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ABSTRACT

State-of-the-art speech recognisers employ neural networks in vari-
ous configurations. A standard (hybrid) speech recogniser computes
the likelihood for one time frame and state, using only one out of
thousands of possible neural-network outputs. However, the whole
output vector carries information. In this paper, features from state-
of-the-art speech recognisers are collected per phone given a par-
ticular context, and input to a discriminative log-linear model. The
log-linear model is trained with conditional maximum likelihood or
a large-margin criterion. A key element is the prior on the param-
eters of the log-linear model. The mean of the prior is set to the
point where the performance of the original systems is attained. The
log-linear model then provides an additional increase over the state-
of-the-art performance of the individual systems.

Index Terms— automatic speech recognition, tandem HMM,
hybrid HMM, discriminative log-linear models, structured support
vector machines

1. INTRODUCTION

State-of-the-art speech recognisers employ neural networks in vari-
ous configurations, but always connected to hidden Markov models
(HMMs). HMMs make two assumptions. The Markov assumption
limits the time horizon of the distribution over states to only one time
frame. The conditional independence assumption models the acous-
tics for time frames as independent given the state sequence. Though
these assumptions makes it feasible to train and decode with HMMs,
they also limit the power of the model.

This paper therefore uses a structured model, a segmental con-
ditional random field [1, 2], which models whole segments of audio
(for words or phones) at once. There is a choice of features for the
segments [1, 3, 4, 5, 6]. Good performance can be achieved with
features in generative score-spaces, extracted from generative mod-
els, in particular, HMMs. It is counter-intuitive to extract features
from HMMs, the exact model that the argument is to overcome the
limitations of. However, it turns out that those features can be more
powerful than the models itself, while the structure of HMMs can
still be exploited for efficiency while extracting the features [4].
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In this paper, features will be extracted from two types of neural-
network-based systems: tandem and hybrid systems. This combina-
tion will be shown to have interesting properties. The features for
single phones are also extracted from competitor phones. This uses
more outputs from the neural network than the one that traditional
HMMs use. This paper will show the features to be in a relevant
subspace. Also, since they are related to the HMM systems, it is
possible to set an informative prior for the discriminative model cen-
tred around the point where performance of the underlying systems
can be achieved. The parameters can then be trained to further im-
prove performance from that point.

This paper is structured as follows. Section 2 will introduce the
system architecture that this paper will use and compare it with exist-
ing systems. Section 3 will discuss the form of structured discrim-
inative models and where the segmental features enter the system.
Section 4 will construct interesting features and analyse their prop-
erties. Section 5 will report on the experimental results.

2. SYSTEM ARCHITECTURE

A technique that has improved speech recognisers for a long time is
system combination. The combination can be performed at various
stages. For example, combination of the output word sequences of
various speech recognisers [7] uses no knowledge of the workings
of the individual systems. Here, however, the combination of com-
ponents is chosen to reap the advantages that each of them offers.

Figure 1 shows an overview of the system used in this work. The
top line illustrates the neural network used to extract bottleneck fea-
tures [8]. This takes one frame of features extracted directly from
the audio, and is trained on a target vector that is zero except for
one 1 (one-out-of-K coding) indicating the frame label, a context-
dependent state. The architecture of the network is such that one
hidden layer has a small number of nodes, which forces the rep-
resentation of the input to be parsimonious. The output from this
“bottleneck” layer, not the output layer, is therefore used in the rest
of the system.

The second line houses a tandem hidden Markov model (HMM)
system [9], so called because its inputs are traditional PLP and
pitch features as well as features from the bottleneck layer of the
neural network. Since Gaussian distributions are straightforward
to manipulate, they allow adaptation to speaker (or acoustic en-
vironment), in the form of a linear transformation (constrained
maximum-likelihood linear regression or CMLLR) [10]. After
being transformed, the features are input to a pool of Gaussian mix-
ture models attached to a hidden Markov model, which are trained
together using standard extended Baum—Welch estimation.

The third line illustrates a hybrid HMM system [11], which at-
taches a neural network to an HMM. Hybrid HMMs often take filter-
bank features as their inputs. In this work, on the other hand, it takes
the same transformed input as the tandem system. It is therefore re-
ferred to as a stacked hybrid system. The same speaker-dependent
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Fig. 1: The architecture of the system.

transformation from the tandem system can be applied to the features
for the hybrid system to normalise them.

