
Department of Engineering

1

E�cient decoding
with continuous rational kernels
using the expectation semiring

R. C. van Dalen
rcv25@cam.ac.uk

A. Ragni
ar527@cam.ac.uk

M. J. F. Gales
mjfg@eng.cam.ac.uk

Technical Report cued/f-infeng/tr.674

February 2012

Abstract
Semi-Markov conditional random�elds are discriminativemodels that can be

used for speech recognition. �ey allow per-word (instead of per-frame) features.
Since the segmentation into words is not known a priori, all possibilities must be
considered. It is therefore important to consider the e�ciency of the feature extrac-
tion process. Features derived from generative models like hmms (log-likelihoods
and their derivatives) allow existing adaptation methods to be used. �is is equi-
valent to using generative kernels. Continuous rational kernels are generative ker-
nels that represent generative likelihoods with weighted �nite state transducers.
�is paper proposes a method to compute �rst- and second-order score spaces
derived from hmms for all possible segmentations in amortised constant time. It
uses weighted �nite state transducers with weights in a second-order expectation
semiring.
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1. introduction

1 Introduction

Most current speech recognition systems are based on hiddenMarkovmodels (hmms).
�ey therefore make a frame-level Markov assumption: given a sequence of states, the
features extracted from consecutive time slices of audio are assumed independent. An
alternative is to use a discriminative classi�er for segments of audio, say, words, at a
time (Smith and Gales 2001). A natural choice of classi�er would be one that apply
kernel methods, e.g. support vector machines (svms), which perform well for many
tasks. �ere are three problems with applying this to speech recognition: �rst, a kernel
must be de�ned between two audio segments of di�erent length; second, the structure
of speechmust be used or the number of classes will be in�nite; third, the segmentation
of an utterance is unknown a priori.

Kernels that can handle inputs of varying length are called dynamic kernels. �e
choices for dynamic kernels aremore limited than for kernels over �xed-length vectors.
For two sequences of discrete symbols, many useful kernels can be written as rational
kernels (Cortes et al. 2004). �ese can be expressed as weighted �nite state transducers
(wfsts) that take one sequence as an input and another as an output. �e weight that
the transducer assigns to a pair of input and output de�nes the value of the kernel
function. To extend this to sequences of continuous data, such as a segment of speech,
continuous rational kernels (Layton andGales 2007) have been proposed.�ey replace
the deterministic input to a rational kernel by a weighted �nite state automaton. �is
automaton can be found using from the continuous input data with a generativemodel,
for example. To leverage the advantage of thewfst representations, however, the kernel
must be written as a number of wfst compositions.�is requires the transducers to be
over the same semiring, which restricts the forms of kernel that can be used.�is paper
will instead use the primal representation and perform the computations immediately
in a score space derived from one segment of audio. �is restricts the form of kernel to
be the inner product between score-spaces.

�e second problem is that an svm in its standard implementation is a binary clas-
si�er, whereas there exist an exponential number of possible sentences. �e structured
svm (Taskar et al. 2003) generalises the svm classi�er to multi-class structured output
labels. �e form of its decision boundary is equivalent to that of a log-linear model
where features are extracted per segment of data. �is describes a semi-Markov model
(Sarawagi and Cohen 2004) whose parameters work on the primal form of the kernel.
�is paper will extract features per word, but other levels of segmentation are possible.
However, unlike frames, words have variable lengths. During decoding, all segmenta-
tions of the recorded utterance into words must therefore be considered. �e compu-
tational e�ciency then becomes an issue. �is can be circumvented by using lattices
from a separate speech recogniser to constrain the search space. However, a set-upwith
a dual system is impractical. Also, restricting segmentations to those optimal the hmm
system whose limitations the semi-Markov model attempts to circumvent is a prema-
ture pessimisation. It is therefore useful to implement a feature extraction process that
e�ciently computes features for a range of possible segmentations.

Generative score-spaces, which generalise Fisher score-spaces (Jaakkola andHaussler
1998), consist of log-likelihoods of generative models, and their derivatives. With a
zeroth-order generative score-space, which contains only the log-likelihood itself, based
onwordhmms, it is possible to reproduce the exact results of anhmm speech recogniser.
�is allows state-of-the-art techniques for hmm speech recognisers, such as methods
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2. continuous rational kernels

for noise-robustness, to be leveraged. Secondly, derivatives even of frame-level log-
likelihoods are functions of all frames in the segment. �us, the conditional independ-
ence assumptions of the hmm are relaxed.

Since the derivatives in the generative score-space depend on the frames in a whole
segment, it seems obvious that they need to be re-computed completely for every hy-
pothesised segment. �is is, indeed, what Layton (2006) did, with an algorithm with
nested passes of forward–backward that was essentially run separately for each hypo-
thesised segmentation. However, this paper will introduce a method that increment-
ally, with only a forward pass, computes scores for all segmentations that share a start
time. It will view the generative model as a weighted �nite state transducer. In this
formalism it is possible to generalise the weights (which would canonically represent
hmm output and transition probabilities) to another semiring. �is paper will use ex-
pectation semirings, which allow formore extensive book-keeping. As long as thehmms
have only few states, which for wordhmms is the case, this algorithm requires amodest
amount of extra storage. Its advantage is that in combination with a method that �nds
the optimal segmentation, it computes the scores in amortised constant time.

