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ABSTRACT be modelled, given an appropriate dictionary, which is not possible

. . ... with the semi-structured models. An example of structured models
Recently there has b(_aen interest in structured dlSCfImInatly% a conditional augmented (CAUG) model [2], where the range of
mode_ls for speech recognition. In these models sentence pasteri Bssible dependencies is restricted to the phone level. At the phone
are dlreqtly modelled, given a set of.features extracted from th evel dynamic kernels based on generative models (HMM) provide a
o_bservanon sequence, a_nd _hypothe5|sed word sequence. In PEstematic approach to adding new dependencies through the use of
vious work these d|scr|m|nat|ve_ models have bee_n combined W'ﬂ&ompeting likelihoods, and first and high-order derivatives. Extract-
feature.s. derived frc_>m generative mpdels for nmse-robyst hpeeqng features based on generative models has the added advantage
recogpnition for continuous digits. This paper extends this work O hat state-of-the-art model-based compensation approaches to adap
medium to Igrge vocabulary tasks. The form of the SCOre-Spackatures to noise/speaker conditions can be used [3]. The standard
e_xtra_cte_ad using the generative mc_)dels, and parameter tying of thLaepproach to training discriminative models is conditional maximum
discriminative model, are hoth discussed. Update formulae forikelihood (CML). However alternative criteria such as minimum

both conditional maximum likelihood and minimum Bayes’ risk " risk (MBR) [2 | in (LM inina 14. 51 h
training are described. Experimental results are presented on smg@;ese:ﬁ pr(oposéd[ 1 and large margin (LM) training [4, 5] have

and medium to large vocabulary noise-corrupted speech recognition In previous work with CAUG models a small vocabulary noise-

tasks: AURORA 2 and 4. corrupted digit string recognition task based on whole-word HMMs
Index Terms— Structured model, Noise robustness, Contextwas examined [5]. This paper extends the previous work to han-
modelling, Conditional Maximum Likelihood, Minimum Phone Er- dle medium/large vocabulary continuous speech recognition tasks.
ror There are two fundamental issues to handle. First an appropriate
score-space is required. Using all possible models, is impractical.
1. INTRODUCTION Thus_ context-dependent dynamic kernels are proposed to provide

consistent and compact features for context-dependent clagses. S

Most automatic speech recognition (ASR) systems use generatif!d: @n appropriate level for clustering the parameters of the dis-
models, in the form of hidden Markov model (HMM), as the acous-Criminative model is required, this does not need to be the same as

tic model. Likelihoods from these models are combined with thethe generative model. In this paper the use of phonetic decision tree

prior, the language model, using Bayes’ rule to yield the sentencglustering to ensure that sufficient training data exists for robust pa-
postérior. Although succes’sful it is widely known that the unde”y_rameter estimation is investigated. Discriminative model training us-
ing models are not correct. This has lead to the interest in discrimNd Poth CML and MBR criteria are described. _

inative models, where the posterior probabilitylisectly modelled. The paper is organised as follows. Section 2 describes the form

Depending on how the structure of sentences is modelled, many pr8—f the structured model. Various types of features and the aspect of

posed discriminative models can be divided isémi-structureénd ~ NOiSe robustness is then detailed in Section 3. Parameter tying is de-

structured The semi-structured models, e.g. segmental conditionafC'1Ped next. Section 5 provides reestimation formulae for CML and

random fields (SCRF) [1], assume a word-level structure. Thefuse ¢WE/MPE training. Experimental results are given in Section 6.

multiple feature streams at the word-level permits a range of event§nally, Section 7 presents the conclusions.

such as an occurrence of phones, multi-phones and the whole words,

to be incorporated. This flexibility enables a wide range of short and 2. STRUCTURED MODEL

long-spanning dependencies. However, the current applications of

SCRFs do not attempt to improve the underlying acoustic modelThe structured model considered has the form of log-linear model

the recognition results from the standard HMM acoustic model are

used to derive features and combined with other event detectors.
Structured models, on the other hand, maintain the standard

medium to large vocabulary partitioning of words into sub-word,

phone, units. This partitioning allows discriminative models to bewheree segments the observation. For this work this is obtained

