derivatives (van Dalen
et al. 2013a). �e number of possible segments is quadratic in the length of the au-
dio. By re-using part of the computation, the time needed to extract the features for
all segments also becomes quadratic. If features for all segments are needed, feature
extraction therefore takes average constant time.

However, a realistic speech recogniser will not need features for all these segments,
because it will approximate its hypothesis space. One approximation scheme is to take
hypotheses from an existing decoder and to compute features only for segments around
ones contained in these hypotheses. It is therefore an interesting question what types
of features can be e�ciently computed for segments that can overlap in di�erent ways.
Of particular interest are segments that start and end around two times given by the
arc in a lattice.

�ere are two aspects to decoding with a segmental log-linear model like in (5):

argmax
w,s

P(w, s|O;α) = argmax
w,s

∑

i

αTφ(Osi , wi). (5)

First, the score φ(Osi , wi) must be extracted for all possible words and segments.
Second, the best combination of word sequence and segmentation must be found. As-
suming the language model constant, the latter task takesΘ

(
T2
)
time Ragni and Gales

5

2. monoids for segmental features

(2012). �e former task, of extracting Θ
(
|v| · T2

)
scores, forms the bottleneck in per-

formance.
�is report will consider the score for oneword (or sub-word unit). To highlight the

aspects that in�uence the e�ciency of computing these scores, φ will be decomposed
into two parts. First, a segmental feature is computed, and then it is converted into
a score. �e features are representations of segments of observations that allow them
to be re-used; the scores are (o�en trivially) derived from the features. �is report
therefore focuses on the structure of the features.

First, section 2.1 will re-analyse the method in Ragni and Gales (2012); van Dalen
et al. (2013a) as computing a function of the form

φ(Oτ:t, wi) = h
(
g(g(. . . g(g(λ,oτ) ,oτ+1) . . . ,ot−1) ,ot)

)
. (6a)

Here, h is the word score function, and g a function that extends a feature by one
observationo. To compute the feature for a segment, g is called recursively t−τ times.
λ, the feature for the empty segment, is the base case for the recursion. (�is will be
formulated in terms of higher-order function “fold”.) �is recursion limits re-use of
computation to segments that start at the same time τ.

In contrast, section 2.2 will introduce a less general but more generally applicable
type of feature. �e computation is of the form

φ(Oτ:t, wi) = h
(
f(oτ)� f(oτ+1)� . . .� f(ot)

)
, (6b)

where f extracts a feature for one observation, and the operation � combines two of
these features. � is required to be associative over the features, i.e., the result must
be the same whichever order the features are combined in. �is freedom allows many
di�erent pruning schemes.

�is section will re-analyse themethod in vanDalen et al. (2013a) to highlight what
makes it e�cient. Computing the feature for a word can be phrased in terms of the
primitive that pure functional programming languages use for iteration: the higher-
order function “fold” (section 2.1). �e method assumes a schedule that progressively
computes features for all segments that start at the same time. �is paper will then
introduce a related form of feature. Used with the same schedule, it is as time-e�cient,
but can also be used within di�erent types of schedules (section 2.2). �ese features are
in a monoid. �is makes it possible to combine two features for any two consecutive
segments into one value for the segment encompassing both.

2.1 Uni-directional segmental features

Ragni and Gales (2012); van Dalen et al. (2013a) proposed a method for computing
segmental features in average constant time if features for all segments are needed.�is
section will discuss this method at a high level. It will use a form that highlights its
limitations and allows section 2.2 to relate this to a more general form. Section 2.1.1
will explain how this description maps to the speci�c instantiation in Ragni and Gales
(2012); van Dalen et al. (2013a).

Assume that the observations ot ∈ O (for example, vectors with Mel-frequency
cepstral coe�cients) for an utterance of length T are available as [o1 . . .oT]. Segmental
features are to be extracted from each possible segment of consecutive observations.

6

2.1. uni-directional segmental features

Two functions will act on this: �rst a function g that extends a feature by one observa-
tion, and a function h that computes a score given such a feature.

�e features are in a feature space F . �e feature for the empty segment, which
contains 0 observations, is de�ned as λ ∈ F . Features can be extended in one direction.
�is is performed by the function

g : F ×O → F , (7)

which takes a feature for a segment, and the next observation, and returns the feature
for the segment extended with the observation.

�us, the feature extracted from the segment containing just observation o1 ex-
tends the feature for the empty segment with

f1 , g(λ,o1) . (8a)

To compute the feature for observations [o1,o2], the function is applied on this result
again:

f1:2 , g(g(λ,o1) ,o2) . (8b)

As an example, assume an observation sequence consisting of four elementsO =
[o1,o2,o3,o4].�e feature for thewhole sequence is computedwith four consecutive
applications of the function g:

f1:4 , g(g(g(g(λ,o1) ,o2) ,o3) ,o4) = g(g(f1:2,o3) ,o4) . (8c)

�e interesting aspect that is clear from (8c) is that computation can be shared
between segments. �e feature for sub-segments, like f1:2 in (8c), has already been
computed in (8b).

To exploit this when features for all segments are required, it is useful to write them
in terms of higher-order functions “fold” and “scan” (see van Dalen and Gales 2013).
�e feature for the whole sequence can be written as

f1:4 , fold(g, λ,[o1,o2,o3,o4]) . (9)

�e number of applications of the function g is equal to the length of the sequence.
It is possible to avoid duplication of computation by computing features for all seg-

ments starting at the same time at once. �is can be expressed with the higher-order
functional primitive “scan”. It performs the same computation as “fold” but returns all
intermediate results as a sequence:

scan(g, λ,[o1,o2,o3,o4]) =[λ, f1, f1:2, f1:3, f1:4] . (10)

�e number of applications of g is, just like in (9), equal to the number of elements of
the sequence. �is means that the average number of applications of g to compute a
feature vector for each segment starting at a given time is constant.

To compute features for all segments, the recursion is started at each possible start
time:

scan(g, λ,[o1,o2,o3,o4]) =[λ, f1, f1:2, f1:3, f1:4] ; (11a)
scan(g, λ,[o2,o3,o4]) =[λ, f2, f2:3, f2:4] ; (11b)

scan(g, λ,[o3,o4]) =[λ, f3, f3:4] ; (11c)
scan(g, λ,[o4]) =[λ, f4] ; (11d)

scan(g, λ,[]) =[λ] . (11e)

7

2. monoids for segmental features

0

ei/.8

1ei/.2

t/.5

2
t/.5

(a) An automaton that generates sub-word symbols.

0s .01s
ei:o1/1.2

t:o1/1.3 .02s
ei:o2/.5

t:o2/.4 .03s
ei:o3/.9

t:o3/1 .04s
ei:o4/.8

t:o4/1.1

(b) An automaton that converts sub-word symbols into observations, weighted
by their output weights.

Figure 2�e two automata that are composed to yield the automaton in �gure 3.

0s,0 .01s,0ei:o1/.96

.01s,1

ei:o1/.24

.02s,1
t:o2/.2

.02s,2

t:o2/.2

.03s,1
t:o3/.5

.03s,2

t:o3/.5

.04s,1
t:o4/.55

.04s,2

t:o4/.55

.02s,0ei:o2/.4

ei:o2/.1

.03s,0ei:o3/.72

ei:o3/.18

.04s,0ei:o4/.64

ei:o4/.16

Figure 3 A trellis expressed as a weighted �nite-state automaton. �e feature vec-
tor f1:2 contains the total weights from the state “0s,0” to each state at 0,02 s (high-
lighted).

�is computes the features for all Θ
(
T2
)
segments in Θ

(
T2
)
time, which is average

constant time.
�e word score function,

h : F → S, (12)

takes a feature and returns a score in S that can be integrated in, for example, a log-
linear model. �is function is applied separately to each feature in (11).

2.1.1 Instantiation: generative score-spaces

�e original instantiation of the algorithm to extract segmental features (Ragni and
Gales 2012; vanDalen et al. 2013a) computes features in a generative score-space.�ese
contain log-likelihoods of the data with respect to the parameters of a generativemodel
(an hmm, in this case) and their derivatives.

8

2.2. monoid features

First consider the likelihoodof anhmm.�e following representshmms asweighted
�nite-state automata (wfsas). A more traditional representation is possible, but re-
quires additional matrix multiplications. �e fsa representation also draws out the
symmetry of the model, which will become important in section 2.2.1. Composing
the weighted �nite-state automata in �gure 2 on the preceding page, one producing
a weighted symbol sequence, and another converting symbols into observations, pro-
duces the trellis in �gure 3 on the facing page. In this composed automaton, time pro-
ceeds from le� to right; hmm states are laid out vertically. �e weights in the trellis
are products of transition weights in �gure 2a and the output weights in �gure 2b. �e
likelihood for a sequence of observations is the sum over all paths from the highlighted
start state “0s,0” to the �nal state (with double line) corresponding to the last observa-
tion in the segment.�ere is one start state, andmany �nal states, because the start time
of the segment is �xed, while the end time is �exible. (In section 2.2.1, both start and
end times will be �exible.) To compute the likelihoods e�ciently, the original method
applies the forward algorithm. �is algorithm takes a vector f of “forward weights” for
all possible states of a �nite-state automaton at time t− 1.

�e initial feature λ, for the empty segment, contains 1 for the start state and 0 for
all other states. For the three-state hmm in the example in �gure 3,

λ ,

 10
0

 . (13a)

Applying the function g on current weights f and new observation ot is implemented
as one step of the forward algorithm. One step of the forward algorithm takes the
forward weights for time t − 1 (say, 0.01 s) and computes the weights for time t (say,
0.02 s). �e value of ot is necessary to compute the weights on the transitions for the
next step in the automaton. �e �rst evaluation of g generates the forward weights
at 0.01 s, and the second evaluation the weights at 0.02 s:

f1 = g(λ,o1) =

 0.960.24
0

 ; f1:2 = g(f1,o2) =

 0.3840.144
.048

 . (13b)

�e second result, f1:2, is indicated in the �gure. �is feature vector contains the sum
of the weights up to each of the highlighted states at time 0.02 s.

�e elements of f can be scalars, as in this example. In that case, the standard
forward algorithm for computing the likelihood of a segment is used. �is is exploited
by Ragni and Gales (2012) to e�ciently produce likelihoods for all segments of audio.

In van Dalen et al. (2013a), the elements of f are in the expectation semiring. By
running the forward algorithm using generalised + and × operations, not only the
likelihoods but also their derivatives are produced.

�e word score function h takes a vector f and extracts the element that indicates
the weight in the �nal state (in the example, the third element of the vector). It then
converts it into a score, which is then used in the log-linear model.

2.2 Monoid features

�e previous section has discussed a general class of segmental features which can be
e�ciently computed if all features for all possible segments are required. �ough fea-

9

2. monoids for segmental features

ture extraction is then feasible for small-vocabulary recognisers, for larger systems ad-
ditional approximations will be necessary. �is could be done by producing a set of
hypotheses with a faster recogniser and rescore them using segmental features. In that
scenario, segmental features are required for segments with start and end times around
those from the hypothesis set. �e feature extraction process in section 2.1 allows �ex-
ibility only around the end time of segments, not around start times.1

�is section will therefore propose a related class of features that are more �exible.
Section 2.2.1 will show how scores in likelihood score-spaces can be computed in this
framework. Section 2.2.2 will generalise this to hmm-like automata with weights in any
semiring.