In the final part of the diagram, scores from the tandem and hy-
brid HMMs are combined in a log-linear model. Unlike earlier work
[12, 13, 14] which combined scores for individual frames, this pa-
per will combine scores for whole context-dependent phones. This
allows more interesting feature-spaces (see section 4) that use infor-
mation about all phones in a specific context.

3. STRUCTURED DISCRIMINATIVE MODELS

Speech recognition is a sequence-to-sequence classification task: a
variable-length sequence of audio comes in, and a variable-length
sequence of words must be inferred. The word sequence is asyn-
chronous with the audio frame sequence, so along with the word
sequence, the segmentation of the audio must be inferred. This co-
nundrum is traditionally sidestepped by inferring a symbol sequence
that is synchronous with the sequence of audio frames, and mapping
deterministically it to a sequence of words. The symbol sequence
contains states of a hidden Markov model, and the state space is
made very large, to distinguish between word sequences.

An alternative option is to explicitly introduce structure, in this
case by explicitly segmenting the audio into words (or phones). This
work will use a structured discriminative model (see [15] for an in-
depth discussion), which models the word sequence and the segmen-
tation of the audio into words, conditional on the audio. The condi-
tional distribution will be a log-linear model. This type of model is
sometimes called a segmental conditional random field [2].

Figure 2 illustrates the difference in terms of graphical models
in two steps. Figure 2a shows a model of states g; over time and
observations o;. The graph shows that the distribution factorises
into transition probabilities P(q¢|q:—1) and observation probabili-
ties P(o¢|q¢) It is a directed model, which indicates that these dis-
tributions are normalised.
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Fig. 2: Probabilistic models for speech recognition.

Figure 2b shows a linear-chain conditional random field (CRF).
One of the two difference with an HMM is visible: the arrows have
been replaced with undirected edges to factors, the black boxes.
These factors replace the conditional distributions, but are not re-
quired to be normalised. The other difference is not visible. Though
it is certainly possible for Figure 2b to illustrate a Markov random
field, a distribution p(q, O) over all variables, here it is a conditional
random field [16], which gives the conditional distribution P(q|O).

The rightmost graph, in Figure 2c, illustrates a segmental condi-
tional random field. This is again a conditional model, which gives
the distribution over words w as well as the segmentation s. The
graphical model here is merely one instantiation: as the segmenta-
tion changes, the graphical model changes too.

In this work, the conditional distribution will be a log-linear
model. The most important aspect of this is the feature function ¢,
which produces values in a joint feature space. This means that it
takes both the observations O and the class (w,s) as arguments,
and returns a fixed-length vector describing the match between the
two. It is only feasible to use such a model if the feature function is
defined so that the structure of the sentence can be exploited. Given
observation O and parameter vector «, the probability of the word
sequence w and the segmentation s is given by a log-linear model:

P(w,5|0;a) £ exp (a"$(0,w,5)), (D)

1
Z(0,a)

where Z(0,a) & D ws EXP (a"$(0,w,s)) is a constant that
ensures that the conditional distribution is normalised. Since o' ¢ ()
is a dot product, the parameter vector o contains one parameter for
each element of the feature vector. This one-to-one mapping will
make it possible to set an informative prior, as section 4 will detail.

The feature vector should be constructed to make decoding and
training feasible. Additionally, in this work the feature vector will
be set so that log-linear model can be related to standard systems.
It is therefore a concatenation of a feature vector for the acoustic
model ¢am(-) and one for the language model ¢m(+):

|

The parameter vector « can be split similarly into ocam and aym.

The language model feature here has only one dimension,
and is set to the logarithm of the probability that an n-gram lan-
guage assigns to the word sequence, P(w). The contribution
of the language model to the conditional probability is therefore
exp(im - ¢im(W)) = exp(aim - log P(w)) = P(w)™m.

