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Article in The Guardian August 2017

Computer says no: Irish vet fails oral English test
needed to stay in Australia

Louise Kennedy, a native English speaker with two degrees,
says flawed technology is to blame
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Spoken Language Assessment Pipeline
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ASR Confidence Scores
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ASR Confidence Scores [?7]

= Useful to know whether ASR output is correct

= confidence scores supply this information
= three forms of error: substitutions, deletions and insertions

manual AND THESE ARE THE FIMBLES
asr THIS ARE TO THE FIMBLES
error del sub — ins — —
conf — 0.4 08 03 09 0.9
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Baseline Confidence Scores
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= Baseline confidence scores based on arc posteriors

qu—GQa p(qlzTa XltT)
p(x1:1)

p(Gy7s X1:7) = pa(x1:7|qy7) TP (wa); P(aL) =

= ;.7 T-length state sequence for word sequence w
= Q, set of state sequences that pass through arc a
= ~ is usually the LM scale factor

= does not alter 1-best (compared to scaling LM)
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Confidence Score Calibration [?7]

Confidence Score

Arc Posterior

= Confidence scores often over-estimated
= very simple normalisation approach
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Neural Network Based Confidence Scores

DIDN'T p
------- -— — -
' LM=-0.065 |
1 AM=-0.142
' P(alL)=0.56 .
_— . —
Forward 0.3 sec Backward

= Use more general sequence model
= for 1-best wy.y = wy,...,w
= use information associated with each arc aj.;

P(wila1.) = F(ai, & 1i-1, @ js1:)
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RNN-Based Confidence Scores [?, 7]

= Simple approach use recurrent neural networks

hizf(h,'_]_,al); h,-:f(hi+1,a1);
P(wila1..) = F(hj, h;)

» Evaluation: Georgian (!) Conversation Telephone Speech
* RNN-based on: posteriors, word ID and durations

System ‘ ‘ NCE AUC

Arc posteriors || -0.1978 0.9081
+ calibration 0.2755 0.9081
+ RNN 0.2911 0.9121
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Lattice Neural Network Based Confidence Scores [?, 7]
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= Make use of complete lattice £

— <
P(W,lﬁ) = ]:(ah Qai? Qai)
N
= Q,, set of arcs in forward direction to a;
=
= Q,, set of arcs in backward direction to a;
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Lattice Neural Network Based Confidence Scores
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- ! P(alL)=0.56 | L S
- Forward 0.3 sec Backward

+ Use attention to merge arcs
— . — «— . «—
h;=attention ({ hj}jejvai,a,-) ; h,;=attention ({ hf}jeﬁa,’ai) ;

P(W,-|a1;1_) = ]:(T;,‘, (F,)
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Grapheme Features
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= Add grapheme ID and duration information

_ g
g; = self - attention({g\",....gM1); gV = [1:(1) ]
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LatticeRNN Based Confidence Scores

= Evaluation on a CTS task

= RNN-based on: posteriors, word ID and durations
= |atticeRNN acts on confusion networks

System | NCE AUC

RNN 0.2911 0.9121
lattice-RNN || 0.2934 0.9178
+ grapheme || 0.3004 0.9231
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Prediction Uncertainty
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Sources of Uncertainty
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Data (Aleatoric) Uncertainty

=10 1
=15 A

=20 A
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Data Uncertainty

= Distinct Classes

= Overlapping Classes
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Knowledge (Distributional /Epistemic) Uncertainty
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Knowledge Uncertainty

= Unseen classes

= Unseen variations of seen classes
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Ensemble Approaches

= Given training data D
POIx",0) = [ P(yix",6)p(6ID)do

1 “ * i i
“ > (I, 00); 60 - p(e[D)
i=1
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Ensemble Approaches
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Entropy for Uncertainty

= Simple reminder of Entropy

H[P(y|x",0)] = ZP(y welx”,8) log (P(y = welx”, 0))

= General attributes

= high entropy: “flat” distribution, low confidence
= low entropy: “peaky” distribution, high confidence

= Doesn't give information about source of uncertainty!
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Ensemble Consistency |7, 7]

= Mutual Information

Iy 6lx".D] = H[E, g, [p(yx",0)]]~E, g, [H[p(yIx".0)]]
N—————
Knowledge Uncertainty

Total Uncertainty Expected Data Uncertainty

= Total Variance

V]y,0|x*,D] =V E x| +E Vooixe 0y Y]
p<0|v)[ p(v1x*,0) ] p<0|7>)[ p(y1x*,0) ]