Section 4 will introduce weighted �nite state transducers and discuss how to use
them to compute word likelihoods given by hidden Markov models. Section 2 will
discuss continuous rational kernels based on word likelihoods for a given segmenta-
tion. Section 3 will describe the log-linear model that this paper will use. Section 4 will
represent work likelihoods as weighted �nite state transducers. �e algorithms from
Layton (2006) will be the focus of section 5. Section 6 will introduce a method that
computes log-likelihoods and their derivatives for segments with di�erent end times
in one pass. Experimental results will be given in section 7.

2 Continuous rational kernels

�ough kernel functions o�en operate on �xed-length vectors, it is possible to de�ne
dynamic kernels, which operate on variable-length sequences. Rational kernels (Cortes
et al. 2004) are de�ned on sequences of discrete symbols using weighted �nite state
transducers. Many useful kernels can be described as rational kernels. For example,
bag-of-word kernels apply an inner product of two vectors that indicate the number
of occurrences of each words. �e bag-of-word kernel can be generalised to a string
kernel, which counts all strings of a certain length.

One way of representing a bigram kernel, which counts strings of length 2, is as
a composition of two transducers. Figure 1b on the facing page illustrates a bigram
transducer B over an alphabet {a, b}, with weights inN. Each path through this trans-
ducer indicates an occurrence of two consecutive symbols. One way of constructing a
rational kernel is to compose a transducer B with its inverse B−1. �e bigram kernel
over two sequences x and y can be de�ned as

k(x,y) , (B ◦ B−1)(x,y). (1)

By expressing these kernels aswfst composition, which can be performed lazily (Mohri
et al. 2000), the feature vectors do not have to be instantiated to evaluate the kernel
function.

Continuous rational kernels (Layton and Gales 2007) are based on weighted �nite
state transducers but allow sequences of continuous-valued elements as inputs. It is
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3. semi-markov conditional random fields
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a:ǫ/1

b:ǫ/1
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a:a/1

b:b/1

a:ǫ/1
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(a) Unigram trans-
ducer.
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a:ǫ/1

b:ǫ/1
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a:a/1

b:b/1 3
a:a/1

b:b/1

a:ǫ/1

b:ǫ/1

(b) Bigram transducer B.

Figure 1 n-gram transducers over an alphabet {a, b}.

o�en possible to �nd a transducer T from a generative model. In such a transducer,
each path corresponds to a latent variable sequence and weight of the path indicates
the likelihood of a given observation for the state sequence. Section 4 will present such
a transducer for a hidden Markov model with continuous output distributions. If the
two sequences are represented with T 1 and T 2, then the value of the kernel can be
read o� from, say, the composed automaton T 1 ◦ B ◦ B−1 ◦ T −1

2 .
To use the wfst-based innards of continuous rational kernels to practical, as well

as theoretical, advantage, this composition must be optimised. �is requires that the
weights on all transducers are in the same semiring (or di�erent semirings related by a
semiringmorphism).�is requirement restricts the formof the kernel.�e alternative,
which this paper will use, is to work directly on the primal representation of the kernel.
�is means that the kernel is restricted to be the inner product of two vectors in these
score-spaces. �e next section will use the score-space representation.

3 Semi-Markov conditional random �elds

A classi�cation problem where labels have structure, such as sentences, is hard to for-
mulate with svms, which are binary classi�ers. Structured svms (ssvms) (Taskar et al.
2003) are a generalisation of svms to multiple and structured classes. �e form that
classi�cation takes is the same as classi�cation with a log-linear conditional model. It
is therefore possible to train the same type of model either as an ssvm, with a large-
margin criterion, or as a log-linear conditional model, by maximising the conditional
likelihood or a variant of minimum Bayes risk training. �is paper will use the latter
approach.

An additional issue for speech recognition, which ssvms do not address, is that
the input sequence must be segmented into, say, words. �e conditional model that
this yields is a semi-Markov conditional random �eld, which is a conditional model.
�is means that it models the probability of hidden variables, in this case the word se-
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3. semi-markov conditional random fields

quencew, given the observation sequenceO. Each of the elementswi ofw is equal to
one element v from the vocabulary v. �e log-linear form of the model can be written:

P(w|O, s;α) ,
1

Z(O)
exp
(
αTφ(O,w, s)

)
. (2)

Here, s = {si}
|w|
i=1 is a segmentation of the observation sequence into segments si.

Z(O) is the normalisation constant. φ(O,w, s) is the feature function that returns
a feature vector characterising the whole observation sequence. α is the parameter
vector. In a semi-Markov model the distribution factorises over the segments, i.e. the
feature function is a sum of features for each segment:

φ(O,w, s) ,
∑
i

φ(Osi , wi), (3)

where Osi indicates the observations in segment si. In this work the feature vector
is divided into separate sets of dimensions for each vocabulary entry v, and the other
dimensions are zero:

φ(O, w) =

 δ(w = 1)φ1(O)
...

