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Abstract

The discriminative approach to speech recognition offers several ad-

vantages over the generative, such as a simple introduction of addi-

tional dependencies and direct modelling of sentence posterior prob-

abilities/decision boundaries. However, the number of sentences that

can possibly be encoded into an observation sequence can be vast,

which makes the application of models, such as support vector ma-

chines, difficult in speech recognition tasks. To overcome this issue,

it is possible to apply acoustic code-breaking in order to decompose

the whole-sentence recognition problem into a sequence of indepen-

dent word recognition problems. However, the amount of training

data that is usually available provides sufficient coverage for only a

small number of most frequent words. Alternatively, a related solution

from the generative approach can be adopted, where decomposition

into sub-sentence units is introduced directly into the model. There

have been previously proposed decompositions into words, phones and

states. Among those approaches, the decomposition into phones re-

tains sufficiently long-span dependencies and good coverage in the

training data. However, in order to make it more generally applica-

ble, the word- and phone-level modelling need to be combined. In

addition, the use of context-dependent phones useful for large vocab-

ulary tasks need to be investigated.

The first contribution of this thesis is extended acoustic code-breaking,

where the training data insufficiency problem is addressed by synthe-

sising examples for under-represented words.

The second contribution of this thesis is a discriminative model that

combines context-dependent phone-level acoustic modelling with word-

level language and pronunciation modelling.
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Ã(·) approximate phone arc accuracy

xxii



NOMENCLATURE

ζi,j(t) state-state occupancy

Chapter 3

α discriminative model parameters

αp discriminative model prior parameters

αsvm SVM parameters

φ(·) feature-function

δ(·) delta function

k(·) kernel

F(·) final objective function

Fcml(·) CML objective function

Flm(·) large margin objective function

Fmbr(·) MBR objective function

∇ gradient

ξr slack variable

Z(·) normalisation term

Chapter 5

a segment/arc

ai segment/arc identity

a segmentation/arc sequence

αam discriminative acoustic model parameters

αlm discriminative language model parameters

αpm discriminative pronunciation model parameters

xxiii



NOMENCLATURE

{a} index of observations for segment/arc
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Chapter 1

Introduction

There are many applications involving recognition of patterns, such as speech

waveforms, images and protein sequences. Examples include speech [106, 250] and

speaker [58] recognition, document image analysis [48] and remote sensing [226],

bioinformatics [193]. Among the various frameworks in which pattern recognition

has been formulated, the statistical approach has been most intensively studied

and used in practice [102]. The statistical framework has been also widely adopted

for speech recognition [60, 106, 188, 263] - the problem domain of this thesis.

The statistical framework assumes that speech waveform can be represented

by a sequence of observation vectors O1:T = o1, . . . ,oT and that this sequence

encodes sentence ω [263]. In order to decode the sentence, a mapping, optimal in

some meaningful sense, from observation sequences to sentence identities is learnt

[106, 263]. One approach is to learn an indirect mapping from the audio to the

text by combining acoustic, p(O1:T |ω), and language, P (ω), models using Bayes’

rule1 to yield sentence ω̂ maximising a-posteriori probability [263]

ω̂ = arg max
ω
{p(O1:T |ω)P (ω)} (1.1)

These models are usually called generative models since by sampling from the

acoustic and language model it is possible to generate synthetic examples of the

observation sequences and sentences [17].2 This is the basis of a generative ap-

1According to Bayes’ rule, P (ω|O1:T ) = p(O1:T |ω)P (ω)
p(O1:T ) , where p(O1:T ) is constant for all ω.

2Chapter 4 discusses several approaches how the observation sequences can be sampled.
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proach to speech recognition [89]. Another approach is to learn a direct map from

the audio to the text, for instance, using a direct model of posterior probability,

P (ω|O1:T ), which yields sentence ω̂ maximising the a-posteriori probability [127]

ω̂ = arg max
ω
{P (ω|O1:T )} (1.2)

Direct models are usually called discriminative models since they directly dis-

criminate between the different values of ω [17]. This is the basis of a discrimi-

native approach to speech recognition [89]. For speech recognition applications,

both approaches must be able to handle the variable-length nature of observa-

tion sequences and vast number of possible sentences, model dependencies in the

observation sequence and stay robust to speaker and noise conditions [70, 73, 75].

The generative approach to speech recognition discussed in Chapter 2 is

based on a beads-on-a-string model, so called because all sentences are repre-

sented by concatenating a sequence of precomputed sub-sentence, such as word

or phone, models together [263]. These sub-sentence models are hidden Markov

models (HMM) [188], an example of sequence models [73, 224], capable of han-

dling variable-length observation sequence. This is the basis of HMM-based ap-

proach to speech recognition. The major issue that is often cited with the HMM-

based approach are conditional independence assumptions underlying the HMM

[75, 233, 234, 270]. In particular, the individual observations are assumed to be

independent given the hidden states that generated them [75]. Although these

assumptions are the key to efficient parameter estimation from large quantities of

training data and decoding with these models [188], they severely limit the range

of possible dependencies that can be modelled and are believed to be partly re-

sponsible for unsatisfactory performance in many situations [72].

The HMM-based approaches have significantly evolved over the years [75, 188].

In particular, modern HMM-based speech recognition systems usually adopt a

multi-pass architecture, where the sentence ω̂ in equation (1.1) is determined

in stages [75]. The first stage in the multi-pass architecture usually consists of

producing a large number of hypothesised sentence identities in a compact lattice

format. The lattice, compared to solving the problem in equation (1.1) in a single

pass, can be efficiently re-scored using more advanced acoustic and language

2



CHAPTER 1: INTRODUCTION

models [265] or converted into a confusion network that decomposes encoded

hypotheses into a sequence of independent binary or multi word confusions [52,

150] for a more elaborate decoding [26, 54, 218] or to provide confidence indication

about reliability of the hypothesised sentence [88].

The discriminative approach to speech recognition discussed in Chapter 3, 4,

5 and 6 have not been previously investigated for tasks other than smaller vo-

cabulary systems because of the complexity associated with learning direct maps

from observation sequences to sentences [75]. In particular, handling variable-

length observation sequences and vast number of possible sentences with the

discriminative models, such as maximum entropy model (MaxEnt) and support

vector machines (SVM), is complicated. A number of approaches in the form

of feature-functions have been proposed to map variable-length observation se-

quences into fixed-dimensional feature space. In order to handle the vast number

of possible sentences, two major solutions have been proposed. The first solution,

acoustic code-breaking [68, 128, 245], consists of decomposing the whole-sentence

recognition problem into a sequence of independent word recognition problems,

for instance, using confusion networks. The word recognition problems then can

be independently addressed by using MaxEnt [278] and SVM [247] classifiers.

Compared to the HMM, this solution reduces the range of dependencies possi-

ble to model from the sentence to word level. The second solution, structured

discriminative models [85, 127, 128, 281], adopts a similar to the beads-on-a-

string representation, where all sentences are represented by concatenating a se-

quence of precomputed sub-sentence models together [73]. Compared to acoustic

code-breaking, this solution provides a model of the entire sentences. A range

of structured discriminative models have been proposed. Some of them, such

as maximum entropy Markov models (MEMM), have structures similar to the

HMM [127]. Others, such as segmental conditional random fields (SCRF), apply

conditional independence assumptions at the word segment level [281]. Com-

pared to the HMM and MEMM, these models reduce the range of dependences

possible to model from the sentence to word segment level, similar to the acoustic

code-breaking.

One limitation of acoustic code-breaking is that it can not be applied in situa-

tions where limited or no examples of the words exists in the training data. This
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has limited previous applications to re-scoring only a small number of the most

frequently occurring word-pair confusions. The first contribution of this thesis

is extended acoustic code-breaking, where the training data for under represented

words is artificially generated. Here, a simplified form of speech synthesis is

sufficient, where the observation sequences rather than waveforms are required.

Thus, many of the issues commonly associated in speech synthesis with wave-

form generation, such as excitation and prosody [166], are not relevant to this

approach.

One limitation of word-level structured discriminative models is that the train-

ing data do not provide enough coverage of all words. This can make robust pa-

rameter estimation with these models complicated. One solution to this problem

would be to adopt the extended acoustic code-breaking to generate data for com-

plete sentences. However, this has not been investigated in this thesis. Another

solution is to adopt a phone-level structured discriminative model [128]. Although

these models reduce the range of dependencies possible to model from the word

to phone level, the use of phone-level discriminative acoustic models is believed

to be more appropriate for medium-to-large vocabulary speech recognition [191].

The previous work with those models have considered small vocabulary tasks

based on words [278] or monophones [128]. For larger vocabulary tasks, it is

common to adopt context-dependent phones to systematically address variation

caused by co-articulation, stress and other factors [144]. The second contribution

of this thesis are context-dependent phone structured discriminative models. In

order to address large number of possible context-dependent phones and limited

amounts of training data, the use of model-level phonetic decision trees clustering

is proposed for tying context-dependent phone parameters.

This rest of this thesis is split into 8 chapters. A brief chapter-by-chapter

breakdown is given below.

Chapter 2 provides an overview of the HMM-based approach to speech recog-

nition. In particular it discusses the HMM and its conditional independence

assumptions, beads-on-a-string modelling, approaches available for HMM param-

eter estimation, decoding and lattice generation, adaptation to speaker and noise

conditions. In addition, several approaches to language modelling are discussed.

4



CHAPTER 1: INTRODUCTION

Chapter 3 is the first chapter discussing the discriminative approach to speech

recognition. An overview of the standard, unstructured, discriminative models

including the MaxEnt and SVM are given. A simple example demonstrates how

variable-length observation sequences can be handled with these models.

Chapter 4 is split into two parts. The first part discusses acoustic code-

breaking and details two approaches to how the whole-sentence recognition prob-

lem can be decomposed into a sequence of independent word recognition prob-

lems. The second part introduces extended acoustic code-breaking to address

situations where limited or no examples of the words exist in the training data.

Chapter 5 provides an overview of structured discriminative models. In partic-

ular, it discusses the structures or beads-on-a-string representations adopted with

the MEMM, CAug and SCRF models, handling of hidden variables, parameter

estimation and adaptation to speaker and noise conditions.

Chapter 6 is the last chapter discussing the discriminative approach to speech

recognition. An overview of feature-functions proposed for handling variable-

length sequences is given. In particular, a powerful form based on generative

models, such as the HMM, is discussed.

Chapter 7 introduces context-dependent phone CAug models. In particular,

it discusses how context-dependent phone parameters can be tied to ensure ro-

bustness of the estimates, how feature-functions based on generative models can

be applied and how the underlying generative models can be re-estimated to yield

more powerful forms of CAug models.

Chapter 8 provides experimental verification to the extended acoustic code-

breaking and CAug models on three speech recognition tasks where vocabulary

ranges from small to medium-to-large.

Chapter 9 concludes with a summary of the thesis and suggestions for future

work with the extended acoustic code-breaking and CAug models.

————————————————————————
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Chapter 2

Generative approach to speech

recognition

As noted in Chapter 1, the generative approach to speech recognition is based on

combining acoustic and language models to produce hypothesised sentence. This

is reflected in the architecture of a typical speech recognition system in Figure 2.1

[75]. The first stage in Figure 2.1, called feature extraction, is responsible for pre-

SPEECH

. . .

SENTENCE:

OBSERVATIONS:

. . .=

321 4

EXTRACTION

FEATURE
DECODER

ACOUSTIC

MODEL

1:T
O

MODEL

LANGUAGE

ω = {the dog chased the cat}

Figure 2.1: An architecture for generative approach to speech recognition

processing speech to yield an observation sequence. Given observation sequence,

the second stage in Figure 2.1 employs decoder supplied with the acoustic and

language model to produce the hypothesised sentence.

As noted in Chapter 1, different observation sequences have different lengths.

In order to handle variable-length sequences, this chapter discusses sequence mod-

els [73, 224], in particular, hidden Markov models (Section 2.2). As noted in

Chapter 1, the whole-sentence modelling becomes quickly impractical as the num-
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ber of possible sentences increases. In order to address this issue, a structure,

such as the beads-on-a-string representation [263], can be introduced into the

hidden Markov model (Section 2.3). The following three sections discuss several

other practical aspects including parameter tying (Section 2.4), language mod-

elling (Section 2.5), decoding and lattice generation (Section 2.6), discriminative

parameter estimation (Section 2.7) and adaptation (Section 2.8).

2.1 Observations

A range of schemes exist to extract observations from the speech signal such

as linear prediction coding coefficients (LPC) [151] based on linear prediction

analysis [148], Mel-frequency cepstral coefficients (MFCC) [41] based on spectral

and homomorphic analyses [175, 176] and perceptual linear prediction coefficients

(PLP) [92] based on linear prediction and spectral analyses. Common to all these

scheme is a transformation of speech into observation sequence

O1:T = o1,o2, . . . ,ot, . . . ,oT (2.1)

where T is the number of observations, 1 : T is the index range 1, . . . , T . The

feature extraction stage aims to retain in the observation sequence the salient

properties of the speech whilst compressing the latter [189]. The rest of this

section provides brief details on the MFCC scheme adopted in this thesis.1

2.1.1 Mel-frequency cepstral coefficients

The feature extraction stage based on MFCCs is illustrated by Figure 2.2. Note

that prior to performing feature extraction it is common to apply a pre-emphasis

(not shown in Figure 2.2) in order to spectrally flatten the speech signal [265].

The procedure can be summarised in 6 steps as follows.

(1) Group samples into blocks of 10 ms each. The length of blocks in tens of

millisecond is motivated by a quasi-stationarity of vocal tract, responsible

1MFCCs are also utilised by a vector Taylor series noise compensation described in Sec-
tion 2.8 and adopted in the experiments reported in Chapter 8.
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RECOGNITION

(1)

t
s..., o  , ...

block

window

filter bank

(2)

(3)

(4)

(5)spectrum

DFT

LOG DCT

25 ms

10 ms

(6)

Figure 2.2: Feature extraction based on Mel-frequency cepstral coefficients

for producing speech, at these time intervals [206].

(2) Form a window of samples of 25 ms by appending the samples of adjacent

blocks: t−1 and t+1. The use of overlapping windows as the units of anal-

ysis is adopted to provide smoothing between vectors of feature coefficients

[189]. Furthermore, in order to minimise the adverse effect of discontinuities

at the window boundaries, a smoothing window, such as Hamming window

[189], is commonly applied [188].

(3) Apply a discrete Fourier transform (DFT) to compute spectrum [96].

(4) Pass the spectrum through a filter bank, where bins are spaced according to

a Mel-scale [41], which approximates the frequency response of the human

ear [75].

(5) Transform the output of filter bank into logarithmic domain [96].

(6) Apply a discrete cosine transformation (DCT) to yield the MFCC observa-

tion vector os
t . The goal of the DCT is to approximately de-correlate feature

vector elements so that diagonal rather than full covariance matrices can

be used in hidden Markov models [96, 99].
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The feature extraction then proceeds to the next block, where the steps two to

six are repeated. At the end of the feature extraction stage the complete MFCC

observation sequence is obtained

Os
1:T = os

1,o
s
2, . . . ,o

s
T (2.2)

2.1.2 Dynamic coefficients

In sequence models such as the HMM, the use of additional, dynamic, information

was found [59] to be advantageous to compensate for the conditional independence

assumptions made by these models (Section 2.2) [75]. The dynamic information

typically comes in the form of order n regression coefficients [265]

∆(1)os
t =

1

2
∑D

τ=1 τ
2

D∑
τ=1

τ(os
t+τ − os

t−τ )

... (2.3)

∆(n)os
t =

1

2
∑D

τ=1 τ
2

D∑
τ=1

τ(∆(n−1)os
t+τ −∆(n−1)os

t−τ )

where D is a regression window length. For example, if n = 2 and D = 1 then

the first and second order dynamic coefficients can be expressed as the following

simple differences

∆(1)os
t =

1

2

(
os
t+1 − os

t−1

)
(2.4)

∆(2)os
t =

1

2

(
∆(1)os

t+1 −∆(1)os
t−1

)
=

1

4
os
t+2 −

1

2
os
t +

1

4
os
t−2 (2.5)

The first and second order regression coefficients are usually called delta and

acceleration coefficients [265]. The observation vectors produced by the feature

extraction stage are usually called static coefficients [75]. The complete observa-

tion vector ot is obtained by appending the delta, acceleration and higher-order

regression coefficients to the static coefficients

ot =
[
osT

t ∆(1)osT

t . . . ∆(n)osT

t

]T
(2.6)
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In the rest of this thesis each observation vector will be assumed to have d ele-

ments, i.e., ot ∈ Rd for all t. The (complete) observation sequence is obtained by

O1:T = o1,o2, . . . ,oT (2.7)

2.2 Hidden Markov models

For different length speech waveforms, the feature extraction stage yields different

length observation sequences. In order to handle variable length sequences, this

thesis makes use of sequence models [73]. In this section a popular example is

considered - the hidden Markov model (HMM) [12, 188]. The HMM, as adopted

in this thesis, is a generative model characterised by [75, 115, 188]

• N , the number of states in the HMM. The individual states are denoted by

S1, S2, . . . , SN , a hidden state at time t by qt and the observed state Sj at

time t by qjt .

• π = {πi}, the initial state distribution, where

πi = P (qi1) (2.8)

where P (qi1) is the probability of observing state Si at time t = 1.

• A = {ai,j}, the state transition probability matrix, where

ai,j = P (qjt |qit−1), 1 ≤ i, j ≤ N (2.9)

where P (qjt |qit−1) is the probability of a transition from the state Si occu-

pied at time t − 1 to the state Sj occupied at time t + 1. The transition

probabilities must satisfy

∀ i, ∀ j ai,j ≥ 0; ∀ i
N∑
j=1

ai,j = 1 (2.10)

to ensure that each row of A is a valid probability mass function. The
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2.2. HIDDEN MARKOV MODELS

inherent state duration density has an exponential form

p(T |Sj) = aT−1
j,j (1− aj,j) (2.11)

which gives the probability of staying T times in state Sj.

• B = {bj(·)}, the set of observation probability measures, where

bj(ot) = p(ot|qjt ) (2.12)

is the state output distribution specifying the likelihood of state. A state Sj

for which bj(·) is defined is called emitting. In the opposite case it is called

non-emitting.

The complete set of HMM parameters is denoted by λ = (A,B,π). When more

than one HMM is considered then λ refers to the set of all HMM parameters.

The individual HMM parameters for sentence ω are denoted by λ(ω).

The state output distributions usually adopt probability density functions in

the form of Gaussian mixture models (GMM) [115]

bj(ot) =
M∑
m=1

cj,mN(ot;µj,m,Σj,m) (2.13)

where M is the number of mixture components and

N(ot;µj,m,Σj,m) = (2π)−
d
2 |Σj,m|−

1
2 exp

(
−1

2
(ot − µj,m)T Σ−1

j,m (ot − µj,m)

)
(2.14)

is a multivariate normal distribution or Gaussian with mean vector µj,m and

covariance matrix Σj,m. The individual Gaussians in equation (2.13) can be

referred to by

bj,m(ot) = N(ot;µj,m,Σj,m) (2.15)
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In order to ensure that the state output distributions are valid probability density

functions, the mixture component weights must satisfy

∀ j, ∀ m cj,m ≥ 0; ∀ j
M∑
m=1

cj,m = 1 (2.16)

The number of mixture components, M , can be set using simple approaches such

as mixture splitting [265] or using more refined approaches such as those described

in [34, 69, 143].

Provided the corresponding transition probability is not zero, the HMM can

make transition from one state to another. For speech recognition tasks, the

HMM usually adopts strictly left-to-right topology [10]. The HMM with strictly

21 3 4 5

(a) Strictly left-to-right topology

q q
t

o ot

1t

t

−

−1

(b) Dynamic Bayesian Network

Figure 2.3: A hidden Markov model. (a) Example of strictly left-to-right topol-
ogy (blank circle - non-emitting state, shaded circle emitting state, arrow - tran-
sition). (b) A dynamic Bayesian network associated with HMM in Figure 2.3b;
for simplicity single Gaussian component state output distributions, M = 1, are
assumed (blank square - discrete hidden state, shaded circle - continuous obser-
vation, arrow - statistical dependency).

left-to-right topology in Figure 2.3a does not allow any of the states to be skipped

nor transition to be performed in the backward direction.

It is common to visualise assumptions implied by statistical models using

dynamic Bayesian networks (DBN) [15, 77]. For the HMM in Figure 2.3a, the

corresponding DBN is shown in Figure 2.3b. The DBN shown illustrates two

assumptions: state and observation conditional independence implied by equa-

tion (2.9) and (2.12) respectively. The first assumption can be stated as follows:

any state is independent of the rest given the previous state [75]. This assumption

is reflected in Figure 2.3b by the arrow connecting state qt only with the previous

13
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state qt−1. The second assumption can be stated as follows: any observation is

independent of the rest given the state that generated it [75]. This assumption

is reflected in Figure 2.3b by the arrow connecting observation ot only with the

corresponding state qt.

The likelihood of a particular state sequence

q1:T = q1, q2, . . . , qT (2.17)

to produce the observation sequence O1:T is computed by multiplying the corre-

sponding transition probabilities and likelihoods along time t [75]

p(O1:T ,q1:T |ω;λ) = aq0,q1

T∏
t=1

bqt(ot)aqt,qt+1 (2.18)

where q0 = S1 and qT+1 = SN . In practice, only observation sequences are

given whilst the underlying state sequences are “hidden”, hence the name hidden

Markov model. The likelihood assigned by the HMM to observation sequence

O1:T is obtained by summing the likelihood in equation (2.18) over all possible

state sequences [188]

p(O1:T |ω;λ) =
∑
q1:T

aq0,q1

T∏
t=1

bqt(ot)aqt,qt+1 (2.19)

Note that even for small numbers of states and observations, the use of direct

summation becomes computationally infeasible due to a large number of possible

state sequences [188]. Hence, an algorithm capable of computing equation (2.19)

efficiently is required and will be described in Section 2.2.2.

The use of HMM in practical applications requires solutions to the following

three standard problems [188]:

• Optimal state sequence. Given observation sequence O1:T , sentence ω

and HMM parameters λ, how to find the corresponding state sequence q1:T

optimal in some meaningful sense?

• Likelihood. Given observation sequence O1:T , sentence ω and HMM pa-

rameters λ, how to compute the likelihood p(O1:T |ω;λ) efficiently?
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• Parameter estimation. How to estimate HMM parameters λ?

Solutions to these problems are considered in Sections 2.2.1, 2.2.2 and 2.2.3.

2.2.1 Viterbi algorithm

Given observation sequence O1:T , sentence ω and HMM parameters λ, the cor-

responding state sequence q1:T is not usually known. There are several possible

criteria how one state sequence, optimal in some meaningful sense, can be se-

lected [188]. Among them, a criterion based on maximising the likelihood in

equation (2.18) is most commonly used. The state sequence which satisfies this

criterion is called the most likely state sequence and will be denoted by q̂1:T . The

problem of finding the most likely state sequence can be stated as [188]

q̂1:T = arg max
q1:T

{
aq0,q1

T∏
t=1

bqt(ot)aqt,qt+1

}
(2.20)

A formal technique, known as Viterbi algorithm [188], is commonly used to find

the most likely state sequence q̂1:T .

In order to find the most likely state sequence, the Viterbi algorithm intro-

duces the following quantity [188]

φj(t) = max
q1:t−1

{
p(O1:t,q1:t−1, q

j
t |ω;λ)

}
(2.21)

which is the maximum likelihood of observing the partial observation sequence

O1:t and then being in state Sj at time t [75]. The Viterbi algorithm computes

equation (2.21) recursively based on the following recursion [265]

φj(t) = max
i
{φi(t− 1)ai,j} bj(ot) (2.22)

with the initial conditions given by [265]

φ1(1) = 1, φ2(1) = a1,2b2(o1), . . . (2.23)
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Upon termination at time t = T , the likelihood of q̂1:T [265]

p(O1:T , q̂1:T |ω;λ) = max
i
{φi(T )ai,N} (2.24)

In order to retrieve the most likely state sequence, the argument which maximised

equation (2.22) is recorded by means of additional quantities

ψj(t) = arg max
i
{φi(t− 1)ai,j} (2.25)

The most likely state sequence is retrieved through the following recursion [188]

q̂t = ψq̂t+1(t+ 1) (2.26)

with the initial condition given by

q̂T = arg max
i
{φi(T )ai,N} (2.27)

The computational complexity of the Viterbi algorithm is O(N2T ) [49].

2.2.2 Forward-backward algorithm

As noted earlier, the direct computation of likelihood based on equation (2.19)

even for small numbers of states and observations is infeasible [188]. However,

a formal technique, known as forward-backward algorithm [11, 188], is commonly

used to efficiently compute the likelihood.

Given observation sequence O1:T , sentence ω and HMM parameters λ, the

forward-backward algorithm introduces the following quantity, known as forward

probability [188]

αj(t) = p(O1:t, q
j
t |ω;λ) (2.28)

The forward probability αj(t) is the likelihood of observing the partial observation

sequence O1:t and then being in state Sj and time t. The forward-backward
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algorithm computes equation (2.28) based on the following recursion [265]

αj(t) =

[
N−1∑
i=2

αi(t− 1)ai,j

]
bj(ot) (2.29)

with initial conditions given by [265]

α1(1) = 1, α2(1) = a1,2b2(o1), . . . (2.30)

Upon termination at time t = T , the forward probability at the final state SN is

computed by [265]

αN(T ) =
N−1∑
j=2

αj(T )aj,N (2.31)

which is the likelihood of observation sequence O1:T given class ω and HMM

parameters λ [265]

p(O1:T |ω;λ) = αN(T ) (2.32)

In addition to forward probabilities, the forward-backward algorithm intro-

duces the following quantity, known as backward probability [188]

βi(t) = p(Ot+1:T |qit, ω;λ) (2.33)

The backward probability βi(t) is the likelihood of observing the partial observa-

tion sequence Ot+1:T given that at time t the HMM is in state Si. This probability

can be computed based on the following recursion [265]

βi(t) =
N−1∑
j=2

ai,jbj(ot+1)βj(t+ 1) (2.34)

with initial condition given by [265]

βi(T ) = ai,N (2.35)

Note that differently to forward probabilities computation is performed starting

at time t = T and terminating at time t = 1. Upon termination at time t = 1,
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the backward probability at the initial state S1 is computed by [265]

β1(1) =
N−1∑
j=2

a1,jbj(o1)βj(1) (2.36)

which is the likelihood of observation sequence O1:T given class ω and HMM

parameters λ [265]

p(O1:T |ω;λ) = β1(1) (2.37)

The computational complexity of forward-backward algorithm is O(N2T ) [49].

Compared to equation (2.19), the likelihood defined by equation (2.32) or (2.37)

requires orders of magnitude less computation [188].

The forward-backward algorithm can be also used to compute a posterior

probability of occupying state Sj at time t [188]

γj(t) = P (qjt |O1:T , ω;λ) (2.38)

The posterior probability γj(t) is computed by means of forward probability αj(t),

backward probability βj(t) and likelihood p(O1:T |ω;λ) by [188]

γj(t) =
αj(t)βj(t)

p(O1:T |ω;λ)
(2.39)

In the following, these posterior probabilities are called state occupancies. A

posterior probability of occupying state Sj and component m can be obtained by

[265]

γj,m(t) =
αj(t)

cj,mbj,m(ot)

bj(ot)
βj(t)

p(O1:T |ω;λ)
(2.40)

In the following, these posterior probabilities are called state-component occupan-

cies. In addition to occupancies, a posterior probability of occupying state Si at

time t and state Sj at time t+ 1 can be obtained by

ζi,j(t) =
αi(t)ai,jbj(ot+1)βj(t+ 1)

p(O1:T |ω;λ)
(2.41)

In the following, these posterior probabilities are called state-state occupancies.
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As will be shown in Sections 2.2.3 and 2.7, all these occupancies play a funda-

mental role in estimating HMM parameters.

2.2.3 Maximum likelihood estimation

As noted earlier, the use of HMMs in practical applications requires knowing

how to estimate HMM parameters. The observation sequences used to estimate

HMM parameters are called training sequences [188]. This thesis is concerned

only with a supervised training, where reference transcriptions are provided for

all training sequences, whilst alternative settings, such as lightly supervised and

unsupervised training [75], are not examined. Thus, the training data D is

D =
{{

O
(1)
1:T1

, ω1

}
, . . . ,

{
O

(r)
1:Tr

, ωr

}
, . . . ,

{
O

(R)
1:TR

, ωR

}}
(2.42)

where ωr is the r-th reference transcription and O
(r)
1:Tr

is the r-th observation

sequence consisting of Tr observations. There are several criteria how one set

of HMM parameters, optimal in some meaningful sense, can be selected [8, 12].

Among them, a criterion based on maximising the likelihood in equation (2.18)

will be discussed in the rest of this section.

The maximum likelihood (ML) criterion [12] aims to maximise the likelihood

that the HMM generates the training data. The ML objective function may be

expressed as [75]

Fml(λ;D) =
1

R

R∑
r=1

log(p(O
(r)
1:Tr
|ωr;λ)) (2.43)

There is no known way to analytically solve for the HMM parameters which

maximise equation (2.43) [188]. In order to address this issue, a number of al-

ternative approaches, such as the standard multi-dimension optimisation [171]

and Baum-Welch algorithm [12], have been considered [188]. The use of stan-

dard multi-dimension optimisation techniques [171] may result in slow training

times as the dimensionality of this problem is usually large [61]. In contrast, the

Baum-Welch algorithm has been empirically found to converge in few iterations

and is commonly adopted [75, 188, 265].
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The Baum-Welch algorithm - an instance of expectation-maximisation (EM)

technique [45] - is an iterative procedure where, given the current set of HMM

parameters λ, a new set of HMM parameters λ̂ is found such that [188]

Fml(λ̂;D) ≥ Fml(λ;D) (2.44)

is guaranteed to hold. In order to find λ̂, an auxiliary function Q(λ, λ̂;D) is

introduced [188]

Q(λ, λ̂;D) =
1

R

R∑
r=1

∑
q
(r)
1:Tr

P (q
(r)
1:Tr
|O(r)

1:Tr
, ωr;λ) log

(
p(O

(r)
1:Tr

,q
(r)
1:Tr
|ωr; λ̂)

)
(2.45)

where q
(r)
1:Tr

is a state-component sequence, P (q
(r)
1:Tr
|O(r)

1:Tr
, ωr;λ) is a posterior prob-

ability of q
(r)
1:Tr

,

p(O
(r)
1:Tr

,q
(r)
1:Tr
|ωr; λ̂) = âqr0 ,qr1

Tr∏
t=1

ĉqrtN(o
(r)
t ; µ̂qrt

, Σ̂qrt
)âqrt ,qrt+1

(2.46)

is the likelihood of q
(r)
1:Tr

to produce O
(r)
1:Tr

based on the new set of HMM pa-

rameters. Although Q(λ, λ̂;D) contains the summation over state-component

sequences, it can be re-written in terms of state-component γ
(r)
j,m(t) and state-

state ζ
(r)
i,j (t) occupancies (Section 2.2.2) in the following way [135, 142]

Q(λ, λ̂;D) =
1

R

R∑
r=1

Tr∑
t=1

∑
{j,m}

γ
(r)
j,m(t)

(
log(ĉj,m) + log(N(o

(r)
t ; µ̂j,m, Σ̂j,m))

)
+

1

R

R∑
r=1

Tr∑
t=1

∑
{i,j}

ζ
(r)
i,j (t) log(âi,j) (2.47)

Not only it is possible to analytically solve for the HMM parameters which max-

imise Q(λ, λ̂;D) but it was also proved that maximising Q(λ, λ̂;D) also increases

Fml(λ;D) [12, 113, 142]. The derivation of closed-form expressions for the new

set of HMM parameters has been extensively covered in the literature [113, 142].