used as the underlying acoustic model, as all possible words “4fom the generative model. This model has two parameter vectors:
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the AURORA 4 task. knowledge sources are available. Typically, features are extracted
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from the acousticsp(O, 6|w; A), and the language modeb(w; A).  sequence of observations. This means that the conditional indepen-
Other features, for example the alignment postef§f|w; A), can  dence assumptions of the underlying generative model are not main-
also be used. Therefore tained in the features extracted.
When medium/large vocabulary speech recognition systems are
en $(0,0|w; A) considered there is an issue with the appended-all score-spaces. The
a=|owm| ¢(0,0,w;A)= P(w; A) (2)  set of generative models comprises all context-dependent phone
% log (P(8]w; A)) models. This yields a large score-space. Though in theory this could
Note a bias term could also been added for generality. be used, the number of determiqative mode[ para_meters becomes
An important issue is to decide at what level the latent variabld@'9€- One option to address this problem is to include a small
6 segments the data. This determines the level of conditional inddlUmber of “suitable” models. o
pendence between the features. In previous work [5] the data was * Simple approach is adopted in this paper, where the score-
segmented at the word level, however this is not useful for mediumSPace includes every model that shares the same observed context.
large vocabulary acoustic models. Here the data is segmented Af €xample of the score-space wittatched contexs given below
the phone level. Thus given the alignment the dot-product in equa-

; a—atc
tion (1) evaluates to
Lo - (©)
T . _ (wy) . a—-yrc
a'$(0,0,w;\) = ;am B(Os(w,.0); A) + a—zicl .,
o, (Wi A) + ap log (P(0]w; ) (3)  This reduces the dimensionality of the score-spadg to

One advantage of using generative models to define features is
whereg (O, 0); A) are features extracted from the sub-sequenceyt model-based noise compensation can be used to make discrim-
O (w;,0) andaY? are the associated acoustic parameters. inative classifier robust to changes in noise/speaker conditions [3].

As this work is primarily interested in the acoustic model, only A popular and successful approach is based on vector Taylor series
standarch-gram language models are used. Thus there is only a siyTS). In this work the first-order VTS scheme described in [7] is
gle dimensional language model feature. Furthermore the value afsed. Considering just tretaticcomponents the compensated mean
a1, Was not trained, it was empirically set to the standard languageand covariance in stateand component: are given by
model scale-factor. The alignment posterior features were also not
used in this work. fijm = Clog (exp (C™" (kjm + pn)) + exp (C™ ' pm))  (7)

jm = TimBgmI o + ([ = Tjm) T = Tjm) " (8)
3. SCORE-SPACE FEATURES . . . .
where convolutional noise mean, and covarianc&, = 0, addi-

This section describes the acoustic feature to be used by the strué€ noise mea., and covarianc&, are the parameters of the noise
tured model. The discussion focuses on features derived from gefodel estimated from the data using maximum likelihood (ML) esti-
erative models, as this allows model-based noise and speaker coffiation [8]. Other terms in equations (7) and (8) include the discrete
pensation schemes to be applied. cosine transformation matri€ and the component-specific Jaco-
In this work the the feature-space derived from the generativ®iansJ;m fully described in [7].
models will be referred to as score-space Various score-spaces
have been proposed in the literature [2], [6]. Examples include the 4. DISCRIMINATIVE MODEL PARAMETER TYING
appended-all score-spa,c¢§0> (O;X)
For small vocabulary systems, where whole-word models are used,
log (p(Olw1; A)) the parameters of the discriminative model, are associated with
© (0. \) — . the individual words. For larger systems, where the data is seg-
(SR : (4) -~ ;
: mented at the phone-level and often state-level decision tree tying
log (p(Olwr; A)) used to determine context-dependent models, the appropriate tying

which incorporates the log-likelihoods of all models, including theOf the parameters is less c_I(_aar. If there is sufficient training data the
correct class. This form of score-space allows the standard gener@rameters could be specified at the context-dependent phone level,
tive model to be obtained, simply by setting the valuexdb be one S determined by the state-level decision tree. However it is not pos-

for the correct class, zero otherwise. Thus for clagghis yields the sible to guarantee that all context-dependent models are observed in
(w1) ' T . the training data, as complete context-dependent models are used for
sparse vecton“*) = [1 0 ... 0] . By appending the scores

. . : tpe score-spaces rather than state-level features.
from competing classes enables a more informative score-space 10 . L
. . To address this problem model-level parameter tying is per-
be derived from the observation sequence.