Total Variance

Mean Variance Expected Data Variance

» Expected (Pairwise) KL-Divergence
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Ensemble “Generation” |7, ?, 7]

= Deep learning approaches often use 10,000,000+ parameters

Modelling p(@|D) challenging

= use variational approximations
= Monte-Carlo methods
= non-Bayesian approaches e.g. random network initialisation
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Spoken Language Assessment

Computer says no: Irish vet fails oral English test
needed to stay in Australia

Louise Kennedy, a native English speaker with two degrees,
says flawed technology is to blame
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Grader Uncertainty: Ensemble-Based
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Prior Networks
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Ensemble Modelling [?, 7]

» Ensembles compute/memory intensive (scales linearly)
= challenging to guarantee performance for outliers
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Ensemble Modelling [?, 7]

» Ensembles compute/memory intensive (scales linearly)
= challenging to guarantee performance for outliers

= Possible to compress ensemble to a single model:
= Ensemble Distillation: standard compression approach

A 1M .
6 = argmax {KL (— ZP(y|x*,0('))||P(y|x*,0))}
0 =t

* models average distribution - loses diversity of ensemble
= Ensemble Distribution Distillation: model ensemble diversity
* maintains diversity of the ensemble
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Distributions on a Simplex

= Ensemble {P(y|x*,t9("))},{‘ﬁ1 can be visualised on a simplex

(a) In domain x* (b) Out-of-domain x*

= ensemble samples from a distribution over distributions
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Distributions on a Simplex

= Ensemble {P(y|x*,t9("))},{‘ﬁ1 can be visualised on a simplex

(a) In domain x* (b) Out-of-domain x*
= ensemble samples from a distribution over distributions

= Only need to model desired distribution
= should allow explicit control over diversity
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Prior Networks [?]

= A Prior Network predicts parameters of Dirichlet Distribution
p(plx*;6) = Dir(pla), a= f(x*;0)
where

P(y = wi|x*)

P(y = wo|x*
o] PU=2l)

P(y = wk|x*)

= Dirichlet Distribution — Distribution over simplex

= Conjugate prior to categorical distribution
= Convenient properties — analytically tractable
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Distribution over Distributions

(a) {3 (b) p(ulx*, D)

(c) {2, (d) p(plx*, D)
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Prior Network Construction

L(B, D) = Ein(ga Dtrn) + Lout(07 Dout)
[ S [ S —
In Domain Loss OOD Loss

(a) In-Domain Target (b) OOD Target

= Explicitly train the form of the Dirichlet distributions
= but requires selection/generation of out-of-distribution data
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Target Dirichlet Parameters [?]

= Train network to predict appropriate distribution:
« map y) > B(i): should yield correct class - minimise

N . .
£(6:D) = kL (p(lplip(ulx:6))

= Consider setting ,B(i) as follows —

(i) _ { B+1 if y() =y,
ko = 1 if y(i) + Wk
= if 5 is large —: high confidence
= if 8 is low —: low confidence
= If 3 is zero —: flat (uniform) distribution

» Reverse-KL yields better results (see paper for reasons)
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Out-of-Distribution Detection: Image Tasks

» Use CIFAR-100 for out-of-distribution (OOD) training data

= evaluate performance in detecting OOD test samples
= metric AUC (average 10 randomly initialised models +2¢)

Model CIFAR-10

SVHN LSUN TinylmageNet
Ensemble 805 +Na 932 +nNA 90.3 + Na
Prior Network | 98.2 +1.1  95.7 +0.9 95.7 z0.7
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Conclusions
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Uncertainty: Knowing What You Don’t Know

= Uncertainty important for deploying machine learning
= systems tend to be overly confident
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Uncertainty: Knowing What You Don’t Know

= Uncertainty important for deploying machine learning
= systems tend to be overly confident

= Knowing the cause of uncertainty useful

= allows different actions to be taken to address uncertainty
= applications: active learning, uncertainty for RL, ...

IVERSITY OF

BRIDGE



Uncertainty: Knowing What You Don’t Know

= Uncertainty important for deploying machine learning
= systems tend to be overly confident

= Knowing the cause of uncertainty useful

= allows different actions to be taken to address uncertainty
= applications: active learning, uncertainty for RL, ...

= It's hard!
= humans aren't too good at it either
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