The acoustic feature is defined as a sum of segment features,
each in the joint feature space, for each word w; and corresponding
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audio segment O, :

|w|
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Since the summation in this equation is substituted into the log-linear
model in (1), the contribution of each of the terms is multiplied in
the conditional distribution:

exp (a;rm(}')am (07 w, S)) = exp (a;rle;W| (,bam(os,,; s wl))
|w|

= H exp (a;md)am(osi , wz)) , 4

factor in graphical model

where each of the terms is a factor in Figure 2c. Section 4 will dis-
cuss how the segment-dependent acoustic features are constructed.
For decoding, it is in theory possible to marginalise out the seg-
mentation. However, this is infeasible, so instead the segmentation
and word sequence that maximise the posterior in (1) will be found:

w,S

.
arg maxP(w,s|O; o) = argmax Z(O )exp (a ¢(O,w,s)>

= arg max (aTq&(O, w, S))

w,s

— argmax [alm@m(w) 5 a:m¢am<os“wi>} . ®

This maximisation can be performed exactly (as in [3, 4]), or by
constraining the hypotheses to those found in a lattice, which will be
done in this work.

3.1. Training criteria

There are a number of ways in which a log-linear model can be
trained. The training criterion used on standard HMMs, the likeli-
hood of observations and transcription, is unavailable since the prob-
ability of the observations is not modelled. However, it is possible
to optimise the likelihood of the correct word sequence and segmen-
tation (Wrer, Sref) given the observations, the conditional likelihood.
This is possible for HMMs as well, when it is often called “maxi-
mum mutual information”. The criterion can be written, summing
over all utterances r,

Wief s Sref

. log P(w® s 0"
« arginaxz og ( ’ )
= arg maxz {OL (0", w,s\)

—log (Zexp (aTqb(o“),w,s))ﬂ . (©)

w,s

This criterion can be maximised with a form of expectation—maxi-
misation.

Another criterion that is frequently used for speech recognition
is minimum Bayes risk (MBR). This uses a loss function £(Wf, W)
between the reference word sequence and segmentation and the com-
petitors:

"= argminZZL(wr(Q,w)P(w,S|O<T>;a). (7

Though it is possible to use this criterion for log-linear models, in
this paper it will only be used to train HMM systems, in section 5.

A third training criterion, which will be used in the next two
sections, is the maximum margin criterion. This aims to improve the
margin between the reference transcription and the most competing
sequence w. This margin gives a trade-off between the cost and
the logarithm of the likelihood ratio between the reference and the
competitors:

o’ = argmlnz |:

(r)

maX L(w,,

w;éw o oS

P (T)7 (r) O(T)
—10g< (wref ref‘ ) ) . (8)
+

P(w,s|00;
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Here, [-]+ is the hinge-loss function, and the margin is defined with
a loss function and the log-posterior ratio [17].

This criterion is the same as for structured SVMs, as is decod-
ing as per (5). Known algorithms for structured SVMs can there-
fore be applied. A Gaussian prior, logp(a) = log N (fta, CI) o
sella — pal 2, is usually introduced into the training criterion [17].
Substituting (1) into (8) and cancelling out the normalisation term
yields the following convex optimisation:

argmin L[l — a2+ Se
g 2 > R
s.t. V competing hypotheses w :

a" > [6(07, W s) — 6(0,w,s)]
>3 cwl wh) —¢, )

where £ > 0 is the “slack variable”, introduced to replace the hinge
loss. (9) can be solved using the cutting-plane algorithm [18].

4. ACOUSTIC FEATURE SPACE

The previous section has explained how a segmental conditional ran-
dom field can be parametrised as a log-linear model, where features
are extracted for each word or phone. These segment features are
summed in feature space, or equivalently, the contribution to the
probability multiplied. This section will discuss how this work will
compute the features per segment. In this work, the features will be
derived from HMM models, which means they are in a generative
score-space. The exact features will be described in three steps. The
first step is to define the feature space and the mean of the prior in
such a way that the scores approximate the original HMM’s. The
second step is to include features derived from competing phones
instead of only the ones in the hypothesis. The third step is to com-
bine the features extracted from two different systems (here, tandem
and hybrid systems).

So far, the classes for the log-linear model have been assumed to
be sequences of words w, but from this section onward, sequences of
context-dependent phones (u, ¢) will be used, where wu is the phone
and c the context, e.g. the identity of left and right phone.