�e requirement is made that features for two subsequent segments can be com-
bined into the feature for the joint segment. �e process of computing word scores
from segments of observations is therefore split up into three functions that act on
them consecutively.

First, the function f(ot) converts the observation into a segmental feature for the
segment [ot]. Second, the function � combines two of these features into a feature
representing the combined segment. �ird, the functionh computes a score for a word
(or phone) given a segmental feature f.

�e �rst step is to convert a sequence of observations into a sequence of features.
�is works by applying the function

f : O → F . (14)

Applying f to each observation can be formulatedwith the higher-order function “map”
(see van Dalen and Gales 2013):

map(f,[o1,o2,o3,o4]) =[f1, f2, f3, f4] , (15)

where ft is a shorthand for f(ot). ft is a feature for the segment[ot], of length 1.
�e second, and most interesting, step is to combine two features for consecutive

segments with the function

� : F × F → F . (16)

�e feature for the segment [o1,o2,o3,o4] can then be computed as

f1 � f2 � f3 � f4. (17)

To speed up the computation, it is useful for features for shared sub-segments to be
reusable. �e features in section 2.1 are only shared between features for segments with
the same start time. For more �exible re-use to be possible, it is useful to allow the
computation in (17) to be performed in any order. To see why the freedomof evaluation
order is important, consider an example. If a segment is hypothesised to start at o1
or o2 and end at o3 or o4, and f2:3 has been computed, the necessary features can be
derived from it e�ciently:

f1:3 = f1 � f2:3; (18a)
f2:4 = f2:3 � f4; (18b)
f1:4 = (f1 � f2:3)� f4 = f1:3 � f4. (18c)

1If the backward algorithm is used instead of the forward algorithm, the start time is �exible, but the
end time �xed.

10

2.2. monoid features

Here, f2:3 can be cached and re-used in (18a) and (18b), and f1:3 in (18c).
To ensure that the segmental feature is the same whatever order the sub-segments

are combined in,�must be associative. �at is, for any f, f ′, f ′′ ∈ F ,

(f� f ′)� f ′′ = f� (f ′ � f ′′). (19)

�is implies that the set F of features is amonoid with� as its operation.
In general, a segmental feature can be computed from the features for di�erent

sub-segments. One possible order of evaluation goes through the observations con-
secutively. �is is the same order as the one in section 2.1. It can be written

f1:4 = fold1(�, [f1, f2, f3, f4]) . (20)

In section 2.1, the same order of evaluation was produced with the “fold” function
(which requires an extra argument, the initial state). “fold1” computes a “skewed re-
duction”. Since the � operation is associative, the “fold1” function can be generalised
to a function de�ned as computing the same value as “fold1”, but with the evaluations
of� in any order. In this report, this function is called “reduce”:

f1:4 = reduce(�, [f1, f2, f3, f4]) . (21)

If features for all segments are required, then expressions analogous to (11) can be used:

scan1(�,[f1, f2, f3, f4]) =[f1, f1:2, f1:3, f1:4] ; (22a)
scan1(�,[f2, f3, f4]) =[f2, f2:3, f2:4] ; (22b)

scan1(�,[f3, f4]) =[f3, f3:4] ; (22c)
scan1(�,[f4]) =[f4] . (22d)

�is still computes the feature values for all Θ
(
T2
)
segments in Θ

(
T2
)
time, which is

constant time on average.
�e third step is, as in section 2.1.1, to apply the word score function:

h : F → S. (23)

�is function takes a feature and returns a score in S that can be integrated in, for
example, a log-linear model. �is function is applied separately to each feature in (22).

2.2.1 Instance: likelihood score-spaces

Section 2.1.1 has described a method introduced by Ragni and Gales (2012); van Dalen
et al. (2013a) for computing features in “generative score-spaces” derived from hmms.
�is section will sketch how this can be extended to monoid features, and how the
observations and the functions f,�, and h are then de�ned.

At �rst, assume that log-likelihood score-spaces are used.�is means that the word
scores are given by the log-likelihoods of hmms. �e following discussion will again
represent hmms as weighted �nite-state automata (wfsas). �is draws out the sym-
metry of the model, which is important since the features must be extensible in two
directions. �e rows and columns of the matrix correspond to all states in a word (or
sub-word) hmm.

11

2. monoids for segmental features

0s,0

0s,1

0s,2

.01s,1
t:o1/.65

.01s,2

t:o1/.65

.02s,1
t:o2/.2

.02s,2

t:o2/.2

.03s,1
t:o3/.5

.03s,2

t:o3/.5

.04s,1
t:o4/.55

.04s,2

t:o4/.55

.01s,0ei:o1/.96

ei:o1/.24

.02s,0ei:o2/.4

ei:o2/.1

.03s,0ei:o3/.72

ei:o3/.18

.04s,0ei:o4/.64

ei:o4/.16

Figure 4A trellis like in �gure 3, but without a speci�c start state. �e feature f2:3
contains total weights between each pair of states at 0.01 s and at 0.03 s (high-
lighted).

Figure 4 contains a trellis similar to the one in �gure 3 on page 8. However, this
one is not speci�c to a start time. Each feature f is a square matrix indicating the total
weight going from the state indicated by the row index at one time to the state indicated
by the column index at one other time. �e entries of matrix f(ot) correspond to the
weights on the transitions between two consecutive times. For example, the feature
f2 = f(o2) is derived from the weights between 0.01 s and 0.02 s:

f(o2) =

 0.4 0.1 0
0 0.2 0.2
0 0 0

 . (24a)

�e way to read this matrix is

To state
0 1 2

From state
0 0.4 0.1 0
1 0 0.2 0.2
2 0 0 0

. (24b)

In this particular example, the feature matrix is for one observation. In general,
this matrix gives the weights for combinations of start and end states for a speci�c
segment, starting at the start time and at the end time. �e trellis diagram in �gure 4
illustrates f2:3, which containsweights for each pair of states at 0.01 s and states at 0.03 s.
To derive the total weight between each of these pairs from f2 (in (24a)) and f3, the
connecting states, at 0.02 s, must be summed out. Expressed in terms of the elements
of the matrices,

(f2 � f3)ij =
∑

k

f2,ik · f3,kj. (25a)

In general, the monoid operation on two features is therefore a matrix multiplication:

f� f ′ , f · f ′. (25b)

12

2.2. monoid features

Matrixmultiplication is associative, so this adheres to the requirement for being amon-
oid.

To compute the word score for any feature f, the element of the matrix in (24a)
representing the start and end state, in the example at position (0, 2), must be selected.
In general, word w will have a vector of wfsa start weights λ and a vector of end
weights ρ. For thewfsa in �gure 2a on page 8, they are

λ =

 10
0

 ; ρ =

 00
1

 . (26)

�e word score can then be computed as

h(f) , λT · f · ρ. (27)

2.2.2 Features from �nite-state models

So far, the entries of the matrices have been assumed to be just likelihoods. However,
it is possible to accumulate other types of features. One example was shown in sec-
tion 2.1.1, where the score required not only likelihoods, but also their derivatives (van
Dalen et al. 2013a). Accumulating these worked with the forward algorithm, but the
weights on the �nite-state automata were in the expectation semiring, instead of being
just scalars. �e expectation semiring, as does every other semiring, replaces normal
addition and multiplication by operations⊕ and⊗.

�emonoid features discussed so far have been amatrix with scalar entries derived
from an hmm. Now the entries can be generalised to be in the expectation semiring.
�emonoid operation between two features then is a generalisedmatrixmultiplication,
where the entries of the matrix are not just scalars as in (25a), but in a semiring:

(f� f ′)ij =
⊕
k

fik ⊗ f ′kj. (28)

�e function f(·), which computes a feature from one observation, produces a matrix
with entries in the expectation semiring. For generative score-spaces, the �rst element
of each of the values in the semiring is the same likelihood, and the second element the
partial derivatives with respect to the parameters of the generative model. However,
other types of entries are also possible.

It is well-known (and shown in vanDalen andGales 2013) that squarematrices form
a monoid under matrix multiplication i� its elements are in a semiring. �erefore,
any �nite-state model with the same shape as an hmm—one state model generating
symbols, and one linear transducer from symbols to the observations—with weights
in any semiring can be used to extract features in a monoid.

�is opens up the possibility for many types of segmental features. �ere is no
requirement for the semiring to contain a likelihood or anything similar. Of particu-
lar interest are features based on neural networks. Features that, just the likelihood of
hmms, are additive over paths of the �nite-state automaton can then be extracted in
average constant time if they are computed for all possible segments of audio. Addi-
tionally, monoid features for consecutive segments can be combined straightforwardly,
which allows �exibility when pruning is used during decoding.

13

3. the exact word error over a lattice

2.3 Conclusion

�is section has discussed a general class of segmental features for speech recognition
that are e�cient to compute. �e new features are as e�cient as features used in Ragni
and Gales (2012); van Dalen et al. (2013a) when features for all possible segments are
required. However, they are more �exible in re-using features for sub-segments. �is
is done by requiring that the features are in a monoid. Because monoids are associat-
ive, features for two consecutive segments can be combined to form a feature for the
union of the segments. �is will allow more �exibility in integrating this type of fea-
ture in speech recognisers that perform pruning to obtain good performance. A type
of features that is of particular interest for future work can be derived from hmm-like
�nite-state automata with weights in any semiring.

3 �e exact word error over a lattice

Many operations in speech recognition can be elegantly described in terms of �nite-
state automata (Mohri et al. 2008; Ho�meister et al. 2012; Povey et al. 2012; van Dalen
et al. 2013a). However, some optimisation algorithms do not always create the desired
results.�is section focuses on determinisation, which has exponential space complex-
ity. Even when the output automaton �ts in memory, the intermediate representation
may not. �is section therefore proposes an algorithm to incrementally determinise
andminimise an acyclic automaton. It uses lessmemory by keeping intermediate auto-
mata minimised at all times.

�e example that this section will consider is that of annotating lattices with the
exact word (or phone) error. �is problem comes up in training acoustic models. A
commonly-used criterion is the minimum Bayes’ risk criterion (Povey 2003) (mbr,
which aims to minimised the expected word (or phone) error. �is involves a margin-
alisation over all word sequences, usually approximated with a lattice, of the weighted
error of each of those word sequences. However, the algorithm for computing the word
error for all word sequences in a lattice (Mohri 2003; Heigold et al. 2005) uses determ-
inisation and in practice o�en runs out ofmemory. An approximation is therefore used
that is related to the word error but uses a �xed alignment of the words in the hypo-
thesis and the recognition lattice. �is may limit the applicability of the criterion used
to optimising the criterion it purports to minimise. Also, as new models for speech
recognition are becoming more complex and features richer, the �xed time alignments
could restrict performance. For example, recent work has focussed on the need to re-
align lattices every few iterations of training for hmms with neural networks (Su et al.
2013) and structured SVMs (Zhang and Gales 2011b) or, for log-linear models, to use
dense lattices to represent many alignments (Ragni and Gales 2012; van Dalen et al.
2013a). �is section will therefore use the novel determinisation algorithm to compute
the exact word or phone error for all the paths in a lattice.