. S ormed to determine the appropriate tying of the discriminative
Alternatively derivative score-spaces can be extracted. In ad- ) .
. o . ) - model parameters. The standard approach based on phonetic deci-
dition to the log-likelihood information, the derivatives of the log- _. : . . )
S . . sion trees [9] is used. However, care is required as the generative
likelihood with respect to the generative parameters are used. Th

€ ; .
simplest example is the first-ordexg-likelihood score-space parameters are themselves tied at the state-level. When using two

distinct decision trees, it is possible to gefree-intersecstyle ap-
i log (p(O|w; \)) proach where the effective number of distinct models becomes very
v (Ol A) = 1§ og (p(Ofw: A)) 5)  large. This can result in robustness issues when training the models.
7 There are several possible solutions that can be adopted. The
The first-order derivatives for HMMSs are a function of componentone examined in this work consists of clustering only those discrim-
posterior probabilities(67™]0; A), which depend on the whole inative parameters where the generative model for the correct class



appearsat the leaf nodes of the decision trees created for generativehere the loss function; (w, wr.¢ ), is computed between givem
models. The leaves of this model-level tree can be guarahteed and the reference senteneg.:. Exactly computingl(w, Wies)
have a minimum occupancy countin the training data and at least orfer all paths in a lattice is expensive so various approximations
distinct state. A consequence of this approach is that the maximuimave been developed to allow computation to be carried out on the
number of possible classes for the discriminative model is the numphone/word level. The approach used in this work [10] computes
ber of distinct context-dependent models. The system is also senshe accuracy of hypothesised phone/wardattached to ara by

tive to the context label assigned to each of the context-dependeltoking for a reference phone/wortd.. maximising

generative models, this will be investigated in future work.

—1+ d(w, wret), If W F# Wres

A(w; Wres) = max {
5. PARAMETER ESTIMATION tret € Wret

—1 + Zd(wawref)y if w= Wret } (13)

This section first provides the details of CML training and then de-Whered(w, w') gives the amount of overlap in time betweerand
scribes a form of minimum Bayes' risk training. For brevity of pre- %'- In the exact case this expression yields 1, 0 and -1 for cor-
sentation regularisation terms in the objective functions are omitted©Ct recognition, substitution and insertion error. In practice it is

The CML training is the standard criterion maximising the aver-more convenient to work with phone accuracies. The gradient of the
age log-posterior of training data. equivalent objective function to be maximised is given by

" Ve Fape (A, @) = (14)
Fear (A @) = =Y log (P(w}|0"); X, ) ©)
R; (Poia ) %Z > Cla,wid, L) P@0™; A, a)p(Of)), w; A)

r=1 a ()
whereR is the number of training sentences. Although bv#mda laen

can be.optirlnised in this work is assumed to l_:)e trained using, e.g., whereC(a, wret, Laea) denotes the average accuracy of sentences
ML_ (_estlmatlon. The _stande_trd MMI/MPE Ie_ltnc_es_[lo_] are used forpassing ara minus the average accuracy of all sentenci.ig,.
efflc!en(_:y. The gradient with respect to discriminative parameter§pis is the standard quantity computed during the MWE/MPE train-
Qan IS given by ing of HMM parameters [10]. The only difference is that similarly
R to the CML training th_e HMM likelihood on each_ arcis _replaced by
Voo Fam (A, @)= % Z ZP(a\O(”; A, a)¢>(0§2), w; A) — the CAUG score. As in the CML case the gradients with respect to

« ‘) other components ak can be obtain in the similar way.
= aELn:m

> P@[10"; X, a)¢(04),),w; A) (10) 6. EXPERIMENTS
areL(™
Hen This section describes experiments with the structured discrimina-
whereL,u, andLae, are numerator and denominator lattices respective models in AURORA 2 and 4. The AURORA 2 results are in-
tively, a is a lattice arcP(a|O; A, «) is arc posterior probability, cluded to contrast the performance of CML and MBR training with
large margin training published previously [5]. For all systems the

d(w,w1)@(O; X) discriminative models are initialised with the sparse parameter vec-

#(0, w; \) = : (11) tor to yield generative model performance on the first iteration. The
» : first order gradient-based optimisation with increasing step size is
§(w,wi ) (03 A) used (back-tracking is performed whenever required). To pteven