δ(w = V)φV(O)

 , (4)

where δ(· = ·) equals 1 if its argument is true, and 0 otherwise. In this expression, it
selects the feature vectorφv(O) for word v.

In this work a language model was not used though approaches exist to incorpor-
ate it (Zweig and Nguyen 2010; Layton 2006). Given a segmentation, therefore, the
classi�cation of each of the segments is separate. Decoding then becomes a dynamic
programming problem. �e best word sequence and segmentation up to observation t
can therefore be found recursively (Sarawagi and Cohen 2004; Ragni and Gales 2012):

ρt = max
τ<t

{
ρτmax

v

(
αTφ(Oτ:t−1, wi)

)}
, ρ1 , 0. (5)

ρT then yields the best log-unnormalised-probability for the whole utterance. �e cor-
responding segmentation and word sequence can be found by recording the best seg-
mentations and word for each time. Given ρ1 . . . ρt−1, evaluating (5) to �nd ρt re-
quiresΘ(t · V) evaluations ofφv. �e total number of timesφv must be evaluated to
decodeO1:T is thereforeΘ

(
T2 · V

)
.

In contrast, the standard Viterbi algorithm runs in Θ(T · V) time. It requires the
overall model to be frame-level Markov. Interpreted in terms of (5), the inner maxim-
isation is computed in such a way that it takesΘ(T · V) time. �is exploits the fact that
much of the computation is shared between the evaluation ofφv for consecutive t.

Without the frame-level Markov assumption in the model, �nding the best seg-
mentation requires at leastΩ

(
T2 · V

)
evaluations ofφv. It may be possible to reduce

this by approximations, but this is not done in this initial investigation. �is paper will
use generative score-spaces, which break the frame-level Markov assumption. It will
introduce a methods for computingφv(Oτ:t−1) in amortised constant time when it
is required for all t = τ, τ+ 1, . . . T .
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3.1. generative score-spaces

3.1 Generative score-spaces

�e features this paper will use are generative scores (Smith and Gales 2001). �ese are
log-likelihoods of generative models and their derivatives with respect to its paramet-
ers. �us, zeroth-, �rst-, and second-order score-spaces are de�ned as

φ(0)
v (O) ,

[
logg(O|v;λ)

]
; (6a)

φ(1)
v (O) ,

[
logg(O|v;λ)
∇λ logg(O|v;λ)

]
; (6b)

φ(2)
v (O) ,

 logg(O|v;λ)
∇λ logg(O|v;λ)
∇T
λ∇λ logg(O|v;λ)

 , (6c)

where g(O|v;λ) is the likelihood that the generative model assigns to observation seg-
mentO for word v and parameter vector λ. �e generative models in this paper will
be assumed word-speci�c hidden Markov models, but any form of likelihood that can
be expressed as awfst can be used. If the values on the arcs are derived from a limited
number of frames, the likelihoods for oτ:t with �xed τ and consecutive t can be com-
puted in one pass. Section 4 will demonstrate this. Section 6 will introduce a method
that generalises this to scores that include derivatives.

4 Word likelihoods as weighted �nite state transducers

�is section will show why it is useful to describe the likelihood computation of a gen-
erative model that uses a latent state sequence as as a weighted �nite state transducer.
�ismakes it possible to compute the likelihoods foroτ:t with �xed τ and consecutive t
in one pass. An equivalent result is presented in Ragni and Gales (2012) but expressed
in terms of hidden Markov models.

Most of the training and decoding process in an hmm-based speech recogniser can
be described in terms of weighted �nite state transducers (wfsts) (for a recent over-
view, see Ho�meister et al. 2012). �is has the advantage over an hmm representa-
tion that generic algorithms and properties of transducers can be used. Speci�cally,
algorithms for composition and �nding the best path are useful, and the �exibility in
choosing the domain of the weights. �is section will present how to compute like-
lihoods for an hmm, say, for a word. �is uses one automaton that represents phone
sequences, and one that represents the observation.

Figure 2 illustrates the two component state machines required for computing the
likelihood of a segment of speech. �e automaton S , in �gure 2a, produces possible
sequences of phones. It produces a sequence of one or more symbols ei and one or
more t. A sequence of output symbols corresponds to a path, a sequence of arcs, starting
at the start state (“0”, with a bold circle), and �nishing at the �nal state (“2”, with a
double circle). �e total weight of the sequence is found by multiplying the weights
of the arcs on the path. �is represents the probability of the phone sequence. In the
transducer drawn here, the probability is normalised, but that is not required of wfsts.

For segments starting at each time, a transducer is set up representing phone likeli-
hoods for the observations. Aweighted �nite state transducerO that does that forO1:t
for consecutive t is depicted in �gure 2b. Each state here represents a time (indicated
in fractions of seconds from 0s). �e audio in between two consecutive time steps is
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4. word likelihoods as weighted finite state transducers

0

ei/0.8

1
ei/0.2

t/0.5

2
t/0.5

(a) Weighted automaton S produces a
sequenceof phones.

0s 0.01s

ei:o1/1.3

t:o1/1.3 0.02s

ei:o2/0.7

t:o2/0.8 0.03s

ei:o3/0.9

t:o3/1

(b)wfstO with phone likelihoods for each observation ot.