To allow each parameter to apply to only one phone, for each
segment the feature vector contains mostly zeroes. Only the portion
of the vector dedicated to the hypothesised phone is non-zero. For
phone with context (u, ¢) and segment O, ¢'(O, (u, ¢)) returns that
non-zero part of the feature vector. The whole feature vector can



be constructed using the Kronecker delta d, (u), which returns 1 if
u = v and otherwise 0:

51(”’) ¢,(07 (17 C))
(Z)am(o, (u7 C)) £ 5
dv(u) ¢'(0, (V,¢))

Qgm,1
A

Qgm =
Qgm,V

10)

The parameter vector aam is split up in parallel with feature vec-
tor ¢am(+), with atam,. the parameters specific to phone w.

This paper uses generative score-spaces, which means that the
feature vectors are derived from the log-likelihoods of generative
models. In speech recognition, the standard generative model is
the hidden Markov model. Denote the likelihood for phone w
with [(O;u,c). The first type of feature vector to be discussed
makes the score closely related to that of the underlying HMM.
Each phone-specific feature is just one-dimensional, with the log-
likelihood of that phone given by the phone HMM:

¢'(0, (u,¢)) £[logl(O;u,¢) |5 pagn., =[1]. (D
Here, pagy ., is the slice of the mean of the prior (as in section 3.1)
that applies to ctam,u. If ctam,. is set equal to the prior mean, i.e.
set to 1, the score that the log-linear model assigns is related to
that of the underlying HMM with Viterbi. The difference is that
inside the phone segment, the weights of all paths through the states
are summed, whereas the Viterbi algorithm applied to an HMM just
counts the single highest-likelihood path within phone HMMs.

4.1. Features from competing phones

Additional features that can be extracted from an HMM system are
the log-likelihoods that it would assign to each of the competitor
phones. Here, the competitors v are compared in the same phone
context c. All competitors’ log-likelihoods are added to the phone-
specific part of the feature vector:

logl(O;1,¢)
¢'(0, (u,c)) = : ;
logl(O;V,¢)

0u (1)

ll‘llam,u é N (12)

5u(V)

The mean of the prior pa,,, is all zeroes, except for a 1 for
log1(O;u,c). If the parameters are set equal to the prior mean,
therefore, the resulting score is exactly the same as in (11), and
again related to the underlying HMM through the same argument.
However, there is more opportunity for optimisation. Note that the
division of the whole feature vector into phones in (10) has not
changed. The length of the complete feature vector is therefore V2.
Thus, the parameters of the log-linear model are tied for the same
phone across different contexts. This tying structure is different
from the tying structure of the HMM.

4.2. Features from multiple systems

One of the properties that makes log-linear models attractive is that
features can be straightforwardly added, by appending them to the
feature vector. In this paper, the interest is in combining features
extracted from a tandem HMM and a hybrid HMM. The likelihood
given by the tandem HMM is written I1(Oj; u, ¢), and the one given
by the hybrid HMM [y (O; u, ¢). The phone-specific features for the
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log-linear model then is formed by (12) applied to both systems:

[logiT(0;1,¢) T [ 1 6u(1) ]
, N 1ong(b;v,c) , a l-é;(V)
90, (W) = g 1y(0:1,¢) |1 Haame = | 15,1
L log (O V', c) | [ 1-6.(V) ]

(13)

Here, the mean of the prior fta,y, , is found by stacking means like
in (12), but scaled. The scaling factors i and 1 are examples taken
from [14], which uses these values for frame-level combination.

4.3. Analysis of the feature space

It is interesting to relate the feature space of the log-linear model to
the acoustics. Like the well-known support vector machine (SVM),
a log-linear model has linear decision boundaries, and like with the
SVM one way of getting around this is to introduce a non-linear
feature space. The standard way of doing this for SVMs is using
kernels. This is possible for speech recognition [19] but not straight-
forward. Instead, this paper uses the log-likelihood feature space dis-
cussed in the previous section. The previous section has also pointed
out that the log-likelihood score-space allows for meaningful priors.
This section will analyse the nature of the features further.

