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Abstract

In recent years there has been considerable interest in neural

network based language models. These models typically con-

sist of vocabulary dependent input and output layers and one, or

more, hidden layers. A standard problem with these networks

is that large quantities of training data are needed to robustly

estimate the model parameters. This poses a challenge when

only limited data is available for the target language. One way

to address this issue is to make use of overlapping vocabular-

ies between related languages. However this is only applicable

to a small set of languages, and the impact is expected to be

limited for more general applications. This paper describes a

general solution that allows data from any language to be used.

Here, only the input and output layers are vocabulary dependent

whilst hidden layers are shared, language independent. This

multi-task training set-up allows the quantity of data available

to train the hidden layers to be increased. This multi-language

network can be used in a range of configurations, including as

initialisation for previously unseen languages. As a proof of

concept this paper examines multilingual recurrent neural net-

work language models. Experiments are conducted using lan-

guage packs released within the IARPA Babel program.

Index Terms: recurrent neural network, language model, data

augmentation, multi-task learning

1. Introduction

In domains such as speech recognition [1], machine translation

[2] and many others, statistical language models are used to as-

sign a probability to a word sequence. The standard approach

is to use n-gram models [3]. Neural network language mod-

els [4, 5] are a powerful alternative. These models offer sev-

eral benefits, such as continuous space representation by feed-

forward models [6, 4], which may offer better generalisation,

and context representation by recurrent models [7, 5], which

may offer improved long range dependency modelling. To-

gether these benefits have resulted in significant improvements

over n-gram models on medium and large data sets [4, 5, 8].

In resource constrained conditions these neural network

models may face robustness issues [7]. There are a number

of possible solutions to adopt. These can be divided into two
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groups: model complexity reduction and robust parameter es-

timation [9, 10]. The former includes class-based [11, 12]

and out-of-shortlist [4, 13, 5, 14, 15, 16] approaches to re-

duce the number of output layer parameters, parameter ty-

ing across context words [4] to reduce the number of input

layer parameters. The latter includes augmentation schemes

[17, 18, 9, 10, 19, 20, 21, 22, 23, 24, 25, 26]. Model-based aug-

mentation schemes [17, 18], such as language model interpola-

tion [17], make use of additional models to improve estimates.

A combined model is formed where individual, in-domain and

out-of-domain, models are represented with costs reflecting

their usefulness on held-out data. Data-based schemes instead

make use of data to initialise [27], train [20, 23] or adapt [24] the

models. All these schemes rely on additional models and data

not being orthogonal. There are situations where this assump-

tion does not hold. One example is multilingual data. Excluding

code-switching and loan words [28], the intersect of multilin-

gual data vocabularies may be an empty set. Such situations

cannot be handled using current augmentation approaches.

This paper proposes a general solution for training neural

network language models on multilingual data. The idea can be

thought of as creating a single network for all languages where

some parameters are language specific and the rest are language

independent. This enables the network to be trained in the stan-

dard fashion on data simultaneously from multiple languages.

As language independent parameters are trained on larger quan-

tities of data, the network may be expected to generalise better.

These language independent parameters may also be ported to

unseen languages simply by changing language specific param-

eters from one set to another. This may provide a better than

random initialisation in limited resource conditions.

The rest of this paper is organised as follows. Section 2 pro-

vides a short overview to two frequently used neural network

language models. Section 3 describes a general solution for

training these models on multilingual data. Section 4 illustrates

the solution using data from a number of diverse languages. Fi-

nally, Section 5 concludes the paper.

2. Neural network language models

Statistical language modelling using neural networks has seen a

large amount of attention in domains such as speech recognition

[29, 4, 5, 30, 31]. The number of possible approaches goes far

beyond the scope of this paper. This section will focus on two

forms: feed-forward [4] and recurrent [5].

A feed-forward neural network language model (FNN)

[6, 4] is illustrated in Figure 1(a). This model uses a layered

structure to yield a distribution over word vocabulary V given a

fixed context of past words. Each context word is encoded us-

ing 1-of-|V | encoding. These vectors then undergo a series of

transformations passing through input, hidden, and output layer.