Figure 2 Component wfsts for computing the likelihood of a segment.

0s,0 0.01s,0
ei:o1/1.04

0.01s,1

ei:o1/0.26

0.02s,1
t:o2/0.4

0.02s,2

t:o2/0.4

0.03s,1
t:o3/0.5

0.03s,2

t:o3/0.5

0.02s,0
ei:o2/0.56

ei:o2/0.14

0.03s,0
ei:o3/0.72

ei:o3/0.18

Figure 3 wfst T for computing the likelihood of a segment: the twowfsts from
�gure 2 composed.

represented by feature vector ot. For each observation there is an arc for each of the
phones. �e weight on each arc is set to the likelihood that the output distribution of
that phone (say, a mixture of Gaussians) gives for that observation ot. �e product of
the weights on the arcs on a path through this transducer therefore equals the obser-
vation likelihood for the phone sequence corresponding to the path.

In theory, automaton S produces an in�nite number of sequences of phones with
a weight assigned to each of the sequences. Transducer O represents an exponential
number of pairs of an input and an output sequence, where each input sequence con-
sists of phonemes, and each output sequence of observations o1, o2, . . .. �e interest
is in only those combinations of sequences from S and O with the same phone se-
quence. Because both automata are �nite-state machines, it is possible to represent the
sequences of interest, and their weights, with a third transducer T , which is obtained
through composition of S andO:

T = S ◦ O. (7)

�is yields the transducer in �gure 3. �e states of this transducer are pairs of states
from the two original transducers. For clarity, the states corresponding to one state
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4. word likelihoods as weighted finite state transducers

from the transducer O representing the observations are in the same horizontal posi-
tion, and those corresponding to phone sequences in S in the same vertical position.
�is way, the graph corresponds to the trellis diagrams sometimes drawn to explain
Viterbi or the forward algorithm in hmms.

�e product of the weights that S and O assign represents the joint distribution
of phone sequence and observation sequence. �is is equivalent to the product of the
weights on the corresponding path π = e1 . . . et from a start to an end state in the
wfst T . �is makes it possible to perform operations on the wfst that have probab-
ilistic interpretations. Denote the weight of arc e with l[e;λ], its start node with p[e]
and its end node with n[e]. �e highest likelihood corresponding to one path leading
to node q can be computed recursively as

best(q) ,
{
1, if q an initial state;
maxe:n[e]=q l[e;λ] best(p[e]), otherwise. (8)

�e “Viterbi” algorithm is a time-synchronous algorithm to compute these values. An
interesting aspect of wfsts is that this function can be generalised by generalising the
operations used to combine consecutive arcs and of competing paths. Denoting the
operation that combines the weights of consecutive arcs in one path with ⊗, and the
one that combines the weights of di�erent paths with⊕, and the multiplicative identity
with 1, the de�nition in (8) becomes

best(q) ,
{
1, if q an initial state;⊕
e:n[e]=q l[e;λ]⊗ best(p[e]), otherwise. (9)

Assuming that ⊗ distributes over ⊕, so that a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c), the
recursive function can be unrolled to obtain

best(q, T ) =
⊕

π:n[π]=q

⊗
e∈π

l[e;λ] =
⊕

π:n[π]=q

l[π;λ] , (10)

where π = e1, . . . , ei is a path, n[π] , n[ei], and l[π;λ] ,
⊗
e∈π l[e;λ]. �e weight

can be thought of as being in a semiring, which de�nes a set of values, operations⊕,⊗
(which is distributive over⊕), and constants 0 and 1.

By de�ning⊗ as× and⊕ as+, the algorithm in (10) yields the sum of the weights
of all paths. It is then called the “forward” algorithm. Applying it to a �nal node q
yields the likelihood of a corresponding observation sequenceO:

forward(q, T ) =
∑

π:n[π]=q

l[π;λ] . (11)

�e backward algorithm can be de�ned as the forward algorithm on the same trans-
ducer with all arcs reversed. �is reversed transducer will be denoted with T T. �en,

backward(q, T ) , forward(q, T T). (12)

�is algorithm takes Θ(|T |) time, where |T | is the number of arcs in T . It works
without modi�cation or extra cost on a transducer with multiple �nal states, such as
T in �gure 3. it then yields the likelihood for each of the �nal states.

φ
(0)
v (Oτ:t) can then be computed for t = τ + 1, . . . , T as follows. Produce a

wfsa S for word v like in �gure 2a. It is assumed that the number of states in S is
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5. computing generative score-spaces explicitly

constant. Represent observations τ : T withwfstO like in �gure 2b. Running the for-
ward algorithm on the composition of these transducers will produce the likelihood for
consecutive t = τ+ 1, . . . , T in the end states of the transducer in amortised constant
time. �e zeroth-order generative score is found as the logarithm of the likelihood:

log l(λ) = log
∑
π

l[π;λ] . (13)

If the transducer contains multiple start states, then their likelihoods would be
summed. In the context of this paper, that is not desirable: in (5) values ofφ(Oτ:t−1, wi)
for di�erent τ are compared, not summed.1 �e algorithm therefore needs to be run
separately for each start time. However, sinceφ(0)

v (Oτ:t)must be evaluated separately
for each combination of τ and t, the time needed per evaluation is stillΘ(1).�is result
from Ragni and Gales (2012) will be extended to higher-order generative score-spaces
in section 6.