�e word error between two sequences is de�ned as the minimum edit distance
between the two. �e word error rate used to assess speech recognisers is the word
error divided by the length of the reference. �ere is a well-known algorithm for com-
puting the minimum edit distance, which performs a search for the lowest-cost path in
a two-dimensional state space. �is algorithm can be expressed in terms of �nite-state
automata, as a shortest-distance calculation in a graphwhose states are in the Cartesian
product of the automata representing the two sequences. �is algorithm can be gener-

14

3.1. the minimum edit distance

0 1 2
a c

(a) �e refer-
ence.

A B C D

a
b

a
c

c

(b) �e hypothesis lat-
tice.

A

B

C

D E

a/0
a/1

c/1

b/1
a/0

c/1

c/0

(c) �e hypothesis lattice from �g-
ure 5b, annotated with the error.
�e topology has changed.

Figure 5 Example reference and hypothesis automata.

alised in two ways. One way is to �nd the minimum edit distance for any path in one
automaton and any path in another automaton (Mohri 2003).

�is section will concentrate on the other way to generalise the minimum edit dis-
tance algorithm: �nding the error not for one sequence, but for a whole lattice. Instead
of a shortest-distance algorithm, this requires determinisation. An example is given in
�gure 5: the reference sequence is “a c” and the hypothesis lattice has four sequences.
�e word error for three of those sequence is 1 (“a a c”, “a c c”, “b a c”), and for the other
sequence it is 2 (“b c c”). �e automaton in �gure 5c assigns to the same four sequences
the error. �e topology of the automaton has changed, so that each of the symbol se-
quences has a di�erent path.�is illustrates that in general, determinisation can lead to
an exponential number of transitions. �e standard determinisation algorithm shows
exponential behaviour on normal lattices used for training speech recognisers.

�is section is organised as follows. Section 3.1 will discuss the minimum edit dis-
tance problem in terms of �nite-state automata. Section 3.2 will introduce a semiring
whosemembers are acyclic automata that are always determinised andminimised.�is
allows them to be used a weights of another automaton. �en a general algorithm will
be introduced for determinising andminimising acyclic automata, which has the prop-
erty that intermediate results are always minimised and thus take as little memory as
possible.

3.1 �e minimum edit distance

�e edit distance measures the similarity between two sequences of symbols as the
number of operations required to transform one string into another. �e Levenshtein
distance, used to evaluate speech recognisers, allows as operations the deletion, inser-
tion or substitution of one symbol. �e optimal sequence of operations is found by de-
termining the best path through both sequences at once. �ere is a standard dynamic
programming algorithm for solving this (see e.g. Cormen et al. 2009). To be able to
generalise it, the problem and algorithm will here be expressed in terms of �nite-state
automata (Mohri 2003).

Figure 6 shows an example automaton for determining the edit distance between
“a c” (along the vertical axis) and “a c c” (along the horizontal axis). �e states are in

15

3. the exact word error over a lattice

0,A 0,B 0,C 0,D

1,A 1,B 1,C 1,D

2,A 2,B 2,C 2,D

a:a/0

c:c/0 c:c/0

a:c/1 a:c/1

c:a/1

a:ǫ/1 a:ǫ/1 a:ǫ/1 a:ǫ/1

c:ǫ/1 c:ǫ/1 c:ǫ/1 c:ǫ/1

ǫ:a/1 ǫ:c/1 ǫ:c/1

ǫ:a/1 ǫ:c/1 ǫ:c/1

ǫ:a/1 ǫ:c/1 ǫ:c/1

Figure 6�e edit distance automaton for “a c” to “a c c”. �e shortest distance in
this automaton is the edit distance.

a product space of the states in �gure 5. Each transition stands for an edit operation.
A vertical transition moves in the reference but not in the hypothesis: a deletion. �e
label is e.g. “a:ε/1”, with “a” in the reference, no symbol (“ε”) in the hypothesis, and
a cost of 1 for the deletion. �e opposite, an insertion, is represented by a horizontal
transition, with e.g. “ε:a/1”. Diagonal transitions indicate a substitution (e.g. “c:a/1”),
with a cost of 1 or a correct symbol (e.g. “a:a/1”), with a cost of 0. �is automaton
can be produced with a 3-way composition of the two input automata and a special
transducer (Mohri 2003; Heigold et al. 2005), or with an ad hoc algorithm.

�e lowest-cost path in this automaton corresponds to theminimumedit distance (Mohri
2003). Weights on �nite-state automata must be in a semiring (Mohri 2002), here rep-
resenting the edit cost. �e semiring operation ⊗ concatenates the weights on two
paths into that of a longer path, and the operation ⊕ combines two paths. Between
paths, the lowest cost should be selected: x⊕y , min(x, y); along paths, edit distances
should add up: x⊗y , x+y. Using this semiring, the cost semiring (sometimes called
the “tropical” semiring), any shortest-distance algorithm will �nd the minimum edit
distance between two sequences.

One generalisation of this algorithm, which this paper will not focus on, is to make
the hypothesis a lattice (as in �gure 5b).�e same shortest-distance algorithm then res-
ults in theminimum edit distance between a reference and any one path in a hypothesis
lattice: the oracle error.

3.2 Incremental determinisation and minimisation

To �nd the minmum edit distance for all paths in a lattice, the edit distance automaton
in �gure 6 must be determinised (Mohri 2003; Heigold et al. 2005). �e standard al-
gorithm for determinisation of weighted �nite-state automaton (Mohri 2009) uses a
powerset construction: each state in the resulting automaton is a set of states in the
original automaton with a weight for each of them. Each transition represents all trans-
itions with the same symbol out of each of these states. �e destination state is instanti-
ated as the set of the original destination states andweights.�eweights are normalised
so that states aremore likely to be re-used: if the state representing the exact same set of
states and weights has been seen before, it is mapped to the same state in the resulting
automaton.

�e problem with applying this general algorithm for the edit distance problem
is memory use. Because all states in the original automaton are inserted into at least
one state in the resulting automaton, the amount of memory required is the size of
the automaton in �gure 6. In theory, it would be possible to use the knowledge that

16

3.2. incremental determinisation and minimisation

the resulting automaton is acyclic to reduce this, but in general this is a hard problem,
requiring garbage collection that can deal with cycles as well as problem-speci�c ref-
erence counting to determine whether a state in the resulting automaton may yet be
revisited.

An option that may seem attractive is to prune the edit distance automaton. It is
true that many paths turn out to be redundant. However, a pruning algorithm that
removes paths with high cost will prune not only redundant paths, but also legitimate
paths in the lattice where the recogniser was badly wrong. �at is not a good idea for
discriminative training. �erefore, this paper aims to annotate lattices with the exact
error.

Instead of optimising standard determinisation to acyclic automata, this paper uses
a simpler approach: the weights are replaced by equivalent weights in a di�erent semir-
ing. �is semiring is the space of determinised and minimised acyclic automata. A
standard shortest-distance algorithm, then recreates the original automaton in determ-
inised and minimised form.

3.2.1 �e automaton semiring

Minimisation of weighted automata (Revuz 1992; Mohri 2000; Eisner 2003) works by
normalising the weights (also known as “weight pushing”), and then merging states
with the same su�x, the same labels and weights following. Assuming that there are
no arcs with empty symbol sequences, there is only one possible topology for one su�x,
and the state with this su�x can be shared. An important insight since many values in
the automaton semiringwill be inmemory at once, they can all share the same states, so
they are jointly minimised. Each automaton is also kept determinised. �is means that
each state has at most one outgoing transition with a given symbol, and therefore that
for each symbol sequence there is only one path. Since deterministic automata have
only one start state, andmost automata will have a start weight, it will be indicate on an
unconnected arrow: /1 a is an automaton that assigns 1 to the symbol sequence “a”
(as usual, a weight /0 is not written). To prevent confusion, the rest of this paper will
use the cost semiring and operations speci�c to this. However, the automaton semiring
can carry any weakly le� divisible semiring (Mohri 2002).

Like the cost semiring, the automaton semiring must have operations ⊗ and ⊕,
and identities 1 and 0 de�ned. Since the sum over all paths of the automaton semiring
should recreate its host automaton, the operations are de�ned as follows. �e opera-
tion ⊕ is used to combine the weights of two competing paths. It is therefore de�ned
as the union of its arguments, which assigns any sequence the⊕-sum of what its argu-
ments assign to that sequence. For example,

/1 a ⊗ /2 b =
/1

b/1

a

. (29a)

�e le� argument assigns 1 to “a”, and the right one 2 to “b”. �e result assigns those
weights to both. To keep the automaton normalised, its weights have been pushed to
the front.

�e operation⊗, which is used on consecutive arcs along a path, concatenates two
automata. �is means that the concatenation of each string of the le�-hand automaton

17

3. the exact word error over a lattice

with each string of the right-hand automaton is assigned the⊗-product of the weights
of the two automata. For example,

/1 a ⊗ /2 b = /3 a b . (29b)

�e resulting automaton assigns a weight of 3 to “a b”. To keep the automaton normal-
ised, the weights are pushed to the front.

�e values 0 and 1must be de�ned so that adding 0 does nothing, and multiplying
by 1 does nothing. �ey are therefore de�ned as 1 , /0 and 0 , /∞ .

3.2.1.1 Implementation �e data structures used to implement the automata and
the operations on them are best expressed mathematically. An automaton a = (s, s)
consists of an initial weight s, which can be extracted with s(a), and a state s, which
can be extracted with q(a). A state s = (f, T) is de�ned by a �nal weight f, which
can be extracted with f(s), and a set of outgoing transitions T , which can be extracted
with n(s). Each transition t = (k, a) consists of a symbol k, which can be extracted
with k(t) and an automaton a attached to it, which can be extracted with a(t). For
example, the automaton /0 that only assigns 0 to empty sequences can be written
af = (0, (0, ∅)). �e automaton /2 b can be expressed as (2, (∞, {(b, af)})).

�e followingwill discuss the operationsUnion(al, ar), which implements⊕, and
Concatenate(al, ar), which implements⊗, but �rst the building blocksNormalise(a)
and Denormalise(a).

Since the states should be re-used asmuch as possible, they should be stored norm-
alised. �e standard normalisation used in minimisation algorithms is to push weights
from all paths forward (Mohri 2000; Eisner 2003). �e function Normalise(a) en-
sures that the outer level of weights from stateq(a) is normalised. In the cost semiring,
the minimum of the start weight and the weights of the automata following the state is
made 0 by extracting the residual c from the weights inside the state. For readability,
the following de�nition expands the argument:

Normalise((s, (f, T))) =
(
c, (f− c, T ′)

)
, (30a)

where T ′ , {(k, (s− c, s)) | (k, (s, s)) ∈ T };
c , min({f} ∪ {s | (k, (s, s)) ∈ T });

Normalise(0) = 0. (30b)

�e resulting automaton assigns the sameweights to the same sequences as the original
automaton does.

�e operation Denormalise(a) performs the opposite operation: it returns an
automaton a ′ = (0, s ′), with the start weight 0, that is equivalent to a.