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-3713042



Input Layer
Hidden Layer

Output Layer

C
urrent W

ords

P
ast W

ords

(a) feed-forward

P
ast W

ords

Input Layer

C
urrent W

ords

Hidden Layer
Output Layer

History

Recurrency

(b) recurrent

Figure 1: Two neural network language models.

The precise series of transformations can be described by

ht = σh(Whh · σi(Whi · xt)) (1)

yt = σo (Woh · ht) (2)

where xt, ht and yt are the context words prior to any trans-

formations, after input and hidden layer transformations and af-

ter output layer transformations respectively. The last transfor-

mation yields the distribution over word vocabulary at time t.

Transformations consist of a linear part represented by matrices

Whi, Whh, Woh and non-linear part represented by functions

σi, σh, σo. FNNs typically share input transformation across

context words and use linear, hyperbolic tangent and soft-max

functions as σi, σh and σo respectively.

A recurrent neural network language model (RNN) [5] is

illustrated in Figure 1(b). Compared to the FNN, there is a feed-

back loop which passes information from the hidden layer back

to the input layer. This information together with the current set

of context words is then passed through the network

ht = σh(Whi · xt +Whh · ht−1) (3)

yt = σo(Woh · ht) (4)

where ht−1 is the hidden layer vector from the previous time,

σh and σo are usually sigmoid and soft-max functions. Al-

though a similar layered structure is used, the feedback loop

enables to yield a distribution over word vocabulary in yt given

the complete past word history encapsulated in xt and ht−1.

FNNs and RNNs have three primary sets of parameters to

estimate. These are the matrices Whi, Whh and Woh associ-

ated with the input, hidden and output layer respectively. The

input and output layer matrices by definition depend on vocab-

ulary V whereas there is flexibility with the size |H| of hid-

den layer matrix. The number of parameters is O(|V |2) when

|H| � |V |. Parameter estimation is typically performed by

optimising the cross-entropy criterion over training data [4, 5].

3. Multi-language extension

The problem of training feed-forward neural network (FNN)

models on multilingual data has received a lot of attention in

acoustic modelling for speech recognition [32, 33, 34, 35]. In

contrast to language modelling, the input to a FNN acoustic

model typically consists of a fixed-dimensional feature vector

extracted from raw audio using standard speech parametrisa-

tions [36, 37, 38, 34]. The output layer, similar to language

modelling, is language dependent. The FNN acoustic model

can be described using equations (1) and (2) where xt is the fea-

ture vector at time t and yt yields a distribution typically over

sub-phonetic hidden Markov model (HMM) states. In order to

train this network on multilingual data it is necessary to take into

account language dependence in the output layer. One popular

solution [32] is illustrated in Figure 2 for three languages: L1,

L2 and L3. The solution can be thought of as creating a sin-
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Figure 2: Multi-language acoustic model.

gle network for all languages where the output layer parameters

are language specific whereas the input and hidden layer pa-

rameters are language independent. Compared to Figure 1 (a),

the output layer in Figure 2 consists of language specific blocks

W
(L1)
oh

,W
(L2)
oh

and W
(L3)
oh

. Each block is used only with fea-

tures extracted from the corresponding language. The precise

series of transformation for the general case of L languages is

ht = σh(Whh · σi(Whi · xt)) (5)

y
(l)
t = σo

(
W

(l)
oh

· ht

)
(6)

where W
(l)
oh

and y
(l)
t

are the output layer parameters and the

distribution over HMM states for language l ∈ [1, L]. Such

solution enables the quantity of data available to train the in-

put and hidden layers to be increased which has been shown to

improve robustness in limited resource conditions [35].