5 Computing generative score-spaces explicitly

Apart from log-likelihoods, generative score-space also contain their derivatives. Layton
(2006) introduced an explicit method for computing these, which this section will dis-
cuss. Section 6 will introduce a faster method using expectation semirings.

�e �rst method for computing the generative scores expresses the derivatives in
terms of the posterior of the hidden parameters (Layton 2006). �is is possible the
derivatives in the generative score-spaces consider in�nitesimal changes to the para-
meters. Finding the posterior of the hidden parameters (here, the arc posterior suf-
�ces), is a well-known operation from standard speech recogniser training, where the
distribution over the hidden variables is explicitly kept constant while optimising the
parameters of the model. As in section 4, the likelihood of the generative model can be
expressed with a weighted �nite state transducer, with weights l, which will be written
as functions of the generative model: l[e;λ]. �e likelihood is equal to the sum of the
weights of each path inwfst T :

l(λ) =
∑
π

l[π;λ] ; l[π;λ] =
∏
e∈π

l[e;λ] (14)

�e zeroth-order score is de�ned as the log-likelihood given by the generative model,
computed as in (13) Higher-order scores are de�ned by the derivatives with respect to
the generative parameters. �e derivations of these are given in appendix A.

∇λ log l(λ) =
∑
π

l[π;λ]∑
π ′ l[π ′;λ]

∑
e∈π
∇λ log l[e;λ] ; (15a)

∇T
λ∇λ log l(λ) =

∑
π

l[π;λ]∑
π ′ l[π ′;λ]

((∑
e∈π
∇T
λ log l[e;λ]

)(∑
e∈π
∇λ log l[e;λ]

)

+
∑
e∈π
∇T
λ∇λ log l[e;λ]

)
−
(
∇T
λ log l(λ)

)
(∇λ log l(λ)) . (15b)

1If⊕ is de�ned as max, then it is possible to havemultiple initial states (with weight ρτ), which recovers
the frame-level Viterbi algorithm.

8



5. computing generative score-spaces explicitly

For �rst-order scores, the summations in (15a) can be reversed, factoring out a term
related to the fraction of the total weight going through one arc:

∇λ log l(λ) =
∑
π

l[π;λ]∑
π ′ l[π ′;λ]

∑
e∈π
∇λ log l[e; λj]

=
∑
e

(∇λ log l[e;λ])
∑
π:e∈π l[π;λ]∑
π l[π;λ]

=
∑
e

γe∇λ log l[e;λ] , (16a)

where the arc posterior is de�ned as

γe ,

∑
π:e∈π l[π;λ]∑
π l[π;λ]

. (16b)

�e arc posteriors can be computed with the forward–backward algorithm. �is uses
the forward and backward scores to compute the numerator in (16b). For an arc e,

forward(p[e] , T ) · l[e;λ] · backward(n[e] , T )

=

( ∑
π:n[π]=p[e]

l[π;λ]

)
· l[e;λ] ·

( ∑
π:p[π]=n[e]

l[π;λ]

)
=
∑
π:e∈π

l[π;λ] . (17)

�is gives the numerator of γe. It can be normalised across all time-synchronous arcs
in a transducer like in �gure 3, or by dividing by the forward score in the �nal state.
Since the forward probabilities are shared between φ(1)

v (Oτ:t) with the same τ, and
similar for the backward probabilities, it takes onlyΘ

(
T2
)
to �nd all forward and back-

ward probabilities. However, (17) must be evaluated separately for each combination
of τ and t, so that the overall process of gathering statistics in (16a) takes Θ

(
T3
)
time

(Ragni and Gales 2012).
Second-order scores can be expressed in terms of double arc posteriors γee ′ :

∇T
λ∇λ log l(λ) +

(
∇T
λ log l(λ)

)
(∇λ log l(λ))

=
∑
π

l[π;λ]∑
π ′ l[π ′;λ]

(∑
e∈π
∇T
λ log l[e;λ]

∑
e ′∈π

∇λ log l[e ′;λ] +
∑
e∈π
∇T
λ∇λ log l[e;λ]

)

=
∑
e,e ′

∇T
λ log l[e;λ]∇λ log l[e ′;λ]

∑
π:{e,e ′}⊆π l[π;λ]∑

π l[π;λ]

+
∑
e

∇T
λ∇λ log l[e;λ]

∑
π:e∈π l[π;λ]∑
π l[π;λ]

=
∑
e,e ′

γee ′∇T
λ log l[e;λ]∇λ log l[e ′;λ] +

∑
e

γe∇T
λ∇λ log l[e;λ] , (18)

where

γee ′ ,

∑
π:{e,e ′}⊆π l[π;λ]∑

π l[π;λ]
. (19)
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6. computing scores with higher-order expectation semirings

Layton (2006) introduced an algorithm for computing this that would takeΘ
(
T5
)
for

an utterance. �is is impractical. �e next section will therefore introduce a method
that �nds generative scores inΘ

(
T2
)
time overall.