As an illustrative example, consider estimating HMM mean vectors and co-
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variance matrices. Given the training data, the forward-backward algorithm

described in Section 2.2.2 is applied to each training observation sequence to

accumulate the following statistics

γj,m =
R∑
r=1

Tr∑
t=1

γ
(r)
j,m(t) (2.48)

θj,m =
R∑
r=1

Tr∑
t=1

γ
(r)
j,m(t)o

(r)
t (2.49)

Θj,m =
R∑
r=1

Tr∑
t=1

γ
(r)
j,m(t)o

(r)
t o

(r)T

t (2.50)

where γ
(r)
j,m(t) is the state-component occupancy in the r-th training sequence.

This statistics is usually called the HMM occupancy, mean and covariance statis-

tics respectively [265]. This computation corresponds to the expectation step (E)

of the EM technique [75]. Given the statistics, the new HMM mean vector and

covariance matrix are obtained by [188]

µ̂j,m =
θj,m
γj,m

(2.51)

Σ̂j,m =
Θj,m

γj,m
− µ̂j,mµ̂

T
j,m (2.52)

These update rules correspond to the maximisation step (M) of EM technique [75].

The statistics used by the algorithm can be accumulated for one or more training

sequences independently of the rest, which allows efficient parallel implementation

[265]. The algorithm is usually applied few times, each time replacing λ with λ̂

and repeating the E and the M step to obtain new λ̂ [172].1

2.3 Composite sentence modelling

The HMM described in Section 2.2 was presented as the whole-sentence statis-

tical model p(O1:T |ω;λ) which associates parameters λ(ω) with sentence ω. As

1In practice, a typical built of HMM-based acoustic models, such as the one described in
HTK manual [265], is a multi-stage procedure, where each stage involves 3-4 ML iterations.
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the number of possible sentences increases such approach quickly becomes im-

practical. In order to address this issue, a structure can be introduced into the

statistical model, where all sentences are broken down into sub-sentence units and

modelled by combining units into a composite sentence statistical model [73, 238].

The next Section 2.3.1 discusses selection of appropriate sub-sentence units. The

following Section 2.3.2 discusses how HMM-based composite sentence models can

be constructed for a given selection of sub-sentence units.

2.3.1 Unit selection

The set of sub-sentence units is usually called vocabulary [75]. The simplest

choose of sub-sentence units are words [23, 188, 212]. An example decomposition

of sentence ω into L-length word sequence w1:L is

ω = {<s> the dog chased the cat </s>}
w1:7 = {<s>, the, dog, chased, the, cat, </s>}

(2.53)

where <s> and </s> mark the beginning and end of the sentence.

As the size of vocabulary increases it becomes harder to obtain good cover-

age of words by the training data so for large vocabulary tasks it is more com-

mon to adopt sub-word units such as phones [75, 188, 264]. The set of context-

independent phones are usually called monophones [75]. In order to decompose

words into phone units, a pronunciation dictionary is required. The pronuncia-

tion dictionary specifies one or more possible phone sequences together with the

corresponding pronunciation probabilities for each word. An excerpt in Table 2.1,

where the last two entries illustrate the use of multiple pronunciations, shows one

typically used format [265].

The less complex and fewer units are selected, the more variable they are [188].

For instance, the same phone may be realised differently due to co-articulation,

stress and other factors [144]. Acoustic models that capture this variability are

expected to provide a more consistent and accurate representation of speech [174].

One approach to capture that variability in a systematic way is to make use of

context-dependent phone units [75, 174]. A simple example of context-dependent

phone unit is a triphone, which takes both left and right context into account.
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Word
Pronunciation Phone

probability sequence

<s> 1.0 sil

</s> 1.0 sil

cat 1.0 /k/, /ae/, /t/

chased 1.0 /ch/, /ey/, /s/, /t/

dog 1.0 /d/, /ao/, /g/

the 0.7 /dh/, /iy/

the 0.3 /dh/, /ah/

Table 2.1: An excerpt from pronunciation dictionary

For instance, /t/ preceded by /s/ and followed by /dh/ is the triphone s-t+dh.

The context-dependence is known to spread across word boundaries which is

essential for capturing many important phonological processes [75]. The resulting

set of context-dependent phone units is called cross-word. Figure 2.4 illustrates

a complete decomposition of sentence into context-dependent phones, where the

most likely according to Table 2.1 pronunciations have been adopted.

sil−dh+iy dh−iy+d iy−d+ao ae−t+sil. . .

. . .

. . .

/iy/ /d/ /t/

sil

the sil

sil

sil

sil

sil

/dh/

<s>  the  dog  chased  the  cat </s>

Figure 2.4: An example of decomposing sentence into words, words into phones
and converting phones into context-dependent phones

In general, the more context is taken into account, the more accurate mod-

elling of speech is expected [9]. However, as the amount of context taken into

account increases, it becomes harder to obtain good coverage in the training data

[174]. For instance, the use of cross-word set typically yields a large number of
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units with few examples [266]. Furthermore, some units required during testing

may have not been seen in the training data at all. This problem of unseen

units becomes the more severe, the more context is taken into account [174]. A

standard approach to address these issues will be discussed in Section 2.4.

2.3.2 Composite HMMs

Given the set of sub-sentence units, rather than associating the statistical model

parameters with individual sentences these now can be associated with the in-

dividual sub-sentence units. The composite sentence statistical model is then

formed by combining multiple units together. When the HMM is used as the sta-

tistical model then the composite sentence statistical model is called a composite

HMM [172]. The composite HMM may be constructed by ”gluing” the HMMs

associated with the units together in two steps as illustrated by Figure 2.5 where

these units are words. The first step joins the individual HMMs by means of

1
w w

2
w

3

(a) Three HMMs

(b) Connecting by empty transitions

(c) Merging into single composite HMM

Figure 2.5: An example of converting a sequence of three HMMs into single
composite HMM.

empty transitions as shown by the dashed arrows in Figure 2.5b. The second

step subsumes exit, empty and entry transitions of the HMMs into intra-model

transitions as shown by the light arrows in Figure 2.5c. If each unit in w1:L is

modelled by an N -state HMM then the composite HMM for word sequence w1:L
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is L(N − 2) + 2-state HMM with parameters λ(ω) = {λ(w1), . . . ,λ(wL)} such that

p(O1:T |ω;λ) = p(O1:T |w1:L;λ) =
∑
q1:T

aq0,q1

T∏
t=1

bqt(ot)aqt,qt+1 (2.54)

where q1:T is a state sequence in the composite HMM. The use of units other

than words can be handled in a similar way [172]. The composite HMM thus con-

structed can adopt the Viterbi algorithm (Section 2.2.1), the forward-backward

algorithm (Section 2.2.2) and ML parameter estimation (Section 2.2.3) providing

the solutions to the three standard HMM problems described in Section 2.2.

2.4 Phonetic decision trees

As noted earlier, the use of context-dependent phone units introduces two con-

flicting requirements: for accurate modelling of speech the amount of both context

and training data per unit should be as large as possible. In order to address the

data sparsity problem, the complete set of logical units can be clustered into a

reduced set of physical units [75]. The standard approach, is based on a top-down

phonetic decision tree clustering [174, 266].

A phonetic decision tree is a binary tree in which a question is attached to

each node [266]. For instance, in Figure 2.6, the question ”Is the phone on the left

of the current phone a vowel?” is attached to the root node. If the answer is ”yes”

Y

Left−F?Right−C?

Y N

N

NY

Left−V?

Figure 2.6: An example of phonetic decision tree

then the question attached to the left child node is asked, otherwise the question
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attached to the right child node is asked. In the end, a terminal node is reached

where no questions are asked as illustrated by shaded circles in Figure 2.6.

There are options how clustering of logical units into physical units can be

performed [174, 266]. One options is to construct one phonetic decision tree for

each phone. For instance, the phonetic decision tree in Figure 2.6 will partition its

phones into four subsets as indicated by the four terminal nodes. The phones in

each subset are tied to form a single physical model. This is an example of model-

level tying. Another option is to construct one tree for each emitting state of each

phone to cluster all of the corresponding emitting states of all of the associated

context-dependent phone units [266]. For instance, the phonetic decision tree

in Figure 2.6 will partition its states into four subsets as indicated by the four

terminal nodes. The states in each subset are tied to form a single physical state.

The physical models are constructed by combining the decision trees associated

with the corresponding emitting states. This is an example of state-level tying.

The clustering of logical to physical units typically operates at the state-level

rather than model-level since it allows a larger set of physical units to be robustly

estimated by combining state-level decision trees to yield physical models [75].

When several decision trees are combined then the resulting acoustic model is

known to be subject to a tree-intersect effect [268]. Figure 2.7 shows an example

of acoustic model combining two phonetic decision trees each providing 4 physical

states. Although the number of physical states is 8, the number of physical models

that can be constructed is 16. The larger the number of physical states, the larger

the number of physical models. Thus, the effective number of physical model

can become very large, which may result in robustness issues when training the

acoustic model [191].

The phonetic decision tree construction is performed using sequential optimi-

sation procedure [174, 265] and can be summarised in the following three steps

[174, 266]:

1. Splitting. During construction, the decision which terminal node to split

and which question to select is based on the criterion maximising the like-

lihood of training data whilst ensuring that there is sufficient training data

available to each terminal node given the current set of physical states.
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Figure 2.7: An example of tree-intersect acoustic model. The physical states are
shown by shaded circles. The physical models are shown by shaded squares

2. Termination. The construction stops once one of the following two condi-

tions holds: (a) the increase in likelihood from splitting every terminal node

is below a threshold, (b) the amount of training data available to either the

left or the right child potentially to be created is not sufficient.

3. Projection. Once the phonetic decision trees have been constructed, the

unseen as well as the seen units are synthesised by finding the appropriate

terminal nodes for contexts of that unit and then using the physical states

associated with those terminal nodes to construct the unit. Among units

sharing the same set of physical states one is selected to provide a context-

dependent phone label. The remaining units are mapped to this label.

The theoretical framework behind phonetic decision tree construction can be

summarised as follows [174, 266]. Let S be a set of states associated with a

terminal node and let `(S) be the log-likelihood of S generating the training

data O
(1)
1:T1

, . . . ,O
(R)
1:TR

under the assumption that all states S ∈ S are tied (one

physical state) and that transition probabilities can be ignored. Assuming that

the state output distributions are Gaussians with the common mean µ(S) and
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variance Σ(S), tying does not affect observation/state alignment, the following

approximation for `(S) is used [266]

`(S) = −1

2

(
log
(
(2π)d|Σ(S)|

)
+ d
)
γ(S) (2.55)

where d is the dimensionality of observation vectors and γ(S) is the total occu-

pancy of the tied states

γ(S) =
R∑
r=1

Tr∑
t=1

∑
S∈S

γ
(r)
S (t) (2.56)

which is adopted as the measure of training data sufficiency. The posterior prob-

ability of occupying state S at time t given the r-th observation sequence, γ
(r)
S (t),

can be computed using the forward-backward algorithm (Section 2.2.2). For the

terminal node to be split γ(S) is required to exceed a threshold. Let Sy(v) be

the subset of states from S which context-dependent labels answer ”yes” to the

question v and Sn(v) contains the remaining. The decision to split the terminal

node is made if

∆`v(S) = `(Sy(v)) + `(Sn(v))− `(S) (2.57)

and, γ(Sy(v)) and γ(Sn(v)) for some v exceed their associated thresholds. If they

do, the question maximising equation (2.57) splits the terminal node. If none

of the terminal nodes can be split then the construction stops. One important

aspect of the approximation for `(S) in equation (2.55) is that it depends only

on the tied variance Σ(S) and the total occupancy of the tied states γ(S). In

addition, under the assumptions behind it, γ(S) can be computed only once thus

avoiding making any reference to the training data which yields computationally

efficient phonetic decision tree construction procedure.

2.5 Language modelling

In addition to acoustic model, the Bayes’ rule in equation (1.1) requires language

model to provide the prior probability of sentences P (ω). As the number of

possible sentences increases it becomes complicated to model individual sentences.
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In order to overcome this issue, a structure can be introduced into the language

model [73]. The standard approach is based on decomposing sentence ω into

word sequence w1:L [31, 73, 75, 265]. The prior probability then can be expressed

using chain rule as follows [31]

P (ω) = P (w1:L) =
L∏
i=1

P (wi|wi−1, . . . , w1) (2.58)

where P (wi|wi−1, . . . , w1) is the probability of word wi given history of all previous

words. Truncating history to n− 1 most recent words yields n-gram model [31]

P (ω) = P (w1:L) =
L∏
i=1

P (wi|wi−1, . . . , wi−n+1) (2.59)

The n-tuple of words, {wi−n+1, . . . , wi−1, wi}, in equation (2.59) is known as the

n-gram, hence the name n-gram model [265]. In practice, n is typically set in the

range of two to four [75]. The assumptions implied by the n-gram model can be

visualised using DBN [15, 77]. Figure 2.8 shows the DBN associated with bigram

models.

ww w
ii−2 i−1

Figure 2.8: Dynamic Bayesian network for bigram language model

The conditional probabilities P (wi|wi−1, . . . , wi−n+1) in equation (2.59) are

estimated from training texts [75]. Let C(wi−n+1, . . . , wi−1, wi) be the number

of times the underlying n-gram occurs in training texts. A maximum likelihood

(ML) estimate is then given by [31, 75]

P (wi|wi−1, . . . , wi−n+1) =
C(wi−n+1, . . . , wi−1, wi)

C(wi−n+1, . . . , wi−1)
(2.60)

By increasing the order n, the accuracy of approximation in equation (2.59)

may be expected to improve [159, 212]. However, it is complicated to ensure

sufficient coverage in training texts and handle unseen n-grams - the data sparsity
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problem [75, 159]. In order to address this issue, a combination of discounting

and backing-off is commonly used [75]. For instance, the Katz smoothing scheme

[31, 75, 106, 119] sets conditional probabilities by

P (wi|wi−1, . . . , wi−n+1) = (2.61)

D
C(wi−n+1, . . . , wi−1, wi)

C(wi−n+1, . . . , wi−2, wi−1)
, if 0 < C(wi−n+1, . . . , wi−1, wi) ≤ Cmin

C(wi−n+1, . . . , wi−1, wi)

C(wi−n+1, . . . , wi−2, wi−1)
, if C(wi−n+1, . . . , wi−1, wi) > Cmin

P (wi|wi−1, . . . , wi−n+2)

Z(wi−n+1, . . . , wi−2, wi−1)
, otherwise

where D is a discounting coefficient for n-grams observed less than Cmin times

in training texts and Z(wi−n+1, . . . , wi−2, wi−1) is a normalisation constant. The

goal of discounting is to reserve probability mass for the unseen n-grams [159].

There are several options how the discounting coefficient D can be set [31]. For

instance, the Good-Turing scheme [79] discounts n-grams occurring exactly c

times by [75, 265]

D =
(c+ 1)Cc+1

c Cc
(2.62)

where Cc is the number of n-grams occurring exactly c times in the training texts.

For unseen n-grams, an estimate is obtained from the third case in equation (2.61),

which uses the estimate of conditional probability associated with the n−1-gram

scaled by the normalisation constant. The use of normalisation constants ensures

that equation (2.61) yields a valid probability mass function.

In addition to n-gram models, a range of other language models have been

investigated, such as class n-gram models [24, 159], maximum entropy language

models [199], neural network language models [13], to name a few.

2.6 Decoding and lattice generation

A hypothesised word sequence encoded into given observation sequence can be

found by searching all possible hidden state sequences arising from all possible

word sequences for the sentence which most likely have generated the observation

sequence [75]. If all possible word sequences can be compactly encoded into a
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single composite HMM (Section 2.3) then an efficient solution to the decoding

problem can be found by means of the Viterbi algorithm (Section 2.2). In prac-

tice, the use of Viterbi algorithm for decoding becomes unmanageably complex

due to the topology, the n-gram language model constraints, the use of cross-word

context-dependent units and the size of memory required to hold the composite

HMM [75]. A number of approaches have been proposed to address these issues

such as dynamic decoding [174, 177], stack decoding [105], static decoding based

on weighted finite-state transducer (WFST) technology [158]. However, a com-

prehensive description of this topic is out of the scope of this thesis, for more

information consider [75, 174] and reference therein.

2.6.1 N-best lists

Although the primary task of decoder consist of finding the hypothesised word

sequence which most likely have generated the observation sequence, it is also

usually possible to output N most likely candidates or the N-best list [265]. An

example of N -best list is given by

1 50 sil

51 130 the

131 260 dog
...

531 560 sil︸ ︷︷ ︸
1-best

, . . . ,

1 50 sil

51 110 the

111 150 cat
...

311 560 sil︸ ︷︷ ︸
N−best

(2.63)

where each candidate is shown in the three column format: first observation,

last observation, word [265]. In addition, acoustic and language model scores

may be specified. The use of N -best lists is useful as it allows multiple passes

over the observation sequence without the computational expense of repeatedly

solving the decoding problem from scratch [75]. For instance, the first pass can

be performed using less complex acoustic and language models to produce an

N -best list. The N -best list then can be re-scored candidate-by-candidate using

more complex models.
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2.6.2 Lattices

As the number of candidates increases, the use of N -best lists becomes compu-

tationally and memory inefficient. In order to store N -best lists in a compact

and efficient manner, the use of word lattices can be adopted [174, 230, 265]. A

word lattice consists of a set of nodes representing points in time and a set of

spanning arcs representing word hypotheses [75]. Figure 2.9 shows an example

of word lattice encoding the word sequence in equation (2.53) as well as several

alternative candidates. In addition to words, each arc can also carry additional
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the

chased

cat

the

sil
dog

the

the

the

chased

droppedcat
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mouse

dog
the

mouse

died

sil

Figure 2.9: An example of word lattice.

information such as acoustic, pronunciation and language model scores.

Lattices have a wide-spread use in speech recognition [75]. For instance,

they can be converted into an efficient representation called confusion network

[52, 75, 150]. The confusion network has the important property that for every

path through the original word lattice, there is a corresponding path through

the confusion network [75]. Figure 2.10 shows an example of confusion network

for the word lattice in Figure 2.9. In the confusion network, each set of parallel

−

−

sil the

dog

cat ate

chased

came

dropped theeagle mouse

the

died

mouse

cat

dog

sil

Figure 2.10: An example of confusion network.

arcs represents word hypotheses which, unlike in word lattices, do not necessarily
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exactly overlap in time. Nevertheless, it is assumed that the amount of overlap

is sufficient to treat the set of parallel arcs as the set of competing hypotheses

[75]. In addition to word label, each arc in the confusion network has a start and

end time information, and word posterior probability [52]. Confusion networks

have been commonly used for minimum word-error decoding [26, 218], which at-

tempts to hypothesise word sequence minimising the word-error rate rather than

maximising the posterior probability according to Bayes’ decision rule in equa-

tion (1.1), to provide confidence scores about reliability of decoded hypotheses

[88], for merging the outputs of different decoders [52, 54] and in combination

with discriminative classifiers [247].

Lattices can also be converted into phone-marked lattices [265]. A phone-

marked lattice is an extension to word lattice where each word arc is split into

phone arcs corresponding to the underlying sequence of phones. Each phone

arc can contain acoustic model scores, such as the HMM likelihood associated

with the phone. Figure 2.11 gives an example of phone-marked lattice illustrat-

ing phone-level acoustic model scores and word-level pronunciation and language

model scores. The phone arcs are connected by means of phone arc transitions

the

cat sil

the

chased

chased

chased

dog

dog

sil the

chased

.

.

.

.

.

.

dh−iy+kt−dh+iy

.

.

the

Figure 2.11: An example of phone-marked lattice showing phone-level acoustic
model features and word-level pronunciation and language model features

which have associated costs [265]. For instance, the cost of transiting from the

last phone arc of one word arc into the first phone arc of another word arc is

set equal to the product of language and pronunciation model scores attached to

the latter word arc. The total cost associated with traversing the phone-marked

lattice can be obtained by summing the costs associated with individual phone

arc sequences. The total cost of phone-marked lattice L, where acoustic model
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scores are HMM likelihoods, may be expressed as [265]

[[L]] =
∑
a∈L

P (a1|a0)

|a|∏
s=1

p(O{as}|ais;λ)P (as+1|as) (2.64)

where a is a phone arc sequence, as is the s-th phone arc in a, ais is an iden-

tity of as such as t-dh+iy in Figure 2.11, O{as} is an observation sub-sequence

spanned by as where {as} denotes the associated range of observation vector

indices, p(O{as}|ais;λ) is the HMM likelihood and P (as+1|as) is a phone arc tran-

sition probability. For convenience, the first a0 and last a|a|+1 arc is mapped to the

common sentence beginning aI and end aF phone arc respectively. The total cost

or lattice weight (also known as the lattice/acceptor weight in WFST terminology

[156, 158]) can be efficiently computed using lattice forward-backward algorithm

[184, 240]. Similar to the standard forward-backward algorithm (Section 2.2.2),

the lattice forward-backward algorithm introduces two recursions [184]

αa = p(O{a}|ai;λ)
∑

a′ preceding a

αa′P (a|a′) (2.65)

βa =
∑

a′ following a

p(O{a′}|a′i;λ)βa′P (a′|a) (2.66)

where αa and βa are the forward and backward probability on phone arc a. The

posterior probability to occupy phone arc a or arc occupancy is given by [184]

γa =
αaβa
[[L]]

(2.67)

The lattice weight [[L]] can be obtained by

[[L]] = αaF = βaI (2.68)

2.6.3 Character, word and sentence error rates

The accuracy of hypothesised word sequences is commonly assessed by compar-

ing them against known reference transcriptions [265]. When the accuracy of cor-

rectly recognising sub-sentence units such as words or characters is of interest then
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comparison is performed by aligning the hypothesised word sequences against

the reference transcriptions using dynamic alignment algorithms [157, 265]. The

number of substitution, deletion and insertion errors is then computed by com-

paring the aligned sequences. Summing the numbers of errors and dividing by the

number of sub-sentence units in the reference transcriptions yields in percentage

points (×100%) word- (WER) or character-error rate (CER). When accuracy of

correctly recognising entire sentences is of interest then the number of incorrectly

recognised sentences in percentage points, called sentence-error rate (SER), can

be computed.

2.7 Discriminative parameter estimation

In order to provide solution to the HMM estimation problem, the use of ML cri-

terion was discussed in Section 2.2.3. The ML criterion aims to estimate HMM

parameters so that the likelihood that the HMM generates the training data is

maximised [75]. For ML to be an optimal parameter estimation criterion, a num-

ber of conditions would need to be met, such as model correctness and training

data sufficiency [22, 165]. The use of conditional independence assumptions in

the HMM (Section 2.2) and finite amounts of training data are believed to violate

those conditions [75].

In order to address this issue, a range of alternative, discriminative criteria

have been developed. The discriminative criteria aim to estimate HMM param-

eters so that hypotheses generated by decoder on the training data more closely

”match” the reference transcriptions whilst generalising to unseen test data [75].

An overview of discriminative criteria is given in Section 2.7.1.

Compared to ML, where there exists efficient Baum-Welch algorithm, the use

of discriminative criteria is complicated due to more complex implementation

required and tendency of these criteria to over-train, which may lead to poor

generalisation to the test data [75, 184, 186]. A range of solutions that have been

developed to address these issues is discussed in Section 2.7.2.
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2.7.1 Discriminative criteria

As noted earlier, a range of discriminative criteria can be adopted as an alterna-

tive to ML estimation of HMM parameters. Examples discussed in this section

include maximum mutual information (Section 2.7.1.1), minimum classification

error (Section 2.7.1.2), minimum Bayes’ risk (Section 2.7.1.3), margin-based (Sec-

tion 2.7.1.4) and perceptron (Section 2.7.1.5) criteria. All these discriminative

criteria can be expressed in terms of posterior probabilities associated with word

sequences [64, 73, 75]. Using Bayes’ rule, the posterior of word sequence w1:L

given observation sequence O1:T and HMM parameters λ can be expressed as

P (w1:L|O1:T ;λ) =
p(O1:T |w1:L;λ)P (w1:L)∑

w

p(O1:T |w;λ)P (w)
(2.69)

where p(O1:T |w1:L;λ) is acoustic model likelihood (Section 2.3.2) and P (w1:L) is

language model probability (Section 2.5). The language model in these discrimi-

native criteria is not typically estimated in conjunction with the acoustic model

so will be assumed fixed in this section.

2.7.1.1 Maximum mutual information

The HMM parameter estimation based on maximum mutual information (MMI)

criterion [8, 164] can be performed by maximising [75]

Fmmi(λ;D) =
1

R

R∑
r=1

log(P (w
(r)
1:Lr
|O(r)

1:Tr
;λ)) (2.70)

Re-writing equation (2.70) using the form of posterior in equation (2.69) yields

Fmmi(λ;D) =
1

R

R∑
r=1

log

p(O(r)
1:Tr
|w(r)

1:Lr
;λ)P (w

(r)
1:Lr

)∑
w

p(O
(r)
1:Tr
|w;λ)P (w)

 (2.71)

where, leaving aside language model probabilities, numerator term is the likeli-

hood of O
(r)
1:Tr

given the reference transcription w
(r)
1:Lr

, whilst denominator term

is the likelihood given all possible word sequences. Thus, the MMI objective
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function is maximised by making generation of O
(r)
1:Tr

from the acoustic model

associated with reference transcription w
(r)
1:Lr

likely and from acoustic models as-

sociated with all other word sequences unlikely [75].

2.7.1.2 Minimum classification error

The HMM parameter estimation based on minimum classification error (MCE)

criterion [35, 114] can be performed by minimising [75]

Fmce(λ, ξ;D) =
1

R

R∑
r=1

1 +

 P (w
(r)
1:Lr
|O(r)

1:Tr
;λ)∑

w 6=w
(r)
1:Lr

P (w|O(r)
1:Tr

;λ)


ξ
−1

(2.72)

where ξ is an additional free parameter. Compared to the MMI objective func-

tion, the MCE objective function excludes the reference transcription from the

denominator term and smooths the posteriors using a sigmoid-like function [75].

2.7.1.3 Minimum Bayes’ risk

The HMM parameter estimation based on minimum Bayes’ risk (MBR) criterion

[26, 116] can be performed by minimising [75]

Fmbr(λ;D) =
1

R

R∑
r=1

∑
w

P (w|O(r)
1:Tr

;λ)L(w,w
(r)
1:Lr

) (2.73)

where L(w,w
(r)
1:Lr

) is a loss of word sequence w against the reference transcription

w
(r)
1:Lr

. In contrast to MMI, which attempts to model the posterior distribution

of reference transcriptions, the MBR criterion attempts to minimise the expected

loss during decoding of the training data [75].

Designing a suitable loss function is crucial and leads to several variants of

MBR criteria. For instance, the use of 0/1 or sentence-level loss function

L(w,w
(r)
1:Lr

) =

0, if w = w
(r)
1:Lr

1, if w 6= w
(r)
1:Lr

(2.74)
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gives rise to the MCE objective function in equation (2.72), where free parameter

ξ is fixed to 1 [75]. On the other hand, the use of word-level loss function yields

minimum word error (MWE) criterion. The loss function would normally be

computed by minimising the Levenshtein edit distance [75] - the same approach

used to compute WER on decoding the test data (Section 2.6).

In practice it has been observed that reducing specificity in the loss function

from word to phone level leads to a better generalisation on test data [184]. This

variant is known as minimum phone error (MPE) criterion. However, the use of

phone-level loss function reduces the number of possible errors to be corrected,

compared to the number of observations, which may impact generalisation [75].

In order to address this issue, a minimum phone frame error (MPFE) criterion

based on a smooth measure of the number of observations having incorrect phone

label, known as Hamming distance [228], can be adopted [279].

2.7.1.4 Margin criteria

In addition to the MMI, MCE and MBR-type criteria, there has been recently

interest in using margin-based criteria [107, 129, 137, 208]. According to statisti-

cal learning theory [244], a classifier with the largest margin, where margin is the

smallest distance between examples of two classes, in general, yields the lowest

generalisation error [244]. For training sequences, the distance between reference

transcription (correct class) and an alternative transcription (incorrect class) can

be expressed as the log-posterior ratio [180, 217]. Then, in the simplest case of

margin maximisation (MM), the HMM parameter estimation can be performed

by optimising [64]

Fmm(λ;D) =
1

R

R∑
r=1

[
min

w 6=w
(r)
1:Lr

{
log

(
P (w

(r)
1:Lr
|O(r)

1:Tr
;λ)

P (w|O(r)
1:Tr

;λ)

)}]
(2.75)

where margin is the term in squared brackets. The MM objective function has

properties related to both MMI and MCE [64]: the log-posterior of reference

transcription is included similar to MMI and denominator term does not include

element representing reference transcription similar to MCE.

A range of margin-based criteria have been proposed extending upon the MM
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objective function [137, 185, 203, 208]. Rather than allowing the log-posterior

ratio to grow arbitrary large, a minimum margin size constraint was introduced

in [137]. The margin was required to be not smaller than a positive constant η.

This can be accomplished by means of the following hinge-loss (HL) objective

function to minimise [64]

Fhl(λ;D) =
1

R

R∑
r=1

[
η − min

w 6=w
(r)
1:Lr

{
log

(
P (w

(r)
1:Lr
|O(r)

1:Tr
;λ)

P (w|O(r)
1:Tr

;λ)

)}]
+

(2.76)

where [·]+ is the hinge-loss given by

[f(x)]+ = max(f(x), 0) (2.77)

Alternatively, in [208] the margin was required to be not smaller than a Ham-

ming (HA) distance. This led to the following form of HA objective function to

minimise [64]

Fha(λ;D) =
1

R

R∑
r=1

[
max

w 6=w
(r)
1:Lr

{
H(w,w

(r)
1:Lr

)− log

(
P (w

(r)
1:Lr
|O(r)

1:Tr
;λ)

P (w|O(r)
1:Tr

;λ)

)}]
+

(2.78)

where H(w,w
(r)
1:Lr

) is the Hamming distance. Note that the same loss function

was used in the MPFE criterion [279] discussed in Section 2.7.1.3. In order to

simplify optimisation, the soft-max inequality [203]

max
i
xi ≤ log

(∑
i

exp(xi)

)
(2.79)

was applied to yield the following upper bound [64]

Fha(λ;D) ≤ 1

R

R∑
r=1

[
− log

(
P (w

(r)
1:Lr
|O(r)

1:Tr
;λ)
)

+

log

(∑
w

P (w|O(r)
1:Tr

;λ)L(w,w
(r)
1:Lr

)

)]
+

(2.80)
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which was minimised by setting the loss function as follows [64]

L(w,w
(r)
1:Lr

) =

exp(H(w,w
(r)
1:Lr

)), if w 6= w
(r)
1:Lr

0, if w = w
(r)
1:Lr

(2.81)

This upper bound has properties related to both the MMI and MBR criterion

[64]. The first term within the hinge-loss function is the negated log-posterior, the

same as the MMI objective function. The second term is the logarithm of MBR

variant, where loss function is given by equation (2.81). Furthermore, this upper

bound, if re-written in terms of acoustic model likelihood and language model

probability, is related to a boosted MMI (bMMI) criterion [185]. The bMMI

objective function to maximise can be expresses as [203]

Fbmmi(λ, ε;D) =
1

R

R∑
r=1

log

 p(O
(r)
1:Tr
|w(r)

1:Lr
;λ)P (w

(r)
1:Lr

)∑
w

p(O
(r)
1:Tr
|w;λ)P (w) exp(−εA(w,w

(r)
1:Lr

))


(2.82)

where A(w1:|w|,w
(r)
1:Lr

) is phone-level accuracy. The difference between the upper

bound and the bMMI objective function is the use of hinge-loss function in the

former and the use of negated scaled phone-level accuracy function instead of the

loss function in equation (2.81) in the latter.