In neural network language models discussed in Section 2

both input and output layers are language-dependent. If the

same approach was applied to the input layer it then would

have been possible to train these models on multilingual data

using standard approaches. Figure 3 illustrates such a solution

for RNN language models. Compared to Figure 1 (b), the in-
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Figure 3: Multi-language language model.

put and output layers in Figure 3 consist of language specific

blocks W
(L1)
hi

,W
(L2)
hi

,W
(L3)
hi

and W
(L1)
oh

,W
(L2)
oh

,W
(L3)
oh

re-

spectively. A matching pair of language specific blocks, such as

W
(L2)
hi

and W
(L2)
oh

is used only with the corresponding lan-

guage (L2). For the general case of L languages

ht = σh(W
(l)
hi

· x
(l)
t +Whh · ht−1) (7)

y
(l)
t = σo(W

(l)
oh

· ht) (8)

where W
(l)
hi

, W
(l)
oh

are language specific parameters trained on

language l data and Whh are language independent parameters

trained on all data. It may be expected that increased quantities

of data available to hidden layers should enhance generalisation.
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Once the multi-language model is available it can be fine-

tuned for each individual language. Another interesting option

is to port language independent layers to initialise models for

unseen languages. This can be illustrated for language L+1 by

ht = σh(W
(L+1)
hi

· x
(L+1)
t +Whh · ht−1) (9)

y
(L+1)
t = σo(W

(L+1)
oh

· ht) (10)

where Whh are hidden layer parameters of the multi-language

model and W
(L+1)
hi

,W
(L+1)
oh

are language L+1 specific input

and output layer parameters. The hidden layer parameters may

initially be locked to the multi-language estimate by setting the

hidden layer learning rate to zero. This enables to take advan-

tage of robustly estimated language independent hidden layer

parameters in training the input and output layers. Once these

have been trained the hidden layer can be unlocked and training

continued. This will be referred to as fine-tuning in this paper

and it can be done for both multi-language training and porting.

4. Experiments

As a proof of concept this paper considers training recurrent

neural network language models on multilingual data. The mul-

tilingual data for this work is taken from language packs re-

leased within IARPA Babel program [39].1 These packs contain

up to 60 hours of conversational telephone speech data. Each

language additionally has 10 hours of held-out data for devel-

opment. A total of 14 languages are considered in this paper.

These languages come from different geographic locations and

represent a diverse set of families. Table 1 shows that there is a

Table 1: Summary of languages and amounts of training data.

Families Languages
Words

Unique Train

Austronesian Tagalog 23,705 610,642

Austronesian Cebuano 15,737 346,986

Austro-Asiatic Vietnamese 6,685 962,311

Dravidian Tamil 57,799 462,321

Indo-European Assamese 25,455 443,093

Indo-European Bengali 28,847 517,128

Indo-European Pashto 21,051 982,589

Turkic Turkish 45,513 612,788

Tai-Kadai Lao 7,942 628,876

Sino-Tibetan Cantonese 23,964 884,697

Niger-Congo Zulu 60,916 543,587

Niger-Congo Swahili 24,361 394,578

Nilo-Saharan Dholuo 17,550 467,206

Creole Haitian Creole 14,812 622,489

wide variety of vocabulary sizes starting from Vietnamese with

6,685 words and ending with Zulu with 60,916 words. Out-of-

vocabulary rate on held-out data for these languages varies from

near zero for Vietnamese (syllabic) to 11% for Zulu.

1Language identifiers: Cantonese IARPA-babel101b-v0.4c, As-
samese IARPA-babel102b-v0.5a, Bengali IARPA-babel103b-v0.4b,
Pashto IARPA-babel104b-v0.4aY, Turkish IARPA-babel105b-v0.4,
Tagalog IARPA-babel106-v0.2f, Vietnamese IARPA-babel107b-v0.7,
Haitian Creole IARPA-babel201b-v0.2b, Lao IARPA-babel203b-v3.1a,
Tamil IARPA-babel204b-v1.1b, Zulu IARPA-babel206b-v0.1d, Ce-
buano IARPA-babel301b-v2.0b, Swahili IARPA-babel202b-v1.0d,
Dholuo IARPA-babel403b-v1.0b.

Experiments were conducted using CUED RNN language

modelling toolkit [40] extended to support the multi-language

language models depicted in Figure 3. Unless otherwise stated

weights {W
(l)
hi
}, Whh and {W

(l)
oh
} in equations (7) and (8)

were randomly initialised. Training is performed by optimis-

ing the cross-entropy criterion using back propagation through

time with the time step set to 5 [41]. Training sentences were

randomised and organised into spliced bunches of 64 sentences.