6 Computing scores with higher-order expectation semirings

�e expectation semiring was introduced in Eisner (2002). Its initial purpose was to al-
low expectation–maximisation on weighted �nite state transducers with a probabilistic
interpretation. �e statistics, which in speech recognition training would be computed
a�er applying the forward–backward algorithm, are appended to the weights. By de-
�ning the weights to be in the expectation semiring, which de�nes operations⊕ and⊗
in a speci�c way, only a forward pass is required to gather all required statistics. For
normal speech recognition training, the cost of carrying statistics for all sub-phones
in the expanded hmm in each state would be prohibitive. However, in this paper the
hmms are small, and di�erent lengths for the observation segments need to be con-
sidered. �e following will therefore de�ne weights in a semiring so that the algorithm
in section 4 can be applied, and higher-order generative scores computed in amortised
constant time.

A simple way of viewing the required semiring is as appending derivatives to the
weights (Li and Eisner 2009). �e weight for arcs e then becomes

w[e;λ] ,〈l[e;λ] ,∇λl[e;λ]〉 . (20)

�e semiring operations de�ned on these new weights can be derived in various ways.
�e simplest for the purpose of this paper is to describe the derivatives of the sum or
product of two weights l1 and l2:

∇λ(l1 + l2) = ∇λl1 +∇λl2; (21a)
∇λ(l1 · l2) = l1 · ∇λl2 + l2 · ∇λl1. (21b)

Denoting the weights with〈l, l ′〉, the semiring operations should be de�ned as

〈l1, l ′1〉 ⊕〈l2, l ′2〉 ,〈l1 + l2, l ′1 + l ′2〉 ; (22a)
〈l1, l ′1〉 ⊗〈l2, l ′2〉 ,〈l1 · l2, l1 · l ′2 + l2 · l ′1〉 ; (22b)

0 ,〈0, 0〉 ; (22c)
1 ,〈1, 0〉 . (22d)

To demonstrate that this produces the path weight and its derivative for longer
paths, consider the weight of one path π starting with arc e1. w[π;λ] can then be
unrolled with

w[π;λ] = 1⊗
⊗
e∈π

w[e;λ]

=〈1, 0〉 ⊗w[e1;λ]⊗w[π \ e1;λ]

=
〈
l[e1;λ] · l[π \ e1;λ] , l[π \ e1;λ] · ∇λl[e1;λ] + l[e1;λ] · ∇λl[π \ e1;λ]

〉
=
〈
l[π;λ] , l[π;λ] · ∇λl[e1;λ]

l[e1;λ] ·
+ l[e1;λ] · ∇λl[π \ e1;λ]

〉
=

〈
l[π;λ] , l[π;λ]

∑
e∈π

∇λl[e;λ]
l[e;λ]

〉
, (23)

10



6. computing scores with higher-order expectation semirings

which is exactly the result in (30). An intuitive way of viewing the di�erence with
using the forward—backward algorithm, as in section 5 is the following. �e forward–
backward algorithm computes the arc posteriors �rst, by summing over all paths go-
ing in and coming out of arcs. �e arc statistics are then multiplied by the arc pos-
teriors. �e forward algorithm in combination with an expectation semiring, on the
other hand, �nds the weights on the paths going into arcs �rst. �en the statistics are
multiplied and taken along all paths coming out of the arc. �ey implicitly get post-
multiplied by the weights of all these paths.

It is trivial to see that the sumover all paths ofw[π;λ] gives the likelihood. Applying
the forward algorithm will therefore yield in the �nal state for time t the values

〈l(λ) ,∇λl(λ)〉 . (24)

Finding the �rst-order score with the derivative of the log-likelihood (as opposed to
the likelihood) is straightforward:

∇λ log l(λ) =
∇λl(λ)
l(λ)

, (25)

which can be found with the values in (24).

It is also possible to �nd second-order derivatives in the same way. �e second-
order expectation semiring (Li and Eisner 2009) is found through a “li�ing trick”: since
�rst-order weights are in a semiring, their derivatives can be appended:

w[e;λ] ,
〈〈
l[e;λ] ,∇λl[e;λ]

〉
, ∇T

λ

〈
l[e;λ] ,∇λl[e;λ]

〉〉
=
〈〈
l[e;λ] ,∇λl[e;λ]

〉
,
〈
∇T
λl[e;λ] ,∇T

λ∇λl[e;λ]
〉〉
. (26a)

It is possible to use a di�erent set of parameters from λ for the second derivative, so
that it can be useful to include ∇λl[e;λ] and ∇T

λl[e;λ]. �e semiring operations for
the second-order expectation semiring are de�ned as

〈〈l1, l ′1〉 ,〈l ′′1 , l ′′′1 〉〉 ⊕〈〈l2, l ′2〉 ,〈l ′′2 , l ′′′2 〉〉
,〈〈l1, l ′1〉 ⊕〈l2, l ′2〉 , 〈l ′′1 , l ′′′1 〉 ⊕〈l ′′2 , l ′′′2 〉〉
=〈〈l1 + l2, l ′1 + l ′2〉 , 〈l ′′1 + l ′′2 , l