Since the automata are acyclic, the operations Union and Concatenate can be
implemented recursively. Union((sl, sl), (sr, sr)) returns an automaton that assigns
to each symbol sequence the minimum of the weights that the two arguments assign.
Without loss of generality, the initial weights of the automata can be assumed 0, and
the states unnormalised. Otherwise, Denormalise can be used. �en,

Union((0, (fl, T l)), (0, (fr, T r)))
= Normalise((0,min(fl, fr), T ′)), (31a)

18

3.2. incremental determinisation and minimisation

where T ′ , {(k, ak) | (k, a) ∈ T } and

ak ,





Union(a(t), a(u)) if ∃t ∈ T l,∃u ∈ T l s.t. k(t) = k(u) = k;
a(t), if ∃t ∈ T l s.t. k(t) = k;
a(u), if ∃u ∈ T l s.t. k(u) = k.

(31b)

�eConcatenate(al, ar) operation returns an automaton that assigns to the con-
catenation of each string of the le�-hand automaton with each string of the right-hand
automaton the sum of the weights of the two automata, like in (29b).

�e strategy for �nding this automaton is to treat two parts of the le� automaton
separately: the �nal weight and the outgoing arcs.�e le� automaton assigns empty se-
quences weight sl+fl (whichmay be∞), which is multiplied by the cost that the right
automaton assigns to sequences. �e outgoing arcs of the le� automaton are traversed
recursively. �e results of the two parts is then summed by calling Union. Expanding
the arguments, Concatenate(al, ar) can be written as

Concatenate((sl, (fl, T l)), (sr, sr))
= Normalise

(
Union

(
(sl + fl + sr, sr), (sl, (0, T ′))

))
, (32)

where T ′ , {(k,Concatenate(a, ar)) | (k, a) ∈ T l}.

�e expressions in (31a) and (32) are recursive, and in an eagerly-evaluated language
(like C++) theywill take time in the order of the number of paths of the input automata.
However, the fact that these functions do not have any side e�ects can be exploited. A
sensible implementation usesmemoisation, which stores the result of a function the �rst
time it is called, and a�erwards returns the stored value. Usingmemoisation lowers the
time complexity of Union and Concatenate to the order of the number of states in
the automata.

Another opportunity for optimisation is when either the le� or the right argument
is returned exactly. Bymemoising weight thresholds for when this happens, Union can
be made to run faster, but using no less memory.

3.2.2 Determinisation and minimisation

�e complete algorithm for determinisation and minimisation works as follows. An
automaton is constructed with values in the automaton semiring as its labels, repres-
enting the symbols and weights of interest. �en, a shortest-distance algorithm is ap-
plied. Since the semiring has been described as modelling the su�xes of states, not the
pre�xes, the shortest-distance algorithm should work backwards from the �nal state.

Figure 7 illustrates the normalweighted automaton in �gure 6 can be converted into
one with weights in the automaton semiring. Since the interest here is in the symbols in
the hypothesis lattice, the “output” symbols are used, with their weights. For example, a
label “a:c/1” is converted into /1 c . /1 , which assigns a weight only to the empty
sequence, is produced for a label without a symbol, like “a:ε/1”.

�e shortest-distance algorithm in progress is shown in �gure 8. For simplicity, the
example has only one path in the hypothesis lattice, so the resulting automaton will be
simple. �e states from the original automaton whose transitions have been processed
have been removed from the graph. For the states on the frontier, the automaton-valued

19

4. bayesian log-linear models

A,0

A,1

A,2

B,0

B,1

B,2

C,0

C,1

C,2

D,0

D,1

D,2

/0 a

/0 c /0 c/1 a

/1 c /1 c

/1 a

/1 a

/1 a

/1 c

/1 c

/1 c

/1 c

/1 c

/1 c

/1

/1

/1

/1

/1

/1

/1

/1

Figure 7�e graph from �gure 6 with labels in the automaton semiring.

A,0

A,1

A,2

B,0

B,1

B,2

C,0

C,1

D,0
/0 a

/1 a

/1 c

/1 a

/1 a

/1 a

/1 c

/1 c

/1 c

/1

/1

/1

/1

/1

c c

/2
/1

/0/1

/2

Figure 8A shortest-distance algorithm on the automaton in �gure 7.�e resulting
determinised and minimised automaton is forming as the accumulated weights of
the algorithm.

shortest distances to the �nal state have been computed. �ey are drawn as small auto-
mata starting from the states on the frontier. For example, from state “B,1” the auto-
maton semiring has cost 1 for “c c”. Once the algorithm has completed, the shortest
distance to “A,0” will assign a cost of 1 to “a c c”, which is the correct result.

In general, this algorithm �nds a determinised and minimal equivalent automaton
for any acyclic automaton. �e advantage compared to the standard determinisation
algorithm is that by computing the output incrementally, peak memory use is lower.

4 Bayesian log-linear models

�is section will explore the application of the ideas of Bayesian models to conditional
(or “discriminative”) models. Bayesian training will be re-analysed as minimising a
criterion. �is makes it possible to replace part of the criterion to perform maximum-
margin training.

4.1 Bayesian models

Standard Bayesian models assume that the observations can be explained by a model
that some parameters Θ. However, the setting of the parameters is unknown; only the
training data is known. �erefore, Bayesian models propagate the uncertainty about
the parameters to the inference stage on a test point.

De�ne the probability model for an observation o as

p(o|Θ) , (33)

20

4.2. bayesian conditional models

where Θ are the parameters for the distribution whose form depends on the problem.
In maximum-likelihood training, a point estimate ofΘ is found:

Θ∗ , argmax
Θ

p(o|Θ) . (34)

However, it is also possible to de�ne a distribution q, whose form again depends on
the problem, over the parameters, and use the uncertainty in testing:

∫
p(o|Θ)q(Θ)dΘ. (35)

In standard Bayesianmethods, q is found from the dataD = {oi}i=1...|D| by assuming
the exact same distribution for the observations in training as in testing, and perform-
ing probabilistic inference. �is can be expressed as one expression:

∫
p(o|Θ)p(Θ|D)dΘ. (36)

�is expression is the same as (35), with the posterior p(Θ|D) of the parameters
given the data as the distribution q. �ere is then no choice in the distribution over the
parameters; it must be found with Bayes’ rule:

q(Θ) , p(Θ|D) = p(D|Θ)p(Θ)
p(D)

∝ p(D|Θ)p(Θ) . (37)

p(Θ) is the prior over the parameters, whichmust be set inBayesianmethods. p(D|Θ) is
the likelihood of the training data. Assuming all observations are independent and
identically distributed, it is

p(D|Θ) =
∏

o∈D
p(o|Θ) . (38)

In conclusion, a�er deciding the form of p and a prior over the parameters Θ, the
posterior distribution over the parameters (a�er seeing the data) is

q(Θ) ∝ p(Θ)
∏

o∈D
p(o|Θ) . (39)

�e distribution over a new observation can then be modelled as in (35).

4.2 Bayesian conditional models

Section 4 has discussed pure Bayesian models. �ese assume that the real distribution
of the observations is known, but the parameters are unknown. If the real distribution
of the observations is not known, then it is sometimes possible to use a conditional
model. A conditional model does not model the joint distribution of all the variables,
but instead conditions on variables that are always given (like observations) and then
models the distribution of other variables given those.

Discriminative training of generative models, o�en used for training speech re-
cognisers, can be argued to result in a conditional model: the distribution over the
observations, a�er all, does not represent the actual observations. In some sense, the

21

4. bayesian log-linear models

parameters that, in a proper generative model, model the observation are co-opted to
help model the conditional distribution (Minka 2005; Lasserre et al. 2006).

If o is the observation that needs to be classi�ed into a classw, then a conditional
model could be

p(w|o, Θ) , (40)

where, like in section 4.1,Θ are the parameters.
�is type of model can be trained with maximum-likelihood training, wherewref

is the correct classi�cation:

Θ∗ , argmax
Θ

p(wref |o, Θ) . (41)

�is is sometimes called “conditional maximum likelihood” (cml) training.
Similarly to the standard Bayesian framework in (35), it is possible to instead use a

distribution over parameters:
∫
p(wref |o, Θ)q(Θ)dΘ. (42)

�e standard Bayesian method, again, would be to use p(Θ|D) for q. �e training
data must be split up in variables that will be given, and variables that inference will
be performed on. �e variables that are given are observations o, and each of these
is connected with a class w: D = {(oi, wi)}i=1...|D|. Analogously with (39), then,
qmust be set to

q(Θ) = p(Θ|D) ∝ p(Θ)
∏

(o,w)∈D
p(w|o, Θ) . (43)

4.3 A criterion for Bayesian models

To be able to generalise Bayesian inference to other training criteria, it is necessary to
describe it as a criterion �rst. Unlike well-known criteria like the maximum-likelihood
criterion, which is a function of the parameters, this criterionmust be a function of the
distribution q over parameters. Since it will be required to manipulate distributions, it
is easy to give distributions names that identify their parameters explicitly:

pD|Θ(D|Θ) , p(D|Θ) ; pΘ(Θ) , p(Θ) ; pΘ|D(Θ|D) , p(Θ|D) . (44)

To compare distributions, the Kullback-Leibler (kl) divergence is o�en used. In
general, to compare distributions q and p over the variable x, giving the variable in the
subscript,

KLx(q‖p) , Hx(q‖p) −Hx(q) =
∫
q(x) log

q(x)

p(x)
dx, (45a)

whereHx(·‖·) is the cross-entropy between two distributions, andHx(·) is the entropy
of one distribution:

Hx(q‖p) , −

∫
q(x) logp(x)dx; (45b)

Hx(q) , Hx(q‖q) = −

∫
q(x) logq(x)dx. (45c)

22

4.3. a criterion for bayesian models

It can be shown that, as long as the distributions are normalised, the cross-entropy is
a lower bound on the entropy. �e kl divergence is therefore always non-negative. It
can also be shown that the kl divergence is only 0 if its two arguments are the same
distribution.

�e criterion F An obvious generalised criterion is the Kullback-Leibler (kl) di-
vergence between the distribution q and the distribution that Bayesian theory says it
ought to model.