Word vocabularies in the output layers were down sampled to

75% of the full vocabulary sizes. The remaining 25% of the

least likely according to unigram statistics words were repre-

sented using an out-of-shortlist (OOS) word node. The hidden

layer weight Whh in this work is a 100× 100 matrix.

A preliminary experiment was conducted among three ge-

ographically linked African continent languages – Dholuo,

Swahili and Zulu – with the last two languages belonging to

the same family. It should be noted that Swahili unlike Zulu

is a trading language that exhibits lots of borrowing from Ara-

bic and European languages. Three language specific and one

multi-language RNNs were trained. The amount of training

data for the multi-language RNN is 1.4 million words and ap-

proximately third of that is available to each language specific

RNN. Perplexities for the training languages on their respec-

tive development sets are shown in Table 2. The multi-language

Table 2: Perplexities for language specific and multi-language

RNNs for selected African continent languages.

Languages
Structure

mono multi

Dholuo 203.9 198.3

Swahili 358.0 349.0

Zulu 1052.7 972.3

Average 538.2 506.5

RNN (multi) shows perplexity reductions over language spe-

cific RNNs (mono) on all languages. The largest gain comes

for Zulu where perplexity is reduced relatively by 8%. Overall

gain is rather moderate despite two thirds of the data being from

the same language family. The average perplexity across three

languages drops from 538.2 to 506.5. Although average per-

plexities do not account for the difference in vocabulary sizes, a

simple metric such as average is useful to assess general trends.

The use of multilingual data has so far considered related

languages. In order to assess the impact of using less related

languages, a set of 11 mixed-origin languages from Table 1

was chosen. The amount of training data for the multi-language

RNN in this case is 7.3 million words. Perplexities in this exper-

iment are shown in the first two columns of Table 3. Overall, the

multi-language RNN yields lower perplexities than language

specific RNNs though there are languages where perplexity is a

bit higher. The average drop in perplexity is smaller than that

obtained across related languages in Table 2. Comparing the use

of related and mixed-origin languages for the only language oc-

curring in both tables, Zulu, it can be seen that using data from

related languages is a little bit more advantageous.

The multi-language RNNs in Table 2 or 3 provide a model

optimal for all training languages. This may not be optimal for

each individual language and hence may impact possible gains.

A simple way to verify this is to fine-tune the multi-language

RNN for each language. As discussed in Section 3, there are

options how fine-tuning can be performed. Initially, only input

and output layers were fine-tuned whilst the hidden layer was
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Table 3: Perplexities for language specific and multi-language

RNNs for 11 mixed-origin languages.

Languages
Structure Fine tuning

mono multi Whi,Woh +Whh

Tagalog 135.7 136.7 133.6 129.2

Assamese 321.3 318.8 304.0 297.6

Bengali 355.5 358.1 342.8 333.4

Creole 137.2 138.9 135.7 131.4

Lao 105.1 107.8 103.7 100.8

Tamil 925.5 903.4 866.6 851.7

Zulu 1052.7 987.9 982.7 984.7

Cantonese 123.3 122.1 119.4 116.6

Pashto 147.0 148.1 143.2 138.3

Turkish 443.8 434.1 418.3 405.9

Vietnamese 136.6 138.8 132.4 127.2

Average 353.1 345.0 334.8 328.8

locked to the estimate obtained from 11 languages. This allows

input and output layer for each language to be tuned for the fi-

nal language independent recurrent layer. Perplexities for this

experiment are shown in the third column of Table 3. These

initial RNNs with the multi-language hidden layer show per-

plexity reductions over language specific RNNs (mono) for all

languages. Training was then continued with the hidden layer

unlocked to adjust all parameters to the target language. As

shown by the last column in Table 3, further perplexity reduc-

tions can be obtained for all language apart from Zulu.

Experiments so far have examined only seen languages. An

important question is whether the language-independent multi-

language RNN parameters can generalise to unseen languages.