′′′
1 + l ′′′2 〉〉 ; (26b)

〈〈l1, l ′1〉 ,〈l ′′1 , l ′′′1 〉〉 ⊗〈〈l2, l ′2〉 ,〈l ′′2 , l ′′′2 〉〉
,
〈
〈l1, l ′1〉 ⊗〈l2, l ′2〉 , 〈l1, l ′1〉 ⊗〈l ′′2 , l ′′′2 〉+〈l2, l ′2〉 ⊗〈l ′′1 , l ′′′1 〉

〉
=
〈
〈l1 · l2, l1 · l ′2 + l2 · l ′1〉 , 〈l1 · l ′′2 , l1 · l ′′′2 + l ′1 · l ′′2 〉 ⊕〈l2 · l ′′1 , l2 · l ′′′1 + l ′2 · l ′′1 〉

〉
=
〈
〈l1 · l2, l1 · l ′2 + l2 · l ′1〉 , 〈l1 · l ′′2 + l2 · l ′′1 , l1 · l ′′′2 + l ′1 · l ′′2 + l2 · l ′′′1 + l ′2 · l ′′1 〉

〉
;

(26c)
0 ,〈0, 0, 0, 0〉 ; (26d)
1 ,〈1, 0, 0, 0〉 . (26e)

Here, multiplication must be suitably interpreted. For example, l ′2 · l ′′1 is the cross
product between two vectors. �is can be seen by considering derivatives with respect
to di�erent parameters.
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7. experiments

To �nd the generative score, the second derivative of the log-likelihood is found
with

∇T
λ∇λ log l(λ) = ∇T

λ

∇λl(λ)
l(λ)

=
∇T
λ∇λl(λ)
l(λ)

+
1

(l(λ))2
(∇T
λl(λ))(∇λl(λ))

=
∇T
λ∇λl(λ)
l(λ)

+ (∇T
λ log l(λ))(∇λ log l(λ)). (27)

�us, assuming the number of generative parameters constant, �rst- and second-
order generative score-spaces can be found in amortised constant time while perform-
ing optimal decoding. Note that nothing in this section has relied on a speci�c mean-
ing of the original arc weights l[e;λ]. Derivatives of another quantity than the log-
likelihood that can be expressed in terms of a wfst in a similar way can also be com-
puted with the expectation semiring.

7 Experiments

Optimal decodingwith generative score-spaceswas tested on a small, noisy corpus: au-
rora 2.�ismakes it possible to test the interactionwith noise compensationmethods.
�e task uses a small vocabulary and no language model, which makes experiments
without such optimisations as pruning possible. aurora 2 (Hirsch and Pearce 2000)
is a standard digit string recognition task.�e generativemodel has whole-wordhmms
with 16 states and 3 components per state. �e number of hmm parameters is 46 732.
�e hmms are compensated with unsupervised vector Taylor series (vts) compensa-
tion as in Gales and Flego (2010). �ree di�erent sets of hmm parameters are used to
derive features for the discriminative model: trained on clean data, trained on corrup-
ted data with vts adaptive training (vat), and on corrupted data with discriminative
vts adaptive training (dvat).

With zeroth-order score-spaces, the discriminative model has 13 parameters, cor-
responding to the log-likelihoods of the 13 words (11 digits plus “sil” and “sp”), found as
in section 4. In �rst-order score-spaces the derivatives of the log-likelihood are com-
puted as in section 6 and appended. Only derivatives of the compensated means are
used, since including variances led to rapid over-�tting. �e number of parameters
was 21 554. Second-order score-spaces resulted in generalisation problems because of
the small training set, and initial experiments did not yield improvements over �rst-
order score-spaces.

�e discriminative models were initialised to use the likelihoods from the gener-
ative models unchanged. �ey were then trained with a minimum Bayes risk criterion
as in Ragni and Gales (2011). �is used a large lattice with many, but not all, segmenta-
tions to represent the numerator and denominator. One of the three test sets, test set A,
was used as the validation set to stop training.

Table 1 contains word error rates for the experiments. Comparing the �rst two
rows of each block will give an insight in the properties of the log-linear model. �e
di�erences between second and third rows of each block indicate the e�ects of using
derivatives as features.

12



8. conclusion

Generative
model

Score-space
order

Test set AverageA B C

vts
— 9.8 9.1 9.5 9.5
zeroth 7.8 7.3 8.0 7.6
�rst 6.8 6.4 7.3 6.7

vat
— 8.9 8.3 8.8 8.6
zeroth 7.1 6.8 7.5 7.1
�rst 6.2 6.1 6.8 6.3

dvat
— 6.7 6.6 7.0 6.7
zeroth 6.6 6.5 6.9 6.6
�rst 6.1 6.1 6.6 6.2

Table 1Word error rates for decoding with generative score-spaces.

Results obtained by the generative model with Viterbi decoding are in the �rst row
of each block. For the second row, log-likelihoods are extracted from this model as
features for the log-linearmodel, and the optimal segmentation is found. For generative
models with (“vts’) and without (“vat”) adaptive training this gives an improvement
close to 20% relative. However, discriminatively trained hmms (“dvat”) are similar
to the log-linear model derived from just log-likelihoods (Heigold et al. 2011). �e
most signi�cant di�erences here are that the log-linearmodel chooses the optimalword
sequence and marginalises out over state sequences within the word. �is gives only a
tiny improvement.