F(q) , KLΘ
(
q
∥∥pΘ|D

)
+ constant. (46)

Since the kl divergence is 0 only if the distributions are the same, the minimum of
this criterion is exactly when q is equal to pΘ|D . Minimising this criterion therefore
is equivalent to �nding the distribution q∗ over the parameters in a fully probabilistic
manner, as in (43):

q∗ , argmax
q

F(q) = argmax
q

KLΘ
(
q
∥∥pΘ|D

)
= pΘ|D. (47)

�e reason for expressing this part of Bayesian inference as a criterion was to apply
the idea of uncertainty over parameters and copy machinery used in Bayesian infer-
ence. Crucial for this is the Bayesian prior. To retain the prior in the optimisation, it
must be written explicitly.�e parameter posterior pΘ|D in (46) implicitly contains the
prior. �is becomes clear when the posterior is rewritten using Bayes’ rule. Repeating
(37) with the notation in (44) yields

pΘ|D(Θ) =
pD|Θ(Θ)pΘ(Θ)

p(D)
∝ pD|Θ(Θ)pΘ(Θ) . (48)

�e∝ indicates that the distribution on the le� is proportional to the distribution on the
right, i.e. they are equal a�er multiplying with the correct constant with respect to Θ.
�is constant, p(D), is redundant since it merely makes sure that all distributions are
normalised. In the criterion (46), the posterior is inside a log term, and the log-constant
should be added. Bayes’ rule then yields

F(q) = KLΘ
(
q
∥∥pΘ|D

)
− logp(D)

=

∫
q(Θ) log

q(Θ)

pΘ|D(Θ)
dΘ− logp(D)

=

∫
q(Θ) log

q(Θ)

pΘ(Θ)pD|Θ(Θ)
dΘ

=

∫
q(Θ) log

q(Θ)

pΘ(Θ)
dΘ−

∫
q(Θ) logpD|Θ(Θ)dΘ (49a)

= KLΘ(q‖pΘ)︸ ︷︷ ︸
prior

+HΘ
(
q
∥∥pD|Θ

)
︸ ︷︷ ︸

evidence

. (49b)

�is rewritten criterion separates the in�uence of the prior, in the le�-hand term, and
the in�uence of the evidence, in the right-hand term. �at the le�-hand term is a kl
divergence and the right-hand term is a cross-entropy is entirely accidental; they could
have been swapped around. However, since the right-hand term will be generalised,
the formulation in (49b) is more convenient.

23

4. bayesian log-linear models

�is report will generalise the criterion by replacing the term logpD|Θ(Θ) in (49a)
by C:

F(q) , KLΘ(q‖pΘ) +
∫
q(Θ)C(Θ)dΘ (50a)

= KLΘ(q‖pΘ) +HΘ(q‖Cexp) , (50b)

where Cexp is de�ned as a distribution, so that

Cexp(Θ) ∝ exp(C(Θ)) ; (50c)∫
Cexp(Θ)dΘ = 1. (50d)

Note that in the generalised criterion, where the probabilistic meaning has been let
go, the two terms in (50a) can be weighted relative to each other. �is is equivalent
to weighting C. �is, in turn, is equivalent to taking exp(C(Θ)) to the power of that
weight, making Cexp sharper if the weight is greater than 1.

One way of using a Bayesian criterion is to approximate the right-hand argument
to the kl divergence and to use that approximation as q. Gibbs sampling, a Markov
chain Monte Carlo algorithm, is one way of doing this. �is iteratively samples each
variable from its conditional distribution given the setting of all its neighbours. A�er
many iterations, the joint setting of all variables can be used as a sample from the overall
distribution. Usefully, Gibbs sampling does not de�ned on the distribution’s normalisa-
tion constant being known, or it being normalised at all. It is therefore possible to apply
Gibbs sampling to �nd q in (50), by using Cexp where pD|Θ would be used normally
(Yang et al. 2015). Whether this is straightforward does depend on the form of Cexp.

4.4 Large-margin training

�e traditional form of training conditional models uses the conditional maximum
likelihood criterion, as in (41). �e criterion for training a Bayesian classi�er, in (49b),
can be generalised to other forms of training. (49b) maximises the Bayesian condi-
tional likelihood. Probabilistically training a conditional model is to cml as standard
Bayesian training is to normal maximum-likelihood training. However, for discrimin-
ativemodels there are other forms of criteria that can be used. A large-margin criterion
is of particular interest, because of its theoretical guarantees, and its performance on
previous tasks (Zhang and Gales 2012; van Dalen et al. 2013b).

A large-margin criterion that has been used successfully for speech recognition is
one that provides a trade-o� between the ratio of the posteriors of the reference and
the competing hypothesis, and a loss function that compares the words in the refer-
ence, wref , and the words in the hypothesis, w (Zhang et al. 2010; van Dalen et al.
2013b):

C(Θ) = C
∑

(o,wref)∈D

[
max

w6=wref

L(wref ,w) − log

(
P
(
wref

∣∣O;Θ
)

P
(
w
∣∣O;Θ

))]
+

, (51a)

24

5. infinite support vector machines

zn

πk

φn

θk

wn

αk

N

K

Figure 9�e graphical model for a mixture of experts.

where C is a hyperparameter that controls the balance between the parameter prior
and the evidence, and [·]+ is the hinge-loss function, de�ned as

[x]+ ,

{
0 x < 0;

x x >= 0.
(51b)

It is possible to retrieve the exact same criterion as in Zhang et al. (2010) by �nding
a point estimate for the parameters instead of a distribution (or, equivalently, �nd a
distribution in the space of delta spikes on parameters). In essence, C(Θ) itself, plus a
regularisation term, is maximised. �is will be used in this report for structured svms.

5 In�nite support vector machines

Kernelising support vectormachines is oneway of using linear classi�ers tomodel non-
linear decision boundaries; using a mixture of svm experts is another. �is allows the
classi�cation of experts that have been trained on di�erent parts of the feature space to
be interpolated depending on the position in space of the observation. �e following
will �rst discuss the mixture of experts, for which the number of experts needs to be
pre-speci�ed. It will then discuss the Bayesian non-parametric variant, which integ-
rates out over all possible mixtures and partitions of the training data.

5.1 �e mixture of experts

An alternative way of modelling non-linearities in the input is using a mixture of ex-
perts. �is model �rst decides on the weighting between experts given the region of
input space, and then interpolates between the classi�cation of these experts.

Figure 9 shows the graphicalmodel for a Bayesianmixture of expects. In themiddle
of the graph there are the component priors as a vector π. Unusually, the plate at the
bottom considers all N observations separately. (�is will be exploited in section 5.2
to deal with an in�nite number of experts.) Each observation is assigned a compon-
ent zn. �e observation φn depends on the component, and the parameters θzn of
that component. �e feature is assumed generated by a mixture of Gaussians. �is is
o�en unrealistic. However, this is not a problem, since the model will not be used to
generate data, and the observation is always given.�is part of themodel is o�en called
the gating network: all it does is assign data to experts.

�e right-hand part of the graphical model is the expert model. Each component
has one expert. �e experts are discriminative: they directly model the class given the

25

5. infinite support vector machines

zn

πk

η

φn

θk

wn

αk

G1 G2

N

∞

Figure 10�e graphical model for an in�nite mixture of experts.

observation. �e classwn that the observation is assigned to depends on the compon-
ent and the observation, and on the parameter αzn of the expert.

If the parameters θ,α are given, classi�cation in this model works as follows:

P(w|φ,θ,α) =
∑

k

P(z = k|φ,θ)P(w|φ,α, z = k) . (52)

5.2 �e in�nite mixture of experts

�e mixture-of-experts model is parametric: the number of experts Kmust be �xed in
advance. In order to circumvent this requirement, a Bayesian non-parametric version
of the mixture of experts will be used here. �e Dirichlet process mixture of experts
(Rasmussen and Ghahramani 2001) instead uses an in�nite number of components. In
theory, it therefore considers all possible partitions of the training data and associated
components. However, it is impossible to deal with an in�nite number of components.

�e trick, common in Bayesian non-parametrics, is that the posterior distribution
of the components given the data is approximated with a Monte Carlo scheme, in this
work, Gibbs sampling. For any one sample, the number of components assigned any
observation is then at most the number of observations. To allow inference, all com-
ponents that have not been assigned to any observationmust bemarginalised out. Each
sample acquired from the in�nitemixture of experts then has exactly the form of a nor-
mal mixture of experts in �gure 9.

�e graphical model is given in �gure 10. �e number of componentsK is set to∞.
�e distributions for the mixture of experts must be chosen so that it is practical to
represent a �nite subset of the in�nite number of experts. �ey are therefore (again as
usual in Bayesian nonparametrics) chosen

π ∼ Dirichlet(η) ; (53)
zn ∼ Categorical[π] . (54)

By making the vector of priors of experts, π, in�nite-dimensional, the mixture model
is given by a Dirichlet process (Rasmussen 1999).

Instead of performing inference over the in�nite-dimensional vector π when K→
∞, it is marginalised out. �e distribution of the assignment of the observations to

26

5.2. the infinite mixture of experts

experts is then given by the Chinese restaurant process (Aldous 1985; Pitman 2002).
(In the metaphor, the experts are tables; the observations customers who sit at a table
as they enter the restaurant.) Because the components are exchangeable, it is possible
to just consider the ones that have at least one observation assigned to them. Only
for those components z are the parameters θz and αz kept in memory. Since Gibbs
sampling is used, at any time it is only necessary to re-draw the assignment of one
observation to an expert. Because of the nature of the Dirichlet process, the posterior
distribution of the assignment of one observation given all other ones is split between
the existing components and the new ones:

P
(
zn = k

∣∣z\n, η) ∝
{
Nk, if k is an existing expert;
η, if k is a new expert.

(55)

During Gibbs sampling, of course, for sampling the assignment of one observation
to an expert, the complete posterior of zn is used. �is uses the component priors,
in (55), but also the current parameters of the components and the experts. Because
of this, observations are more likely to move to an expert that classi�es them correctly
than to an expert that does not. During the training process, this creates an interaction
between components’ positions and experts’ performance that is a great strength of this
model.

�e procedure for Gibbs sampling is as follows. �e parameters Θ = {θ,α} and
component assignments z are sampled iteratively. While the value of one variable, e.g.
z, is sampled, all other variables, e.g. θ,α remain the same. Because of the exchange-
ability of z = {z1, . . . , zN}, the posterior distribution of zn given the value of its neigh-
bours, according to which it is sampled, is

P
(
zn
∣∣z\n, φn,θk, wn,αk) ∝ P(zn∣∣z\n)p(φn|θzn)P(wn|φn,αzn) , (56)

where the �rst term P
(
zn
∣∣z\n) is given according to (55). When k is a represented

component, zn can be directly sampled from equation (56). When k is an unrepres-
ented component, however, the term p(φn|θzn) is given by

∫
p(φn|θ)G1(θ)dθ; and

P(wn|φn,αzn), is given by
∫
P(wn|φn,α) , G2(α)dα.

A�er obtaining the assignments of observations to components, �rst the number
of represented components is updated. �en the parameters of the components θ are
sampled, a�er which the parameters of each expert α are updated.

Classi�cation with this Bayesian model in theory would use all components of the
mixture model weighted by their posterior from the training data:

P(w|φ,D) =
∫
P(w|φ,Θ)p(Θ|D)dΘ, (57a)

whereΘ = {θk,αk}k=1...K are all the parameters of the mixture of experts. However,
since the number of components is in�nite, (57a) cannot be computed. Instead, the
samples acquired with Gibbs sampling are used. Denote with Θ(l) the lth draw from
the posterior. As usual in Gibbs sampling, the draws are taken su�ciently far apart that
independence between them can be assumed:

Θ(l) ∼ p(Θ|D) . (57b)

27

6. source code

Each of these draws contains a �nite number K(l) of active components. Classi�cation
then uses all components from all samples:

P(w|φ,D) ' 1

L

L∑

l=1

P
(
w
∣∣φ,Θ(l)

)
=
1

L

L∑

l=1

K(l)∑

k=1

P
(
z = k

∣∣φ,θ(l)
)
P
(
w
∣∣φ,α(l)

k

)
. (57c)

�is form of classi�cation is equivalent to classi�cation with a mixture of experts con-
sisting of all experts from all draws.