This can be measured by porting hidden layers to held-out lan-

guage RNNs. A particular interest is whether this can help

in resource constrained conditions. For such experiments very

limited language packs (VLLP) containing 3 hours of conver-

sational telephone speech were used. Two held-out languages,

Cebuano and Swahili, were chosen for evaluation. The amount

of training data in VLLP conditions is 31,959 and 24,703 words

respectively. This is more than 10 times less than in FLP con-

ditions. The number of unique words is 3,614 and 5,475 re-

spectively. Perplexities for this experiment are summarised in

Table 4. Language specific RNNs with randomly (random)

Table 4: Perplexities for language specific RNNs with imported

language independent multi-language hidden layer

Layer Initialisation Language

Whh Whi,Woh Cebuano Swahili

random random 169.6 532.7

multi random 164.5 496.0

initialised hidden and input and output layers are shown on

the first line. The second line shows perplexities of language

specific RNNs with the imported language independent hidden

layer and randomly initialised input and output layers. The

same multi-stage fine-tuning process was perfored as in Ta-

ble 3. These results suggest that the language independent

multi-language hidden layer encapsulates information useful

for perplexity reduction. Overall gains for Cebuano are quite

small and for Swahili are moderate 7% relative reductions.

The final set of experiments examined whether perplexity

reductions seen in Table 4 will translate into word error rate

(WER) reductions when these language models are used for

speech recognition. Acoustic models in these experiments are

based on multilingual bottleneck features [42, 34, 32] extracted

from a feed-forward neural network (FNN) trained on the FLP

audio data of the same 11 languages shown in Table 3. Train-

ing of such multi-language acoustic models was discussed in

Section 3. These bottleneck features provide useful additional

information and are crucial for accurate speech transcription

in resource constrained conditions [35]. Two types of acous-

tic models are trained for each language: a Tandem and Hy-

brid [43]. These acoustic models differ in the form of final

classifier: Gaussian mixture models (Tandem) and FNN (Hy-

brid). In order to take advantage of system combination bene-

fits, these acoustic models are combined in a multi-stream fash-

ion during inference using joint decoding [43]. Speech recogni-

tion results for Cebuano and Swahili VLLP are shown in Ta-

ble 5. Each block of results shows performances of trigram

Table 5: Cebuano and Swahili VLLP word error rates (WER)

with n-gram, language specific RNN and multi-language RNNs.

Language LM WER (%)

Cebuano

n-gram 62.1

mono-rnn 61.3

multi-rnn 61.2

Swahili

n-gram 56.3

mono-rnn 56.3

multi-rnn 56.2

(n-gram), language-specific (mono-rnn) and ported multi-

language RNN (multi-rnn) (line 2 in Table 4) language

model respectively. The RNNs were interpolated with the n-

gram model using equal costs ( 1
2
, 1
2

). Language specific RNNs

compared to trigrams show mixed performance with gain seen

for Cebuano and no gain seen for Swahili. The latter perfor-

mance is in line with expectations whereas the former is a bit

surprising given limited amount of training data. The multi-

language RNN shows small improvements for both languages.

5. Conclusions

Training accurate statistical language models, such as recurrent

neural networks, on small amounts of data is a challenging. Of-

ten it is possible to acquire additional data which may originate

from a different source. If there is virtually no overlap between

data sources then standard approaches, such as language model

interpolation and data augmentation, cannot be used. One ex-

ample is multilingual data. This paper proposed a general so-

lution suitable for incorporating multilingual data into training

of two neural network language models: feed-forward and re-

current. The solution is based on the observation that typically

only input and output layers of such models depend on vocabu-

lary. Hence, a neural network with shared hidden layers and lan-

guage dependent input and output layers can be trained on mul-

tilingual data using standard approaches. As a proof of concept

this paper presented recurrent neural network language model

training on multilingual data. A total of 14 diverse languages

provided by the IARPA Babel program were considered. Re-

sults suggest that shared hidden layer representations can help

to reduce perplexity of individual languages. Furthermore, such

representations can generalise to unseen languages.
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