2.7.1.5 Perceptron

The HMM parameter estimation based on the perceptron criterion [16, 49, 198]

may be performed by minimising the following objective function [73]

Fper(λ;D) =
1

R

R∑
r=1

[
− min

w 6=w
(r)
1:Lr

{
log

(
P (w

(r)
1:Lr
|O(r)

1:Tr
;λ)

P (w|O(r)
1:Tr

;λ)

)}]
+

(2.83)

The perceptron criterion has properties related to margin criteria: it contains

margin similar to MM and hinge loss function to prevent it from growing arbitrary

large similar to HL. The perceptron criterion can be considered as a particular

version of HL criterion where the margin is required to be not smaller than η = 0.
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2.7.2 Optimisation of discriminative criteria

Compared to ML, the implementation of the discriminative criteria is more com-

plicated [75]. For instance, although the MMI objective function in equation (2.71)

contains two terms each resembling ML objective function, the Baum-Welch al-

gorithm can not be used due to the minus sign between the two terms [184].

A number of optimisation schemes have been developed for discriminative

criteria. For optimising MMI, MBR and MCE, these range from standard multi-

variate optimisation techniques [8, 154, 207] to an extension to the Baum-Welch

algorithm (Section 2.2.3), known as extended Baum-Welch algorithm [7, 81, 84,

118, 172, 184, 207]. In addition, there are several options available for optimising

margin-based criteria. For instance, the MM and H(L/A) objective functions can

be optimised by means of a cutting plane algorithm [111, 238] to directly solve

the constrained optimisation problems in equations (2.75), (2.76) and (2.78). The

outcome of this approach is that the solution obtained will satisfy the minimum

margin constraints for all training data pairs [277]. On the other hand, if a mar-

gin criterion can be reduced to a differentiable objective function, such as the

lower bound to the HA objective function, then approaches such as sub-gradient

method [211], exponentiated gradient method [78], [209] and, in case of the bMMI

objective function, extended Baum-Welch algorithm [185, 203], become available.

The rest of this section will discuss the use of extended Baum-Welch algorithm

for MMI and MPE estimation of HMM parameters. The presentation will adopt

the concept of weak-sense auxiliary functions [184] to derive HMM parameter

update rules, for an alternative perspective consider [7, 81, 84, 118, 172, 207].

2.7.2.1 Optimisation of MMI

As noted earlier, the Baum-Welch algorithm can not be applied to optimise MMI

objective function - although an individual auxiliary function can be defined for

the numerator, Qnum(λ, λ̂;D), and the denominator term, Qden(λ, λ̂;D), their

difference

Gmmi(λ, λ̂;D) = Qnum(λ, λ̂;D)− Qden(λ, λ̂;D) (2.84)
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is not a valid auxiliary function for the MMI objective function. Although

Gmmi(λ, λ̂;D) is not an auxiliary function in the strong sense [12, 45], it is a

smooth function around the new set of parameters λ̂ such that its gradient when

evaluated at the current set of parameters λ equals to the gradient of the MMI

objective function [184]

∇λ̂ Gmmi(λ, λ̂;D)
∣∣∣
λ̂=λ

= ∇λ̂ Fmmi(λ̂;D)
∣∣∣
λ̂=λ

(2.85)

The function Gmmi(λ, λ̂;D) is called a weak-sense auxiliary function for the MMI

objective function Fmmi(λ̂;D) around the current set of parameters λ. Maximis-

ing the weak-sense auxiliary function does not guarantee increase in the MMI

objective function nor that it will converge, however, if it does converge then it

will converge to the local maximum of the MMI objective function [184]. In order

to improve convergence, the new set of parameters λ̂ can be smoothed with the

current set of parameters λ by means of a smoothing function Qsm(λ, λ̂) as follows

Gmmi(λ, λ̂;D) = Qnum(λ, λ̂;D)− Qden(λ, λ̂;D) + Qsm(λ, λ̂) (2.86)

The smoothing function is required to have a zero gradient with respect to the

new set of parameters λ̂ when evaluated at the current set of parameters λ so not

to affect the equality in equation (2.85). For optimising means and covariances,

a suitable form is [55, 184]

Qsm(λ, λ̂) = −1

2

∑
{j,m}

Dj,m

(
log(|Σ̂j,m|) + tr(Σj,mΣ̂−1

j,m)+

(µj,m − µ̂j,m)TΣ̂−1
j,m(µj,m − µ̂j,m)

)
(2.87)

where summation is performed over all possible mixture components of all pos-

sible HMM states, Dj,m is a state-component specific constant controlling the

degree of smoothing. The value of this smoothing constant is crucial for optimi-

sation and it is commonly set by

Dj,m = max(2Dlow
j,m, Eγ

den
j,m) (2.88)
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where Dlow
j,m is the smallest value to ensure that Σ̂j,m is positive-definite and E is

a constant set in the range of 1 to 2 [184]. It can be shown that taking derivative

of equation (2.86) and solving with respect to the new set of parameters λ̂ yields

the following update rules for the means and covariances [184]

µ̂j,m =

{
θnum
j,m − θden

j,m

}
+Dj,mµj,m{

γnumj,m − γdenj,m

}
+Dj,m

(2.89)

Σ̂j,m =

{
Θnum
j,m −Θden

j,m

}
+Dj,m(Σj,m + µj,mµ

T
j,m){

γnumj,m − γdenj,m

}
+Dj,m

− µ̂j,mµ̂
T
j,m (2.90)

where the superscript num (and den) refers to quantities computed in composite

HMMs constructed for the numerator (and denominator) term. These update

rules are known as the extended Baum-Welch update rules [84, 89, 172, 184].

Compared to Baum-Welch update rules in equation (2.51) and (2.52), the ex-

tended Baum-Welch update rules in equation (2.89) and (2.90) also incorporate

statistics derived from alternative word sequences.

As was mentioned at the beginning of Section 2.7, the use of MMI criterion

may lead to over-training. In order to address this issue, a number of techniques

have been developed to improve robustness of the estimates. One of them is an

acoustic de-weighting [186], which is based on the use of the following form of

posterior probability for accumulating the statistics [75]

P (w1:L|O1:T ;λ) =
p(O1:T |w1:L;λ)κP (w1:L)β∑

w

p(O1:T |w;λ)κP (w)β
(2.91)

Compared to the posterior in equation (2.69), the acoustic model likelihoods in

acoustic de-weighting are raised to a fractional power κ, known as acoustic de-

weighting constant. This makes less likely word sequences contribute more to the

MMI objective function [184]. In practice, β is often set to one and κ is set to

the inverse of the language model scale-factor [75].

Another technique to improve robustness of the estimates is an I-smoothing

technique [187], which introduces a prior p(λ;λp) with hyper-parameters λp on

the HMM parameters into the MMI objective function. A modified form of the
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MMI objective function can be expressed as [184]

Fmmi(λ;D) =
1

R

R∑
r=1

log
(
P (w

(r)
1:Lr
|O(r)

1:Tr
;λ)
)

+ log (p(λ;λp)) (2.92)

which gives the following modified form of the weak-sense auxiliary function [184]

Gmmi(λ, λ̂;D) = Qnum(λ, λ̂;D)−Qden(λ, λ̂;D) + Qsm(λ, λ̂) + log(p(λ̂; λ̂p)) (2.93)

The form of prior [55, 184] is the Normal-Wishart distribution [42]

log(p(λ̂; λ̂p)) = K − 1

2

∑
{j,m}

τ I
(

log(|Σ̂j,m|)+ (2.94)

tr((Σ̂p
j,m + µ̂p

j,mµ̂
pT

j,m)Σ̂−1
j,m) + (µ̂j,m − µ̂p

j,m)TΣ̂−1
j,m(µ̂j,m − µ̂p

j,m)
)

where K is a constant, µ̂p
j,m and Σ̂p

j,m are the prior mean and covariance, τ I is

an I-smoothing constant set around 100. One option to set the prior parameters

is given by [184]

µ̂p
j,m =

θnum
j,m

γnumj,m

(2.95)

Σ̂p
j,m =

Θnum
j,m

γnumj,m

− µ̂p
j,mµ̂

pT

j,m (2.96)

which yields ML-like estimates (see equation (2.51) and (2.52)) of mean and co-

variance that may change from iteration to iteration. In this case, the I-smoothing

prior is known as dynamic ML estimate [265]. Taking derivative of equation (2.93)

with respect to the new set of parameters λ̂ yields the following update rules

µ̂j,m =

{
θnum
j,m − θden

j,m

}
+Dj,mµj,m + τ Iµ̂p

j,m{
γnumj,m − γdenj,m

}
+Dj,m + τ I

(2.97)

Σ̂j,m = (2.98){
Θnum
j,m−Θden

j,m

}
+Dj,m(Σj,m+µj,mµ

T
j,m)+τ I(Σ̂p

j,m+µ̂p
j,mµ̂

pT

j,m){
γnumj,m − γdenj,m

}
+Dj,m + τ I

− µ̂j,mµ̂
T
j,m
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which apart from few additional terms are similar to the extended Baum-Welch

update rules in equation (2.89) and (2.90).

Compared to accumulating statistics corresponding to the numerator term

γnumj,m, θnum
j,m and Θnum

j,m, known as numerator statistics, efficient handling of the de-

nominator term is more complicated since this is equivalent to decoding the train-

ing data [75]. In order to address this issue, a lattice-based framework [184, 240]

has been proposed, where statistics corresponding to the denominator term γdenj,m,

θden
j,m and Θden

j,m, known as denominator statistics, is accumulated by means of

phone-marked lattices (Section 2.6.2). Given a phone-marked lattice L(r)
den, the

denominator in equation (2.71) is approximated by lattice weight [[L(r)
den]] de-

fined earlier in equation (2.64). Given R phone-marked lattices, the denominator

statistics can be expressed by [184]

γdenj,m =
R∑
r=1

∑
a∈L(r)

den

γa
∑
t∈{a}

γa,j,m(t) (2.99)

θden
j,m =

R∑
r=1

∑
a∈L(r)

den

γa
∑
t∈{a}

γa,j,m(t)o
(r)
t (2.100)

Θden
j,m =

R∑
r=1

∑
a∈L(r)

den

γa
∑
t∈{a}

γa,j,m(t)o
(r)
t o

(r)T

t (2.101)

where γa is the phone arc a occupancy and γa,j,m(t) is the posterior probability to

occupy phone arc a, state Sj and mixture component m at time t. The latter can

be computed using the forward-backward algorithm (Section 2.2.2). The former

can be computed using the lattice forward-backward algorithm (Section 2.6.2)

where acoustic de-weighting is applied by raising HMM likelihoods to κ.

2.7.2.2 Optimisation of MPE

The MPE criterion was discussed in Section 2.7.1.3 as the variant of MBR crite-

rion where loss is computed at the phone level. For implementation, it is common

to use accuracy rather than the loss [184, 265]. The MPE objective function can
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be expressed as [187]

Fmpe(λ;D) =
1

R

R∑
r=1

∑
w

P (w|O(r)
1:Tr

;λ)A(w,w
(r)
1:Lr

) (2.102)

Using the form of posterior in equation (2.69) the MPE objective function can

be written as

Fmpe(λ;D) =
1

R

R∑
r=1

∑
w

p(O
(r)
1:Tr
|w;λ)P (w)A(w,w

(r)
1:Lr

)∑
w

p(O
(r)
1:Tr
|w;λ)P (w)

(2.103)

Compared to MMI objective function in equation (2.71), the MPE objective

function in equation (2.103) is quite different. The form of weak-sense auxil-

iary function commonly used for optimising MPE objective function is also quite

different from the weak-sense auxiliary function for MMI objective function in

equation (2.84) [184]. The weak-sense auxiliary function for MPE objective func-

tion can be expressed in the lattice framework (Section 2.6.2) by [184]

Qmpe(λ, λ̂;D) =
1

R

R∑
r=1

∑
a∈L(r)

den

γmpea Q(λ, λ̂;D
(r)
a,ai) (2.104)

where D
(r)
a,ai = {{O(r)

{a}, a
i}} is an observation sub-sequence and phone arc identity

written in the form of supervised training data (see equation 2.42). The first term

in equation (2.104) is the differential of MPE objective function with respect to

HMM log-likelihood associated with phone arc

γmpea =
∂Fmpe(λ;D)

∂ log(p(O
(r)
{a}|ai;λ))

(2.105)

which can be both positive and negative. The second term in equation (2.104) is

the (strong-sense) ML auxiliary function (Section 2.2.3). The differential can be

expressed as [184]

γmpea = γa(ca − c(r)) (2.106)
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where ca is the average accuracy of phone arc sequences passing phone arc a and

c(r) is the average accuracy of all phone arc sequences in L(r)
den. These quantities

can be efficiently computed by means of forward α′a and backward β′a correctnesses

as follows [184]

ca = α′a + β′a (2.107)

c(r) = α′aF (2.108)

where aF is the sentence end phone arc (Section 2.6.2). The forward and backward

correctnesses can be computed recursively by [184]

α′a =

∑
a′ preceding a

αa′P (a|a′)α′a′∑
a′ preceding a

αa′P (a|a′)
+ Ã(a) (2.109)

β′a =

∑
a′ following a

P (a′|a)p(O
(r)
{a′}|a′i;λ)βa′(β

′
a′ + Ã(a′))∑

a′ following a

P (a′|a)p(O
(r)
{a′}|a′i;λ)βa′

(2.110)

where αa and βa are the forward and the backward probability on the phone arc

a (Section 2.6.2), Ã(a) is the approximate phone arc accuracy given by [184]

Ã(a) = max
a′∈L(r)

num

−1 + 2o(a, a′), if ai ≡ ai
′

−1 + o(a, a′), otherwise
(2.111)

where L(r)
num is the phone-marked lattice encoding the reference transcription w

(r)
1:Lr

,

o(a, a′) is proportional to the overlap between O
(r)
{a} and O

(r)
{a′}. In the case of total

overlap, the approximate phone arc accuracy function returns 1 for a correct

phone, 0 for a substitution and -1 for an insertion error [184]. In order to address

possible over-training issues, the acoustic de-weighting can be applied by raising

HMM likelihoods in equations (2.109) and (2.110) to κ (Section 2.7.2.1).

Given the weak-sense auxiliary function Qmpe(λ, λ̂;D), the smoothing function

Qsm(λ, λ̂) in equation (2.87) and the prior log(p(λ̂; λ̂p)) in equation (2.94) are
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added to form the final form of weak-sense auxiliary function

Gmpe(λ, λ̂;D) = Qmpe(λ, λ̂;D) + Qsm(λ, λ̂) + log(p(λ̂; λ̂p)) (2.112)

Given the final weak-sense auxiliary function Gmpe(λ, λ̂;D), the closed-form so-

lutions in the form of extended Baum-Welch update equations (2.89) and (2.90)

can be derived [184] by defining the numerator statistics by

γnumj,m =
R∑
r=1

∑
a∈L(r)

den

max(0, γmpea )
∑
t∈{a}

γa,j,m(t) (2.113)

θnum
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0, γmpea )
∑
t∈{a}

γa,j,m(t)o
(r)
t (2.114)

Θnum
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0, γmpea )
∑
t∈{a}

γa,j,m(t)o
(r)
t o

(r)T

t (2.115)

and the denominator statistics by

γdenj,m =
R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

γa,j,m(t) (2.116)

θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

γa,j,m(t)o
(r)
t (2.117)

Θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

γa,j,m(t)o
(r)
t o

(r)T

t (2.118)

where phone arcs with positive differentials, γdena > 0, provide numerator statistics

and the remaining provide denominator statistics.

As noted in Section 2.7.2.1, in order to improve robustness of the estimates, in

addition to acoustic de-weighting, it is possible to apply I-smoothing. For MPE

training, the I-smoothing prior may be set to dynamic MMI estimate given by

equations (2.97) and (2.98) which in turn makes use of dynamic ML estimate in

equations (2.95) and (2.96) as its I-smoothing prior [265].
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2.8 Adaptation to speaker and noise

In speech recognition it is common that test data includes poorly represented

or completely new speakers and/or noise conditions [75]. For HMM-based ap-

proach such mismatch between training and test conditions is known to cause a

degradation in recognition accuracy [74]. In order to address this mismatch, an

adaptation is commonly performed where a small amount of data from a speaker

and/or noise condition, called adaptation data, is used to modify the acoustic

model or observations so as to more closely match that condition [75]. The adap-

tation can be applied both in training to reduce the level of variability present in

the training data [65] and in recognition to reduce the mismatch and the conse-

quent recognition errors [75]. Similar to the HMM parameter estimation problem

(Section 2.7), it can be carried over in the supervised setting in which case ref-

erence are available, or in the unsupervised setting in which case they have to

be hypothesised; in addition, adaptation is called incremental if the data comes

in stages, or batch-mode if it is immediately available [75]. In this section only

batch-mode adaptation in supervised or unsupervised setting is considered.

A range of adaptation approaches have been developed [65]: there are stan-

dard statistical techniques such as maximum-a-posteriori (MAP) [76]; some are

based on general linear transforms [63, 133]; others are based on a model of how

the mismatch impacts the acoustic models or observations [1, 2, 61, 131, 161].

Maximum likelihood linear regression transforms discussed in Section 2.8.1 are

currently one of the most popular approaches to adapt to the speaker condi-

tions [75, 265]. Being a general adaptation technique [65], they have also been

applied to compensate the mismatch in noise conditions [74]. However, spe-

cific noise compensation approaches based on a model of how the noise impacts

the acoustic models or observations are usually more effective, especially with

very limited adaptation data [75]. When observation sequences are based on

the MFCC feature extraction scheme (Section 2.1.1) then a vector Taylor series

[2, 161] approach discussed in Section 2.8.2 can be used.

The rest of this section adopts bar notation to denote unmodified, canonical,

acoustic models and unmodified, “clean”, observations. For instance, λ denotes

the canonical set of HMM parameters, whilst λ denotes the adapted set of HMM
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parameters. Similarly, o denotes the “clean” observation, whilst o denotes the

noise-corrupted observation.

2.8.1 Maximum likelihood linear regression

Various configurations of linear transforms have been proposed. In the simplest

case, a global maximum likelihood linear regression (MLLR) transform may be

applied to mean vectors [133]

µj,m = Aµj,m + b (2.119)

where A, b are transform parameters associated with mean vectors. This con-

figuration is called mean MLLR [265]. In addition to mean vectors, it is also

possible to adapt covariance matrices in which case [63]

Σj,m = HΣj,mHT (2.120)

where H are transform parameters associated with covariance matrices. This

configuration is called variance MLLR [265]. When both mean vectors and co-

variance matrices are adapted then the state-component qj,m output density can

be computed by transforming observations and mean vectors whilst keeping co-

variance matrices unchanged [75]

p(o|qj,m,T) = N(o; Aµj,m + b,HΣj,mHT) (2.121)

= |H|−1N(H−1o; H−1(Aµj,m + b),Σj,m) (2.122)

where T are transform parameters A, b and H. Using this form it is possible

to efficiently apply full transformations, especially in situations when covariance

matrices are diagonal [265]. In addition, when the transformation matrices A

and H are constrained to be the same then [63]

µj,m = Aµj,m + b (2.123)

Σj,m = AΣj,mAT (2.124)
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then the state-component qj,m output density can be computed by transforming

observations whilst keeping the means and covariances unmodified [75]

p(o|qj,m,T) = N(o; Aµj,m + b,AΣj,mAT) (2.125)

= |A−1|N(A−1o−A−1b;µj,m,Σj,m) (2.126)

= |A−1|N(o;µj,m,Σj,m) (2.127)

where o is the transformed observation vector given by

o = A−1o−A−1b (2.128)

This configuration is called constrained MLLR (CMLLR) [63]. Compared to mean

and variance MLLR, the CMLLR does not require transforming means and co-

variances which makes this configuration efficient if the speaker (or environment)

rapidly changes [75].

The following Section 2.8.1.1 discusses how the transform parameters T can

be estimated. The use of adaptation in training for estimating the canonical

sets of HMM parameters λ is discussed in Section 2.8.1.2. Lastly, Section 2.8.1.3

discusses how multiple linear transforms can be incorporated rather than the

global transform discussed so far.

2.8.1.1 Transform parameter estimation

All MLLR configurations discussed in this section require reference transcrip-

tions of the adaptation data in order to obtain new transform parameters [75].

In contrast to supervised setting, in unsupervised setting these transcriptions are

not given and must be inferred by the decoder [75]. In this case, adaptation is

normally performed iteratively until convergence is achieved: given hypothesised

transcriptions, the new transform parameters are estimated and used to decode

the adaptation data to refine the hypothesised transcriptions [259]. This ap-

proach, however, requires computationally expensive decoding of the adaptation

data to be performed several times and is sensitive to decoding errors since all

words within hypotheses are treated equally probable [75]. An approach based

on lattices can be adopted to obtain more robust to decoding errors transform

51



2.8. ADAPTATION TO SPEAKER AND NOISE

parameters and avoid the need for re-decoding the adaptation data since these

can be computationally efficiently re-scored [179].

Similar to the HMM parameter estimation problem discussed in Section 2.7,

it is possible to estimate mean, variance and constrained MLLR transform pa-

rameters using maximum likelihood (ML) criterion [75]. The auxiliary function

adopted with these configurations may be expressed as [265]

Q(T, T̂;D) =
1

R

R∑
r=1

Tr∑
t=1

∑
{j,m}

γ
(r)
j,m(t) log(N(o

(r)
t ; µ̂j,m, Σ̂j,m)) +K (2.129)

where D is the adaptation data, K is a constant subsuming terms not related

to the state-component output densities. Compared to the ML auxiliary func-

tion in Section 2.2.3, there are some key differences. First, the state-component

occupancies, γ
(r)
j,m(t), are computed using the canonical set of HMM parameters

λ transformed by T. Second, the new set of HMM parameters λ̂ is obtained by

transforming λ with T̂. Third, the auxiliary function is optimised with respect

to the new transform parameters T̂.

Whereas there are closed form solutions for mean MLLR, the variance and

constrained MLLR configurations require an iterative solution [75] as comprehen-

sively discussed in [63]. In addition to ML criterion, a range of discriminative cri-

teria, such as MMI and MPE discussed in Section 2.7.1, have been examined with

these MLLR configurations for supervised adaptation [84, 237, 239, 252, 253]. In

unsupervised adaptation, the use of discriminative criteria was found to be more

sensitive to errors in hypothesised transcriptions than in ML estimation and in

practice is not commonly adopted [75, 84, 237, 253].

2.8.1.2 Speaker adaptive training

For speaker independent (SI) speech recognition, the training data necessarily

includes a large number of speakers and hence results in the increased level of

variability [75]. The use of adaptation in training, in the form of speaker adap-

tive training (SAT), has been proposed as one possible solution [4]. Figure 2.12

illustrates the concept behind SAT assuming that the training data contains Y

speakers. For each speaker, an individual transform is estimated, given an initial
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Figure 2.12: Speaker adaptive training.

estimate of canonical acoustic model and the training data available only to that

speaker. The canonical acoustic model is re-estimated given Y transforms and

the whole training data. This procedure is repeated until convergence is achieved

or some maximum number of iterations reached.

Among MLLR configurations examined in this section, the use of CMLLR is

most commonly adopted with SAT [75]. Similar to the HMM parameter estima-

tion problem discussed in Section 2.7, it is possible to estimate canonical acoustic

model parameters with CMLLR-based SAT using ML criterion [63]. In this case,

the auxiliary function is given by

Q(λ, λ̂;D) =
Y∑
y=1

Ry∑
r=1

Ty,r∑
t=1

γ
(y,r)
j,m (t) log(N(o

(y,r)
t ; µ̂j,m, Σ̂j,m)) +K (2.130)

where Ry is the number of training observation sequences available to speaker y,

Ty,r is the number of observations in the r-th observation sequence available to

speaker y, γ
(y,r)
j,m (t) is the state-component occupancy computed using the current

adapted set of HMM parameters (the current canonical set of HMM parameters λ

and speaker y transform parameters A(y) and b(y)), the transformed observation

vector o
(y,r)
t defined by equation (2.128) is based on the training data observation

vector o
(y,r)
t and speaker y transform parameters A(y) and b(y). The statistics

required for updating canonical mean vectors µj,m and covariance matrices Σj,m
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based on equation (2.51) and (2.52) respectively is given by [63]

γj,m =
Y∑
y=1

Ry∑
r=1

Ty,r∑
t=1

γ
(y,r)
j,m (t) (2.131)

θj,m =
Y∑
y=1

Ry∑
r=1

Ty,r∑
t=1

γ
(y,r)
j,m (t)o

(y,r)
t (2.132)

Θj,m =
Y∑
y=1

Ry∑
r=1

Ty,r∑
t=1

γ
(y,r)
j,m (t)o

(y,r)
t o

(y,r)T

t (2.133)

Apart from the use of transformed observation vectors, the statistics required are

essentially the same as in Section 2.2.3.

In addition to ML criterion, a range of discriminative criteria, such as MMI

and MPE discussed in Section 2.7.1, have been examined with CMLLR-based

SAT [253]. The weak-sense auxiliary functions in both cases are essentially the

same as in MMI (equation (2.93)) and MPE (equation (2.112)) estimation of

HMM parameters yet the transformed observations in equation (2.128) are used,

similar to the ML estimation of canonical model parameters above. The numera-

tor and denominator statistics accumulated in both cases is essentially the same as

in Section 2.7.2.1 yet the transformed observation vectors are used. For instance,

the denominator statistics required for estimating the canonical mean vector µj,m

and covariance matrix Σj,m based on the extended Baum-Welch update rules in

equations (2.97) and (2.98) in the MMI case is given by [253]

γdenj,m =
Y∑
y=1

Ry∑
r=1

∑
a∈L(y,r)

den

γa
∑
t∈{a}

γa,j,m(t) (2.134)

θden
j,m =

Y∑
y=1

Ry∑
r=1

∑
a∈L(y,r)

den

γa
∑
t∈{a}

γa,j,m(t)o
(y,r)
t (2.135)

Θden
j,m =

Y∑
y=1

Ry∑
r=1

∑
a∈L(y,r)

den

γa
∑
t∈{a}

γa,j,m(t)o
(y,r)
t o

(y,r)T

t (2.136)
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and in the MPE case is given by [253]

γdenj,m =
Y∑
y=1

Ry∑
r=1

∑
a∈L(y,r)

den

max(0,−γmpea )
∑
t∈{a}

γa,j,m(t) (2.137)

θden
j,m =

Y∑
y=1

Ry∑
r=1

∑
a∈L(y,r)

den

max(0,−γmpea )
∑
t∈{a}

γa,j,m(t)o
(y,r)
t (2.138)

Θden
j,m =

Y∑
y=1

Ry∑
r=1

∑
a∈L(y,r)

den

max(0,−γmpea )
∑
t∈{a}

γa,j,m(t)o
(y,r)
t o

(y,r)T

t (2.139)

where L(y,r)
den is the denominator lattice generated for the r-th observation sequence

of speaker y. The numerator statistics for both cases is defined analogously.

In order to use these SAT canonical acoustic models for unsupervised adapta-

tion on the test data, it is necessary to obtain initial hypothesised transcription

or lattices as discussed in Section 2.8.1.1. Typically, a separate acoustic model

trained on the whole training data is used to produce them [75]. In subsequent

iterations of unsupervised adaptation they can be refined using estimated trans-

form parameters and the SAT canonical acoustic models [55].

2.8.1.3 Regression classes

The use of global, per-speaker in the SAT case, transformation may not yield

satisfactory gains in recognition accuracy. A powerful feature of linear transforms

is that their number can be varied depending on the amount of adaptation data

available [75]. For instance, when the amount of adaptation data is small then

the use of global transform shared by all state-components may appear to be

reasonable [75, 87]. As the amount of adaptation data increases, an individual

transform may be associated with a regression class of state-components to give

better adaptation [75]. When more data becomes available then some of the

existing regression classes can be further split to give even better adaptation

[133].

The number of regression classes to use with given adaptation data can be au-

tomatically determined using a regression class tree [62, 132], which is illustrated
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in Figure 2.13. Each node in the tree represents one regression class, i.e., a set of

... ... ...

Global class

Base classes (state−components)

Figure 2.13: A regression class tree

state-components that will share a single transform. For instance, the root node

represents all state-components that will share a single global transform. Regres-

sion classes represented by the leaf nodes correspond to unique state-components

and are known as base classes [62]. Thus, there are as many base classes (leaf

nodes) as there are unique state-components.

Similar to phonetic decision trees discussed in Section 2.4, the total occupancy

count associated with any node can be computed by accumulating the occupancy

counts associated with its child leaf nodes. Once the total occupancy counts have

been computed, the tree is descended to find the most specific set of nodes, such

as those shown shaded in Figure 2.13, for which there is sufficient data and for

which the transforms will be created.

Regression class trees may be built by making use of expert knowledge [87] or,

more commonly, using automatic procedures which assume that state-components

“close” to one another can share the same transform [132, 213, 265].

2.8.2 Vector Taylor series

The linear transforms examined in Section 2.8.1 are usually applied to address

the mismatch in speaker conditions [75, 265]. Another very common and often

extreme form of mismatch is cause by ambient noise [75]. Although these trans-

forms can reduce the effects of noise [74], specific noise compensation schemes
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based on a model of how the noise impacts the acoustic models or observations

can be more effective, especially with very limited adaptation data [75]. This

section describes one such scheme called vector Taylor series (VTS).

There are many “noise” sources that may affect the “clean” speech signal

such as stress, background noise, reverberation, the Lombard effect, microphone

and transmission channel [61]. The VTS adopts a simplified model of the noisy

acoustic environment [2] or noise model, which combines various additive and

convolutional noise sources into single additive and linear channel or convolutional

noises, as shown in Figure 2.14. This model assumes that the clean speech signal

+

+

Speech

Additive noise

Corrupted speechConvolutional noise

Channel

difference

o o
n

h

Figure 2.14: A simplified model of the noisy acoustic environment.

o is first subject to the convolutional noise h to which the additive noise n is

added to yield the noise-corrupted speech signal o. The relationship between

the clean and noise-corrupted o speech signals or the mismatch function may be

written as [1]

o = o⊗ h+ n (2.140)

where ⊗ denotes convolution. As discussed in Section 2.1, speech signals are

usually transformed into domains other than time. For instance, the mismatch

function in equation (2.140) may be expressed in MFCC domain (Section 2.1.1)

as [1, 2]

os = C log(exp(C−1(os + hs)) + exp(C−1ns)) (2.141)

where os and os is the clean and noise-corrupted static1 observation, hs is the con-

1The use of term static and superscript s refers everywhere in this thesis to the absence of
dynamic information in the extracted observation features which typically (Section 2.1.2) come
in the form of regression coefficients. When dynamic information is appended to the static
observation vector os then a complete observation vector o is formed.
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volutional noise, C is the DCT matrix [140], ns is the additive noise, log and exp

are element-wise logarithm and exponent functions. Given the mismatch function

in equation (2.141), the noise-corrupted static mean, µs
j,m, and covariance, Σs

j,m,

for component qj,m may be expressed as [75]

µs
j,m = E{os|qj,m} (2.142)

Σs
j,m = E{ososT|qj,m} − µs

j,mµ
sT

j,m (2.143)

where E{·|qj,m} is the expectation taken with respect to the state-component

qj,m output distribution. However, the mismatch function in equation (2.141) is

highly non-linear which makes it complicated to derive closed-form expressions

based on equations (2.142) and (2.143) [75].