5.3 In�nite support vector machines

If the experts are multi-class support vector machines, then the resulting model is an
in�nite support vector machine (in�nite svm) (Zhu et al. 2011). A multi-class svm is
a special case of a structured svm where the classes have no structure. Unlike stand-
ard svms, however, there are more than two classes, so that the large-margin criterion
in (51a) is required.

To use the in�nite svm, however, svms must be interpreted as probabilistic models.
�is is necessary both for classi�cation (in (57c)), because the experts’ distributions
must be summed, but also for Gibbs sampling. �e interpretation as log-linear models
will be used here. When the assignment to an expert for an observation is sampled,
therefore, the distribution of the class given its parents is

P(w|φ, z, α) ∝ exp
(
αT
zΦ(φ,w)

)
, (58)

where αz is the parameter vector for expert z, andΦ(φ,w), gives a vector which con-
tains zeros except for the dimensions indicated byw, where it has a copy of φ.

Instead of sampling the parameters of experts within Gibbs sampling, the standard
multi-class svm training procedure is run. A potential problem in training the svm
experts is that of over�tting. �is problem is much larger than for standard svms, since
within the model here, at any iteration, the number of observations assigned to an ex-
pert can legitimately be very small. Without any regularisation, the svm could therefore
produce a parameter setting that does not generalise. Here, a prior is used. �e mean
of the prior is set not to zero (as is o�en the implicit setting), but to the parameters of
an svm trained on the whole data set. �e regularisation constant, which implies the
covariance of the prior, will be empirically set using the development set.

6 Source code

To support the algorithms that the work for this project requires, a new library is re-
quired. In particular, to compute the exact word error (in section 3 on page 14) and to
perform fast extraction of segmental features (see van Dalen et al. 2013b), a library for
�nite-state automata is required. Finite-state automata are general and well-de�ned,
making them are excellent material for a so�ware library. �e values in semirings that
weighted automata carry can be implemented using type templates for speed. However,

28

7. experiments

existing libraries, including themost used one, OpenFst (Allauzen et al. 2007), are lim-
ited in that they require automata to be represented explicitly. It is true that OpenFst
provides lazy implementations of such algorithms as composition, but it makes the
fatal mistake (for computing error automata and fast segmental feature extraction) of
renaming the states to integer values. To keep track of the meaning of these integers,
all states must be explicitly instantiated when the automaton is completely traversed.
For the computation of the exact word error, in addition the single-source shortest-
distance algorithm cannot exploit a topological order to drop states that have been
traversed from memory.

�erefore, the work in this project has included a new C++ library for manipu-
lating �nite-state automata. �is library has been open-sourced under the Apache li-
cense, Version 2.0 (�e Apache So�ware Foundation 2004) and placed onGitHub (van
Dalen 2015). �e Apache license is a permissive and well-known open-source so�ware
license. GitHub is a popular site that enables and encourages social coding. It allows
publicly available source code and a modern distributed version control system (Git).
Its interface makes it easy to “fork” code and to contribute back to it. It is hoped that
this will foster further development, whether by the authors of this project or by other
researchers.

�e �exibility of the Flipsta library, compared to other libraries that deal with �nite-
state automata, derives in large part from its extreme view on the labels on the trans-
itions between states of automata. Other libraries �x the number of symbol sequences
to 1 (to get �nite-state acceptors) or 2 (to get �nite-state transducers), and zero or one
weight. �rough these are �ne choices for many applications, many require an n-tape
automaton with n > 2. Whole papers are written about how to do this. Indeed, the
OpenFst library allows users to work around the 2-tape restriction by moving extra
symbols into the weights. (�ey then become awkward to manipulate.)

�e Flipsta library circumvents this by allowing only one label, which must be in
a semiring, but by allowing it to be composite. �ough C++11 variadic templates (and
elaborate machinery underneath that manipulates the types), any combination and
number of symbols and more traditional (or more outlandish) semirings can be used
as labels. �is makes it easy to use, say, three-tape automata, which is hoped to enable
easier implementation of various algorithms.

7 Experiments

�e techniques in this report are tested on various corpora: two noise-corrupted cor-
pora, the small-vocabulary aurora 2 and medium-vocabulary aurora 4, the Hub4
broadcast news corpus, and a YouTube corpus from Google.

Since the start of the project, neural networks have become the new state of the art
in acoustic modelling with hmms. �e experiments in this section therefore both com-
pare against hmm systems based on neural networks, and use them to extract features,
as detailed in section 2.2.2.

7.1 Setups

aurora 2 is a small vocabulary digit string recognition task (Hirsch and Pearce 2000),
with vocabulary size of 12 (one to nine, plus zero, oh and silence). 8 real-world noise

29

7. experiments

conditions have been added to the speech arti�cially over a variant of signal to noise ra-
tios (snrs).�e generativemodels, gmm-hmms, are trained on the clean data with 8840
utterances recorded from 55 male and 55 female adults. �e feature vectors used by the
front-end hmms consisted of 12 mfccs appended with the zeroth cepstrum coe�cient
and delta and delta-delta coe�cients. �e baseline hmm system uses vts compens-
ation, with the noise model for vts compensation estimated on each utterance. �e
log-linear models are trained on a subset of the multi-style training data containing 4
noise conditions and 3 SNRs (20dB, 15dB and 10dB). All three test sets, A, B and C, are
used in the evaluation. �e sets contain 4, 4, and 2 noise conditions at 5 di�erent SNRs
(0dB to 20dB).

aurora 4 is a noise-corrupted medium to large vocabulary database based on the
Wall Street Journal (WSJ) data. Here the hmm used to generate features is trained on
clean data (SI-84 WSJ0 part, 14 hours). �e hmms are state-clustered tri-phones (3140
states) with 16 Gaussian components per state. Four iterations of VTS compensation
[1] are performed for the test data. �e log-linear models are trained on the multi-
style data with 7033 utterances. Evaluation is performed using the standard 5000-word
WSJ0 bi-gram model on 4 noise-corrupted test sets based on NIST Nov92 WSJ0 test
set. Set A is clean, set B has 6 types of noise added, set C has channel distortion, and
set D has both additive noise and channel distortion.

A third training set is the “Hub4” data, which contains English broadcast news.�e
144 hours used here have good manual transcriptions. �e data and setup are similar
to that in Gales et al. (2006).

As part of the project, Google has provided audio data from YouTube videos that
displays di�erences in speaking and adverse environments of various kinds. �is is a
hard task for a speech recogniser. Most of the videos that the data is from is still on
YouTube, so that metadata can be found. �is is not currently used.

�e YTElect data (see also Alberti et al. 2009) contains audio from videos about
the 2008 American presidential election, such as candidates’ speeches. It is 9 hours of
audio. �e YTGeneral data is a random sample from YouTube data, and contains a
“dev” set of 9 hours of audio and an “eval” set of 8½ hours.

Since especially the YTGeneral data contains a variety of audio that should not be
recognised (such as music, background noise, and speech in other languages), auto-
matic segmentation was performed. �e YTGeneral corpus also has been segmented
manually. �e total fraction of audio present in the manual segmentation that is miss-
ing in the automatic segmentation is 5.3 %.

7.2 Results

Section 3 (and van Dalen and Gales 2015) have described a newmethod for annotating
lattices with the exact error. �is is a hard problem. �e traditional approach to min-
imum Bayes risk training ues an approximation that relies on overlap between �xed
segmentations in the reference and hypothesis. �is may a�ect performance of tradi-
tionalhmm systems; but it is de�nitely a problem for training segmental models, where
trained with �xed segmentations has been shown to be suboptimal (Ragni and Gales
2012).

To test the new algorithm for error-marking lattices, a realistic training set was
chosen with long utterances. �e training set was 34 hours of randomly selected shows

30

7.2. results

102

103

M
em

or
y

us
e

(M
B

)

0 10 20 30 40 50
Length of utterance (words)

Standard

Incremental

(a)Memory use of error-marking lattices, up
to 8GB

0

20

40

60

80

100

Pr
oc

es
se

d
w

ith
in

8G
B

(%
)

0 10 20 30 40 50
Length of utterance (words)

Standard

Incremental

(b) Percentage of lattices that can be error-
marked within 8GB of memory

Figure 11 Standard and incremental error-marking algorithms.

from the ’96 release of the Hub 4 broadcast news. �e hypothesis lattices (sometimes
called “denominator lattices” in a reference to the cml training criterion) are produced
for minimum phone error training in the standard setup at the Department of Engin-
eering at Cambridge, which is similar to Gales et al. (2006).

Two algorithms are compared, both exact. Both �nd the phone error, which is usu-
ally used for training speech recognisers, for all paths in the hypothesis lattice. �e cost
metric usesmonophone identities, which is realistic but in preliminary experiments in-
creased time and space required compared to using the triphones the lattices contain.
�e standard algorithm is implemented in C++ using the OpenFst toolkit (Allauzen
et al. 2007). It uses lazy composition to create the automaton in �gure 6, but uses stand-
ard determinisation, which instantiates all states anyway. �e implementation of the
incremental algorithm uses the author’s Flipsta C++ library for �nite-state automata
(soon to be open-sourced), which is not as optimised as OpenFst but allows more lazy
operations. It lazily constructs an automaton like in �gure 6, and transforms it on the
�y to one like in �gure 7. It provides a single-source shortest-distance algorithm that
exploits the acyclicity by releasing memory for computed distances as soon as they are
not needed any more.

Both algorithms were run constrained to 8 gigabytes of memory, and fail if they
try to use more. A separate process was run for each utterance, measuring memory
use with GNU time. Figure 11a shows peak memory use for the two algorithms; each
dot represents an utterance (drawn alternating between the two algorithms). �e hori-

31

7. experiments

Training BN YTB
Data (hours) dev03 eval03 Elect Gdev Geval

h4e96 74 13.4 11.8 30.6 57.4 60.7
bne 144 12.1 — 29.4 54.5 57.7
bne+tdt4 375 11.0 — 28.8 52.9 56.4

Table 1 Performance in wer (%) of Tandem-SAT system and training set.

zontal axis has the number of words in the utterance. �e number of states in the edit
distance automaton increases roughly quadratically with this, but the output roughly
linearly. It is clear from the graph that on utterances around 10 words the standard
algorithm starts displaying the exponential complexity that the theory predicts. �e
incremental algorithm shows a similar pattern, but only around 20 words.

Figure 11b illustrates the range of practical use of the two algorithms, by displaying
the percentage of utterances that can be error-marked within 8GB (the story would be
similar for any other amount of memory available in real computers). �e standard
algorithm error-marks 99% of utterances of up to 11 words and then quickly becomes
unable to �nish the computation. �e incremental algorithm, however, can deal with
much longer sentences: it error-marks 99% of utterances of up to 21 words.

�is improvement makes it much more feasible to error-mark lattices. For some
corpora, a 20 word limit may be su�cient, or automatic segmentation can be used. It
must be noted that here no pruning is used, and no admissible heuristic can be found.
Pruning based on the error is hazardous because it may strip away legitimate high-
error paths, which should be retained for training. It may, however, be possible to
prune conservatively based on lattice arc timings.