First, features extracted from the tandem system. To aid the
analysis of the relationship between the frame-level acoustics, the
contribution of only one frame will be considered. Additionally, the
assumption will be made that in the likelihood for each phone, for
each time step only one Gaussian dominates. For each frame o, the
log-likelihood of a Gaussian (with index 1, say) with mean g1 and
diagonal covariance 31 can be written as a dot product. The left-
hand vector has values dependent on the parameters of the Gaussian,
and the right-hand vector depends on the observation oy:

T

k1 1
log N(o4; pa, 21) = S o1 ,
—1 diag(Z7!) diag(o:0; )

(14)

where ki1 is a constant, which is a function of p; and 34, and
diag(-) gives the diagonal of a matrix as a vector. £, ' 1 and 7!
are known as the “natural parameters” of the Gaussian. The space
that is produced has zero-, first- and second-order statistics from o;.
The feature space in (12) contains the log-likelihoods of all com-
petitor phone HMMs. The different Gaussians then span a subspace
which the log-linear parameters cam,., apply to:

_ T . I\ T
ki (B0 ] —diag(2Y)

- T . _\T
T k2 (35 po] _%dlag(EQ 1) !
Qam,u * . . O¢
diag(ototT)

. 7: . . . .
kv [Evlp,v] —%dlag(Evl)
(15)

However, it must be noted that the feature space is not merely a sub-
space of a polynomial of the acoustic features. In reality, mixtures of
Gaussians are used, which sum probabilities: a non-linear transfor-
mation in feature space. Also, the states of the HMMs can each fo-
cus on specific parts of the audio. The log-likelihoods of competitors



within the same context gives the model access to relevant contrasts.
Additionally, and importantly, the prior with the mean in (12) forces
the model into the known-good area of parameter space.

A similar analysis can be performed for features extracted from
the hybrid system. Again, assume that one state dominates at each
time step, and again consider the contribution of a single time frame.
The last layer of a hybrid system, as in this paper, is often a soft-
max layer. This means that after the outputs y; of the last hidden
layer are multiplied with weights A, their exponent is taken.! The
contribution to one frame, the logarithm of this value, is therefore
determined by the rows a,, that correspond to the context-dependent
phone targets connected with the HMM for phone (u, ¢). The log-
linear parameters otam,., apply to this:

o -[a] .. al ]y (16)

Given the assumptions, the features extracted from the hybrid sys-
tem, like those extracted from the tandem system, form a subspace
projection of a non-linear transformation. For the tandem features,
the transformation is fixed; for the hybrid system, on the other hand,
the transformation is learnt, and has a much higher dimensionality.
Similarly to the features from the tandem system, the use of trained
HMMs of all competitors help find an interesting projection.

5. EXPERIMENTS

The structured discriminative models with features derived from
neural-network HMMs are tested on two types of corpora.” The first
is the well-known noise-corrupted AURORA 4 corpus. The second
is a selection of languages from the IARPA-funded Babel program,
with spontaneous telephone speech.

5.1. AURORA 4

AURORA 4 is a medium-to-large noise-corrupted speech recogni-
tion task [20]. The multi-style training data is the WSJO subset of
WSJ SI1284 data [21], for 14 hours of speech, artificially corrupted
using 6 types of noise and two microphone conditions at signal-to-
noise ratios (SNR) ranging between 10-20 dB. The test set is an ar-
tificially corrupted subset of the development set of 1992 November
NIST evaluation using 6 types of noise under two microphone con-
ditions with SNRs in the range 5-15dB. It is split into 4 sets: set
A with clean data, set B with data corrupted by 6 types of noise,
set C with data corrupted by channel distortion and set D with data
corrupted by noise and channel distortion. Evaluation is performed
using the standard 5000-word WSJO bigram model.

The tandem system uses context-dependent triphone HMMs
with 3 emitting states. For the tandem system, the input features are
PLP and bottleneck features, 65 dimensions in total. The bottleneck
features are also based on PLP features. There are 24k Gaussians
in 3033 tied states. The system is trained first with maximum
likelihood, and then with the minimum phone error (MPE) criterion.

For the hybrid system, the input features to the neural network is
72 filterbank features, with 11 consecutive frames are concatenated
as the input of the DNN. For this corpus, the features for the hybrid
system, unlike in figure 1, are separate from those of the tandem
system. The neural network layers have size 792 x 2000° x 3033 and

IThe result is also normalised so that the entries add to 1. However, this
affects all paths equally so it is left out for the analysis.