�e bottom rowof each block containsword error rates using �rst-order derivatives
of log-likelihoods as features. �ese break the Markov assumption of hmms. Interest-
ingly, the e�ect of this seems only partly dependent of how good the underlyinghmm is.
�e improvement compared to score-spaces with just log-likelihoods is 11–12% relative
for vts and vat. �e discriminatively trained hmm (dvat) has been optimised for de-
coding with it, rather than for use within a log-linearmodel. It is therefore encouraging
that the relative gain with �rst-order derivatives is as high as 6%.

8 Conclusion

�is paper has discussed a strategy for decoding with a segmental log-linear model
with features in generative score-spaces. Since the optimal segmentation of the utter-
ance into segments is sought, the score that the model assigns for a word must be com-
puted separately for every possible segment, i.e. Θ

(
T2
)
times. Computing scores for a

range of segments at once can then, surprisingly, be done in amortised constant time.
For log-likelihood score-spaces, this entails setting up the right form of weighted �nite
state transducer to represent a word. Generative score-spaces, however, also include
derivatives of the log-likelihoods, and require an additional trick. �is paper has intro-
duced a way of exploiting expectation semiringswithin the same framework, so that any
order of derivatives can be found. �is still takes amortised constant time in the length
of the utterance. Using a �rst-order generative score-space, recognition performance
increases with 7 to 30% relative.

�is paper is an initial investigation that leaves ample room for extension. Future
directions will include approximations tomake decoding with a larger vocabulary pos-
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appendix a. score-spaces

sible. Second-order score-spaces should bene�t frommore data and regularisation and
sparsi�cation. Since the approach with expectation semirings extends to the derivat-
ives of any quantity that can be factorised along the arcs of a weighted �nite state trans-
ducer, adding derivatives of other features is also possible. Training the parameters of
the generative model within the log-linear model may increase the performance over
the current discriminatively trained model, as may optimising segmentations while
training.

A Score-spaces

�e likelihood is de�ned as the sum of the weights of each path inwfst T :

l(λ) =
∑
π

l[π;λ] ; l[π;λ] =
∏
e∈π

l[e;λ] (28)

�e following equality will be useful.

∇λl[π;λ] = ∇λ
∏
e∈π

l[e;λ]

=(∇λl[e1;λ])
∏

e∈π\e1

l[e;λ] + l[e1;λ]∇λ
∏

e∈π\e1

l[e;λ]

=
∑
e∈π

l[π;λ]

l[e;λ]
∇λl[e;λ]

= l[π;λ]
∑
e∈π
∇λ log l[e;λ] ; (29)

∇λl(λ) =
∑
π

∇λl[π;λ] =
∑
π

l[π;λ]
∑
e∈π
∇λ log l[e;λ] . (30)

First-order features are de�ned as

∇λ log l(λ) =
1

l(λ)
∇λl(λ) =

∑
π

l[π;λ]∑
π ′ l[π ′;λ]

∑
e∈π
∇λ log l[e;λ] . (31)

�e derivation for second-order features will use

∇λk
l[π;λ]∑
π ′ l[π ′;λ]

=
∇λkl[π;λ]∑
π ′ l[π ′;λ]

− l[π;λ]
1

(
∑
π ′ l[π ′;λ])

2
∇λk
∑
π ′

l[π ′;λ]

=
l[π;λ]

∑
e∈π∇λk log l[e;λ]∑
π ′ l[π ′;λ]

−
l[π;λ]

(
∑
π ′ l[π ′;λ])

2

∑
π ′

l[π ′;λ]
∑
e ′∈π ′

∇λk log l[e ′;λ]

=
l[π;λ]∑
π ′ l[π ′;λ]

(∑
e∈π
∇λk log l[e;λ]

)
−∇λk log l(λ) . (32)
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appendix a. score-spaces

Second-order features then are de�ned as

∇λk∇λj log l(λ) =
∑
π

∇λk
l[π;λ]∑
π ′ l[π ′;λ]

∑
e∈π
∇λj log l[e;λ]

=
∑
π

([
∇λk

l[π;λ]∑
π ′ l[π ′;λ]

]∑
e∈π
∇λj log l[e;λ]

+
l[π;λ]∑
π ′ l[π ′;λ]

∑
e∈π
∇λk∇λj log l[e;λ]

)

=
∑
π

l[π;λ]∑
π ′ l[π ′;λ]

((∑
e∈π
∇λk log l[e;λ] −∇λk log l(λ)

)∑
e∈π
∇λj log l[e;λ]

+
∑
e∈π
∇λk∇λj log l[e;λ]

)

=
∑
π

l[π;λ]∑
π ′ l[π ′;λ]

((∑
e∈π
∇λk log l[e;λ]

)(∑
e∈π
∇λj log l[e;λ]

)

+
∑
e∈π
∇λk∇λj log l[e;λ]

)
−(∇λk log l(λ))

(
∇λj log l(λ)

)
.

(33)
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