The noise-corrupted observation os based on equation (2.141) depends on the

underlying clean observation os, additive ns and convolutional hs noises. This

can be expressed by means of function f which relates these variables

os = f(os,ns,hs) (2.144)

In order to make the mismatch function f more manageable, the VTS applies

first-order vector Taylor series expansion of os for component qj,m around clean

static mean µs
j,m, additive noise mean µs,n and convolutional noise mean µs,h to

linearise it [161]

os|qj,m ≈ f(µs
j,m,µ

s,n,µs,h) + (os − µs
j,m)

∂f

∂os + (ns − µs,n)
∂f

∂ns
+ (hs − µs,h)

∂f

∂hs

(2.145)

The partial derivatives or Jacobians above are evaluated at the expansion point

and may be expressed by

∂f

∂os =
∂f

∂hs
= CFj,mC−1 = Jj,m (2.146)

∂f

∂ns
= I−CFj,mC−1 = I− Jj,m (2.147)

where Fj,m is a diagonal matrix with elements given by 1+exp(C−1(µs,n−µs
j,m−

µs,h)) [2]. Given the linearised form in equation (2.145), the noise-corrupted static
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parameters may be expressed as [2]

µs
j,m = f(µs

j,m,µ
s,n,µs,h) (2.148)

Σs
j,m = Jj,mΣ

s

j,mJT
j,m + Jj,mΣs,hJT

j,m + (I− Jj,m)Σs,n(I− Jj,m)T (2.149)

where Σs,n is the additive noise covariance matrix. The convolutional noise is

commonly assumed to be constant, in which case Σs,h = 0 [2, 61, 161].

As discussed in Section 2.1.2, the complete observation vector o is formed by

appending the dynamic coefficients ∆(1)os, . . ., ∆(n)os to the static observation

vector os. In order to derive expressions for the dynamic parts, it is common

to apply a continuous time approximation [82] under which the noise-corrupted

first-order dynamic parameters can be expressed as [2]

∆(1)µs
j,m = Jj,m∆(1)µs

j,m (2.150)

∆(1)Σs
j,m = Jj,m∆(1)Σ

s

j,mJT
j,m (2.151)

Similar expressions can be obtained for the higher-order dynamic parameters [2].

The complete noise-corrupted parameters are commonly set as follows [2, 140]

µj,m =
[
µsT

j,m ∆(1)µsT

j,m . . . ∆(n)µsT

j,m

]T
(2.152)

Σj,m =


Σs
j,m 0 . . . 0

0 ∆(1)Σs
j,m . . . 0

0 0
. . .

...

0 0 . . . ∆(n)Σs
j,m

 (2.153)

where the covariance terms are diagonalised for efficient decoding. Thus, the

likelihood of o given state-component qj,m during decoding is given by [65]

p(o|qj,m) = N(o;µj,m, diag(Σj,m)) (2.154)

The impact of this approximation will be discussed in the following.

The presentation so far has assumed that the noise λn = {µn,Σn,µh} and

clean acoustic model λ parameters are given. In practice, these parameters are
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rarely known [65]. Although an estimate of the additive noise may be obtained

from background, non-speech areas, this approach has several issues, such as

the need for voice activity detector, sensitivity to changes in noise, inconsistency

with the underlying acoustic model [140]. Furthermore, it is not straightforward

to estimate the convolutional noise parameters from the background [65, 140]. In

addition, it may not always be possible to directly estimate the clean acoustic

model parameters [55]. A range of approaches have been proposed to estimate

the noise model [66, 125, 136, 140, 161] and clean acoustic model [55, 66, 100,

117, 141] parameters. The following Section 2.8.2.1 adopts a factor analysis (FA)

based approach [55, 66] which provides a consistent, EM-based, framework for

estimating the noise and clean acoustic model parameters in Sections 2.8.2.2,

2.8.2.3 and 2.8.2.4.

2.8.2.1 Factor analysis generative models

Factor analysis (FA) is a statistical method for modelling the covariance struc-

ture of observed high-dimensional data using a small number of hidden variables

or factors [55, 83, 200, 205]. For the noisy acoustic environment model in Fig-

ure 2.14, the observed data is the noise-corrupted static observation os whilst the

hidden variables are the clean static observation os, the additive noise ns and the

convolutional noise hs. Given a state-component qj,m, the FA generative model

can be written as [66]

os|qj,m = Λs,o
j,mos|qj,m + Λs,n

j,mns + Λs,h
j,mhs + εsj,m (2.155)

where

os|qj,m ∼ N(µs
j,m,Σ

s

j,m) (2.156)

ns ∼ N(µs,n,Σs,n) (2.157)

hs ∼ δ(hs − µs,h) (2.158)
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Λs,o
j,m, Λs,n

j,m and Λs,h
j,m are loading matrices1 associated with the clean static obser-

vation, additive and convolutional noise respectively, εsj,m ∼ N(µs,e
j,m,Σ

s,e
j,m) is a

Gaussian distributed error term with mean and covariance given by

µs,e
j,m = µs

j,m −Λs,o
j,mµ

s
j,m −Λs,n

j,mµ
s,n −Λs,h

j,mµ
s,h (2.159)

Σs,e
j,m = Σs

j,m −Λs,o
j,mΣ

s

j,mΛs,oT

j,m −Λs,n
j,mΣs,nΛs,nT

j,m (2.160)

A dynamic Bayesian network illustrating dependencies between observed and

hidden variables in this generative model is shown in Figure 2.15. For this form

t
ho

t−1

o
t−1

q
t−1

t−1
h

q

on

o

t

t

t

t

n
t−1

Figure 2.15: Dynamic Bayesian network for FA-style generative model.

of FA generative model, EM-based update formulae can be iteratively applied

to obtain estimates of the additive noise and clean acoustic model parameters

[83, 100, 122, 125, 200]. The convolutional noise mean can be estimated using a

different EM-based approach [161, 201]. Together these update rules are guaran-

teed not to decrease the likelihood of generating the noise-corrupted data by the

FA generative model [66].

The VTS mismatch function in equation (2.145) can be related to the FA

generative model in equation (2.155) by re-writing it in the following way [66]

os|qj,m ≈ Jj,mos|qj,m + (I− Jj,m)ns + Jj,mhs + gs
j,m (2.161)

1The rows of the loading matrices correspond to the observed variables and the columns
correspond to the factors [39].
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where

gs
j,m = µs

j,m − Jj,m(µs
j,m + µs,h)− (I− Jj,m)µs,n (2.162)

The matrices Jj,m and I − Jj,m are the partial derivatives or Jacobians of the

VTS mismatch function (see equations 2.146 and 2.147). The Jacobians unlike

the loading matrices Λs,o
j,m, Λs,n

j,m and Λs,h
j,m of the FA generative model depend on

the clean static mean and noise model parameters (similar for the error terms).

In addition, the covariance matrix of the noise-corrupted distribution based on

equation (2.155) is generally full, unlike that used in the VTS case which is diag-

onalised for efficient decoding as discussed above. Both of these approximations

mean that EM-based update formulae are not guaranteed to increase the likeli-

hood of generating the noise-corrupted data [66]. In practice, the use of a back-off

strategy helps to overcome these issues [140].

2.8.2.2 Noise estimation

The noise model parameters in this section are the convolutional noise mean µh

and the additive noise mean µn and covariance Σn. As the convolutional noise

is deterministic, it can be estimated in a standard fixed point approach [161].

In order to estimate the additive noise parameters, a simplified form of the FA

generative model in equation (2.155) is used [66]

o|qj,m = Λn
j,mn + εj,m (2.163)

where the error term ε ∼ N(µe
j,m,Σ

e
j,m) parameters are fixed at the beginning to

µe
j,m = µj,m −Λn

j,mµ
n (2.164)

Σe
j,m = Σj,m −Λn

j,mΣnΛnT

j,m (2.165)

and the loading matrix Λn
j,m is forced to be diagonal. Note that compared to the

previous section, the FA generative model is defined over complete observation
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vectors. The complete loading matrix in this case have the following form [261]

Λn
j,m = diag


I− Jj,m 0 . . . 0

0 I− Jj,m . . . 0
...

...
. . .

...

0 0 . . . I− Jj,m

 (2.166)

where the number of blocks is equal to the order of regression.

Given observation sequence O1:T and (hypothesised) reference transcription

w1:L, the ML estimates of the additive noise model parameters can be found

[65, 66]

µn =
θn

γn
(2.167)

Σn = diag

(
Θn

γn
− µnµnT

)
(2.168)

where the additive noise model statistics γn, θn and Θn is given by

γn =
T∑
t=1

∑
(j,m)

γj,m(t) (2.169)

θn =
T∑
t=1

∑
(j,m)

γj,m(t)E{nt|ot, qj,mt } (2.170)

Θn =
T∑
t=1

∑
(j,m)

γj,m(t)E{ntnT
t |ot, q

j,m
t } (2.171)

The expectations, which are taken over the noise-corrupted distribution deter-

mined by the current noise and clean acoustic model parameters, may be ex-

pressed as [66]

E{nt|ot, qj,mt } = µn + ΣnΛnT

j,mΣ̃−1
j,m(ot − µ̃j,m) = µ

n|o
j,m (2.172)

E{ntnT
t |ot, q

j,m
t } = Σn −ΣnΛnT

j,mΣ̃−1
j,mΛn

j,mΣn + µ
n|o
j,mµ

n|oT
j,m (2.173)

where µ̃j,m and Σ̃j,m are the noise-corrupted speech distribution parameters from
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the FA generative model

µ̃j,m = Λn
j,mµ

n + µe
j,m (2.174)

Σ̃j,m = Λn
j,mΣnΛnT

j,m + Σe
j,m (2.175)

The additive noise mean may be initialised by setting µs,n equal to the static

observation with the smallest energy [140, 161]. The additive noise covariance

may be initialised by setting Σs,n equal to the variance of the first (and possibly

last) 3-10 static observations [124, 140].

2.8.2.3 VTS adaptive training

In order to estimate the clean acoustic model parameters, a simplified form of

the FA generative model in equation (2.155) is used [66]

o|qj,m = Λo
j,mo + εj,m (2.176)

where the error term εj,m ∼ N(µe
j,m,Σ

e
j,m) parameters are fixed at the beginning

to

µe
j,m = µj,m −Λo

j,mµj,m (2.177)

Σe
j,m = Σj,m −Λo

j,mΣj,mΛoT

j,m (2.178)

and the complete loading matrix Λo
j,m is given by [261]

Λo
j,m = diag


Jj,m 0 . . . 0

0 Jj,m . . . 0
...

...
. . .

...

0 0 . . . Jj,m

 (2.179)

where the number of block is equal to the order of regression.

The training data D is assumed to be split into R noisy acoustic environment

conditions, where each condition r is represented by one training observation
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sequence O
(r)
1:Tr

[55, 65, 66]. The auxiliary function is given by [55, 123]

Q(λ, λ̂) =
R∑
r=1

Tr∑
t=1

∑
{j,m}

γj,m(t)E{N(ot; µ̂j,m, Σ̂j,m)|ot, qj,mt }+K (2.180)

where λ is the adapted current set of clean acoustic model parameters λ and λ̂ is

the new set of clean acoustic model parameters. The ML estimates of the clean

acoustic model parameters are given by equations (2.51) and (2.52), where the

required statistics is [65, 66]

γj,m =
R∑
r=1

Tr∑
t=1

γ
(r)
j,m(t) (2.181)

θj,m =
R∑
r=1

Tr∑
t=1

γ
(r)
j,m(t)E{o(r)

t |o
(r)
t , qr,j,mt } (2.182)

Θj,m =
R∑
r=1

Tr∑
t=1

γ
(r)
j,m(t)E{o(r)

t o
(r)T

t |o
(r)
t , qr,j,mt } (2.183)

The expectations, which are taken over the noise-corrupted distribution deter-

mined by the current noise and clean acoustic model parameters, may be ex-

pressed as [66]

E{o(r)
t |o

(r)
t , qr,j,mt } = µj,m + Σj,mΛoT

j,mΣ̃−1
j,m(o

(r)
t − µ̃j,m) = µ

o|·
j,m (2.184)

E{o(r)
t o

(r)T

t |o
(r)
t , qr,j,mt } = Σj,m −Σj,mΛoT

j,mΣ̃−1
j,mΛo

j,mΣj,m + µ
o|·
j,mµ

o|·T
j,m (2.185)

where the noise-corrupted speech distribution parameters associated with the FA

generative model are given by

µ̃j,m = Λo
j,mµj,m + µe

j,m (2.186)

Σ̃j,m = Λo
j,mΣj,mΛoT

j,m + Σe
j,m (2.187)

The initial estimates of the clean acoustic model parameters may be set to the

ML estimates obtained as described in Section 2.2.3.

The noise and clean acoustic model parameters are usually estimated in a

65



2.9. SUMMARY

manner similar to speaker adaptive training discussed in Section 2.8.1.2, where

given an initial estimate of the noise model parameters the clean acoustic model

parameters are updated. Given new clean acoustic model parameters, the noise

model parameters are updated and so on [55, 65, 66]. The clean acoustic model

thus estimated is usually called VTS adaptively trained (VAT) acoustic model

[55].

2.8.2.4 Discriminative VTS adaptive training

Another advantage of FA based approach is that it is possible to incorporate

discriminative training criteria, such as minimum phone error (MPE) described in

Section 2.7.1.3, into the VTS adaptive training framework [65]. For discriminative

VTS adaptive training (DVAT), the noise model is assumed to be estimated as

discussed in Section 2.8.2.4 and fixed. The MPE criterion in DVAT is optimised

similar to Section 2.7.2.2 yet the statistics required by the EBW update rules in

equation (2.97) and (2.98) in the denominator case is given by

γdenj,m =
R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

γa,j,m(t) (2.188)

θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

γa,j,m(t)E{o(r)
t |o

(r)
t , qa,j,mt } (2.189)

Θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

γa,j,m(t)E{o(r)
t o

(r)T

t |o
(r)
t , qa,j,mt } (2.190)

The numerator statistics has similar expressions. Other implementation details

are comprehensively discussed in [55, 66].

2.9 Summary

This chapter gave an overview of hidden Markov model (HMM) based speech

recognition. In particular, it described standard approaches to extract observa-

tions from speech, such as Mel-frequency cepstral coefficients. The use of HMMs
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for acoustic modelling and n-gram models for language modelling was discussed.

In order to handle large number of possible sentence, the use of composite HMMs

was discussed. In order to use these acoustic models for speech recognition, this

section discussed how decoding and parameter estimation can be performed. In

addition to maximum likelihood criterion, a range of discriminative criteria, such

as maximum mutual information, minimum phone error and large margin, were

discussed. Several approaches to ensure robustness of these estimates, such as

phonetic decision tree based parameter tying and the use of smoothing during pa-

rameter estimation were discussed. In order to account for the mismatch between

training and test conditions, the use of adaptation approaches, such as maximum

likelihood linear regression and vector Taylor series, were discussed. The use of

adaptive training, based on maximum likelihood and discriminative criteria, were

detailed.

————————————————————————
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Chapter 3

Discriminative models

As was discussed in Chapter 1, the discriminative approach to speech recognition

learns a direct map from observation sequences to sentences or models posterior

probability of sentences given observation sequences directly [167]. This chapter

discusses two discriminative models that have been applied to speech recognition

tasks. The first discriminative model discussed in Section 3.1 is a maximum

entropy model [14, 104, 199], which models the posterior probability of sentence

labels given observation sequence. The second discriminative model discussed in

Section 3.2 are support vector machines [68, 217, 244, 248], which in the simplest,

binary case, map observation sequences into one of two sentence labels.

3.1 Maximum entropy models

Maximum entropy (MaxEnt) [103, 104] is a general technique for estimating prob-

ability distributions from training data [170]. Given a set of knowledge sources

providing statistics, a combined model is created which imposes a set of con-

straints on the statistics to be satisfied [199]. The knowledge sources contribute to

the statistics in the form of feature-functions φ(·) which extract fixed-dimensional

feature vectors [14]. In case of speech recognition, these knowledge sources may be

the acoustic and language model discussed in Chapter 2, the feature vectors are

extracted from observation sequences O1:T and sentence class labels ω which may

be written as φ(O1:T , ω) [73, 173]. Given a supervised training data consisting of
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R training sequences

D =
{
{O(1)

1:T1
, ω1}, . . . , {O(R)

1:TR
, ωR}

}
(3.1)

the statistics may be expressed as the expected value of feature vectors with

respect to the empirical distribution that generated the training data [170]

ED{φ(O1:T , ω)} =
1

R

R∑
r=1

φ(O
(r)
1:Tr

, ωr) (3.2)

The usefulness of this statistics can be acknowledged by requiring the combined

model to accord with it [14]. The expected value of feature vectors with respect

to the combined model may be expressed as [170]

Eα{φ(O1:T , ω)} =
1

R

R∑
r=1

∑
ω

P (ω|O(r)
1:Tr

;α)φ(O
(r)
1:Tr

, ω) (3.3)

where α are the combined model parameters. The combined model may be set

in accordance with the statistics by constraining [14, 170]

Eα{φ(O1:T , ω)} = ED{φ(O1:T , ω)} (3.4)

Among all probability distributions P (ω|O1:T ;α) satisfying these constraints, the

maximum entropy technique selects one which has the maximum entropy [103].

The unique solution to this problem maximises the posterior probability of ref-

erence sentence class labels in the training data and is a member of exponential

family [170, 199]

P (ω|O1:T ;α) =
1

Z(O1:T ;α)
exp(αTφ(O1:T , ω)) (3.5)

where Z(O1:T ;α) is a normalisation term given by

Z(O1:T ;α) =
∑
ω′

exp(αTφ(O1:T , ω
′)) (3.6)
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The corresponding objective function to maximise may be expressed by [14, 170]

Fcml(α;D) =
1

R

R∑
r=1

log
(
P (ωr|O(r)

1:Tr
;α)
)

(3.7)

This objective function is related to the maximum mutual information (MMI)

objective function discussed in Section 2.7.1.1 and in the context of discrimina-

tive models is usually called conditional maximum likelihood (CML) [73]. The

combined model with posterior probabilities defined as outlined above is called

maximum entropy model [14]. Furthermore, discriminative models adopting the

form of posterior probability in equation (3.5) are also known as log-linear models

[90, 170, 199] and flat direct models [168].

Given observation sequence O1:T and parameters α, inferring the most likely

sentence class label with MaxEnt uses Bayes’ decision rule [73]

ω̂ = arg max
ω
{P (ω|O1:T ;α)} (3.8)

= arg max
ω

{
1

Z(O1:T ;α)
exp(αTφ(O1:T , ω))

}
(3.9)

Since Z(O1:T ;α) is constant for each ω in equation (3.9) and does not change

rank ordering then inferring can be equivalently performed by searching for ω

with the largest dot-product of parameters α and feature vector φ(O1:T , ω) [73]

ω̂ = arg max
ω
{αTφ(O1:T , ω)} (3.10)

If posterior P (ω|O1:T ;α) is required, such as for system combination purposes, it

can be obtained using equation (3.5) once dot-products in equation (3.10) have

been computed for all possible ω [128].

The rest of this section is organised as follows. The next Section 3.1.1 discusses

feature-functions. The following Section 3.1.2 then discusses options available for

estimating parameters. Adaptation to speaker and noise conditions is discussed

last in Section 3.1.3.
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3.1.1 Feature-functions

The form of feature-functions is central to the performance of MaxEnt [73]. For

speech recognition, a wide range of feature-functions have been proposed as will

be exemplified in Chapter 6. A fundamental requirement imposed on all those

feature-functions is that they transform variable length sequences into a fixed-

length representation (feature vectors) as multiple different length sequences may

be used by the same feature-functions [73]. An example of feature-function ex-

tracting features only from observation sequences is given by

φ(O1:T ) =

[
T∑
t=1

ot

]
(3.11)

Though simple, it bears a resemblance to the HMM mean statistics in equa-

tion (2.49) (see Section 2.2.3). As these features do not depend on sentence class

labels it is necessary to explicitly relate observation sequences with sentence class

label. The following mapping can be used to accomplish this

φ(O1:T , ω) =


...

δ(ω, the dog chased the cat)φ(O1:T )
...

 (3.12)

With d-dimensional observation vectors and |Ω| sentence class labels the total

dimensionality of feature vectors in equation (3.12) is d|Ω|. Thus, the number of

parameters in such model would also be d|Ω|.
In addition to mapping variable length sequences to fixed length, these feature-

functions impose the first-order relationship between observations and sentence

class labels [73]. For discriminative models it is common to represent such re-

lationship by means of graphical models [112]. Figure 3.1 shows an example of

graphical model associated with these feature-functions. The relationship or de-

pendencies between individual observation vectors and the sentence class label

have no direction and hence it is called undirected graphical model [112].
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o
1

... o
t t+1

oo
t−1

... o
T

the dog chased the cat

Figure 3.1: An example of graphical model for a simple discriminative model
where feature functions establish the first-order relationship between observation
sequences and sentence class labels.

3.1.2 Parameter estimation

As discussed at the beginning of this section, the MaxEnt parameters are es-

timated by optimising the CML objective function in equation (3.7), which is

concave, having a single global maximum [170]. For optimisation, it is possi-

ble to use standard multi-dimension optimisation techniques [171, 195], such as

gradient ascent, conjugate gradient and Rprop [169, 170], as well as specific algo-

rithms such as generalised iterative scaling [40, 44] and improved iterative scaling

[14, 44, 170]. The former approach have been found [149, 155, 280] to have faster

convergence in many cases and hence will be adopted in this section. In addition

to CML, it is also possible to use any of discriminative criteria discussed with

HMMs in in Section 2.7.1 [73]. The rest of this section as an example discusses

optimisation of CML, minimum Bayes’ risk (MBR) and margin-based objective

functions in Section 3.1.2.1, 3.1.2.2 and 3.1.2.3 respectively.

3.1.2.1 Optimisation of CML

The CML objective function to be optimised was given earlier in equation (3.7).

The gradient of it with respect to the discriminative model parameters α may be

expressed in terms of the expected values in equation (3.2) and (3.3) as [169]

∇αFcml(α;D) = ED{φ(O1:T , ω)} − Eα{φ(O1:T , ω)} (3.13)

Having computed gradient, the initial discriminative model parameters α may be

re-estimated using gradient-based optimisation techniques such as those discussed
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above. For instance, the use of gradient ascent yields the following update rule

α̂ = α + η∇αFcml(α;D) (3.14)

where η is a step size which in the simplest case is set to a small constant value.

Similar to discriminative estimation of HMM parameters, the CML estima-

tion of maximum entropy model parameters has a tendency to over-train on the

training data, i.e., it does not generalise well to the test data [80]. In order to

address this issue, a Gaussian prior on the discriminative model parameters may

be introduced [33]

P (α;αp) = N(α;µp,Σp) (3.15)

where αp = (µp,Σp) are the prior parameters. Usually, the mean vector µp is

set to zero and the covariance matrix Σp has a diagonal form [168]

Σp = σpI (3.16)

which introduces only one variance parameter or [170]

Σp =


σp1,1 0 . . . 0

0 σp2,2 . . . 0
...

...
. . .

...

0 0 . . . σpdim(α),dim(α)

 (3.17)

which introduces an individual variance parameter for each discriminative model

parameter. The final objective function may be expressed as [80, 170]

F(α;D) = Fcml(α;D) + log(P (α;αp)) (3.18)

The Gaussian prior (and its logarithm) is concave which makes the final objective

function to be concave and have a single global maximum [170]. The gradient of

log(N(α;µp,Σp)) with respect to discriminative model parameters is given by

∇α log(N(α;µp,Σp)) = −Σp−1

(α−αp) (3.19)
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The use of Gaussian prior leads to the following form of update rule in, for

instance, gradient ascent optimisation technique

α̂ = α + η
(
∇αFcml(α;D)−Σp−1

(α−αp)
)

(3.20)

In addition or as an alternative to Gaussian priors, it is possible use exponential

and Laplacian priors [30, 80].

3.1.2.2 Optimisation of MBR

As in the previous section, the MBR objective function to be minimised may be

obtained from the related objective function in equation (2.73) discussed in the

context of MBR estimation of HMM parameters as

Fmbr(α;D) =
1

R

R∑
r=1

∑
ω

P (ω|O(r)
1:Tr

;α)L(ω, ωr) (3.21)

where L(ω, ωr) is the loss between sentence class label ω and the r-th refer-

ence sentence class label ωr. Replacing the loss L(ω, ωr) with accuracy function

A(ω, ωr) and changing the direction of optimisation yields a similar to equa-

tion (2.102) form of MBR objective function

Fmbr(α;D) =
1

R

R∑
r=1

∑
ω

P (ω|O(r)
1:Tr

;α)A(ω, ωr) (3.22)

Following [128], the gradient with respect to parameters α may be expressed as

∇αFmbr(α;D) = (3.23)

1

R

R∑
r=1

∑
ω

P (ω|O(r)
1:Tr

;α)

(
A(ω, ωr)−

∑
ω′

P (ω′|O(r)
1:Tr

;α)A(ω′, ωr)

)
φ(O

(r)
1:Tr

, ω)

This expression is related to the expected value in equation (3.3) which defines the

gradient of CML objective function in equation (3.13). In addition, the posterior

probability weighted term in parentheses above is related to the MPE differential

in equation (2.106). Having computed the gradient, the initial parameters α may
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be re-estimated using, for example, the gradient ascent optimisation technique

discussed in the previous section.

In contrast to CML objective function, the MBR objective function in equa-

tion (3.21) or (3.22), is not typically concave, which makes it sensitive to initiali-

sation and spurious local maxima [47]. Following [275], the use of CML estimate

may be suggested to provide better initial parameters. In order to avoid local

maxima, annealing techniques may be adopted [215]. In addition, similar to CML

estimation, the MBR estimation has a tendency to over-train on the training data,

i.e., it does not generalise well to the test data [215]. In order to address this

issue, it is similarly possible to introduce Gaussian prior [47, 215].

3.1.2.3 Optimisation of large margin

A range of objective functions were discussed in the context of margin-based

estimation of HMM parameters in Section 2.7.1.4. For maximum entropy models,

one suitable form of objective function to minimise may be expressed as [278]

Flm(α;D) =
1

R

R∑
r=1

[
max
ω 6=ωr

{
L(ω, ωr)− log

(
P (ωr|O(r)

1:Tr
;α)

P (ω|O(r)
1:Tr

;α)

)}]
+

(3.24)

Depending on the form of loss function used it may related to the objective

function in equation (2.76) (constant loss) or equation (2.76) (Hamming loss)

discussed in the context of margin-based estimation of HMM parameters.

Using the form of posterior probability in equation (3.5) the large margin

objective function may be expressed as [278]

Flm(α;D) =
1

R

R∑
r=1

[
−αTφ(O

(r)
1:Tr

, ωr) + max
ω 6=ωr

{
L(ω, ωr) + αTφ(O

(r)
1:Tr

, ω)
}]

+

(3.25)

Note that the normalisation term Z(O
(r)
1:Tr

;α) common to the numerator and

denominator term in equation (3.24) cancels out [278]. The objective function

in equation (3.25) is convex (maximum of affine functions is a convex function

[228]), having a single global minimum [278].

In order to address possible over-training issues, a prior may be introduced
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[228]. For instance, the use of Gaussian prior given by equation (3.15) with zero

mean vector µp = 0 and scaled diagonal covariance matrix Σp = σpI yields,

after omitting terms constant in α, the following final form of the large margin

objective function [278]

F(α;D) =
1

2
‖α‖2

2 + σpFlm(α;D) (3.26)

where ‖ · ‖2 is the Euclidean norm, also known as the `2 norm [49]

‖α‖2 =
√
αTα (3.27)

The final objective function is convex (squared Euclidean distance is convex) and

may be minimised using approaches discussed in [278]. The same approaches

may be adopted when Gaussian prior has non-zero mean vector [275].

3.1.3 Adaptation to speaker and noise

In order to work reliably in real-world applications any speech recognition system

must be designed to be robust to changes in speaker and noise conditions [75].

For HMMs, an overview of adaptation to the speaker and noise conditions was

given in Section 2.8. A range of related approaches have also been developed for

maximum entropy models [28, 147, 221, 222].

The use of maximum-a-posteriori (MAP) adaptation has been considered in

[28]. It yields a general adaptation scheme which makes no assumption about the

nature of the feature-functions [73]. However, when the feature-functions exhibit

some structure the use of other adaptation schemes may be more advantageous

[73].

Alternatively, the use of linear transformation based adaptation has been

investigated in [147, 227]. These schemes make use of approaches similar to

the maximum likelihood linear regression (MLLR) for HMMs discussed in Sec-

tion 2.8.1. In contrast to the MAP adaptation, these schemes make assumptions

about the relationships between features [73]. As these schemes have been ap-

plied only with feature-functions resembling those used in standard HMMs and

also those given by equation (3.12), it is not clear whether this form of adaptation
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approaches can be extended to more general feature-functions [73].

Finally, the feature-functions can be modified to make them dependent on

the speaker and noise conditions [73]. Related approaches have also been for

HMMs [18, 46, 58, 131, 162, 202, 249]. The maximum entropy models then can

be trained speaker and noise independent using those modified feature-functions

[68]. This approach will be discussed in Chapter 6.

3.2 Support vector machines

The support vector machines (SVM) [243] is a discriminative classifier approxi-

mately implementing structural risk minimisation and based upon the intuitive

concept of margin maximisation - first discussed in the context of discrimina-

tive estimation of hidden Markov model (HMM) parameters in Section 2.7.1.4

[72, 128]. In its standard implementation [109, 243, 244], the SVMs are a binary

classifier of fixed-length vectors that have been applied to a range of tasks such

as text categorisation [108], image recognition [37, 178], bioinformatics [86] and

medical applications [50]. This standard SVM implementation is outlined next in

Section 3.2.1. Section 3.2.2 then discusses an approach how variable rather than

fixed-length vectors, such as observation sequences, may be handled. The follow-

ing Section 3.2.3 discusses how situations with more than two classes - common

to speech recognition [72] - may be addressed. Finally, the aspect of adapting

classifier to mismatches between training and test data conditions - common to

speech recognition [72] - is discussed in Section 3.2.4.

3.2.1 Standard implementation

Consider a training set

D = {{o1, y1}, . . . , {oR, yR}} (3.28)

where or is a d-dimensional vector and yr is a binary, positive (yr = 1) or negative

(yr = −1), class label for each r. The training set D is said to be linearly separable
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if there exists a vector m (weight vector) and a scalar b (bias) such that

yr(m · or + b) ≥ 1 (3.29)

is valid for each r [37, 243, 244]. The vectors for which equality in equation (3.29)

holds are called support vectors [37]. Given a linearly separable training set, a

hyperplane

m · o + b = 0 (3.30)

is said to be optimal if it separates the training set with a maximal margin between

the vectors of the two classes [37], where the margin is defined as the shortest

distance from a hyperplane to the closest positive and negative class vector [25]

margin =
|1− b|
‖m‖2

+
| − 1− b|
‖m‖2

=
2

‖m‖2

(3.31)

As was mentioned in Section 2.7.1.4, a classifier with large margin can be expected

to yield good generalisation. In order to maximise the margin, the following

constrained optimisation problem may be formulated [244]

m̂ = arg min
m

{
1

2
‖m‖2

2

}
(3.32)

subject to the constraints in equation (3.29). Classification of test vectors can be

performed based on the following form of decision function [37]

ŷ = sgn(m · o + b) (3.33)

Figure 3.2 shows a linearly separable training set, where inequality in equa-

tion (3.29) is satisfied everywhere on the right/left of the right/left most dashed

hyperplane for positive/negative class vectors, the support vectors are enclosed

in squares, the solid hyperplane is the optimal hyperplane and the two-headed

arrow is the maximal margin.