2Details about the data are available at ht tps: //www.repository.
cam.ac.uk/handle/1810/251276.

HMM Log-linear Test set Av
criterion model criterion A B C D &
— 6.78 11.73 15.39 26.21 | 17.85
ML CML 7.17 11.59 15.00 26.01 | 17.69
large-margin 6.61 11.49 14.93 25.85 | 17.54
— 7.15 11.06 14.37 24.54 | 16.79
MPE CML 6.95 11.00 14.29 24.39 | 16.68
large-margin 7.02 10.92 14.16 24.28 | 16.60

Table 1: AURORA 4: performance (word error rate) with structured
discriminative models on a log-likelihood score-space from a tandem
HMM.

HMM Log-linear Test set Av
criterion model criterion A B C D &
ross- — 4.09 8.17 8.07 19.41 | 12.69
entropy CML 4.02 8.16 7.94 18.64 | 12.34
large-margin 3.96 8.03 8.05 18.6 12.27
— 3.96 7.64 7.79 18.51 | 12.05
MPE CML 3.94 7.53 7.36 18.38 | 11.91
large-margin 3.66 7.59 747 17.99 | 11.76

Table 2: AURORA 4: performance (word error rate) with log-linear
models on a log-likelihood score-space from a hybrid HMM.

are trained layer-by-layer with a frame-level cross-entropy criterion,
and then with the sequence-level MPE criterion.

The log-linear models are based on the feature space in equation
(12) and trained on multi-style data. Lattices are generated using
the appropriate system, and each arc of the lattice is annotated with
the log-linear features. Training of the parameters of the log-linear
models then uses gradient descent on either of two criteria: the con-
ditional maximum likelihood criterion, and a large-margin criterion.

Table 1 shows word error rates with the tandem system and the
log-linear model with features from that system. Whether the under-
lying HMM system is trained with maximum likelihood or with the
MPE criterion, the power of the additional features allows the log-
linear model to improve performance. This indicates that the feature
space for the log-linear model contains information that the HMM
systems have no access to.

The same trends occur, but then enlarged, for the hybrid system,
in Table 2. This is surprising. The baseline here is particularly strong
at 12.05 %. Compared to the tandem system, however, the effective
subspace that the parameters of the log-linear model operate in al-
lows more improvement. The improvement over the MPE-trained
hybrid is 0.3, which is larger than over the tandem system.

Release

TARPA-babel202b-v1.0d
TARPA-babel207b-v1.0b
TARPA-babel304b-v1.0b

Language Id

Swabhili 202
Tok Pisin 207
Lithuanian 304

Table 3: Babel OP2 languages used in this paper.



5.2. Babel languages

The other type of corpus is the “very limited language packs”
(VLLP) of three languages from the IARPA Babel program, Option
Period (OP) 2. The main task of the Babel program is keyword
spotting, and speech recognition is merely an intermediate process,
but here the performance of speech recognisers will be examined.
Table 3 details the exact releases used.

The core tool for ASR development is an extended version of
the HTK toolkit [22]. The extension mainly includes a complete
integration of support for neural networks into HTK [23].

According to the rules of the Babel OP2 program rule, no pho-
netic lexica may be used. Therefore the systems use graphemic lex-
ica generated using an approach which is applicable to all Unicode
characters [24]. For each language, the training data (in the “very
limited language pack”) is only 3 hours of conversational telephone
speech; the test data is 10 hours. The language models are estimated
only on the transcripts of the acoustic data.

The HMM systems are exactly those in [14]. The front-end is an
MRASTA based neural network [25, 26], which is initially trained
with the data from 11 Babel “full language packs”, generating 62-
dimensional bottleneck features. The input features contain the bot-
tleneck features, 13 PLP coefficients with dynamics of orders 1, 2,
and 3, and pitch and probability-of-voicing features (estimated with
the Kaldi toolkit [27]) with dynamic coefficients of orders 1 and 2.