) ] ) over-training a development set was used to stop training, Set A for
is acompositdeature vector, wherg(O; A) is the standard feature AURORA2 and Set C for AURORAA.
vector given, e.g., in equation (4). The arc posterior probabilities  AURORA?2 is a noise-corrupted connected digit string recogni-
can be computed using the standard MMI forward-backward algotjon task. The number of classes is 11 plusshé andsp model.
rithm [10] by replacing the HMM likelihood on the arwith the  The generative model is a whole-word HMM with 16 states and 3
dot-productxgg”)Tqb(Ot(a); A); the language model log-probability, components/mixture trained using ML on the clean data. There are
the alignment log-posterior and the bias (if used) weighted by théhree test sets available for testing. The setup used follows the one
corresponding discriminative parameters are added to each arc dgscribed in [3]. The CAUG model is based on the appended-all
usual. The combined quantity will be referred to as a CA&Gre score-space in equation (4), no language model is used. The num-
The gradient expressions for other components afe similar and  ber of discriminative parameters is 145. The multi-style data is used
omitted here. for training. The word error-rate (WER) performance of the VTS-
Another popular criterion is the MBR training. The objective is compensated HMM and the CAUG models is shown in the following
to minimise the expected loss in the average sentence accuracy table. In Table 1 all forms of training of the CAUG model achieve
gains over the baseline HMM system. The best results were obtained
1 E ") (r) with Iargg margin training. Howeve.r the.g.ains. over MW.E training
Faox (A @) = 35 > > PWIO N a)L(w,w))  (12)  are relatively small and large margin training is not easily mapped
r=1 w to the parallelisation required for training large systems. As a sim-
1 - ple contrast a single dimension score-space system (using the correct
o oo S ol 1 sherte 0 S0 S 0256)  class) was also constructed. Using the more complicated score-space
vents the expansion of the context some of the classes mayrising ex-  With all models gave consistent gains over this simpler model.
amples if the correct pronunciation with tsp model has been pruned away. AURORA 4 is a noise-corrupted medium to large vocabulary
In practice with sufficiently large pruning values this fgrieappens. task based on the Wall Street Journal (WSJ) data. Two configurations




Classifier || crit Test Set Avg MPE-trained CAUG with 4029 classbsAs expected the VAT sys-
ATB]J]C tem in Table 3 on average out-performed the baseline clean system,
[ HMM [ ML [98[91]95] 95] 16.0% compared to 17.8%. Again the use of a CAUG MPE trained
CML 1811 771831 81 model yielded gains for all test sets. Note for this configuration both
CAUG MWE || 79| 74| 821 7.9 the generative model and the discriminative model are trained on
LM || 7.8|73]|80]| 7.7 multi-style data.

Table 1. AURORA2 Recognition Results 7. CONCLUSIONS

have been considerédrhe first repeats the previous setup where theThis paper has described a structured discriminative model suitable
HMM is trained from clean data (SI-84 WSJO paftl4 hours). In  for noise-robust medium/large vocabulary speech recognition. Here
the second more advanced VTS-adaptive training (VAT) is used t@enerative models, which can be compensated to handle speaker
obtain the canonical HMM [8, 11]. The HMMs are state-clusteredand noise changes, are used to extract features from the observation
triphones £3140 states) with-16 components/mixture. Multiple Sequence. Previous work using whole-word models are extended
(4) iterations of VTS compensation are performed for the test datd0 allow context-dependent sub-word model to be used. Context-
the supervision hypothesis is updated after each cycle. The CAu@ependent kernel are used to yield compact feature vectors at the
model is based on the context-dependent score-space in equation fne level. Additionally model-level phonetic decision tree clus-
and trained on the multi-style data. The language model parametetgfing of the discriminative model parameters, is described. Both
were fixed, only the most likely alignment was consideregd £ 0) conditional maximum likelihood and minimum Bayes’ risk train-
and no bias used. Evaluation is performed using the standard 500@g of these models are detailed. The performance of classifier was
word WSJO bigram model on four noise-corrupted tesdmtsed  €valuated on a simple AURORA 2 and more complex AURORA
on NIST Nov'92 WSJO test set. 4 noise-corrupted speech recognition tasks. Consistent gains has
been observed over clean trained and VTS adaptively trained VTS-

System | Crit Class n BTest sgt 5 Avg compensated HMM systems.
[HMM [ ML | - 71 1563 122 23.1]17.8] 8. REFERENCES
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