For a linearly non-separable training set, the optimisation problem in equa-

tions (3.32) has no feasible solution [25]. In order to address this issue, non-

negative slack variables ξ1, . . ., ξR may be introduced to formalise margin viola-
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Figure 3.2: An example of a linearly separable training set in a two dimensional
space (reproduced from [37]). The positive class examples are shown as circled
plusses, whereas the negative class examples as circled minuses. The support
vectors are enclosed in squares. The optimal hyperplane is shown by the solid
line. The margin is shown by the two-headed arrow.

tion, i.e., ξr > 0 only if or violates the constraint in equation (3.29) otherwise

ξr = 0 [37]. The new constraints may be expressed as

yr(m · or + b) ≥ 1− ξr, for all r (3.34)

The sum of the slack variables gives an upper bound on the number of misclas-

sified training examples [25]. Minimising it one finds some minimal subset of

vectors which if excluded yields a linearly separable training set [37]. This may

be expressed formally as the following constrained optimisation problem

{m̂, b̂} = arg min
m,b

{
1

2
‖m‖2

2 + C
R∑
r=1

ξr

}
(3.35)

subject to the constraints in equation (3.34) and non-negativity of the slack vari-

ables [37]. The larger is the constant C, the more penalty is given to the training

vectors violating the margin [25]. The solution to this optimisation problem is

called the soft margin hyperplane [37]. For optimisation, the following dual [21]
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constrained optimisation problem is usually solved

α̂svm = arg max
αsvm

{
R∑
r=1

αsvm
r −

1

2

R∑
r=1

R∑
r′=1

αsvm
r αsvm

r′ yryr′or · or′
}

(3.36)

subject to
R∑
r=1

αsvm
r yr = 0 and 0 ≤ αsvm

r ≤ C, for all r (3.37)

where αsvm
1 , . . ., αsvm

R are Lagrange multipliers [37]. At the optimality, it is possible

to express the weight vector m in equation (3.33) as the following sparse linear

combination of training vectors [37]

m =
R∑
r=1

αsvm
r yror (3.38)

where αsvm
r > 0 only if or is the support vector. The decision function in equa-

tion (3.33) then may be expressed as

ŷ = sgn

(
R∑
r=1

αsvm
r yror · o + b

)
(3.39)

where, due to sparsity of the Lagrange multipliers, the summation may be per-

formed only over the support vectors [37].

So far only linear decision surfaces have been considered. In order to extend

the above approach to nonlinear decision surfaces, support vector machines (SVM)

have been proposed [244]. Through some nonlinear mapping φ(·) chosen a priori,

the SVMs map original vectors into a high-dimensional feature space Φ where

an optimal/soft margin hyperplane is constructed [244]. The dual constrained

optimisation problem in equation (3.36) subject to the same constraints may be

expressed in the new space as

α̂svm = arg max
αsvm

{
R∑
r=1

αsvm
r −

1

2

R∑
r=1

R∑
r′=1

αsvm
r αsvm

r′ yryr′φ(or) · φ(or′)

}
(3.40)

where φ(or) is the mapped version of the original vector or [19]. The decision
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function in equation (3.39) may be expressed in the new space as [19, 37]

ŷ = sgn

(
R∑
r=1

αsvm
r yrφ(or) · φ(o) + b

)
(3.41)

For instance, when two-dimensional vectors are mapped according to φ(o) = [ o2
1√

2o1o2 o2
2 ]T, an optimal/soft margin hyperplane constructed in the new space

yields a nonlinear, degree 2 polynomial, decision surface in the original space [25].

As the dimensionality of feature vectors grows the SVM approach, as outlined

above, may become computationally infeasible [37, 244]. In order to address this

issue, a kernel trick [3] may be applied [19]. The kernel trick makes use of a

kernel function k(·, ·) [95] to compute dot-products, such as in equation (3.40),

implicitly without mapping the original vectors [244]

φ(or) · φ(or′) = k(or,or′) (3.42)

By using different kernels it is possible to construct different SVMs with arbitrary

types of decision surfaces by solving the following dual constrained optimisation

problem subject to the same constraints as the problem in equation (3.36) [37]

α̂svm = arg max
αsvm

{
R∑
r=1

αsvm
r −

1

2

R∑
r=1

R∑
r′=1

αsvm
r αsvm

r′ yryr′k(or,or′)

}
(3.43)

The decision function of these SVMs has the following form [244]

ŷ = sgn

(
R∑
r=1

αsvm
r yrk(or,o) + b

)
(3.44)

There are several choices of kernel to use such as those given by Table 3.1. In

particular, when the mapped vectors are defined by φ(o) = [ o2
1

√
2o1o2 o2

2 ]T

the dot-product can be implicitly computed by the degree p = 2 homogeneous

polynomial kernel [25] listed in Table 3.1.
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Type Form k(o,o′) Parameters

Linear o · o′ –
Homogeneous polynomial (o · o′)p p

Inhomogeneous polynomial (a+ o · o′)p a, p
Laplacian exp(− 1

σ
‖o− o′‖2) σ

RBF exp(− 1
2σ2‖o− o′‖2

2) σ

Table 3.1: Examples of kernels for fixed-length data

3.2.2 Dynamic kernels

So far it has been assumed that the data has a form of fixed-length vectors. As

was discussed in Chapter 2, the speech data typically has a form of variable-

length sequences. In order to address this inconsistency, dynamic kernels have

been developed [101, 128, 145, 216]. These kernels typically map variable-length

sequences into a fixed-dimensional feature space where an inner product can be

calculated [145, 217]. Given a pair of observation sequences O1:T and O′1:T ′ , the

dynamic kernel may be defined by [101]

k(O1:T ,O
′
1:T ′) = φ(O1:T )TΣ−1

Φ φ(O′1:T ′) (3.45)

where φ(·) are feature-functions, ΣΦ is a metric, which defines distance in the

feature space [101]. The simplest example of feature-functions was given with

MaxEnt models in equation (3.12). A number of alternative approaches will be

discussed in Chapter 6. The choice of metric ΣΦ in equation (3.45) is often not

clear [145]. As the SVMs are sensitive to data scaling [214], it is advantageous to

adopt a maximally non-committal metric [216]. One such metric is given by

ΣΦ = E{(φ(O1:T )− µΦ)(φ(O1:T )− µΦ)T} (3.46)

where expectation, E{·}, is taken over all possible observation sequences and

µΦ = E{φ(O1:T )} [216]. For some feature-functions these expectations may not

have closed-form solutions [128]. In order to address this issue, the use of empirical
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estimate may be considered [43, 68]

ΣΦ =
1

R

R∑
r=1

(φ(O
(r)
1:Tr

)− µΦ)(φ(O
(r)
1:Tr

)− µΦ)T (3.47)

where µΦ = 1
R

∑R
r=1 φ(O

(r)
1:Tr

). For high-dimensional score-spaces computing and

storing ΣΦ based on equation (3.47) can be computationally expensive [128]. In

order to address this issue, further approximations may be applied, such as diag-

onal approximation, diag(ΣΦ), [217] which provides a reasonable approximation

to ΣΦ in equation (3.47) whilst reducing the computational cost associated with

inverting a full matrix to inverting a diagonal matrix [128].

Given dynamic kernel, the SVM can be constructed on variable-length se-

quence data by solving the dual constrained optimisation problem [101]

α̂svm = arg max
αsvm

{
R∑
r=1

αsvm
r −

1

2

R∑
r=1

R′∑
r′=1

αsvm
r αsvm

r′ yryr′k(O
(r)
1:Tr

,O
(r′)
1:Tr′

)

}
(3.48)

subject to the same constraints as equation (3.43). The decision function with

these SVMs has the following form [72, 101]

ŷ = sgn

(
R∑
r=1

αsvm
r yrk(O

(r)
1:Tr

,O1:T ) + b

)
(3.49)

3.2.3 Multi-class extensions

So far the SVM have been assumed to be a binary classifier. There are options to

extend the SVM to handle multiple classes [38]. Section 3.2.3.1 discusses the first

option which is to reduce the multi-class problem into multiple binary problems

[20, 126]. Section 3.2.3.2 then discusses the second option which is to modify the

SVM classification and training to handle multiple classes [38, 244, 255].

3.2.3.1 One-versus-one classifiers

There are a number of options for using voting schemes with the SVMs for multi-

class classification [72]. The schemes differ in the number of SVMs, the amount
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of training data and the number of classifications.

One of them is a one-versus-the rest (1-v-rest) classifier [20, 244]. Here, the

SVMs are constructed for each of K classes such that the correct class provides

with the positive class examples and the rest classes provide with the negative

class examples [244]. Classification of a test observation sequence may be per-

formed using a winner-takes-all strategy in which a class with the largest argu-

ment of decision function is selected [97].

Another one is a one-versus-one (1-v-1) classifier [57, 126]. Here, the SVMs

are constructed for each pair of the classes; for a K-class problem, a total of
1
2
K(K−1) SVMs is constructed [97]. Classification of test observation sequences

can be performed using a max-wins strategy [57] in which a class with the largest

number of pairwise ”wins” is selected with ties between classes broken randomly

or resolved by an alternative, for example, generative, classifier [68].

3.2.3.2 Multi-class SVMs

An alternative to combining multiple binary SVMs is to construct a direct multi-

class SVM by solving a single optimisation problem [196]. As an illustration, this

section discusses multi-class SVMs where decision functions are given by

ω̂ = arg max
ω

{
αTφ(O1:T , ω)

}
(3.50)

where α are parameters and φ(·) is a feature-function and ω is a sentence class

label. Note that the same form of decision function was used for inference with

MaxEnt models (see Section 3.1). There are a number of feature-functions that

can be adopted with this form [73, 278]. The simplest example is to adopt the

MaxEnt feature-function in equation (3.12). Given a feature-function, there are

a number of approaches for training with this form [38, 244, 255]. Common

to these approaches is that a single constrained optimisation problem with a

quadratic objective function may be formulated [196]. The approaches differ in

the form of constraints to be satisfied.

One of them [244, 255] requires dot-products for each reference sentence label

to be at least by one larger than they are for every competing sentence label. By

introducing slack variables to handle training sets violating this requirement, the
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constraints may be expressed as [120]

αTφ(O
(r)
1:Tr

, ωr) + δ(ω, ωr)−αTφ(O
(r)
1:Tr

, ω) ≥ 1− ξr,ω (3.51)

This results in K − 1 constraints per each training example [196].

Another approach [38] requires dot-products for each reference sentence label

to be at least by one larger than they are for the largest competing sentence label.

Note that all other competing sentence labels would have smaller dot-products

and hence automatically satisfy this requirement. By introducing slack variables

to handle training sets violating the above requirement, the constraints may be

expressed as [38]

αTφ(O
(r)
1:Tr

, ωr)−max
ω 6=ωr

{
αTφ(O

(r)
1:Tr

, ω)− δ(ω, ωr)
}
≥ 1− ξr (3.52)

This results in 1 rather than K − 1 constraints per each training example [196].

An interesting aspect of the last approach is that it may be shown [277, 278]

to be related to large margin training of maximum entropy models discussed

in Section 3.1.2.3. In order to verify this, consider converting the associated

constrained optimisation problem into an unconstrained optimisation problem.

The constrained optimisation problem may be expressed as [120, 196]

{α̂, ξ̂} = arg min
α,ξ

{
1

2
‖α‖2

2 + C

R∑
r=1

ξr

}
(3.53)

subject to the constraints in equation (3.52). The slack variables above may be

expressed as [97]1

ξr =

[
max
ω 6=ωr

{
αTφ(O

(r)
1:Tr

, ω) + 1− δ(ω, ωr)
}
−αTφ(O

(r)
1:Tr

, ωr)

]
+

(3.54)

Subsituting equation (3.54) into equation (3.53) yields an unconstrained optimi-

1In the referred work, maximisation inside the hinge-loss function [ · ]+ is performed over
all (as in equation 3.54) rather than only competing (as in equation 3.52) sentence labels which,
however, does not change the final result.
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sation problem of the form given by equation (3.26), where

F(α;D) =
1

2
‖α‖2

2+ (3.55)

C
R∑
r=1

[
max
ω 6=ωr

{
αTφ(O

(r)
1:Tr

, ω) + 1− δ(ω, ωr)
}
−αTφ(O

(r)
1:Tr

, ωr)

]
+

Adopting L(ω, ωr) = 1−δ(ω, ωr) and σp = CR in equation (3.26) yields the same

form of objective function as in equation (3.55).

3.2.4 Adaptation to speaker and noise

In order to work reliably in real-world applications any speech recognition system

must be designed to be robust to changes in speaker and noise conditions [75].

For HMMs, an overview of adaptation to the speaker and noise conditions was

given in Section 2.8. There has been some previous work on adapting the SVMs

to speaker and noise conditions [71, 98, 139].

The use of regularised adaptation has been considered in [139]. It makes use

of the existing unadapted SVM parameters to form a prior on the new adapted

parameters subject to estimation on the adaptation data. The regularised adap-

tation is a general adaptation scheme, similar to maximum-a-posteriori adapta-

tion [138], which makes no assumption about the nature of feature-functions [73].

However, when the feature-functions exhibit some structure the use of other adap-

tation schemes may be more advantageous [73]. Furthermore, when the amount

of adaptation data is very limited, for example a single utterance, this scheme

may be unfeasible [68].

Alternatively, the use of sample selection de-biasing1 has been investigated in

[98]. It yields resampling weights for the training data samples to ”match” the

adaptation data samples [68]. However, for some speech recognition problems,

such as noise-robust speech recognition and rapid speaker adaptation, it is not

possible to ensure that the target speaker or environment is well covered by the

training data [68].

1In the machine learning literature (c. f. [98]) the sample selection bias refers to the situation
when the distributions assumed to identically and independently draw training and testing
samples do not match.
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Finally, the feature-functions themselves can be modified to make them ro-

bust to the speaker and noise conditions [73]. The SVM then can be trained

speaker and noise independent using those modified feature-functions similar to

the MaxEnt. This approach will be discussed in Chapter 6.

3.3 Summary

This chapter has discussed two discriminative classifiers that have been applied

to speech recognition tasks: maximum entropy models (MaxEnt) and support

vector machines (SVM).

The MaxEnt classifier models posterior probabilities of sentence labels given

observation sequences. The resulting form of posterior probability is a member of

exponential family defined in terms of (natural) parameters and sufficient statis-

tics. The MaxEnt relies on feature functions to extract statistics from sentence

labels and variable-length observation sequences. In particular, this chapter dis-

cussed basic requirements to and gave several examples of feature functions that

could be used. In addition to the standard conditional maximum likelihood train-

ing, alternative discriminative training criteria such as minimum Bayes risk and

large margin were discussed. Adaptation to mismatches between training and

test condition were also discussed.

The SVM classifier in the simplest, binary case, maps observation sequences

into one of two sentence labels depending on which side of a hyperplane it falls.

In particular, it discussed learning hyperplanes with maximal margins for linearly

separable training sets, which may be expected to yield low generalisation errors,

and soft margins, which are useful in situations of linearly inseparable training

sets. In order to construct non-linear classifiers, the use of non-linear mappings

and kernels were discussed. In order to address variable-length nature of obser-

vation sequences, the use of dynamic kernels was discussed. In order to enable

multi-class classification, a range of extensions, such as reduction schemes and

multi-class SVMs, were discussed. Adaptation to mismatches between training

and test condition were also discussed.

————————————————————————
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Chapter 4

Extended acoustic code-breaking

The discriminative models discussed in Chapter 3 were presented as whole-sentence

models where parameters are associated with individual sentences. Although for

some tasks it may be a feasible option [168, 217], as the number of sentence

classes increases such approach quickly becomes impractical [73]. There are sev-

eral options to address this issue. One option is to introduce a structure into the

discriminative model by breaking down sentence labels into sub-sentence units,

such as words or phones, similar to the standard approach applied with the acous-

tic and language model of the generative classifier in Chapter 2. This option will

be discussed in Chapter 5. This chapter discusses an alternative option which

is to decompose the whole sentence recognition problem into a sequence of inde-

pendent, typically, word classification sub-problems using acoustic code-breaking

schemes [68, 128, 246, 247]. These sub-problems are then addressed by using

whole-word models where parameters are associates with individual words.

In order to construct whole-word models, it is necessary to have sufficient

training data for each word. Although this is possible for some tasks [68], for

others, such as city name recognition, it is unlikely that there will be sufficient

data. This is a known limitation of acoustic code-breaking schemes and means

the schemes can not be applied to general problems [72]. This chapter proposes

an extended acoustic code-breaking which addresses the above limitation by arti-

ficially generating the required data. As this artificial data can be generated for

any word, the use of acoustic code-breaking can be examined in tasks that were

previously not possible.
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The rest of this chapter is organised as follows. Section 4.1 discusses acoustic

code-breaking schemes. The extended acoustic code-breaking will be presented

in Section 4.2. A summary of this chapter is given in Section 4.3.

4.1 Acoustic code-breaking

The acoustic code-breaking is a re-scoring approach to speech recognition in

which the whole-sentence recognition problem is transformed into multiple se-

quential, independent, word classification sub-problems [247]. This provides a

general framework for incorporating models that may not be possible to apply to

continuous speech recognition tasks [247]. For example, if the sub-problems are

limited to word-pairs then SVMs (Section 3.2) may be directly used.

A number of acoustic code-breaking schemes have been proposed [68, 128,

247]. Common to these schemes is the use of existing HMM-based speech recog-

nition system to yield an initial representation, such as the 1-best hypothesis or

word lattice (Section 2.6). Given this initial representation, these schemes at-

tempt to isolate and characterise the regions of acoustic confusability to which

the whole word models are applied [247]. This section discusses two such schemes.

Given an observation sequence, the variant of acoustic code-breaking in [68]

illustrated in Figure 4.1 makes use of existing HMM-based speech recognition

system to produce a 1-best hypothesis with segmentation. Using the time stamp

(2) classify

five fivesevenfive nine

(1) segment

Figure 4.1: A simple form of acoustic code-breaking

information provided by the segmentation, the observation sequence is segmented

into sub-sequences. Discriminative models can then be applied to classify each
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sub-sequence into one of all possible word label classes. This variant of acoustic

code-breaking was applied to digit string recognition tasks [72, 183], where the

vocabulary of word label classes included digits from oh to nine, zero and silence.

Examples of discriminative models examined included SVMs [68, 72], where

multi-class decisions were made using the max-wins strategy (Section 3.2.3.1),

multi-class SVMs [278], which as discussed in Section 3.2.3.2 are related to large

margin trained maximum entropy models (Section 3.1.2.3).

In contrast, the variant of acoustic code-breaking in [128], similar to the

schemes in [246, 247], was originally proposed for binary, word-pair re-scoring

in a conversational telephone speech recognition task [51] using SVMs and gener-

ative augmented models [128, 130, 216]. This variant is illustrated in Figure 4.2

and may be described in three steps [128]. The first step makes use of an ex-

isting HMM-based speech recognition system to produce a word lattice, such as

the one shown in Figure 4.2a. The second step converts this word lattice into a

cat

the
chased

ate

eagle came

the

chased

cat

the

sil
dog

the

the

the

chased

droppedcat

the

the

the

mouse

dog
the

mouse

died

sil

(a) Word lattice

−

−

sil the

dog

cat ate

chased
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dropped theeagle mouse

the

died

mouse

cat

dog

sil

(b) Confusion network

−

dropped

cat

eaglethesil the

the

cat

sil

came

mouse died

(c) Pruned confusion network

Figure 4.2: Confusion network based acoustic code-breaking

confusion network (Section 2.6), such as the one shown in Figure 4.2b. The third

step prunes this confusion network so that each set of parallel arcs contains at

most two parallel arcs as shown in Figure 4.2c. Those sets of two parallel arcs

form confusable pairs. The observation sub-sequence for each confusable pair is

extracted from the earliest start time to the latest end time of the two parallel

arcs [128]. The discriminative models are then applied to re-score each confusable

pair.

The presentation of acoustic code-breaking schemes have so far assumed the
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availability of whole-word models. Although for some tasks, such as digit string

recognition, there usually is sufficient training data to estimate the model pa-

rameters, for others, such as conversational speech recognition, it is unlikely that

there will be sufficient data [72]. Thus, the experiments in [128, 246] were limited

to re-scoring only the most frequently occurring word-pair confusions, such as

can/can’t, know/no and and/in in [128]. This is a known limitation of acoustic

code-breaking schemes and means the schemes can not be applied to tasks, such

as city-name recognition, where there is limited, or no, examples of the words in

the training data [72].

4.2 Extended acoustic code-breaking

In order to extend the acoustic code-breaking schemes to a more general setting

it is important to find a solution to how to handle tasks where there is limited,

or no, examples of possible words in the training data. One option would be to

alter the level at which the discriminative models operate, for instance, a phone,

similar to the use of phone units by HMM-based speech recognition systems in

large vocabulary tasks (Section 2.3.1). However, this significantly complicates the

issue of how to determine phone boundaries, which are much harder to estimate

than word boundaries [72]. In addition, this approach is even more sensitive to

the precise phone sequence being considered [246]. Another option, and the one

proposed in this section, is to artificially generate examples of the words with

limited, or no, representation in the training data. Thus, the extended acoustic

code-breaking can be applied, for instance, to the conversational telephone speech

recognition tasks in [128, 246] to re-score all rather than a small set of confusable

pairs. It is also possible to consider other than binary confusions, for instance,

by classifying each observation sub-sequence into one of all possible words.

In order to implement extended acoustic code-breaking, a restricted form of

speech synthesis, which generates observation sequences, not waveforms, is effec-

tively required. Thus, many of the issues commonly associated in speech synthesis

with waveform generation, such as excitation and prosody [166], are not relevant

to this approach. In order to generate observation sequences it is possible to use,

for instance, concatenative or HMM-based speech synthesis [166]. As the acoustic
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code-breaking schemes rely on existing HMM-based speech recognition systems,

the application of HMM-based speech synthesis will be considered. One addi-

tional advantage of this approach is that observation sequences with particular

speaker and noise characteristics can be simply obtained by applying model-based

adaptation/compensation approaches (Section 2.8) to modify HMM parameters

prior to synthesis.

4.2.1 HMM synthesis

The simplest approach to synthesis with HMMs is to directly use models to gen-

erate observation sequences. Given word sequence w1:L, the observation sequence

that maximises the likelihood would be generated by solving [234, 235]

Ô1:T = arg max
O1:T

{p(O1:T |w1:L;λ)} (4.1)

= arg max
O1:T

{∑
q

P (q|w1:L;λ)p(O1:T |q,w1:L;λ)
}

(4.2)

There is no known way to analytically solve this problem [269]. A commonly

adopted approach is to use Viterbi approximation [272]. First, the optimal state-

component sequence that maximises the probability of state-component sequences

is found

q̂1:T = arg max
q1:T

{P (q1:T |w1:L;λ)} (4.3)

Second, the observation sequence that maximises the likelihood given the solution

to the first maximisation problem in equation (4.3) is solved for

Ô1:T = arg max
O1:T

{p(O1:T |q̂1:T ,w1:L;λ)} (4.4)

Equation (4.3) is usually solved based on explicit HMM state duration densities

[269]. The simplest option is to adopt the inherent HMM state duration den-

sity in equation (2.11) [233]. Alternatively, it is possible to consider Gaussian

distributions whose parameters may be estimated based on additional statistics

accumulated in ML estimation [262].

The solution to the problem in equation (4.4) is simplified if the distribution
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of observation sequences given a state-component sequence q1:T is Gaussian [269,

274]

p(O1:T |q1:T ,w1:L;λ) = N(O1:T ;µq1:T
,Σq1:T

) (4.5)

where the mean vector µq1:T
and the covariance matrix Σq1:T

are given by

µq1:T
=


µq1

...

µqT

 , Σq1:T
=


Σq1 . . . 0
...

. . .
...

0 . . . ΣqT

 (4.6)

Thus, given the solution to the first problem, q̂1:T , the solution to the second

problem is given by the associated mean [232]

Ô1:T = µq̂1:T
(4.7)

The procedure above is a simple generative process but the generated observa-

tion sequence will be based on the same conditional independence assumptions as

the underlying HMM [72]. In particular, the synthesised observation sequence is

obtained as a sequence of HMM state-component mean vectors - a piece-wise sta-

tionary trajectory - causing discontinuity on transitioning from one HMM state-

component mean vector to another [269]. This has been found to result in ”clicks”

in the reconstructed speech signal, degrading the naturalness [152].

4.2.2 Statistical HMM synthesis

In order to overcome conditional independence assumptions that are often cited

as an issue with the HMM synthesis discussed in Section 4.2.1 [233, 234, 274], it

is possible to apply statistical HMM synthesis [235]. The idea behind statistical

HMM synthesis is to synthesise observation sequences by taking into account the

deterministic relationship that exists between the static and dynamic parts of
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observation vectors (Section 2.1.2). For instance,

ot−1

ot

ot+1

 =



os
t−1

∆(1)ot−1

os
t

∆(1)ot

os
t+1

∆(1)ot+1


=



0 I 0 0 0

− I
2

0 I
2

0 0

0 0 I 0 0

0 − I
2

0 I
2

0

0 0 0 I 0

0 0 − I
2

0 I
2




os
t−2

os
t−1

os
t

os
t+1

os
t+2

 (4.8)

expresses the relationship between static os
t−2, . . ., os

t+2 and complete ot−1, ot, ot+1

observations assuming that the dynamic observations ∆(1)ot−1, ∆(1)ot, ∆(1)ot+1

are obtained as simple differences according to equation (2.4). It is also possible

to express the relationship between complete O1:T and static Os
1:T sequences as

O1:T = AOs
1:T (4.9)

where A is the window matrix [232]. For a given state-component sequence q1:T ,

the likelihood of static observation sequences may be computed by appropriately

normalising the likelihood of complete observation sequences in equation (4.5)

[269]
1

Z
N(AOs

1:T ;µq1:T
,Σq1:T

) = N(Os
1:T ;µs

q1:T
,Σs

q1:T
) (4.10)

where Z is the normalisation term. The static mean vector µs
q1:T

and the static

covariance matrix Σs
q1:T

associated with the likelihood of static observation se-

quences may be found from the following relationships that exists between the

static and standard means and covariances [232]

Σs−1

q1:T
= ATΣ−1

q1:T
A (4.11)

Σs−1

q1:T
µs

q1:T
= ATΣ−1

q1:T
µq1:T

(4.12)

In contrast to the standard covariance Σq1:T
matrix in equation (4.6), which is a

block-diagonal matrix, the static covariance Σs
q1:T

does not have a block-diagonal

structure since A is not block diagonal [75]. Solving for the static observation

sequence that maximises the likelihood of static observation sequences given a
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state-component sequence q̂1:T yields the associated static mean

Ôs
1:T = µs

q̂1:T
=
(
ATΣ−1

q̂1:T
A
)−1

ATΣ−1
q̂1:T

µq̂1:T
(4.13)

as the underlying distribution is Gaussian [75]. The complete synthesised obser-

vation sequence, Ô1:T , then can be obtained according to equation (4.9).

Compared to the HMM synthesis, the statistical HMM synthesis has so far

introduced only a few modifications yet the generated observation sequence al-

ready will not be based on the same conditional independence assumptions as

the underlying HMM [269]. In particular, the trajectory of synthesised static

observation sequence is no longer piece-wise stationary [75]. A number of further

refinements have been proposed. Examples include replacing the Viterbi approx-

imation to solve equation (4.1) by an EM algorithm [234] and using alternative,

ML-based [269] and discriminative [260], estimation criteria to yield HMM pa-

rameters which when used to generate static observation sequences they are a

”good” model of the training data [75], average voice models providing robust

and steady examples with limited amounts of adaptation data , speech synthesis

algorithms considering global variance which produce trajectories with dynamic

range approaching real examples [231]. The first two of these refinements are

discussed below.

Rather than adopting the Viterbi approximation to solve equation (4.1), an

auxiliary function can be formulated to search for an observation sequence which

maximises the likelihood [234]

Q(O1:T , Ô1:T ;λ) =
∑
q1:T

P (q1:T |O1:T ,w1:L;λ) log(p(Ô1:T ,q1:T |w1:L;λ)) (4.14)

where O1:T is the current and Ô1:T is the new observation sequence. Taking

derivative and solving with respect to the new static observation sequence Ôs
1:T

yields [234]

Ôs
1:T =

(
ATΣ−1

q̂1:T
A
)−1

ATΣ−1
q̂1:T

µq̂1:T
(4.15)
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where

Σ−1
q1:T

=


∑
{j,m}

γj,m(1)Σ−1
j,m . . . 0

...
. . .

...

0 . . .
∑
{j,m}

γj,m(T )Σ−1
j,m

 (4.16)

and

Σ−1
q1:T

µq1:T
=


∑
{j,m}

γj,m(1)Σ−1
j,mµj,m . . . 0

...
. . .

...

0 . . .
∑
{j,m}

γj,m(T )Σ−1
j,mµj,m

 (4.17)

Compared to the static observation sequence in equation (4.13), the contribution

of all state-components weighted by the respective state-component occupancies

is taken into account.

The HMM parameters have so far been assumed to be estimated, for example,

using the approaches discussed in Chapter 2. These approaches, however, do not

take into account the explicit relationship between complete and static sequences.

In order to address this issue, the HMM can be reformulate as a model of static

observation sequences [236]. This is the basis of the trajectory HMM [269]

p(Os
1:T |w1:L;λ) =

∑
q

P (q|w1:L;λ)N(Os
1:T ;µs

q1:T
,Σs

q1:T
) (4.18)

where the mean vector µs
q1:T

and covariance matrix Σs
q1:T

are given by equa-

tions (4.12) and (4.11). The trajectory HMM can not directly use the standard

Viterbi algorithm (Section 2.2.1) to obtain the optimal state sequence [75]. In or-

der to address this issue, a frame delayed version has been proposed [273] which,

however, is more expensive than the standard Viterbi algorithm [75]. The tra-

jectory HMM parameters, the underlying HMM parameters λ, can be estimated

using ML [269] and discriminative [260] criteria.
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4.3 Summary

The discriminative models in Chapter 3 were presented as the whole sentence

models which associate parameters with individual sentences. As the number

of sentence classes increases, the whole sentence modelling quickly becomes im-

practical. This chapter has discussed acoustic code-breaking schemes which alter

the level at which the discriminative models operate, a word, and decompose the

whole sentence recognition problem into sequential, independent, word classifi-

cation sub-problems. The application of these schemes to tasks, where there is

limited, or no, examples of the words in the training data, has so far been focused

on re-scoring a small number of the most frequently occurring confusion pairs.

This has limited possible gains from the use of these schemes.

In order to make acoustic code-breaking schemes more generally applied, this

chapter has extended these schemes to handle situations where there is limited

or no examples of the words in the training data. The approach proposed is to

artificially generate data. Essentially, a constrained version of speech synthesis,

which only generates observation sequences, not waveforms, is required. This

chapter has focused on HMM-based speech synthesis. One advantage of this ap-

proach is that observation sequences with particular speaker and noise character-

istics can be simply produced by adapting HMM to speaker and noise conditions

using model-based techniques. There were two HMM-based speech synthesis ap-

proaches discussed. The first approach is a simple generative process that directly

uses HMMs to generate observation sequences. The synthesised observation se-

quences will be based on the same conditional independence assumptions as the

underlying HMMs, which yields piece-wise stationary trajectories. In order to

overcome these assumptions, the second approach takes into account the deter-

ministic relationship that exists between the static and dynamic parts of obser-

vation vectors to generate the ”optimal” static observation sequences. Although

the distribution of static observation sequences is parametrised with HMM pa-

rameters, the same conditional independence assumptions are not present, which

yields trajectories that are no longer piece-wise stationary. Approaches, such as

trajectory HMMs, average voice models and speech synthesis considering global

variance, can be also incorporated into extended acoustic code-breaking to im-
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prove quality of generated data.