Two sets of acoustic models are constructed. One is a speaker-
independent (SI) model, which is based on the tandem features. The
other is estimated using speaker adaptive training (SAT) [28]. SAT
is performed using global constrained maximum-likelihood linear
regression (CMLLR) [10] on the maximum-likelihood trained mod-
els, followed by MPE. During training, the supervision for CMLLR
is the reference. During testing, the SI model with a trigram LM is
used to produce hypotheses. The resulting CMLLR transforms are
used to obtain speaker-normalised features, which are then input to
the Tandem-SAT model. The number of context-dependent states is
1000; each state has an average of 16 components.

As illustrated in Figure 1, the stacked hybrid system use the
same features as the tandem system, derived from the CMLLR trans-
forms generated by the tandem SAT system. The input to the hy-
brid DNN is a concatenation of 9 consecutive feature vectors. The
network has layer sizes of 963 x 1000* x 1000 and is initialised
by layer-wise pre-training with context-independent targets. Fine-
tuning is done using the frame-level cross-entropy criterion with
context-dependent targets. The number of context-dependent states
is the same as in the tandem system. Then, sequence training using
the MPE criterion is applied for further improvement.

As a comparison, a “joint” [14] system, which applies log-linear
combination of the tandem and hybrid systems at the frame level, is
used. The frame-level log-likelihoods from the tandem system are
multiplied by i, and those from the hybrid system by 1. They are
then added at the frame level and used instead of the normal HMM
log-likelihoods. The language model is kept the same.

The segmental conditional random field is trained as follows.
Lattices are produced by decoding with the joint system, and then
annotated with features from both tandem and hybrid systems, as
in (13). Gradient descent is then used to train the log-linear parame-
ters using the large-margin criterion in (8). At decoding time, lattices
from the joint system are rescored, and then the best path is selected.

Table 4 contains word error rates on a few systems and lan-
guages. The first two blocks examine the effect of speaker-
dependent transformations of the acoustic features for a hybrid
system on the performance of the log-linear model. The top block
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Language  System Criterion Word error rate

hybrid SI MPE 61.3

- + log-linear  large-margin 60.7

Swahili - — o  SAT  MPE 605

+ log-linear  large-margin 59.9

Tok Pisin hybrld-.SAT MPE ' 52.7

+ log-linear  large-margin 52.5

. . hybrid-SAT MPE 63.2
Lithuanian . .

+ log-linear  large-margin 62.9

Table 4: Babel languages: performance with structured discrimina-
tive models.

System Criterion Word error rate
Tandem MPE 62.5
Hybrid MPE 60.5
— Joint manual 59.4
— log-linear manual . 59.1

large-margin 58.5

Table 5: Babel program, Swahili: performance with structured dis-
criminative models from SAT systems.

has results of the speaker-independent system. The log-linear model
improves performance by 0.6 % absolute. The second block has the
same contrast, but now based on a speaker-dependent HMM. The
increase of performance from the log-linear model is also 0.6 %.
Speaker-dependent transformations therefore do not appear to de-
crease the usefulness of the features derived from the HMM.

The rest of the table examines how performance improvement
varies for different languages. For Tok Pisin, the improvement is
0.2, and for Lithuanian 0.3. Though the performance increase does
vary with languages, there is consistently an increase.

Results of experiments with combining tandem and hybrid sys-
tems are in Table 5. The top block repeats the tandem and hy-
brid HMM baselines. The next block shows the performance of the
“joint” system from [14], which performs frame-level combination.
The weights are fixed to % for the tandem system and 1 for the hy-
brid. The next line shows the result of the log-linear model that uses
the same parameters, as illustrated in (13). Performance improves by
0.3 % compared to the joint system, probably caused by the differ-
ence in the assignment of the underlying HMM states to time frames.
Firstly, the likelihoods are used, so the sum over all paths instead of
the one best path is used, and secondly, those paths can be different
between the tandem and hybrid systems, allowing a more optimal
alignment for both. When the parameters of the log-linear model are
trained, for the bottom line of Table 5, performance increases further
by 0.6. The absolute improvement over the joint system is 0.9%.

6. CONCLUSION

This paper has introduced a method for using a structured discrim-
inative model with features extracted from neural-network systems
in tandem and hybrid configurations. The features are computed
per audio segment. This leverages adaptation with the tandem sys-
tem, the performance of the hybrid system, and exploits information
about competing HMMs. The features are in an interesting space, in
which an informative prior can be defined. The overall model shows
consistent performance increases over the underlying systems.
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