7.3 Tandem and hybrid systems

Recently, acoustic models with neural networks have had a resurgence and have be-
come the state of the art. �is section therefore examines the two types of neural
network-based acoustic models: tandem and hybrid systems.

In hybrid systems, the output distributions of the hmm are replaced with values
derived from applying a neural network to, say, �lterbank features. A tandem system,
on the other had, uses a traditional gmm-hmm, but on features that contain, say, tradi-
tional plp features augmented with neural-network features derived from them. �e
neural network here takes 9 frames of plp features, and then has 4 layers of 1000 nodes
each, and a bottleneck layer of 26 nodes. �e network is initialised discriminatively,
layer by layer, by appending a 6000-node output layer and training the network to
context-dependent targets.

Table 1 shows word error rates (from confusion network decoding) for a tandem
system trained on the broadcast news data. On matching data, dev03 and eval03, per-
formance is in the low 10’s. However, the more noisy YouTube data causes more prob-
lems. �e YTElect test set, with its election campaign videos, is closer to broadcast
news than the other two test sets, so performance is better. YTGeneral-dev and -eval
have a greater mismatch and therefore see worse performance.

Table 2 explores the relative advantages of tandem and hybrid systems. �e top
row has performance of an hmm system without neural networks. �e three neural-

32

7.3. tandem and hybrid systems

System BN YTB
dev03 eval03 Elect Gdev Geval

P1 - PLP-SI 15.0 — 35.9 65.6 67.6
T1 - Tandem-SI 12.6 11.7 30.6 56.4 59.3
T2 - Tandem-SAT 12.1 — 29.4 54.5 57.7
H1 - Hybrid-SI 10.8 9.5 29.0 53.0 57.2
T1⊗H1 10.9 9.7 28.1 52.4 55.8
T2⊗H1 10.5 — 27.6 51.7 55.3

Table 2 Performance in wer (%) of phonetic PLP-SI, Tandem-SI, Tandem-SAT
and Hybrid-SI system trained on 144 (bne) hours of data.

System BN YTB
dev03 eval03 Elect Gdev Geval

P1 - Phonetic 13.4 11.8 30.6 57.4 60.7
G1 - Graphemic 14.5 12.6 30.3 56.7 60.0
P1⊗ G1 13.0 11.4 29.9 56.4 59.8

Table 3 Performance inwer (%) of phonetic and graphemic Tandem-SAT system
trained on 74 hours (h4e96) of data.

network systems in the next block perform much better. �e di�erence between the
two tandem system illustrates an advantage of this approach, based on gmm-hmms:
traditional methods for speaker and environment adaptation can be used. �e SAT
system uses speaker-adaptive training, where for each speaker a transformation is es-
timated that alleviates the mismatch between training and test data. �is consistently
results in a 3–4% relative reduction in word error rate, which especially for the more
challenging data is impressive. �e hybrid system, on the next row, performs slightly
better. �e bottom two rows, then, combine the hybrid system with one or the other
tandem system. �ere are two interesting things to note here. First, the combination
of the two systems improves performance, which means that they are complementary.
Second, the e�ect making the tandem system robust to noise using adaptation carries
through to the combined performance.

An interesting contrast can be seen in an initial experiment with results in table 3.
Two systems are compared that are both tandem systems trained on 74 hours of data,
but the one is phonetic, i.e. it has a pronunciation dictionary thatmapswords to phones,
whereas the other one is graphemic: the words are mapped to their constituent letters,
graphemes. It is expected that for a language with such a severely non-phonetic spelling
as English, removing the information about pronunciation from the systemmakes per-
formanceworse. Indeed, it does, on the broadcast news data. However, on the YouTube
General data, performance actually increases. At low signal-to-noise ratios, the graph-
emic representation apparently lends more robustness to themodels. �e combination
of the two systems, in the bottom row, again outperforms both of the single systems.

33

7. experiments

Features hmm
criterion

Log-linear
model criterion

Test set Avg.A B C D

Tandem

ml
— 6.78 11.73 15.39 26.21 17.85
cml 6.87 11.60 15.02 25.98 17.67
large-margin 6.67 11.52 14.85 25.80 17.53

mpe
— 7.15 11.06 14.37 24.54 16.79
cml 6.95 11.01 14.31 24.37 16.68
large-margin 7.06 10.93 14.10 24.26 16.59

Hybrid

cross-
entropy

— 4.09 8.17 8.07 19.41 12.69
cml 4.02 8.16 7.94 18.64 12.34
large-margin 3.92 8.06 8.03 18.57 12.26

mpe
— 3.96 7.64 7.79 18.51 12.05
cml 3.81 7.61 7.45 18.25 11.89
large-margin 3.68 7.59 7.44 17.96 11.74

Table 4 aurora 4: performance with log-linear models on a log-likelihood score-
space from a tandem and a hybrid hmm.

7.4 Structured log-linear models

�e previous section reported performance of hmm systems that use neural networks.
In this section, the hmms are used to derive log-likelihood score-spaces. �ese can
be used in a segmental log-linear model; the hmms and neural networks in a hybrid
system produce something analogous to a log-likelihood. Scaling for the features from
the di�erent systems was approximately tuned to the test sets.

Table 4 has results for this on the aurora 4 data set. �e �rst row of each block
of these is the hmm performance. �e top half uses tandem features in a gmm-hmm,
the bottom half a neural-network-hmm hybrid. �e “ml” and “cross-entropy”-trained
models have not seen sequence-discriminative training, whereas thempe-trainedmod-
els have. �e hybrid mpe-trained hmms2 has extremely competitive performance.

It could be hypothesised that applying a log-line model trained with a sequence-
discriminative criterion would result in much less gain on hmms that are trained dis-
criminatively. Another e�ect that could be expected is that the score-space from the hy-
brid system, which has “faked” log-likelihoods, might be less useful. However, neither
of these e�ects really turn out visible. �e log-linear model consistently improves per-
formance over the hmm system. Training the log-linear model with conditional max-
imum likelihood results in a 0.1–0.4% absolute improvement. Using a large-margin
criterion instead consistently improves performance furth, to 0.2–0.4% absolute from
the hmm system. Most notably, on the sequence-trained hybrid system the log-linear
model improves from 12.05 to 11.74%.

7.5 In�nite models

�is section looks into performance of in�nite log-linearmodels, discussed in section 5.
�ese models use an in�nite mixture of experts, where the experts are log-linear mod-
els. �is makes training harder.

2�anks to Chao Zhang for these

34

7.5. infinite models

Expert Test set
Number Type Criterion A B C Avg.

1
hmm ml 9.83 9.11 9.53 9.48

log-linear cml 8.21 7.74 8.36 8.05
large-margin 7.97 7.54 8.31 7.86

∞ log-linear
Bayesian 8.19 7.71 8.36 8.03
cml 8.22 7.71 8.35 8.04
large-margin 7.69 7.39 7.98 7.63

Table 5 aurora 2: performance of in�nite mixtures of experts, trained with dif-
ferent methods.

Expert Test set
Number Type Criterion A B C D Avg.

1
hmm ml 7.10 15.30 12.20 23.10 17.80

log-linear cml 7.16 14.86 11.39 22.78 17.46
large-margin 7.55 14.22 11.31 21.89 16.83

∞ log-linear
Bayesian 7.20 14.85 11.42 22.72 17.43
cml 7.16 14.85 11.40 22.79 17.46
large-margin 7.55 14.17 11.39 21.81 16.77

Table 6 aurora 4: performance of in�nite mixtures of experts, trained with dif-
ferent methods.

Table 5 shows results on the aurora 2 corpus. In the top block are the baseline
numbers: the hmm, and the single log-linear model using the log-likelihood score-
space from that hmm, trained probabilistically or with a large-margin criterion. �e
bottom block has in�nite models. �e row labelled “Bayesian” is trained probabilistic-
ally, with a criterion similar tocml butwith a prior over the parameters. As discussed in
section 4.3, in practice this requires Gibbs sampling, here applied for the whole model:
the gating function and the experts. See Yang et al. (2015) for details and the precise
expressions.�is does not yield a signi�cant improvement over cml on one expert: the
additional nonlinearity does not help performance.

�e next two rows use approximations to the overall criterion. When expert is
trained with cml, this replaces the sampling from the expert parameters by �nding the
maximum posterior estimate given the other model parameters. �ough this is not
exact, it is easier to implement. �e results are similar.

Training the wholemodel with a large-margin criterion, as described in section 4.3,
is hard. Again, see Yang et al. (2015) for details and the precise expressions. �e bot-
tom row therefore shows the result of replacing Gibbs sampling with a large-margin
optimisation for the expert parameters. �is type of system has previously been called
an in�nite structured svm (Yang et al. 2014). Training the mixture of experts this way
compared to training a single expert yields a 0.23 % absolute improvement in word er-
ror rate.

Table 6 shows results for the same set of experiments on the aurora 4 corpus.
�e results are similar. �ere is no discernible di�erence between methods that train a
probabilistic criterion, whether cml or its Bayesian variant. However, the large-margin
criterion shows a good improvement, and optimising a large-margin criterion inside

35

8. conclusion

an in�nite mixture of experts yields a small additional improvement.

8 Conclusion

�is third and last progress report has described the last part of the epsrc Project ep/
i006583/1, Generative Kernels and Score Spaces for Classi�cation of Speech. �e pro-
ject’s aim has been to improv speech recognition by building discriminative classi�ers
using features from generative models. �e project has delivered work in three areas:
adaptation/compensation, score-space generation and classi�ers.

In the �rst are, a novel variational method has been proposed for compensating
hmm speech recognisers for noise, which does not assume that the resulting distribu-
tion is Gaussian (van Dalen and Gales 2011).

�e second area is score-space generation. A method has been proposed to com-
pute scores from generative models for all segmentations in amortised constant time
(vanDalen et al. 2012a; 2013a). It has been shownwhat propertymakes it so e�cient by
analysing the feature extraction process as a computation on amonoid (van Dalen and
Gales 2013). �is is of particular interest since the state of the art in speech recognition
has shi�ed to using neural networks. �e insight can be exploited to extract features in
score-spaces derived from these.

�e third and most important area is the classi�ers. Since speech recognition is
sequence-to-sequence classi�cation, there are many di�culties to overcome.

A contribution that is necessary to train with all segmentations of the audio, but
should also be useful within standard training of speech recognisers, is a method to
compute the exact error. Discriminative training of speech recognisers usually involves
an approximation of the expected word error over a lattice. New implementations of
operations on �nite-state automata have been proposed that allow this to be possible
on much larger lattices (van Dalen and Gales 2015).

Muchworkwas done on in�nitemixtures of experts for speech recognition. A plain
support vector machine or log-linear model has linear decision boundaries, which is
o�en limiting. svms are usually applied with a kernel to produce nonlinear boundaries.
For speech recognition, this is possible but awkward because of the sequential nature
of speech. Instead, methods for using in�nite structured svms and in�nite log-linear
models have therefore been proposed. �ey use multiple experts for di�erent regions
of space, which also leads to nonlinear decision boundaries. �ese two in�nite models
are essentially the same, but di�er in the criteria used to train them. To apply these
criteria to structured classi�cation, it is necessary to generalise Bayesian methods for
training models. In particular, Gibbs sampling can be used. Various approximations
have been explored to make this possible.