————————————————————————
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Chapter 5

Structured discriminative models

The discriminative models discussed in Chapter 3 were presented as the whole

sentence models that associate parameters with individual sentence labels. Al-

though for some tasks it may be a feasible option [168, 217], as the number of

sentence classes increases such approach quickly becomes impractical [73]. There

are several options to address this issue. Chapter 4 discussed one option which

is to associate parameters with individual words and make use of acoustic code-

breaking schemes to decompose the whole sentence recognition problem into a

sequence of independent word classification problems. This chapter discusses an-

other option which is to introduce a structure into the discriminative model by

breaking down sentence labels into sub-sentence units, such as words or phones,

similar to the standard approach applied with the acoustic and language model of

the generative classifier in Chapter 2. Related approaches, where the discrimina-

tive models adopt the same type of sub-sentence units, have also been developed

[127, 128, 223, 281]. These discriminative models are usually called structured

discriminative models [73]. This chapter discusses some forms of the structure

that have been incorporated (Section 5.1), handling of latent variables which re-

late observations with the sub-sentence units (Section 5.2), parameter estimation

(Section 5.3) and adaptation to speaker and noise conditions (Section 5.4 ).
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5.1 Model structures

Structured discriminative models aim to adopt the same sub-sentence units as the

acoustic model, the HMM (Section 2.3), and language model, the n-gram model

(Section 2.5), of the generative classifier [73]. There are a number of structural

forms that have been examined [127, 128, 223, 281].

The simplest way to introduce structure into the discriminative classifier is

to make use of graphical models that are closely linked to the dynamic Bayesian

network of the HMM repeated in Figure 5.1a for the ease of reference. Two

such graphical models are shown in Figure 5.1. The first graphical model in

q q
t

o ot

1t

t

−

−1

(a) HMM

q q
t

o ot

1t

t

−

−1

(b) MEMM

q q
t
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t

−

−1

(c) HCRF

Figure 5.1: Dynamic Bayesian network for (a) hidden Markov model (HMM)
and graphical models for frame-level structured models: (b) maximum entropy
Markov model (MEMM), (c) hidden conditional random field (HCRF)

Figure 5.1b reverses the direction of arrows describing the observation-state re-

lationship compared to the HMM. Here, at time t the posterior probability of

being in the current state qt, in addition to the previous state qt−1, also depends

on the current observation ot [85]. This serves the basis of maximum entropy

Markov models (MEMM) [127, 153]. The second graphical model in Figure 5.1c

is an undirected graph compared to the HMM and MEMM. Here, at time t the

”probability” of being in the current state qt given the previous state qt−1 and the

current observation ot is not normalised [85]. This serves the basis of a hidden

conditional random field (HCRF) [85, 220, 222, 223]. The posterior probability

associated with word sequence w1:L in the HCRF may be expressed as [220]

P (w1:L|O1:T ;α) =
1

Z(O1:T ;α)

∑
q1:T

exp(αTφ(O1:T ,q1:T ,w1:L)) (5.1)
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where Z(O1:T ;α) is a normalisation term, q1:T is a state sequence in the composite

sentence model for w1:L (Section 2.3.2), discriminative model parameters α and

features φ(·) are given by

α =

αam

αpm

αlm

 , φ(O1:T ,q1:T ,w1:L) =


∑T

t=1 φ(ot, qt)

φ(q1:T ,w1:L)

φ(w1:L)

 (5.2)

where φ(ot, qt) are observation features, φ(q1:T ,w1:L) and φ(w1:L) are supraseg-

mental features providing transition/pronunciation and language model features,

αam, αpm and αlm are the respective parameters.

The simplest example of observation features is given by [85]

φ(ot, qt) =


...

δ(qt, Sj)ot

δ(qt, Sj)vec(oto
T
t )

...

 (5.3)

where Si and Sj are the HCRF states, vec(·) maps matrices into vectors by stack-

ing columns on top of each other. For an N -state HCRF with d-dimensional ob-

servation vectors the number of observation features in equation (5.3) is N(d+d2).

These features bear a resemblance to the HMM mean and covariance statistics

in equations (2.49) and (2.50) (see Section 2.2.3) and may also be adopted with

the MEMM [127]. Though simple, it is possible to show [90, 91] that HCRFs

adopting these feature functions are related to discriminatively trained HMMs

discussed in Section 2.7 [73]. In the following these features will be referred to as

the MEMM/HCRF features.

The simplest option to define suprasegmental features is to set them to the

standard HMM transition and n-gram model log-probabilities

φ(q1:T ,w1:L) =
[
log(P (q1:T |w1:Lλ)

]
, φ(w1:L) =

[
log(P (w1:L))

]
(5.4)

where P (q1:T |w1:L;λ) is a probability of state sequence q1:T in the composite

HMM model for word sequence w1:L and P (w1:L) is the probability of word
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sequence w1:L given by the n-gram language model. Given these simple examples

of observation (equation 5.3) and suprasegmental (equation 5.4) features the total

dimensionality of features in equation (5.2) for an N -state HCRF would amount

to N(d + d2) + 2. Note that the number of parameters would also be equal to

N(d + d2) + 2. An overview of features possible to use with the HCRF will be

given later in Chapter 6.

The use of MEMM/HCRF features implies that at each time the observation

features depend on the current observation and state [73]. Although a fixed span

of observations and states may be considered to relax this assumption [93, 225],

the MEMM/HCRF will still generate T feature vectors for a T -length observation

sequence [73]. An alternative option is to allow observations across a word or

phone segment to contribute to the observation features [73]. This is the basis

of segmental conditional random fields (SCRF) [281] and conditional augmented

models (CAug) [128] respectively. The graphical model in Figure 5.2 illustrates

the SCRF by showing two segments each comprising a word and observation sub-

sequence given a particular segmentation. The posterior probability associated

oo o oo
t

o
t+1 t+kt−1j j+1

... ...dog chased

Figure 5.2: Graphical model for a word-level structured discriminative model
given a particular segmentation (reproduced from [73])

with word sequence w1:L may be expressed in SCRF/CAug as [73]

P (w1:L|O1:T ;α) =
1

Z(O1:T ;α)

∑
a

exp(αTφ(O1:T , a,w1:L)) (5.5)

where Z(O1:T ;α) is a normalisation term given by

Z(O1:T ;α) =
∑
w

∑
a

exp(αTφ(O1:T , a,w)) (5.6)
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the discriminative model parameters α have the same form as the HCRF param-

eters in equation (5.2) and features φ(·) are given by [73]

φ(O1:T , a,w1:L) =


∑|a|

s=1 φ(O{as}, as)

φ(a,w1:L)

φ(w1:L)

 (5.7)

where as is a segment specifying segment identity ais, a word in SCRF and phone

in CAug, and observation sub-sequence O{as} and a = {a1, . . ., as, . . ., a|a|}
is the segmentation, φ(O{as}, as) are acoustic segment features, φ(a,w1:L) and

φ(w1:L) are suprasegmental features providing pronunciation and language model

features. Note that acoustic segment features φ(O{as}, as) are extracted from

variable-length observation sub-sequences O{as} unlike MEMM/HCRF observa-

tion features φ(ot, qt) in equation (5.3) which are extracted from the individual

observations ot. One option to define acoustic segment features is to make use of

frame-level features, in the same fashion as the MEMM/HCRF features [73]

φ(O{as}, as) =
∑
t∈{as}

φ(ot, as) (5.8)

The simplest option to define the suprasegmental features is to set them to the

standard pronunciation P (ai|w1:L) and n-gram model P (w1:L) log-probabilities

φ(a,w1:L) =
[
log(P (ai|w1:L))

]
, φ(w1:L) =

[
log(P (w1:L))

]
(5.9)

The rest of this chapter assumes that the suprasegmental features are decompos-

able over individual words. Given these simple examples of observation (equa-

tion 5.8) and suprasegmental (equation 5.9) features, the total dimensionality of

SCRF/CAug features in equation (5.7) would amount to |V|(d+ d2) + 2 where V

is a vocabulary of segment identities (a word in SCRF and a phone in CAug) and

d is the dimensionality of observation vectors. An overview of features possible

to use with the SCRF/CAug will be given later in Chapter 6.
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5.2 Handling latent variables

The previous section has considered summing over latent variable sequences -

hidden state sequences q1:T with the MEMM/HCRF and segmentations a with

the SCRF/CAug - to yield the posterior associated with word sequence w1:L. The

use of direct summation over latent variable sequences becomes computationally

expensive as the number of possible latent variable sequences increases [73]. An

alternative option discussed in Section 5.2.1 is to devise recursions similar to the

HMM forward-backward algorithm [73]. Another option discussed in Section 5.2.2

is to apply the equivalent of Viterbi training and decoding [251] by making use of

a single latent variable sequence in the summation [73].

5.2.1 Forward-backward recursions

As noted earlier, the use of direct summation over hidden state sequences and

segmentations becomes computationally excessive as the number of possible se-

quences increases. A related problem of summing over hidden state sequences

with the HMM may be addressed by means of the forward-backward algorithm

(Section 2.2.2). Related approaches have also been developed for the MEMM

[153], HCRF [85, 224] and SCRF/CAug [281].

In the SCRF/CAug case, the forward αa(t) and backward βa(t) quantities

may be computed by

αa(t)=
∑
a′

∑
τ

αa′(τ)P̃ (a|a′) exp
(
αT

amφ(Oτ+1:t, a)
)
, τ ∈ {1, . . . , t− 1} (5.10)

βa(t)=
∑
a′

∑
τ

βa′(τ)P̃ (a′|a) exp
(
αT

amφ(Ot+1:τ , a
′)
)
, τ ∈ {t+ 1, . . . , T} (5.11)

where P̃ (a|a′) is a segment transition score - the equivalent of HMM phone arc

transition probability P (a|a′) - applying the pronunciation and language model

scores. For example,

P̃ (a|a′) = exp

[αpm

αlm

]T [
log(P (a|w))

log(P (w|w′))

] (5.12)
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may be used with SCRFs to apply standard pronunciation P (a|w) and bigram

P (w|w′) language model probabilities.1 Compared to the standard forward-

backward algorithm, there is an additional summation over a range of preced-

ing/following time indices τ . The above recursions may be applied to compute

the unnormalised posterior associated with word sequence w1:L and the normali-

sation term Z(O1:T ;α) in equation (5.5) by considering only those segments which

are consistent with w1:L and all possible segments respectively [281]. Under the

assumption that feature extraction takes O(1) time, the computational complex-

ity associated with these recursions is O(N2T 2) [281] compared to O(N2T ) in the

HMM case [49], where N is the number of segment identities/HMM states.

5.2.2 Viterbi training and decoding

As noted above, the alternative approach to summing over all hidden state se-

quences or segmentations is to perform the equivalent of Viterbi training and

decoding [251]. This has been considered with the MEMM [127, 153], HCRF

[163] and SCRF/CAug [128, 276, 281].

In the SCRF/CAug case, the posterior associated with word sequence w1:L

given segmentation â may be expressed as [73]

P (w1:L|O1:T , â;α) =
1

Z(O1:T ;α)
exp(αTφ(O1:T , â,w1:L)) (5.13)

where Z(O1:T ;α) is given by [128]

Z(O1:T ;α) =
∑
{w′,â′}

exp(αTφ(O1:T , â
′,w′)) (5.14)

Note that summation in equation (5.14) is performed over all possible word se-

quences with associated given segmentations rather than all possible word se-

quences and segmentations as in equation (5.6).

In order to make use of this form, the segmentation must be provided for each

word sequence. The simplest option is to obtain it from a generative classifier,

such as the HMM [128]. However, the segmentation optimal with respect to

1It is assumed here that words w and w′ are associated with segments a and a′ respectively.
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generative classifier may be sub-optimal with respect to discriminative classifier

[276]. In order to derive the optimal with respect to SCRF/CAug segmentation,

a semi-Markov variant [204] of the Viterbi algorithm may be applied [276]. The

associated recursion may be expressed as [277, 281]

φa(t) = max
a′

max
τ

{
φa′(τ)P̃ (a|a′) exp(αT

amφ(Oτ+1:t, a))
}
, τ ∈ {1, . . . , t− 1}

(5.15)

where, compared to the Viterbi recursion in equation (2.22), there is an additional

maximisation over a range of preceding time indices τ . Under the assumption

that feature extraction takes O(1) time, the computational complexity associated

with this recursion is O(N2T 2) [281] compared to O(N2T ) in the HMM case [49],

where N is the number of segment identities/HMM states.

5.3 Parameter estimation

In the same fashion as generative models, such as the HMM (Section 2.7), and

standard, non-structured, discriminative models, such as MaxEnt (Section 3.1.2)

it is possible to use a range of discriminative criteria with the structured discrim-

inative models [73]. Examples include conditional maximum likelihood (CML),

minimum word error (MWE)/minimum phone error (MPE) and large margin.

The rest of this section will discuss optimisation of these criteria with the struc-

tured discriminative models in Sections 5.3.1, 5.3.2 and 5.3.3 respectively.

5.3.1 Optimisation of CML

The structured discriminative model parameter estimation based on the CML

criterion may be performed by maximising the following objective function [73]

Fcml(α;D) =
1

R

R∑
r=1

log(P (w
(r)
1:Lr
|O(r)

1:Tr
;α)) (5.16)

where α are parameters and D is the supervised training data. The optimisation

of this objective function is closely linked to the maximum mutual information

(MMI) estimation of HMM parameters (Section 2.7.2.1), CML estimation of Max-
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Ent parameters (Section 3.1.2.1) and have been examined with MEMM [127, 153],

HCRF [85, 223] and SCRF/CAug [128, 281].

In the SCRF/CAug case, the posterior associated with word sequence w1:L in

equation (5.5) involves summing over all segmentations, compared to the MaxEnt.

Using this form, the CML objective function in equation (3.7) may be expressed

as [128, 169]

Fcml(α;D) =
1

R

R∑
r=1

[
log

(∑
a

exp(αTφ(O
(r)
1:Tr

, a,w
(r)
1:Lr

))

)
−

log

(∑
w

∑
a

exp(αTφ(O
(r)
1:Tr

, a,w))

)]
(5.17)

where the first, numerator, term is the logarithm of the unnormalised poste-

rior and second, denominator, term is the logarithm of the normalisation term

Z(O
(r)
1:Tr

;α). The CML objective function in equation (5.17) is a non-concave

function, possibly having several local maxima [128, 169]. Alternatively, if the

equivalent of Viterbi training and decoding (Section 5.2.2) is performed then the

SCRF/CAug posterior is given by equation (5.13) which, when substituted into

equation (5.16), yields the following form [169]

Fcml(α;D) =
1

R

R∑
r=1

[
αTφ(O

(r)
1:Tr

, â,w
(r)
1:Lr

)−

log

( ∑
{w,â}

exp(αTφ(O
(r)
1:Tr

, â,w))

)]
(5.18)

where {w, â} denotes a pair consisting of word sequence w and associated given

segmentation â. Compared to equation (5.17), the CML objective function in

equation (5.18) is a concave function, having a global maximum [73, 169].

Directly optimising either of the objective functions above with the SCRF/CAug

is complicated due to the summation over word sequences [128, 281]. A related

problem with the HMM was addressed by means of the lattice framework (Sec-

tion 2.6.2). The objective functions in equations (5.17) and (5.18) may be ex-
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pressed in the lattice framework as [128, 281]

Fcml(α;D) =
1

R

R∑
r=1

log([[L(r)
num]])− log([[L(r)

den]]) (5.19)

where L(r)
num and L(r)

den are the numerator and denominator lattice respectively, [[·]]
is the lattice weight. The numerator lattice weight with the SCRF/CAug may

be expressed as [128, 281]

[[L(r)
num]] =

∑
a∈L(r)

num

P̃ (a1|a0)

|a|∏
s=1

exp(αT
amφ(O

(r)
{as}, as))P̃ (as+1|as) (5.20)

where a represents a word/phone arc sequence. If the equivalent of Viterbi train-

ing and decoding is performed then the number of arc sequences in L(r)
num is con-

strained to one [128]. The optimisation of this objective function may be per-

formed using standard multivariate optimisation techniques, such as RProp and

gradient ascent, [128, 281]. The gradient may be expressed as

∇αFcml(α;D) =
1

R

R∑
r=1

∇α log([[L(r)
num]])−∇α log([[L(r)

den]]) (5.21)

It has been observed however that directly optimising this objective function may

cause generalisation issues [85, 128, 281]. In order to address this issue, a prior

P (α;αp) with parameters αp, such as Gaussian, may be introduced [73, 281].

The final objective function may be expressed as [278]

F(α;D) = Fcml(α;D) + log(P (α;αp)) (5.22)

The gradient of F(α;D) is a sum of ∇αFcml(α;D) in equation (5.21) and ∇α

log(P (α;αp)). For Gaussian priors, the corresponding expression was given in

equation (3.19).

As an example consider optimising the acoustic model parameters αam asso-

ciated with acoustic segment features φ(O
(r)
{as}, as). The gradient of log([[L(r)

num]])
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with respect to αam may be expressed as [128, 281]

∇αam
log([[L(r)

num]]) =
∑

a∈L(r)
num

P (a|w(r)
1:Lr

,O
(r)
1:Tr

;α)

|a|∑
s=1

φ(O
(r)
{as}, as) (5.23)

where

P (a|w(r)

1:L(r) ,O
(r)

1:T (r) ;α) =

1

Z(O
(r)
1:Tr

,w
(r)
1:Lr

;α)
P̃ (a1|a0)

|a|∏
s=1

exp(αT
amφ(O

(r)
{as}, as))P̃ (as+1|as) (5.24)

The contribution of given arc as towards the gradient is given by features φ(O
(r)
{as},

as) weighted by the posterior associated with the given arc γas = P (as|w(r)
1:Lr

,

O
(r)
1:Tr

;α) [128]. The summation over arc sequences in equation (5.23) may then

be simplified in the SCRF/CAug to the summation over individual word/phone

arcs [128]

∇αam
log
(
[[L(r)

num]]
)

=
∑
a∈L(r)

num

γaφ(O
(r)
{a}, a) (5.25)

The arc posterior γa may be computed using equation (2.67) based on the equiv-

alents of HMM forward αa and backward βa arc probabilities. These forward and

backward arc ”probabilities” may be computed using similar to equation (2.65)

and (2.66) recursions [128, 281]

αa = exp(αT
amφ(O

(r)
{a}, a;λ))κ

∑
a′preceding a

αa′P̃ (a|a′) (5.26)

βa =
∑

a′following a

exp(αT
amφ(O

(r)
{a′}, a

′;λ))κβa′P̃ (a′|a) (5.27)

where κ is the acoustic de-weighting constant discussed in Section 2.7.2.1. The de-

nominator lattice, L(r)
den, may be handled in the same way, yielding∇α log([[L(r)

den]]),

[128, 281]. The optimisation may then be performed as discussed above.
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5.3.2 Optimisation of MBR

The structured discriminative model parameter estimation based on the MBR

criterion may be performed by minimising the following objective function [73]

Fmbr(α;D) =
1

R

R∑
r=1

∑
w

P (w|O(r)
1:Tr

;α)L(w,w
(r)
1:Lr

) (5.28)

where L(·) is a loss function. The SCRF/CAug can associate loss with individual

segmentations a giving the following variant [169]

Fmbr(α;D) =
1

R

R∑
r=1

∑
w

∑
a

P (a,w|O(r)
1:Tr

;α)L(a,w
(r)
1:Lr

) (5.29)

Rather than minimising loss it is possible to maximise accuracy similar to the

MPE estimation of HMM parameters in Section 2.7.2.2 and MBR estimation of

MaxEnt parameters in Section 3.1.2.2. This yields the following variant[128, 169]

Fmbr(α,λ;D) =
1

R

R∑
r=1

∑
w

∑
a

P (w, a|O(r)
1:Tr

;α,λ)A(a,w
(r)
1:Lr

) (5.30)

Following [184], this objective function will be called minimum word error (MWE)

or minimum phone error (MPE) depending on whether the accuracy function is

computed at the word or phone level.

Optimising SCRF/CAug parameters based on the MWE/MPE objective func-

tion in equation (5.30) can be computationally expensive [128, 282]. In order to

address computational issues, the lattice framework discussed in Sections 2.6.2

and 5.3.1 can be adopted [128, 282]. The MWE/MPE objective function can be

expressed in the lattice framework as [128, 169]

Fmbr(α;D) =
1

R

R∑
r=1

∑
a∈L(r)

den

P̃ (a1|a0)
|a|∏
s=1

exp(αT
amφ(O

(r)
{as}, as))P̃ (as+1|as)A(a,w

(r)
1:Lr

)

∑
a∈L(r)

den

P̃ (a1|a0)
|a|∏
s=1

exp(αT
amφ(O

(r)
{as}, as))P̃ (as+1|as)

(5.31)
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where the numerator term weighs each arc sequence a by the associated accuracy

A(a,w
(r)
1:Lr

), the denominator term is the denominator lattice weight [[L(r)
den]]. The

optimisation can be performed using standard multivariate optimisation tech-

niques, such as RProp and gradient ascent, [128, 282]. In order to address pos-

sible generalisation issues [128], a prior P (α;αp) with parameters αp, such as

Gaussian, may be introduced [73]. The final objective function can be expressed

as [278]

F(α;D) = Fmbr(α;D) + log(P (α;αp)) (5.32)

The gradient of F(α;D) is a sum of ∇αFmbr(α;D) and ∇α log(P (α;αp)). For

Gaussian priors, the corresponding expression was given in equation (3.19).

As an example consider optimising the acoustic model parameters αam associ-

ated with acoustic segment features φ(O
(r)
{as}, as). The gradient of Fmbr(α;D) in

equation (5.29) with respect to αam can be expressed as [128, 169]

∇αam
Fmbr(α;D) =

1

R

R∑
r=1

∑
a∈L(r)

den

|a|∑
s=1

P (a,w|O(r)

1:T (r) ;α)

(
A(a,w

(r)

1:L(r))−

∑
a′∈L(r)

den

P (a′,w′|O(r)

1:T (r) ;α)A(a′,w
(r)

1:L(r))

)
φ(O

(r)
{as}, as) (5.33)

where P (a,w|O(r)

1:T (r) ;α) is the posterior of arc sequence a and the associated

word sequence w. The gradient above accumulates acoustic segment features

for each arc as in a and weighs them by the product of P (a,w|O(r)

1:T (r) ;α) and

the difference between A(a,w
(r)

1:L(r)) and the expected accuracy of word sequences

in the denominator lattice L(r)
den. A similar expression was derived for optimis-

ing the MaxEnt parameters in equation (3.23). Similar to the MPE estimation

of HMM parameters (Section 2.7.2.2), the accuracy function is assumed to be

decomposable over individual arcs [128, 169]

A(a,w
(r)
1:Lr

) =

|a|∑
s=1

A(as) (5.34)

where A(as) is arc as accuracy. The simplest option with CAug is to set it to
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the approximate phone arc accuracy function Ã(as) in equation (2.111). The

contribution of arc as towards the gradient is given by the observation features

φ(O{as}, as) weighted by the product of arc posterior γas and the difference be-

tween the average accuracy of arc sequences passing through the current arc and

the average accuracy of all arc sequences [128]. The summation over arc sequences

in equation (5.33) may then be replaced by the summation over individual arcs

yielding [128]

∇αam
Fmbr(α;D) =

1

R

R∑
r=1

∑
a∈L(r)

den

γa(ca − c(r))φ(O
(r)
{a}, a) (5.35)

where ca is the average accuracy of arc sequences passing through arc a and c(r)

is the average accuracy of arc sequences. These accuracies may be computed

based on the equivalents of HMM forward α′a and backward β′a correctness using

equation (2.107) and (2.108) [128]. These forward and backward correctnesses

may be computed using similar to equation (2.109) and (2.110) recursions [128]

α′a =

∑
a′ preceding a

αa′P̃ (a|a′)α′a′∑
a′ preceding a

αa′P̃ (a|a′)
+ A(a) (5.36)

β′a =

∑
a′ following a

P̃ (a′|a) exp(αT
amφ(O

(r)
{a′}, a

′))βa′(β
′
a′ + A(a′))∑

a′ following a

P̃ (a′|a) exp(αT
amφ(O

(r)
{a′}, a

′))κβa′
(5.37)

The gradient in equation (5.35) has a similar form to the weak-sense auxiliary

function in equation (2.104) used for MWE/MPE estimation of HMM parameters.

The optimisation may then be performed as discussed above.

5.3.3 Optimisation of large margin

The structured discriminative model parameter estimation based on the large

margin criterion may be performed by maximising the following objective function
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[73]

Flm(α;D) =
1

R

R∑
r=1

[
max

w 6=w
(r)
1:Lr

{
L(w,w

(r)
1:Lr

)− log

(
P (w

(r)
1:Lr
|O(r)

1:Tr
;α))

P (w|O(r)
1:Tr

;α))

)}]
+

(5.38)

where [·] is the hinge loss function given in equation (2.77). In contrast to the

CML and MBR criteria which are based on the posterior, the use of posterior

ratio means that the issues associated with computing normalisation terms are

not relevant to the large margin criterion: during training the normalisation term

cancels and during inference it does not alter the rank ordering [73]. The optimi-

sation of this objective function is closely linked to the margin-based estimation

of HMM parameters in Section 2.7.1.4 and large margin estimation of MaxEnt

parameters in Section 3.1.2.3 and have been examined with the structured dis-

criminative models, such as the SCRF/CAug [277, 278].

As was discussed in Section 5.2, depending on how the segmentation is han-

dled, the SCRF/CAug posterior may be expressed based on a single or multiple

segmentations. Using single segmentation â yields a convex optimisation problem

[73], similar to the CML estimation in Section 5.3.1. The large margin objective

function based on single segmentation may then be expressed as [277]

Flm(α;D) =
1

R

R∑
r=1

[
−αTφ(O

(r)
1:Tr

, â,w
(r)
1:Lr

)+

max
{w′ 6=w

(r)
1:Lr

,â′}

{
L(w′,w

(r)
1:Lr

) + αTφ(O
(r)
1:Tr

, â′,w′)

}]
(5.39)

Comparing the large margin objective functions in equation (3.25) and (5.38),

there are several differences in optimising MaxEnt and SCRF/CAug parameters.

First, the segmentations must be available for each reference, w
(r)

1:L(r) , and com-

peting, w′ 6= w
(r)

1:L(r) , word sequences. As was discussed in Section 5.2.2, the

simplest option is to adopt segmentations provided by the generative classifier

[278]; alternatively, these may be inferred [276, 277] using the semi-Markov vari-

ant of Viterbi algorithm (Section 5.2.2). Second, finding the most competing

word sequence and segmentation may be computationally expensive. When the
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loss function is computed as a sum of segment-level losses, similar to the accuracy

function in MPE estimation of HMM parameters (Section 2.7.2.2) and MBR es-

timation of SCRF/CAug parameters (Section 5.3.3) in equation (5.34), then an

efficient Viterbi-style algorithm (Section 5.2.2) may be formulated [275, 277, 278].

Similar to other criteria discussed in this section, the final objective function in-

corporates a Gaussian prior, which may help to address possible generalisation

issues [277, 278]. Optimising the SCRF/CAug parameters may then be performed

similar to the MaxEnt (Section 3.1.2.3) using the approaches discussed in [277].

Similar to how the large margin trained MaxEnt was related in Section 3.2.3.2

to a multi-class support vector machines (SVM), the large margin trained SCRF/

CAug can be related [277, 278] to a structured SVM [238, 267].

5.4 Adaptation to speaker and noise

In order to work reliably in real-world applications any speech recognition system

must be designed to be robust to changes in speaker and noise conditions. For

HMMs, maximum entropy models and SVMs related approaches were discussed

in Section 2.8, 3.1.3 and 3.2.4 respectively. There has been some previous work

on adapting HCRF and SCRF/CAug to speaker and noise conditions.

The use of maximum-a-posteriori (MAP) adaptation, discussed with HMMs in

Section 2.8 and MaxEnt in Section 3.1.3, has been also investigated with HCRF

[222]. Being a general adaptation scheme it makes no assumption about the

nature of the feature-functions. However, when these exhibit some structure the

use of other adaptation schemes may be more advantageous [73].

Alternatively, the use of linear transformation based adaptation has been

investigated with HCRF in [221]. This scheme makes use of approaches similar

to the maximum likelihood linear regression (MLLR) for HMMs discussed in

Section 2.8.1 and linear feature transform for MaxEnt discussed in Section 3.1.3.

As these schemes have been applied only with feature-functions resembling those

used in HMMs, it is not clear whether this form of adaptation approaches can be

extended to more general feature-functions [73].

Finally, the feature-functions can be modified to make them dependent on the

speaker and noise conditions [73]. The structured discriminative models then can
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be trained speaker and noise independent similar to the standard, unstructured

discriminative models in Chapter 3. This approach will be discussed in Chapter 6.

5.5 Summary

This chapter has discussed structured discriminative models. These models in-

troduce a structure into the discriminative classifier to address situations where

the number of possible sentences is large. A similar approach was earlier dis-

cussed with hidden Markov models (HMM) in Section 2.3.2. There were two

primary structures discussed. The first form follows HMMs in relating observa-

tions with hidden states. Examples given included maximum entropy Markov

models (MEMM) and hidden conditional random fields (HCRF). The second

form relates segments with words/phones. Examples given included segmental

conditional random fields (SCRF) and conditional augmented models (CAug). A

range of aspects have been examined with these models including handling la-

tent variables relating observations and segments with states and words/phones

respectively, parameter estimation and adaptation.

————————————————————————
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Chapter 6

Feature-functions

The previous chapters have assumed the existence of appropriate feature-functions.

The selection of these feature-functions is known to be central to the performance

of all discriminative models examined so far in this thesis [128, 168, 217, 281].

The feature-functions can be broadly split into frame-level, acoustic segment and

supra-segmental feature-functions [73]. The frame-level feature-functions dis-

cussed next in Section 6.1 act on the current frame or a fixed span of frames

surrounding the current frame to extract features. The MEMM/HCRF features

in equation (5.3) are simple examples of frame-level features. In contrast to

frame-level feature-functions, the acoustic segment feature-functions discussed in

Section 6.2 act on all the observations associated with a segment. The Max-

Ent features in equation (3.12), which are based on the MEMM/HCRF fea-

tures summed over all the observations associated with the segment, are sim-

ple examples of acoustic segment features. Finally, the supra-segmental feature-

functions discussed in Section 6.3 act on the state, phone or word sequences.

The SCRF/CAug pronunciation and language model log-probabilities in equa-

tion (5.9) are simple examples of supra-segmental features.
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6.1 Frame-level features

The simplest form of feature-functions are restricted to those extracting features

at the frame level [73]. One example of frame-level features is given by [73]

φ(ot, as) =


...

δ(ais, vi)ot

δ(ais, vi)oto
T
t

...

 (6.1)

where as is a segment with label ais spanning the observation vector ot, vi is a

segment identity and V is a vocabulary of segment identities. These features

are the same as the MEMM/HCRF features in equation (5.3) if each segment as

refers to a hidden state qt and the same as the MaxEnt features in equation (3.12)

if there is only one segment spanning the entire sequence of observations. It is

possible to show [90, 91] that using these features, which bear a resemblance

to the HMM mean and covariance statistics in equations (2.49) and (2.50) (see

Section 2.2.3), yields structured discriminative models related to discriminatively

trained HMMs discussed in Section 2.7 [73].

A number of variations on this basic form can be considered. One variation

extends the features with higher-order statistics [256]. Another variation splices

the current static observation and a fixed window of the previous and future static

observations together, possibly transforming [93], to form the observation vector,

rather than using the complete observation vector in equation (2.6) containing

the current frame and optionally one or more dynamic parts [73].

It is also possible to apply classifiers to the observation vector to provide

bottom-up information on where the frames lie in a pseudo-linguistic space [73].

This may come in the form of indicator features

φ(ot, as) =


...

δ(ut, vi)
...

 (6.2)
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where ut is a linguistic unit at time t, and/or class posterior features

φ(ot, as;λ) =


...

δ(ut, vi)P (vi|ot;λ)
...

 (6.3)

where λ are the classifier parameters, which may then be either directly appended

to or used in place of the features in equation (6.1) [73]. Examples of classifiers ex-

amined include multilayer perceptrons providing the class posterior probability of

phone units [163], Gaussians of an HMM-based recogniser providing the (sparse)

class posterior probabilities of HMM state-components [93, 257] and HMM-based

recognisers on the complete observation sequence providing indication on the

linguistic unit the current frame belongs to [281].

6.2 Acoustic segment features

The frame-level feature-functions discussed in Section 6.1 will generate T feature

vectors for a T -length observation sequence. An alternative option is to devise

feature-functions acting on all the observations associated with a segment. This

served the basis of segmental conditional random fields (SCRF) and conditional

augmented (CAug) models in Section 5.1. The fundamental requirement imposed

on the acoustic segment feature-functions is that they must map variable-length

observation sequences into fixed-length feature-space [73]. The simplest example

of acoustic segment feature-function was given in equation (5.8) where a frame-

level feature-function was summed over time indices associated with the segment

φ(O{as}, as) =
∑
t∈{as}

φ(ot, as) (6.4)

Other examples include score-spaces [101, 216] and, similar in spirit [73], event

detectors [281, 283]. This rest of this section will focus on the score-spaces.
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6.2.1 Score-spaces

The score-space may be defined as a model-based feature-space [216]. Many score-

spaces are based on generative models [73, 217]. Given a generative model, there

are options to define the score-space [145, 216]. One option is to make use of gen-

erative model parameters re-estimated on the available segment of observations

[145, 146]. For HMMs discussed in Chapter 2, the use of means, covariances

and (C)MLLR transform parameters have been considered [27, 53, 194, 219].

An alternative option and the one examined in this section is to make use of

functions associated with these models such as log-likelihood and derivatives of

log-likelihood with respect to generative model parameters [101, 216].

The rest of this section is organised as follows. The following Section 6.2.1.1

gives several examples of score-spaces making use of log-likelihoods and deriva-

tives. The next Section 6.2.1.2 discusses dependencies possible to incorporate into

the discriminative model using these score-spaces. The last Section 6.2.1.3 dis-

cusses how the discriminative models based on these score-spaces can be trained

speaker and noise independent.

6.2.1.1 Examples

A wide range of score-spaces making use of log-likelihoods and derivatives of log-

likelihood with respect to generative model parameters have been proposed in

the literature [101, 128, 216]. These differ in the form of generative models and

the way these functions are combined to form score-space.

For instance, one of them, a Fisher score-space [101], is based on the global,

class-independent generative model and makes use of derivatives with respect to

generative model parameters λ to define the score-space

φf(O{as};λ) =
[
∇λ log(p(O{as};λ))

]
(6.5)
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Another example is a likelihood ratio score-space [216]

φr(O{as};λ) =


log

(
p(O{as}|ω1;λ)

p(O{as}|ω2;λ)

)
∇λ log(p(O{as}|ω1;λ))

−∇λ log(p(O{as}|ω2;λ))

 (6.6)

which extends on the Fisher score-space by introducing the class-specific gener-

ative model, and the log-likelihood ratio into the score-space. The Fisher and

likelihood ratio score-space in the form of dynamic kernel in equation (3.45) have

been examined with the SVM (Section 3.2.2) in [101, 128, 216].

The use of derivative features may not always be possible [278]. One option

to address this issue is to construct the score-space based only on log-likelihoods.

An example of such score-space is an appended likelihood score-space [216]

φa(O{as}, as;λ) =



...

δ(ais, vi)


log(p(O{as}|v1;λ))

...

log(p(O{as}|v|V|;λ))


...


(6.7)

For each class vi, the appended likelihood score-space incorporates the log-likelihood

given the current class, vi, as well as the log-likelihoods given all competing

classes, v 6= vi. The appended score-space have been examined with the multi-

class SVM and SCRF/CAug in [278]. One interesting aspect of this score-space is

that the multi-class SVM and SCRF/CAug become closely related to the HMM

[278]. For instance, inferring the class maximising the MaxEnt posterior can be

expressed based on equations (3.10) and (6.7) as

âs = arg max
vi


|V|∑
j=1

α(vi,vj) log(p(O{as}|vj;λ))

 (6.8)

where α(vi,vj) is the class vi parameter associated with the log-likelihood of O{as}

given class vj. If α(vi,vj) is set to one when vi = vj and zero otherwise then
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the class maximising the MaxEnt posterior becomes the class maximising the

HMM likelihood. In practice this relationship offers the multi-class SVM and

SCRF/CAug opportunity for initialising parameters in the way which guarantees

the HMM classification performance [278]. Note that this may not be possible

with other forms of feature-functions.

As the number of classes increases the use of appended score-spaces may be-

come impractical [275]. One option to address this issue is to retain for each class

vi only those features which are derived based on the corresponding generative

model. This gives rise to a likelihood score-space [216]

φl(O{as}, as;λ) =


...

δ(as, vi) log(p(O{as}|vi;λ))
...

 (6.9)

Compared to the appended likelihood score-space, the likelihood score-space con-

tain |V| times less features. A variant of this score-space, which incorporates the

log-likelihood from more than one generative model, has been examined with

the SCRF/CAug in [94]. In addition to the log-likelihood, it is possible to add

derivatives which give rise to the first-order likelihood score-space [216]

φ
(1)
l (O{as}, as;λ) =


...

δ(as, vi) log(p(O{as}|vi;λ))

δ(as, vi)∇λ log(p(O{as}|vi;λ))
...

 (6.10)

The first-order likelihood score-space has been examined with the SCRF/CAug

in [128]. Both these score-spaces when applied with the multi-class SVM or

SCRF/CAug can guarantee the HMM classification performance. Higher than

the first-order likelihood score-spaces can be defined analogously [216].

The use of log-likelihoods, first- and higher-order derivatives quickly increases

the number of features. Table 6.1 provides dimensionality for a number of score-

spaces considered in this section. The first score-space examined was the Fisher

score-space φf in equation (6.5) whose dimensionality equals to the number of pa-
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Score-space Dimensionality

φf dim(λ)
φr dim(λ) + 1
φa |V|2
φl |V|
φ

(1)
l dim(λ) + |V|

φ
(1,µ)
l dim({µj,m}) + |V|

Table 6.1: Dimensionality of selected score-spaces based on generative models
with parameters λ and |V| classes. (The discriminative and generative models are
assumed to share the same definition of classes. The generative model parameters
are assumed not to be tied across classes)

rameters in the generative model, dim(λ). The log-likelihood ratio score-space φr

in equation (6.6) is similar to the Fisher score-space yet one additional dimension,

the log-likelihood ratio, is used. The appended likelihood score-space φa in equa-

tion (6.7) has dimensionality equal to the square of the vocabulary size, |V|2, as

the dimensionality of feature sub-spaces for each vocabulary element v equals to

the size of vocabulary |V|. The likelihood score-space φl in equation (6.9) makes

use of a single feature, log-likelihood, for each element of vocabulary. Thus, the

dimensionality of the likelihood score-space is equal to the size of vocabulary.

The first-order likelihood score-space φ
(1)
l in equation (6.10), which combines the

aspects of likelihood and Fisher score-spaces, has dimensionality equal to the size

of vocabulary plus the number of generative model parameters.

Empirically it has been observed that generalisation improves when features

believed to be the most discriminative are only selected [229]. The derivatives

with respect to HMM mean vectors are often cited as the most discriminative first-

order derivatives [128, 217]. For example, the first-order likelihood score-space,

φ
(1)
l , based only on these derivatives, also known as the HMM mean derivative
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score-space, has the following form

φ
(1,µ)
l (O{as}, as;λ) =



...

δ(as, vi) log(p(O{as}|vi;λ))
...

δ(as, vi)∇µj,m
log(p(O{as}|vi;λ))
...


(6.11)

The HMM mean derivative score-space in contrast to the first-order likelihood

score-space incorporates derivatives with respect to mean vector rather than all

parameters. The dimensionality of this score-space thus is equal to the size of

vocabulary plus the size of the set of mean vector parameters dim({µj,m}). Note

that this and other numbers given in this section are based on assumptions that

generative and discriminative models share the same definition of classes and that

generative model parameters are not tied. As will be discussed in Chapter 7, a

difference in the definition of generative and discriminative model classes (e.g.

states in generative model and phones in discriminative model) and the use of

tying may cause various issues such as the tree intersect effect (see Section 2.4)

which may impair generalisation in these models. The HMM mean derivative

φ
(1,µ)
l , likelihood φl, appended likelihood φa and likelihood ratio φr score-spaces

will be examined in Chapter 8.

6.2.1.2 Dependencies

The choice of generative model is fundamental to the score-spaces [73] as it de-

termines independence assumptions that can not be overcome and conditional

independence assumptions that can be overcome [128].

When the HMMs with parameters λ = {. . . , cj,m,µj,m,Σj,m, . . .} are used as

the generative model these conditional independence assumptions are the state

and observation conditional independence assumptions discussed in Section 2.2.

The derivatives of the HMM log-likelihood with respect to the component weight
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cj,m, mean µj,m and covariance Σj,m are given by [128, 145]

∇cj,m log(p(O{as}|vi;λ) =
∑
t∈{as}

γj,m(t)

cj,m
− γj(t) (6.12)

∇µj,m
log(p(O{as}|vi;λ) =

∑
t∈{as}

γj,m(t)Σ−1
j,m(ot − µj,m) (6.13)

∇Σj,m
log(p(O{as}|vi;λ) =

1

2

∑
t∈{as}

γj,m(t)(−Σ−1
j,m + Σ−1

j,m(ot − µj,m)(ot − µj,m)TΣ−1
j,m) (6.14)

where γj(t) = P (qjt |O{as}, vi;λ) and γj,m(t) = P (qj,mt |O{as}, vi;λ) are the state

and state-component occupancies defined in Section 2.2 by equations (2.39) and

(2.40). These occupancies are functions of the complete observation sub-sequence

O{as} which ”breaks” the HMM conditional independence assumptions [128].

Alternatively, the use of GMMs with parameters λ = {. . . , cj,µj,Σj, . . .} as

the generative model yields frame-level features [73]. For instance, the derivative

of the GMM log-likelihood with respect to component weight cm is given by [145]

∇cj log(p(O{as}|vi;λ)) =
∑
t∈{as}

P (qjt |ot, vi;λ)

cj
− 1 (6.15)

Apart from the use of scaling and shift, these features are the same [73] as the

class posterior features [93, 257] in equation (6.3).

Higher than the first-order derivatives may introduce even more complex fea-

tures [128]. For instance, the second-order derivative of the HMM log-likelihood

with respect to component weights cj,m and ck,n is given by [64, 128]

∇ck,n∇cj,m log(p(O{as}|vi;λ) = − 2

cj,mck,n

∑
t∈{as}

δ(j, k)δ(m,n)γj,m(t) + (6.16)

∑
t∈{as}

∑
τ∈{as}

D(qj,mt , qk,nτ )− cj,mD(qjt , q
j,m
t )− ck,mD(qj,mt , qkτ ) + cj,mck,nD(qjt , q

k
τ )

cj,mck,n

where

D(qj,mt , qk,nτ ) = P (qj,mt , qk,nτ |O{as}, vi;λ)− γj,m(t)γk,n(τ) (6.17)
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and P (qj,mt , qk,nτ |O{as}, vi;λ) is a posterior probability of state-component pair

{qj,mt , qk,nτ }. These posteriors in case when t 6= τ and/or j 6= k allow explicit

dependencies between the two discontiguous in time and/or space components to

be modelled [128].

In order to illustrate the potential usefulness of score-spaces consider a simple

two-class (1 and −1) two-symbol (A and B) problem, where the training data D

= {{1, AAAA}, {1, BBBB}, {−1, AABB}, {−1, BBAA}} and the generative models are

discrete HMMs with topology shown in Figure 6.1 [128]. The maximum likelihood

P(B)=0.5

21 3 4

0.5

1.0 0.5

0.5

0.5

P(A)=0.5

P(B)=0.5

P(A)=0.5

Figure 6.1: Example discrete HMM topology

(ML) estimation discussed in Section 2.2.3 for both classes yields identical HMM

parameter estimates also shown in Figure 6.1. As shown by the first, log p,

row in Table 6.2, the log-likelihood features derived from these HMMs can not

correctly classify the training data [128]. On the other hand, the use of the first-

Features
Class 1 Class -1

AAAA BBBB AABB BBAA

log p -4.44 -4.44 -4.44 -4.44
∇2,A 0.50 -0.50 0.33 -0.33
∇2,A∇2,A -3.83 0.17 -3.28 -0.61
∇2,A∇3,A -0.17 -0.17 -0.06 -0.06

Table 6.2: Example log-likelihood and selected derivative features

and second-order derivative features may help to discriminate between classes by

taking advantage of additional dependencies [128]. As shown by the second, ∇2,A,

and third, ∇2,A∇2,A, row in Table 6.2, the first- and second-order derivatives of

log-likelihood with respect to symbol A in state 2 make the training data separable

though non-linearly [64]. As shown by the last, ∇2,A∇3,A, row in Table 6.2, the
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use of second-order derivative with respect to symbol A in state 2 and 3 makes the

training data linearly separable [128]. The latter derivative captures the obvious

difference between the two classes that the symbol changes part way through [64].

6.2.1.3 Adaptation and compensation framework

As was discussed in Sections 3.1.3, 3.2.4 and 5.4, the alternative approach to

adapting the discriminative classifiers to speaker and noise conditions is to mod-

ify the feature-functions. When the score-spaces are based on generative models

this can be achieved using model-based adaptation/compensation schemes [68].

When the HMM is used as the generative model then the examples of model-based

adaptation/compensation schemes include (constrained) maximum likelihood lin-

ear regression (MLLR) discussed in Section 2.8.1 and vector Taylor series (VTS)

discussed in Section 2.8.2.

The general score-space adaptation/compensation framework [68] is illustrated

by Figure 6.2. The shaded part in Figure 6.2 shows the model-based adapta-

Compensation

λ

λ

Canonical

Data
Adaptation/ Recognition

Hypotheses

Discriminative
classifier

Final
hypotheses

Hypotheses

Score−space

O

O
O

(  ).ϕ

1:T

1:T

1:T

λ

model

Figure 6.2: Adaptation/compensation scheme for discriminative classifiers using
score-spaces based on generative models

tion/compensation stage. Given observation sequence O1:T , the canonical model

parameters λ are modified to match the target speaker and noise conditions yield-

ing the adapted model with parameters λ. A score-space in the unshaded part

of Figure 6.2 makes use of the adapted model to yield modified feature vectors

for the discriminative classifier. The discriminative classifiers examined in this

framework include the SVM [68], multi-class SVM [278] and SCRF/CAug [278].
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6.3 Supra-segmental features

The last type of features examined in this chapter are supra-segmental features

which are primarily associated with state, phone or word sequences [73] and may

provide with various sorts of information such as lexical [5, 197, 281], syntactic

[5, 36] and semantic [6, 32, 121].

The use of supra-segmental features in this thesis has so far been focused on

the transition/pronunciation φ(a,w1:L) and language model φ(w1:L) features in

equations (5.4) and (5.9). One common form of these features is based on the

bag-of-word model [110] and higher-order n-grams. For instance, the unigram

and bigram features may be expressed as [5, 134, 197, 254, 281]

φ(ais−1, a
i
s) =


...

δ(ais, vi)

δ(ais−1, vh)δ(a
i
s, vi)

...

 (6.18)

where the segment labels ais−1 and ais may correspond to states, phones or words.

The unigram and bigram features can be adopted to provide, for instance, the

language model features

φ(w1:L) =
L∑
l=1

φ(wl−1, wl) (6.19)

It is also possible to apply various linguistic and statistical tools to the labels

to provide bottom-up information on where the labels lie in a pseudo-linguistic

space, similar in spirit to the frame-level feature-functions discussed in Section 6.1.

One common form is based on indicator functions

φ(ais−1, a
i
s) =


...

δ(us, vi)

δ(us−1, vh)δ(us, vi)
...

 (6.20)
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where us is a linguistic unit associated with the segment as. Examples of tools

examined include parsers providing part-of-speech labels [5, 29, 36], morphological

analysers providing lemma, root and stem-ending labels [5, 210], topic classifiers

providing topic sensitive labels [6, 121] and clustering algorithms providing word

class category labels [32].

6.4 Summary

This chapter has provided an overview of feature-functions that have been ex-

amined with the standard, unstructured, and structured discriminative classifiers

discussed in Chapters 3 and 5 respectively. These feature-functions were split

into frame-level, acoustic segment and supra-segmental feature-functions.

The frame-level feature-functions is the simplest form of feature-functions ex-

tracting features at the frame level. Examples of the frame-level features included

the first- and second-order observation statistics similar to the HMM mean and

covariance statistics discussed in Chapter 2.

In contrast, the acoustic segment feature-functions act on a variable-length

sequence of observations associated with a segment. These feature-functions must

satisfy the fundamental requirement of mapping variable-length sequences to fixed

length first mentioned in Chapter 3. Examples of the acoustic segment features

included a number of score-spaces based on generative models, such as the HMM.

Finally, the supra-segmental feature-functions primarily act on sequences of

words, phones and/or states to provide lexical, syntactic and semantic informa-

tion. Examples of supra-segmental features given included unigram and bigram

features which provide part-of-speech, lemma, root and stem-ending, topic and

word class statistics.

————————————————————————
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Chapter 7

Conditional augmented models

Chapter 5 discussed several structured discriminative models proposed for speech

recognition tasks. These models aim to incorporate standard approach in speech

recognition of partitioning sentence into words, and words into phones into a

discriminative model framework [73]. Some of these models, such as segmen-

tal conditional random fields, adopt structuring into word units and have been

applied to a range of tasks [281, 283]. Others, such as conditional augmented

models, aim to adopt a deeper structuring including phone units but have so far

been applied to small vocabulary tasks based on monophone [128] or word [278]

units. In order to make conditional augmented models models more generally

applicable, the two directions need to be combined. The combined model could

adopt context-dependent phone-level acoustic and word-level language and pro-

nunciation modelling. Issues that need to be addressed with this model include

handling of context-dependent phones and robust parameter estimation. This

chapter proposes a number of approaches to address these issues.

7.1 Overview

The work presented in this chapter adopts the following form of posterior prob-

ability of word sequence w1:L given observation sequence O1:T

P (w1:L|O1:T ;α,λ) =
1

Z(O1:T ;α,λ)

∑
a

exp(αTφ(O1:T , a,w1:L;λ)) (7.1)
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where summation is performed over all possible segmentations into word and

phone sequences, the discriminative model parameters α and features φ(·) are

given by

α =

αam

αpm

αlm

 , φ(O1:T , a,w1:L) =


∑|a|

s=1 φ(O{as}, as;λ)

φ(a,w1:L)

φ(w1:L)

 (7.2)

The suprasegmental features, φ(a,w1:L) and φ(w1:L), (Section 6.3) provide the

pronunciation and language model features. These are often set to the standard

pronunciation and n-gram language model probabilities

φ(a,w1:L) =
[
log(P (ai|w1:L)

]
, φ(w1:L) =

[
log(P (w1:L))

]
(7.3)

similar to the example given with the SCRF/CAug in Section 5.1. The pronun-

ciation αpm and language αlm model parameters are set to the standard scaling

factors. Although it is possible to incorporate a range of acoustic segment features

φ(O{as}, as;λ), the work presented in this chapter will focus on the score-spaces

based on generative models with parameters λ, such as the HMM discussed in

Chapter 2. As discussed in Section 6.2, these score-spaces can provide a rich

set of features capable of introducing long-term dependencies, can be adapted

to speaker and noise conditions, which yields speaker and noise independent dis-

criminative models (Section 6.2.1.3), simply by adapting generative model using

model-based approach (Section 2.8). Thus, there are two sets of parameters in

CAug: the discriminative model α and generative model λ parameters.

Apart from the inclusion of generative model parameters, the adopted form

of posterior is essentially the same as the form discussed with the SCRF/CAug

in Section 5.1. The previous work with the form of model in equation (7.1) have

considered associating discriminative model parameters with individual words

or monophones (context-independent phones). A range of parameter estimation

criteria have been considered, such as conditional maximum likelihood (CML) and

variants of minimum Bayes’ risk (MBR) and large margin discussed in Section 5.3.

The equivalents of HMM Viterbi and forward-backward algorithms have also been

proposed as discussed in Section 5.2. In order to adapt to particular speaker and
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noise conditions schemes have also been proposed as discussed in Section 5.4.

This chapter extends the previous work with the SCRF/CAug to incorporate

context-dependent phone classes into the structured discriminative model. The

following Section 7.2 discusses extensions needed to define score-spaces based

on the context-dependent generative models. The next Section 7.3 discusses

how the discriminative model parameters associated with the context-dependent

phone classes can be tied to improve the robustness of estimates obtained using

the CML, MBR or large margin criteria. The next to last Section 7.4 discusses

how the generative model parameters can be re-estimated using the standard

discriminative and discriminative adaptive criteria. The last Section 7.5 provides

a summary of the whole chapter.

7.2 Context-dependent score-spaces

The previous work with CAug has considered the use of monophones [128] or

words [278]. When context-dependent phones are considered then the dimen-

sionality of some score-spaces discussed in Section 6.2.1 may become very large.

This section discusses the scalability of some of those score-spaces and gives illus-

trative examples of how many discriminative model parameters may be required

with the context-dependent phones.

As discussed in Section 6.2.1, the appended likelihood score-space φa scales

quadratically with the number of context-dependent phones, |V|. For the context-

dependent phone ais associated with segment as and comprising observation sub-

sequence O{as}, the appended likelihood score-space would require computing

log-likelihood given all context-dependent phone classes v1, . . ., v|V| as shown by

φa(O{as}, as;λ) =



...

δ(ais, vi)


log(p(O{as}|v1;λ))

...

log(p(O{as}|v|V|;λ))


...


(7.4)
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For the triphone set based on 40 monophones, |V| = 403, this would require

estimating approximately 4 billion parameters.

Alternative score-spaces may require fewer parameters. For instance, the like-

lihood score-space φl excludes log-likelihoods given all but the current context-

dependent phone ais as shown below

φl(O{as}, as;λ) =


...

δ(ais, vi) log(p(O{as}|ais;λ))
...

 (7.5)

The use of this score-space in the above example would require estimating 64

thousand parameters. Rather than excluding log-likelihoods given all competing

context-dependent phones as in equation (7.5) it is possible to exclude all but

few context-dependent phones. One issue with this approach is that it is not

obvious which context-dependent phones may provide log-likelihoods useful for

discrimination. In this work a simple idea is examined where context-dependent

phones examined for each context-dependent phone are those which share or

match the same context. An example below shows context-dependent phones

that will be examined for triphone sil-dh+iy1



sil-aa+iy
...

sil-dh+iy
...

sil-z+iy


(7.6)

Note that all these triphones differ in the central phone yet share or match the

same left and right context. The total number of triphones in equation (7.6)

equals to the number of monophones. When the current context-dependent phone

changes then so does the set of examined context-dependent phones to match the

new context. For example, the following sets of triphones will be examined for

1Phones such as silence and short pause may also be incorporated. For these phones no
context-dependent phones should be used.
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the triphone sequence sil-dh+iy, dh-iy+d, iy-d+ao, . . ., s-t+sil1



sil-aa+iy
...

sil-dh+iy
...

sil-z+iy


,



dh-aa+d
...

dh-iy+d
...

dh-z+d


,



iy-aa+ao
...

iy-d+ao
...

iy-z+ao


, . . . ,



s-aa+sil
...

s-t+sil
...

s-z+sil


(7.7)

The score-space illustrated above in the following will be called the matched-

context score-space φm. The use of this score-space in the above example would

require estimating approximately 3 million parameters.

The use of higher than zero order score-spaces increases dimensionality of

score-spaces further by incorporating the first and higher order derivatives of

the log-likelihood given each context-dependent phone. For example, the use of

first-order likelihood score-space as shown below

φ
(1)
l (O{as}, as;λ) =


...

δ(ais, vi)

[
log(p(O{as}|ais;λ))

∇λ log(p(O{as}|ais;λ))

]
...

 (7.8)

would require dim(λ(ais))+1 parameters for the current context-dependent phone

ais, where λ(ais) are the generative model parameters associated with ais. If the

generative model parameters are not tied then the total number of discrimina-

tive acoustic model parameters to estimate equals dim(λ) + |V|. For an HMM

with N emitting states, M components per state and d-dimensional Gaussian

state-component output densities with diagonal covariance matrices, the number

of HMM parameters is given by (N + 2)2 + NM(1 + 2d) where the first term

gives the number of parameters associated with transition probabilities and the

second term gives the number of parameters associated with state output density

parameters. Thus, a total of ((N + 2)2 + NM(1 + 2d))|V| + |V| discriminative

1This triphone sequence represents one possible expansion of sentence the dog chased the

cat discussed in Section 2.3.1 into triphone HMM units.

137



7.3. PARAMETER TYING

acoustic model parameters would be required. For the set of triphone HMMs

where N = 3, M = 12, d = 39 and |V| = 403 (assuming 40 monophones) this

would yield approximately 200 million parameters.

The above examples show that the number of discriminative acoustic model

parameters can become large when the CAug model features are based on the

context-dependent phones. Furthermore, as discussed in Section 2.3.1, the use of

context-dependent units makes it hard to obtain good coverage in the training

data. For instance, the use of cross-word units, such as the triphones discussed

in this section, typically yields a large number of units with few if any examples

[266]. In order to address the data sparsity problem, an approach is required to

ensure that there is sufficient training data to robustly estimate the discriminative

acoustic model parameters.

7.3 Parameter tying

For small vocabulary tasks, where whole-word generative models are used, the

discriminative model parameters may be associated with the individual words.

This is the approach adopted with CAug in the previous work [128, 278]. For

larger vocabulary tasks, where state-level phonetic decision tree tying is often used

to determine context-dependent generative models, the appropriate tying of the

discriminative model parameters is less clear as the discriminative acoustic model

introduces conditional independence assumptions at the model rather than state

level. If there is sufficient training data then the discriminative model parameters

could be specified at the context-dependent phone level, as determined by the

state-level decision trees. However, it is not possible to guarantee that all context-

dependent phones are observed in the training data, as the tying operates not at

the model but state level.

In order to address this problem, a model-level parameter tying is performed

to determine the appropriate tying of the discriminative model parameters. The

approach based on the model-level phonetic decision tree tying (Section 2.4) is

used. However, a special care is required as the generative model parameters are

themselves tied at the state-level. When using two distinct decision trees, it is

possible to get a tree-intersect style approach discussed in Section 2.4, where the
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Discriminative acoustic model tree
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Figure 7.1: A tree-intersect model based on discriminative and generative model
trees. The individual physical, discriminative and generative, models are shown
by shaded circles. The combined physical models are shown at the intersect of
two trees by shaded squares

effective number of parameters becomes very large. This may result in robustness

issues when training the combined model. Figure 7.1 shows an example where

discriminative and generative model trees contain 4 leaf nodes. The combined

model is formed by intersecting the two trees which gives a total of 16 possible

parameter values, twice the number of parameters available to those trees (8).

In order to address this problem, the decision tree for the discriminative acous-

tic model is built based on those context-dependent phones that appear at the

leaf nodes of the decision trees created for the generative models. The leaves of

this tree can be guaranteed to have a minimum occupancy count in the train-

ing data and at least one distinct state. A consequence of this approach is that

the maximum number of context-dependent phone classes for the discriminative

acoustic model is the number of distinct generative models.

Figure 7.1 may be used to illustrate how the combined model parameters are

determined for any context-dependent phone in two steps. The first step drops

the context-dependent phone down the decision trees on the left to yield the

generative model parameters. The second step drops the label associated with
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the generative model parameters down the decision tree at the top to yield the

discriminative acoustic model parameters.

The procedure outlined above is sub-optimal in many respects. The first

issue is that the labels associated with the generative model parameters may cor-

respond to multiple context-dependent phones of which one (physical) is chosen

to represent the rest (logical). In this work the most frequently occurring context-

dependent phone was used as the label. The second issue is that the clustering

procedure is insensitive to the choice of score-spaces. A consequence of this is

that the order of features is not taken into account. The order of features plays

an important role in, for example, first-order derivative and higher score-spaces.

The generative models, such as HMMs, do not typically maintain consistent order

of components. Figure 7.2 shows two states where the same three components are

arranged in a different way. Although log-likelihoods computed with these mod-

State

Inconsistent order

State

of components

Figure 7.2: An example of inconsistent order of HMM components. Shown are two
single state HMMs sharing 3 components ordered in different ways (dotted arrows
connect identical components). The log-likelihood (single-dimensional feature)
does not depend on the order of components and hence will be the same for both
HMMs. The derivatives (three-dimensional features) do depend on the order of
components and hence will be different up to permutation of components.

els are not affected1, the situation is different with derivatives as these depend

1Log-likelihoods computed with these models will be identical as the order of Gaussian
components in mixtures does not affect the result. Hence these models yield identical log-
likelihood features.
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on the order of components and hence yield different features. This may result

in ”strong” features being masked by other, ”weaker” features. The greater the

level of tying applied the worse this masking may be. In order to address this

problem, the features can be summed within the states as shown below for the

HMM mean derivative score-space in equation (6.11)

φ
(1,µ)
l (O{as}, as;λ) =



...

δ(ais, vi)


...∑

m∈Sj

∇µj,m
log(p(O{as}|ais;λ))

...


...


(7.9)

In addition to reducing the number of parameters and possibly improving the ro-

bustness of estimates, this approach can be also helpful in dealing with situations

where the number of components is not consistent across the HMM states.

7.4 Generative model parameter estimation

The joint estimation of discriminative and generative model parameters is com-

plicated [128]. Instead, a sequential optimisation has been adopted where given

fixed generative model parameters, the discriminative model parameters are esti-

mated [128, 278]. Section 5.3 discussed how the discriminative model parameters

can be estimated using a range of discriminative criteria, such as conditional max-

imum likelihood (CML) and minimum word/phone error (MWE/MPE) variants

of minimum Bayes’ risk (MBR) criterion. The previous discussion, however, has

not considered how the generative model parameters can be re-estimated given

the discriminative model parameters.

The previous chapter showed that score-spaces make use of generative models

in different ways. For instance, the likelihood φl and appended likelihood φa

score-spaces (see below) make use of log-likelihoods computed with these models.

On the other hand, the first-order likelihood score-space in equation (6.10), in

addition to the log-likelihood, makes use of derivatives with respect to generative
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model parameters. In addition, there are a range of generative models to choose

from, such as the GMM, the HMM and the trajectory HMM. These generative

models may employ constrained parameters, such as HMM transition probabil-

ities, which are constrained to sum to one for each state, and HMM covariance

matrices, which must be positive semi-definite. The parameters may also come

in a non-canonical form, being adapted to speaker and noise conditions using

model-based adaptation/compensation schemes, such as the maximum likelihood

linear regression (MLLR) and vector Taylor series (VTS) discussed in Section 2.8.