36

Bibliography

Christopher Alberti, Michiel Bacchiani, Ari Bezman, Ciprian Chelba, Anastassia
Drofa, Hank Liao, Pedro Moreno, Ted Power, Arnaud Sahuguet, Maria Shugrina,
and Olivier Siohan (2009). “An audio indexing system for election video material.”
In Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing. pp. 4873–4876.

David J. Aldous (1985). “Exchangeability and related topics.” In P.L. Hennequin (ed.),
École d’Été de Probabilités de Saint-Flour xiii, Springer, Berlin/Heidelberg, Lecture
Notes in Mathematics, vol. 1117, pp. 1–198.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri
(2007). “OpenFst: A General and E�cient Weighted Finite-State Transducer Lib-
rary.” In Proceedings of the International Conference on Implementation and Applic-
ation of Automata, (CIAA 2007). Springer, Lecture Notes in Computer Science, vol.
4783, pp. 11–23. url: 〈http://openfst.org/〉.

�omas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein (2009).
Introduction to Algorithms. mit Press, 3rd edn.

Jason Eisner (2003). “Simpler and More General Minimization for Weighted Finite-
State Automata.” In Proceedings of the Joint Meeting of the Human Language Techno-
logyConference and theNorthAmericanChapter of theAssociation for Computational
Linguistics (hlt-naacl). Edmonton, pp. 64–71.

M. J. F. Gales and F. Flego (2010). “Discriminative classi�ers with adaptive kernels for
noise robust speech recognition.” Computer Speech and Language 24 (4), pp. 648–
662.

M. J. F. Gales, D. Y. Kim, P. C. Woodland, H. Y. Chan, D. Mrva, R. Sinha, and S. E.
Tranter (2006). “Progress in the cu-htk Broadcast News Transcription System.”
ieee Transactions on Audio, Speech, and Language Processing 14 (5), pp. 1513–1525.

M. J. F. Gales, S. Watanabe, and E. Fosler-Lussier (2012). “Structured Discriminative
Models For Speech Recognition: An Overview.” ieee Signal Processing Magazine
29 (6), pp. 70–81.

G. Heigold, W.Macherey, R. Schlüter, and H. Ney (2005). “Minimum exact word error
training.” In Proceedings of the Automatic Speech Recognition and Understanding
Workshop. pp. 186–190.

Hans-Günter Hirsch andDavid Pearce (2000). “�e aurora experimental framework
for the performance evaluation of speech recognition systems under noise condi-
tions.” In Proceedings of asr. pp. 181–188.

Björn Ho�meister, Georg Heigold, Ralf Schlüter, and Hermann Ney (2012). “wfst
Enabled Solutions to asr Problems: Beyond hmm Decoding.” ieee Transactions on
Audio, Speech, and Language Processing 20 (2), pp. 551–564.

Julia A. Lasserre, Christopher M. Bishop, and �omas P. Minka (2006). “Principled
Hybrids of Generative and Discriminative Models.” In Proceedings of the ieee Com-
puter Society Conference on Computer Vision and Pattern Recognition.

37

bibliography

Martin Layton (2006). Augmented Statistical Models for Classifying Sequence Data.
Ph.D. thesis, Cambridge University.

Tom Minka (2005). “Discriminative models, not discriminative training.” Tech.
Rep.msr-tr-2005-144, Microso� Research. url: 〈http://research.microsoft.com/
pubs/70229/tr-2005-144.pdf〉.

Mehryar Mohri (2000). “Minimization Algorithms for Sequential Transducers.” �e-
oretical Computer Science 234, pp. 177–201.

Mehryar Mohri (2002). “Semiring frameworks and algorithms for shortest-distance
problems.” Journal of Automata, Languages and Combinatorics 7 (3), pp. 321–350.

MehryarMohri (2003). “Edit-distance ofWeightedAutomata: General De�nitions and
Algorithms.” International Journal of Foundations of Computer Science 14 (06), pp.
957–982.

Mehryar Mohri (2009). “Weighted automata algorithms.” In Manfred Droste, Werner
Kuich, and Heiko Vogler (eds.),Handbook of Weighted Automata, Springer, pp. 213–
254.

Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley (2008). “Speech recogni-
tion with weighted �nite-state transducers.” In Larry Rabiner and Fred Juang (eds.),
Handbook on Speech Processing and Speech Communication, Part e: Speech recogni-
tion, Springer-Verlag, Heidelberg, Germany.

Jim Pitman (2002). “Combinatorial Stochastic Processes.” Tech. Rep. 621, Department
of Statistics, University of California at Berkeley.

Daniel Povey (2003). Discriminative Training for Large Vocabulary Speech Recognition.
Ph.D. thesis, Cambridge University.

Daniel Povey,MirkoHannemann, Gilles Boulianne, Lukas Burget, ArnabGhoshal,Mi-
los Janda,MartinKara�at, StefanKombrink, PetrMotlicek, YanminQian, Korbinian
Riedhammer, Karel Vesely, and Ngoc �ang Vu (2012). “Generating Exact Lattices
in thewfst Framework.” In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing.

A. Ragni and M. J. F. Gales (2011a). “Derivative Kernels for Noise Robust ASR.” In
Proceedings of the Automatic Speech Recognition and Understanding Workshop.

A. Ragni and M. J. F. Gales (2011b). “Structured Discriminative Models for Noise Ro-
bust Continuous Speech Recognition.” In Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing.

A. Ragni andM. J. F. Gales (2012). “Inference Algorithms for Generative Score-Spaces.”
In Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing. pp. 4149–4152.

Carl Edward Rasmussen (1999). “�e in�nite Gaussianmixture model.” In Proceedings
of the Conference on Neural Information Processing Systems. mit Press, pp. 554–560.

Carl Edward Rasmussen and Zoubin Ghahramani (2001). “In�nite mixtures of Gaus-
sian process experts.” In Proceedings of the Conference on Neural Information Pro-
cessing Systems.

38

Dominique Revuz (1992). “Minimization of acyclic deterministic automata in linear
time.” �eoretical Computer Science 92 (1), pp. 181–189.

Hang Su, Gang Li, Dong Yu, and Frank Seide (2013). “Error Back Propagation For Se-
quence Training Of Context-Dependent Deep Networks For Conversational Speech
Transcription.” In Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing.

�eApache So�ware Foundation (2004). “Apache License, Version 2.0.” 〈http://www.
apache.org/licenses/LICENSE-2.0〉.

R. C. van Dalen and M. J. F. Gales (2011). “A Variational Perspective on Noise-Robust
Speech Recognition.” In Proceedings of the Automatic Speech Recognition and Under-
standing Workshop.

R. C. van Dalen and M. J. F. Gales (2013). “Monoids: e�cient segmental features for
speech recognition.” Tech. Rep. cued/f-infeng/tr.687, Cambridge University En-
gineering Department.

R. C. van Dalen, A. Ragni, and M. J. F. Gales (2012a). “E�cient decoding with
continuous rational kernels using the expectation semiring.” Tech. Rep. cued/f-
infeng/tr.674, Cambridge University Engineering Department.

R. C. vanDalen, A. Ragni, andM. J. F. Gales (2013a). “E�cient Decoding withGenerat-
ive Score-SpacesUsing the Expectation Semiring.” InProceedings of the International
Conference on Acoustics, Speech, and Signal Processing.

R. C. van Dalen, J. Yang, M. J. F. Gales, A. Ragni, and S. X. Zhang (2012b). “Generative
Kernels and Score-Spaces for Classi�cation of Speech: Progress Report.” Tech. Rep.
cued/f-infeng/tr.676, Cambridge University Engineering Department.

R. C. vanDalen, J. Yang,M. J. F. Gales, and S. X. Zhang (2013b). “GenerativeKernels and
Score-Spaces for Classi�cation of Speech: Progress Report ii.” Tech. Rep. cued/f-
infeng/tr.689, Cambridge University Engineering Department.

Rogier C. van Dalen (2015). “Flipsta �nite-state automaton library.” 〈https://github.
com/rogiervd/flipsta〉.

Rogier C. van Dalen and Mark J. F. Gales (2015). “Annotating large lattices with the
exact word error.” In submitted to Interspeech.

J. Yang, R. C. vanDalen, andM. J. F. Gales (2015). “In�nite structured log-linearmodels
for speech recognition.” Tech. Rep. cued/f-infeng/tr.697, Cambridge University
Engineering Department.

J. Yang, R. C. vanDalen, S.-X. Zhang, andM. J. F. Gales (2014). “In�nite Structured Sup-
port Vector Machines for Speech Recognition.” In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing.

Jingzhou Yang, Rogier C. van Dalen, and Mark J. F. Gales (2013). “In�nite Support
Vector Machines in Speech Recognition.” In Proceedings of Interspeech.

S.-X. Zhang and M. J. F. Gales (2011a). “Extending Noise Robust Structured Support
VectorMachines to LargerVocabulary Tasks.” InProceedings of the Automatic Speech
Recognition and Understanding Workshop.

39

bibliography

S.-X. Zhang andM. J. F. Gales (2011b). “Structured Support Vector Machines for Noise
Robust Continuous Speech Recognition.” In Proceedings of Interspeech.

S.-X. Zhang and M. J. F. Gales (2012). “Structured svms for Automatic Speech Re-
cognition.” ieee Transactions on Audio, Speech, and Language Processing 21 (3), pp.
544–55.

S.-X. Zhang and M. J. F. Gales (2013). “Kernelized Log Linear Models For Continuous
Speech Recognition.” In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing. pp. 6950–6954.

S.-X. Zhang, Anton Ragni, and M. J. F. Gales (2010). “Structured Log Linear Models
for Noise Robust Speech Recognition.” ieee Signal Processing Letters 17, pp. 945–948.

Jun Zhu, Ning Chen, and Eric Xing (2011). “In�nite svm: a Dirichlet Process Mixture
of Large-margin Kernel Machines.” In Proceedings of the International Conference on
Machine Learning. pp. 617–624.

Geo�rey Zweig and Patrick Nguyen (2009). “A Segmental crf Approach to Large
Vocabulary Continuous SpeechRecognition.” InProceedings of the Automatic Speech
Recognition and Understanding Workshop.

40

	Introduction
	Log-linear models

	Monoids for segmental features
	Uni-directional segmental features
	Instantiation: generative score-spaces

	Monoid features
	Instance: likelihood score-spaces
	Features from finite-state models

	Conclusion

	The exact word error over a lattice
	The minimum edit distance
	Incremental determinisation and minimisation
	The automaton semiring
	Implementation

	Determinisation and minimisation

	Bayesian log-linear models
	Bayesian models
	Bayesian conditional models
	A criterion for Bayesian models
	Large-margin training

	Infinite support vector machines
	The mixture of experts
	The infinite mixture of experts
	Infinite support vector machines

	Source code
	Experiments
	Setups
	Results
	Tandem and hybrid systems
	Structured log-linear models
	Infinite models

	Conclusion