Thus, if discriminative adaptive training is to be used, the underlying canonical

model parameters must be considered.

Chapter 2 discussed that extended Baum-Welch (EBW) update rules can

be derived with the HMM in the standard discriminative (Sections 2.7.2.1 and

2.7.2.2) and adaptive training (Sections 2.8.1.2 and 2.8.2.4) scenarios. One ad-

vantage of these update rules is that the HMM parameter constraints will be

automatically satisfied. In order to derive these update rules for the MMI and

MPE estimation of HMM parameters, an approach based on weak-sense auxiliary

functions was discussed in Section 2.7.2. These, in contrast to strong-sense aux-

iliary functions, such as the one used for ML estimation of HMM parameters in

Section 2.2.3, do not guarantee convergence of the underlying objective function.

However, if the weak-sense auxiliary function converges then it does so to the

local maximum of the objective function [184].

This section shows that similar to EBW update rules can be also derived

for the CML and MWE/MPE estimation of HMM parameters with CAug which

adopts the likelihood score-space φl in equation (7.5) and the appended likeli-

hood score-space φa in equation (7.4). Discriminative and discriminative adap-

tive training of generative model parameters with these forms of CAug are closely

linked with the corresponding HMM approaches in Sections 2.7.1 and 2.8. The

rest of this section is organised as follows. The CML estimation of generative

model parameters is discussed in details in Section 7.4.1. The following Sec-

tion 7.4.2 builds upon the previous section to show how MWE/MPE estimation

of HMM parameters can be performed with CAug. The last Section 7.4.3 dis-

cusses modification required for CML and MPE estimation of HMM parameters

in the CMLLR-based discriminative speaker adaptive training (CMLLR-DSAT)

142



CHAPTER 7: CONDITIONAL AUGMENTED MODELS

and discriminative VTS adaptive training (DVAT).

7.4.1 Optimisation based on CML

The objective function to maximise for CML estimation of generative model

parameters λ with CAug can be expressed as

Fcml(α,λ;D) =
1

R

R∑
r=1

log(P (w
(r)
1:Lr
|O(r)

1:Tr
;α,λ)) (7.10)

where D is the supervised training data, α are discriminative model parameters.

Similar to the MMI estimation of HMM parameters (Section 2.7.2.1) and CML

estimation of MaxEnt (Section 3.1.2.1) and SCRF/CAug (Section 5.3.1) param-

eters, the objective function can be re-written as the difference of two terms

Fcml(α,λ;D) = Fnum(α,λ;D)− Fden(α,λ;D) (7.11)

where

Fnum(α,λ;D) =
1

R

R∑
r=1

log

(∑
a

exp(αTφ(O
(r)
1:Tr

, a,w
(r)
1:Lr

;λ))

)
(7.12)

is the numerator term and

Fden(α,λ;D) =
1

R

R∑
r=1

log

(∑
w

∑
a

exp(αTφ(O
(r)
1:Tr

, a,w;λ))

)
(7.13)

is the denominator term. Given the CML objective function, consider a weak-

sense auxiliary function for the numerator term Gnum(α,λ, λ̂;D), where λ and λ̂

are the current and new HMM parameters respectively. This weak-sense auxiliary

function can then be combined with the weak-sense auxiliary function for the

denominator term Gden(α,λ, λ̂;D) to yield the weak sense auxiliary function for

the CML objective function Gcml(α,λ, λ̂;D).

The weak-sense auxiliary function for the numerator term must satisfy

∇λ̂Gnum(α,λ, λ̂;D)
∣∣∣
λ̂=λ

= ∇λ̂Fnum(α, λ̂;D)
∣∣∣
λ̂=λ

(7.14)
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The gradient of Fnum(α,λ;D) with respect to λ is given by (Section A.1)

∇λFnum(α,λ;D) =
1

R

R∑
r=1

∑
a

P (a|w(r)
1:Lr

,O
(r)
1:Tr

;α,λ)

|a|∑
s=1

∇λ{αT
amφ(O

(r)
{as}, as;λ)}

(7.15)

where αam are discriminative acoustic model parameters. One suitable form for

the weak-sense auxiliary function

Qnum(α,λ, λ̂;D) =
1

R

R∑
r=1

∑
a

P (a|w(r)
1:Lr

,O
(r)
1:Tr

;α,λ)

|a|∑
s=1

Q(λ, λ̂;α,D
(r)
as,ais

)

(7.16)

where D
(r)
as,ais

= {{O(r)
{as}, a

i
s}} is the supervised training data consisting of obser-

vation sub-sequence O
(r)
{as} and identity ais, and Q(λ, λ̂;α,D

(r)
as,ais

) is an auxiliary

function which satisfies

∇λ̂Q(λ, λ̂;α,D
(r)
as,ais

)
∣∣∣
λ̂=λ

= ∇λ̂{α
T
amφ(O

(r)
{as}, as; λ̂)}

∣∣∣
λ̂=λ

(7.17)

This ensures that Qnum(α,λ, λ̂;D) is the weak-sense auxiliary function for Fnum(α,

λ; D). The simplest option to define the auxiliary function Q(λ, λ̂;α,D
(r)
as,ais

)

with the likelihood and appended likelihood score-space is to make use of the

strong-sense auxiliary function in equation (2.47) which is both strong- and weak-

sense auxiliary function for the HMM log-likelihood [184]. The following form of

equation (2.47) can be used to optimise mean and covariance parameters [265]

Q(λ, λ̂;D
(r)
as,ais

) =
∑
t∈{as}

∑
{j,m}

γais,j,m(t) log(N(o
(r)
t ; µ̂j,m, Σ̂j,m)) +K (7.18)

where K is constant in mean and covariance parameters. This yields the following

form of auxiliary function for the likelihood

Ql(λ, λ̂;α,D
(r)
as,ais

) = αT
am


...

δ(ais, vi)Q(λ, λ̂;D
(r)
as,ais

)
...

 (7.19)
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and the appended likelihood score-spaces

Qa(λ, λ̂;α,D
(r)
as,ais

) = αT
am



...

δ(ais, vi)


Q(λ, λ̂;D

(r)
as,v1)

...

Q(λ, λ̂;D
(r)
as,v|V|)


...


(7.20)

A similar derivation leads to the following form of weak-sense auxiliary function

for the denominator term Fden(α,λ;D)

Qden(α,λ, λ̂;D) =
1

R

R∑
r=1

∑
w

∑
a

P (a,w|O(r)
1:Tr

;α,λ)

|a|∑
s=1

Q(λ, λ̂;α,D
(r)
as,ais

)

(7.21)

Subtracting Qden(α,λ, λ̂;D) from Qnum(α,λ, λ̂;D) yields the weak-sense auxiliary

functions for the CML objective function Fcml(α,λ;D).

Gcml(α,λ, λ̂;D) = Qnum(α,λ, λ̂;D)− Qden(α,λ, λ̂;D) (7.22)

In order to address possible generalisation issues, the final form of CML objec-

tive function often incorporates a prior, such as the I-smoothing prior in equa-

tion (2.94)

F(α,λ;D) = Fcml(α,λ, ;D) + log(p(λ;λp)) (7.23)

where λp are prior parameters. The weak-sense auxiliary function for F(α,λ;D)

can be defined by adding the logarithm of prior on the new parameters to

Gcml(α,λ, λ̂;D). In addition, the smoothing function Qsm(λ, λ̂) in equation (2.87),

which has zero gradient when evaluated at the current parameters λ, can be

added to Gcml(α,λ, λ̂;D) to improve convergence as in the standard MMI/MPE

estimation of HMM parameters in Sections 2.7.2.1 and 2.7.2.2. The weak-sense

auxiliary function for the final objective function F(α,λ, λ̂;D) is given by

G(α,λ, λ̂;D) = Qnum(α,λ, λ̂;D)− Qden(α,λ, λ̂;D) + Qsm(λ, λ̂) + log(p(λ̂; λ̂p))

(7.24)
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The weak-sense auxiliary function for the MMI estimation of HMM parameters

in equation (2.93) has the same form. Taking derivative of G(α,λ, λ̂;D) with

respect to new mean µ̂j,m and solving yields the following update rule

µ̂j,m =

{
θnum
j,m − θden

j,m

}
+Dj,mµj,m + τ Iµ̂p

j,m{
γnumj,m − γdenj,m

}
+Dj,m + τ I

(7.25)

where γnumj,m, θnum
j,m and γdenj,m, θden

j,m are the occupancy and mean statistics associated

with the numerator and denominator term weak sense auxiliary functions, τ I is

the I-smoothing constant. Taking derivative of G(α,λ, λ̂;D) with respect to the

new covariance Σ̂j,m and solving yields the following update rule

Σ̂j,m =

{
Θnum
j,m−Θden

j,m

}
+Dj,m(Σj,m+µj,mµ

T
j,m)+τ I(Σ̂p

j,m+µ̂p
j,mµ̂

pT

j,m){
γnumj,m − γdenj,m

}
+Dj,m + τ I

− µ̂j,mµ̂
T
j,m

(7.26)

where Θnum
j,m and Θden

j,m are the covariance statistics associated with the numer-

ator and denominator term weak sense auxiliary functions. The derivation of

these update rules for the likelihood φl and appended likelihood φa score-spaces

follow the derivations in [184] where the strong-sense auxiliary function in equa-

tion (2.47) is replaced by the weighted strong-sense auxiliary function (φl) in

equation (7.19) and the weighted sum of strong-sense auxiliary functions (φa) in

equation (7.20) respectively. The update rules in equation (7.25) and (7.26) have

the same form as the EBW update rules applied in MMI/MPE estimation of

HMM parameters in equation (2.97) and (2.98). Thus, the same framework can

be adopted to update the HMM parameters with these forms of CAug model.

Similar to the MMI/MPE estimation of HMM parameters, the lattice frame-

work discussed in Sections 2.6.2 and 2.7.2 with the HMM and also in Sec-

tions 5.3.1 and 5.3.2 with the SCRF/CAug can be adopted to handle summa-

tion over segmentations and segmentations and word sequences in the numera-

tor Qnum(α,λ, λ̂;D) and denominator Qden(α,λ, λ̂;D) term weak-sense auxiliary

functions respectively using numerator and denominator lattices. Noting that the

contribution of each segment as in Qnum(α,λ, λ̂;D) to the gradient of the final

weak-sense auxiliary function G(α, λ, λ̂; D) is given by the gradient of auxiliary

function associated with as, Q(λ, λ̂; α, D
(r)
as,ais

), weighted by the posterior proba-
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bility associated with given segmentation, the summation over segmentations can

be simplified to the summation over individual numerator lattice arcs

Qnum(α,λ, λ̂;D) =
1

R

R∑
r=1

∑
a∈L(r)

num

γaQ(λ, λ̂;α,D
(r)
a,ai) (7.27)

where L(r)
num is the numerator lattice associated with the r-th observation sequence.

The denominator term weak-sense auxiliary function Qden(α,λ, λ̂;D) can be han-

dled in a similar way yielding

Qden(α,λ, λ̂;D) =
1

R

R∑
r=1

∑
a∈L(r)

den

γaQ(λ, λ̂;α,D
(r)
a,ai) (7.28)

Again, taking derivative of G(α,λ, λ̂;D) with respect to the new mean µ̂j,m and

the new covariance Σ̂j,m and solving the resulting set of equations yields the

following form of denominator statistics

γdenj,m =
R∑
r=1

∑
a∈L(r)

den

γa
∑
t∈{a}

αT
amγ(a, qj,mt ) (7.29)

θden
j,m =

R∑
r=1

∑
a∈L(r)

den

γa
∑
t∈{a}

αT
amγ(a, qj,mt )o

(r)
t (7.30)

Θden
j,m =

R∑
r=1

∑
a∈L(r)

den

γa
∑
t∈{a}

αT
amγ(a, qj,mt )o

(r)
t o

(r)T

t (7.31)

For the likelihood score-space γ(a, qj,mt ) is given by

γl(a, q
j,m
t ) =


...

δ(ai, vi)γai,j,m(t)
...

 (7.32)

For each arc a this simply returns the state-component occupancy γa,j,m(t) asso-

ciated with qj,mt . The dot-product of γ(a, qj,mt ) with the acoustic model parame-
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ters αam yields weighted state-component occupancy α
(ai)
am γai,j,m(t). Compared to

the MMI estimation of HMM parameters, the contribution of each arc a to the

statistics in the likelihood score-space is additionally scaled by the corresponding

discriminative acoustic model parameter α
(ai)
am . A different form is obtained with

the appended likelihood score-space

γa(a, q
j,m
t ) =



...

δ(ai, vi)


γv1,j,m(t)

...

γv|V|,j,m(t)


...


(7.33)

Here, a vector of state-component occupancies is returned where each occupancy

is computed based on arc a where identity ai is set to one of generative model

classes. Even if qj,mt do not belong to the HMM specified by ai its occupancy

will be featured in γ(a, qj,mt ) as occupancies based on all generative models are

taken into account. Compared to the likelihood score-space, the contribution of

each arc to the statistics is a weighted combination of statistics associated with

all generative models rather than one.

7.4.2 Optimisation based on MWE/MPE

The objective function to minimise for minimum Bayes’ risk estimation of gener-

ative model parameters λ with CAug can be expressed as [73]

Fmbr(α,λ;D) =
1

R

R∑
r=1

∑
w

P (w|O(r)
1:Tr

;α,λ)L(w,w
(r)
1:Lr

) (7.34)

where L(·) is the loss function (Section 2.7.1.3). This section will consider the

minimum word/phone error (MWE/MPE) variant discussed in Section 5.3.2

Fmbr(α,λ;D) =
1

R

R∑
r=1

∑
w

∑
a

P (w, a|O(r)
1:Tr

;α,λ)A(a,w
(r)
1:Lr

) (7.35)
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where A(·) is the accuracy function given by equation (5.34). The gradient of

Fmbr(α,λ;D) with respect to λ is given by (Section A.1.2)

∇λFmbr(α,λ;D) =
1

R

R∑
r=1

∑
w

∑
a

|a|∑
s=1

P (a,w|O(r)
1:Tr

;α,λ)
(
A(a,w

(r)
1:Lr

)−∑
w

∑
a

P (a,w|O(r)
1:Tr

;α,λ)A(a,w
(r)
1:Lr

)
)
∇λ{αT

amφ(O
(r)
{as}, as;λ)} (7.36)

Similar to the previous section, a weak-sense auxiliary function for Fmbr(α,λ;D)

can be defined by

Gmbr(α,λ, λ̂;D) =
1

R

R∑
r=1

∑
w

∑
a

|a|∑
s=1

P (a,w|O(r)
1:Tr

;α,λ)
(
A(a,w

(r)
1:Lr

)−∑
w

∑
a

P (a,w|O(r)
1:Tr

;α,λ)A(a,w
(r)
1:Lr

)
)
Q(λ, λ̂;α,D

(r)
as,ais

) (7.37)

where Q(λ, λ̂;α,D
(r)
as ) is the auxiliary function given by equation (7.19) and (7.20)

for the likelihood and appended likelihood score-space respectively. required to

satisfy the constraint in equation (7.17). The final form of objective

F(α,λ;D) = Fmbr(α,λ, ;D) + log(p(λ;λp)) (7.38)

and weak-sense auxiliary function

G(α,λ, λ̂;D) = Gmbr(α,λ, λ̂;D) + Qsm(λ, λ̂) + log(p(λ;λp)) (7.39)

is constructed similar to the previous section by adding the I-smoothing prior

with parameters λ̂ given by equation (2.94) and smoothing function Qsm(λ, λ̂)

given by equation (2.87). Taking derivative of G(α,λ, λ̂;D) with respect to new

mean µ̂j,m and new covariance Σ̂ and solving with respect to the new parameters

yields update rules in the EBW form given by equations (7.25) and (7.26).

Similar to the previous section, in order to address computational issues ac-

cumulating the required statistics, the lattice framework can be adopted. Noting

that the contribution of each segment as to the gradient of G(α,λ, λ̂;D) is given

by the gradient of Q(λ, λ̂;α,D
(r)
as,ais

) associated with that segment weighted by
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the posterior probability associated with the underlying word/phone sequence

and the difference between the accuracy of the underlying sequence and the aver-

age accuracy of all sequences, the summation over arc sequences can be simplified

to summation over individual arcs

Gmbr(α,λ, λ̂;D) =
1

R

R∑
r=1

∑
a∈L(r)

den

γmpea Q(λ, λ̂;α,D
(r)
a,ai) (7.40)

where γmpea = γa(ca − c(r)) is the equivalent of MPE differential (Section 2.7.2.2)

discussed with the SCRF/CAug in Section 5.3.2. Apart from the use of dif-

ferent auxiliary function on each arc, the weak-sense auxiliary function in the

MPE estimation of HMM parameters given by equation (2.104) has the same

form. Taking derivative of G(α,λ, λ̂;D) with respect to new mean µ̂j,m and new

covariance Σ̂j,m and solving the resulting set of equations yields the following

denominator statistics

γdenj,m =
R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

αT
amγ(a, qj,mt ) (7.41)

θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

αT
amγ(a, qj,mt )o

(r)
t (7.42)

Θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea

∑
t∈{a}

αT
amγ(a, qj,mt )o

(r)
t o

(r)T

t (7.43)

where occupancies γ(a, qj,mt ) collected by the likelihood and appended likelihood

score-space are given by equation (7.32) and (7.33) respectively. Compared to the

MPE estimation of HMM parameters, the contribution of each arc a to the statis-

tics is the statistics associated with the underlying generative model weighted by

the corresponding discriminative acoustic model parameter α
(ai)
am , whereas in the

appended likelihood score-space this is a weighted combination of the statistics

associated with all generative models.
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7.4.3 Optimisation of CMLLR-based DSAT and DVAT

When the HMM parameters come in a non-canonical form, being adapted to

speaker and noise conditions using model-based adaptation or compensation

schemes, such as the constrained maximum likelihood linear regression (CMLLR)

and vector Taylor series (VTS) discussed in Section 2.8, then the update rules

derived above for the CML and MWE/MPE estimation of HMM parameters can

not be used. Instead, a new set of update rules must be derived.

Similar to the previous two sections, the optimisation of CMLLR-transformed

or VTS-compensated HMM parameters with CAug is closely linked with the dis-

criminative CMLLR-based speaker adaptive training (DSAT) in Section 2.8.1.2

and discriminative VTS adaptive training (DVAT) in Section 2.8.2.4. The deriva-

tions in this section directly follow the respective derivations in the CMLLR-

DSAT [253], DVAT [55, 65, 66] and the previous two sections.

For the CMLLR-based DSAT with CAug, the CMLLR-based SAT auxiliary

function in equation (2.130) is adopted for the CML and MWE/MPE estimation

of HMM parameters

Q(λ, λ̂;D
(r)
a,ai) =

∑
t∈{a}

∑
{j,m}

γai,j,m(t) log(N(o
(r)
t ; µ̂j,m, Σ̂j,m)) +K (7.44)

where γai,j,m(t) is the state-component posterior obtained with λ, o
(r)
t is the trans-

formed observation vector based on the training data observation vector o
(r)
t and

speaker transform parameters as illustrated by equation (2.128), K is constant

with respect to mean and covariance parameters. Replacing Q(λ, λ̂;D
(r)
a,ai) in

equations (7.19) and (7.20) by the form given in equation (7.44), taking deriva-

tive of the weak-sense auxiliary function for the MWE/MPE objective function in

equation (7.39) and solving with respect to the new canonical mean µ̂j,m and co-

variance Σ̂j,m yields update equations in the EBW form given by equations (7.25)

and (7.26), where the denominator statistics is given by

γdenj,m =
R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

αT
amγ(a, qj,mt ) (7.45)
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θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

αT
amγ(a, qj,mt )o

(r)
t (7.46)

Θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

αT
amγ(a, qj,mt )o

(r)
t o

(r)T

t (7.47)

Compared to the previous section, the statistics above is based on the transformed

observation vectors, similar to the CMLLR-based MPE SAT estimation of HMM

parameters in Section 2.8.1.2 yet its form is different as discussed in Section 7.4.2.

Conducting a similar derivation for the CMLLR-based CML SAT estimation of

HMM parameters with CAug yields update rules in the same EBW form, where

the statistics in Section 7.4.1 is now based on the transformed observation vectors.

For the DVAT with CAug, the VAT auxiliary function in equation (2.180) is

adopted for the CML and MWE/MPE estimation of HMM parameters

Q(λ, λ̂;D
(r)
a,ai) =

∑
t∈a

∑
{j,m}

γai,j,m(t)E{log(N(o
(r)
t ; µ̂j,m, Σ̂j,m))|o(r)

t , qj,mt }+K

(7.48)

Replacing Q(λ, λ̂;D
(r)
a,ai) in equations (7.19) and (7.20) by the form given in

equation (7.48), taking derivative of the weak-sense auxiliary function for the

MWE/MPE objective function in equation (7.39) and solving with respect to

the new canonical mean µ̂j,m and covariance Σ̂j,m yields update equations in the

EBW form, where the denominator statistics is given by

γdenj,m =
R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

αT
amγ(a, qj,mt ) (7.49)

θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

αT
amγ(a, qj,mt )E{o(r)

t |o
(r)
t , qj,mt } (7.50)

Θden
j,m =

R∑
r=1

∑
a∈L(r)

den

max(0,−γmpea )
∑
t∈{a}

αT
amγ(a, qj,mt )E{o(r)

t o
(r)T

t |o
(r)
t , qj,mt } (7.51)

Compared to the two previous sections, the statistics is based on the expectations

of transformed observation vectors given training observation vectors in equa-
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tions (2.184) and (2.185), similar to the DVAT estimation of HMM parameters in

Section 2.8.2.4 yet its form is different as discussed in Section 7.4.2. Conducting a

similar derivation for the CML VAT estimation of HMM parameters with CAug

yields update rules in the EBW form, where the statistics in Section 7.4.1 is

now based on the expectations of transformed observation vectors given training

observation vectors.

7.5 Summary

This chapter has considered the use of context-dependent phone units in condi-

tional augmented (CAug) models. These structured discriminative models usu-

ally employ score-spaces based on generative models to provide features. How-

ever, the dimensionality of these score-spaces increases significantly with the use

of context-dependent generative models. A new form of score-space was proposed,

which provides a balance between those score-spaces that provide few and those

which provide too many features. In order to address robustness issues when

estimating parameters of many context-dependent phone classes from the limited

amount of training data, the use of parameter tying was proposed, similar to the

standard practice with generative models such as HMMs. The use of score-space

based on generative models, in addition to the possibility of training speaker- and

noise-independent discriminative model parameters using the score-space adap-

tation/compensation framework, opens an opportunity to re-estimate the under-

lying generative model parameters to yield more informative score-spaces. This

chapter derived update rules in the extended Baum-Welch (EBW) form by means

of weak-sense auxiliary functions for conditional maximum likelihood (CML) and

minimum word/phone error (MWE/MPE) estimation of HMM parameters given

the likelihood and appended score-space. The use of adaptively trained gener-

ative models, such as (discriminative) CMLLR-based SAT and (discriminative)

VTS adaptively trained HMMs, was also considered and similar EBW update

rules were derived.

————————————————————————
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Chapter 8

Experimental results

In this chapter, experimental results using extended acoustic code-breaking (Chap-

ter 4) and conditional augmented models (Chapter 7) are presented. In order to

illustrate the properties of these two approaches, two tasks were examined. The

first task, Toshiba in-car data, was used with extended acoustic code-breaking.

This task provides opportunity to examine standard, unstructured, discriminative

models trained on artificially generated data when limited or no real examples of

words such as city names exist. The second task, Aurora 4, was used with condi-

tional augmented models. This medium-to-large vocabulary task provides oppor-

tunity to examine phone-level structured discriminative models, score-space based

on context-dependent generative models and the use of discriminative model pa-

rameter tying. For a faster development time, a small vocabulary task, Aurora

2, was used to narrow down the range of options available with these two ap-

proaches, such as synthesis approaches with extended acoustic code-breaking or

parameter estimation criteria with conditional augmented models.

8.1 Experimental setup

This section provides a short description of Toshiba in-car, Aurora 4 and 2 tasks.

It also details software used and extended to permit experiments with extended

acoustic code-breaking and conditional augmented models.
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8.1.1 Toshiba in-car

Toshiba in-car [140] is a small-to-medium noise-corrupted speech recognition task.

The training set is available in two conditions: clean and multi-style. The clean

training data is the speaker-independent part of Wall Street Journal data [182]

consisting of two subsets, WSJ0 and WSJ1, of which 284 speakers uttering ap-

proximately 66 hours of speech were used in total (WSJ SI284). The multi-style

training data was obtained by artificially corrupting the clean training data with

the in-car noise recordings of SpeechDat [160] and Toshiba [140] yielding the

average signal-to-noise ratio (SNR) of 23 dB. The test data consisted of digit

string and city name test sets. The digit string test set contains 824, 862 and

898 phone numbers spoken by 15 male and 15 female US-English speakers whilst

in vehicles with engine idle (IDLE), driving in cities (CITY) and on the highway

(HWAY). The average SNR is 35, 25 and 18 dB respectively. The city name

subset contains 928 and 988 city names, out of 550 city names possible in total,

spoken by 15 male and 15 female US-English speakers whilst in vehicles with

engine idle (IDLE) and on the highway (HWAY). The average SNR is 35 and

18 dB similar to the digit string test set. The total number of test set utter-

ances is 4500. The training and test data was pre-processed using the MFCC

scheme, where 13-dimensional static coefficients were appended with delta and

acceleration coefficients to form observation vectors (Section 2.1). The acous-

tic model is the cross-word context-dependent triphone hidden Markov model

(HMM) with 3 emitting states (Section 2.3.1). The HMM state output distri-

bution is a Gaussian mixture model (GMM) with 12 components and diagonal

covariance matrices. The HMM states were tied into 648 physical states using

state-level phonetic decision tree clustering (Section 2.4). No language model

was used in this task. For digit string recognition, any length digit sequences

were allowed. For city name recognition, each of 550 city names was equally

possible. The HMM parameters were ML estimated (Section 2.2.3) on the clean

training data in a manner similar to [258]. The average word error rate (WER)

performance (Section 2.6) of this, clean-trained, HMM system in digit string and

city name recognition tasks was 33.55 and 54.68% respectively. The first, HMM,

row in Tables 8.1 and 8.2 provides detailed WER performance for each vehicle
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condition. In order to address the mismatch in noise conditions between the

System
Digit Condition (%) Average

IDLE CITY HWAY (%)

HMM 3.85 31.55 65.26 33.55
VTS 1.25 3.09 3.73 2.69

Table 8.1: Clean-trained (HMM) and VTS-compensated (VTS) HMM WER per-
formance in the digit string test set of Toshiba in-car task

clean training data and the noise-corrupted test sets, the VTS model-based com-

pensation was applied (Section 2.8.2) following the procedure described in [56].

The average WER in these tasks decreased to 2.69 and 14.45% respectively. The

System
City Condition (%) Average
IDLE HWAY (%)

HMM 12.01 97.34 54.68
VTS 6.09 22.81 14.45

Table 8.2: Clean-trained (HMM) and VTS-compensated (VTS) HMM WER per-
formance in the city name test set of Toshiba in-car task

second, VTS, row in Tables 8.1 and 8.2 provides detailed WER performance for

each vehicle condition.

8.1.2 Aurora 4

Aurora 4 is a medium-to-large noise-corrupted speech recognition task [181]. The

training set is available in two conditions: clean and multi-style. The clean

training data is the WSJ0 subset of WSJ SI284 data [182] consisting of 7138

utterances spoken by 83 speakers and totalling 14 hours of speech (WSJ SI84).

The multi-style training data was obtained by artificially corrupting the clean

training data using 6 types of noise and two microphone conditions where SNR

ranged 10-20 dB. The test set was obtained by artificially corrupting a subset

of the development set of 1992 November NIST evaluation [182] using 6 types

of noise under two microphone conditions where SNR ranged 5-15 dB. The test

set was split into 4 sets: A, B, C and D. The set A contains clean data, set B
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contains data corrupted by 6 types of noise, set C contains data corrupted by

channel distortion and set D contains data corrupted by the noise and channel

distortion. The number of utterances in each set is 330, 1980, 330 and 1980

respectively. The training and test data were pre-processed as in Toshiba in-car

task. The acoustic model is the cross-word context-dependent triphone HMM

with 3 emitting states. The HMM state output distribution is a GMM with

16 components and diagonal covariance matrices. The HMM states were tied

into 3143 physical states using state-level phonetic decision tree clustering. A

bigram language model with 4988 words in the vocabulary was used. The HMM

parameters were ML estimated on the clean training data in a manner similar

to Toshiba in-car task. The average WER performance of this, clean-trained,

HMM system was 58.47%. The first, HMM, row in Table 8.3 provides detailed

WER performance for each test sets. In order to address the mismatch in noise

System
Test Set (%) Average

A B C D (%)

HMM 6.95 55.78 47.28 71.50 58.47
VTS 7.05 15.21 11.89 23.01 17.74
VAT 8.50 13.66 11.81 20.13 15.93

DVAT 7.38 12.91 11.25 19.82 15.35

Table 8.3: Clean-trained (HMM), VTS-compensated (VTS), VTS adaptively
trained (VAT) and discriminative VAT (DVAT) HMM WER performance on
Aurora 4 task

conditions between the clean training data and the noise-corrupted test sets, the

VTS model-based compensation was applied following the procedure described in

[56]. The second, VTS, row in Table 8.3 shows that the average WER decreased

to 17.74%. The HMM parameters were then re-estimated using VTS adaptive

training (Section 2.8.2.3) following the procedure described in [56]. The third,

VAT, row in Table 8.3 shows that the average WER decreased to 15.93%. The

VAT was followed by discriminative VAT based on minimum phone error (MPE)

criterion (Section 2.8.2.4). The fourth, DVAT, row in Table 8.3 shows that the

average WER decreased to 15.35%.
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8.1.3 Aurora 2

Aurora 2 is a small noise-corrupted speech recognition task [183]. The training

set is available in two conditions: clean and multi-style. The clean training data

consisting of 8440 digit strings up to 7 digits long spoken by 55 male and 55 female

US-English speakers. The multi-style training data was obtained by artificially

corrupting the clean training data using 4 types of noise where SNR ranged in 5

dB increments: 0, 5, 10, 15 and 20 dB. The test set was obtained by artificially

corrupting digit strings spoken by 52 male and 52 female US-English speakers in

clean conditions using 8 types of noise where SNR ranged in 5 dB increments:

0, 5, 10, 15 an 20 dB. The test set was split into 3 sets: A, B and C. The set

A contains clean data corrupted using the same 4 types of noise as the multi-

style training data. The set B contains clean data corrupted using different 4

types of noise. The set C contains half of the clean data corrupted by one type

of noise from each set and a channel distortion. The number of utterances in

each set is 20002, 20002 and 10001 respectively. The training and test data were

pre-processed as in the previous tasks. The acoustic model is the whole-word

HMM with 16 emitting states. The HMM state output distribution is a Gaussian

mixture model (GMM) with 3 components and diagonal covariance matrices. No

language model was used, any length digit sequences were allowed. The HMM

parameters were ML estimated on the clean training data in a manner similar

to Toshiba in-car task. The average WER performance of this, clean-trained,

HMM system was 43.31%. The first, HMM, row in Table 8.4 provides detailed

WER performance for each test sets. In order to address the mismatch in noise

System
Test Set (%) Average

A B C (%)

HMM 43.86 46.57 35.70 43.31
VTS 9.84 9.11 9.53 9.49
VAT 8.94 8.28 8.79 8.65

DVAT 6.70 6.63 7.04 6.74

Table 8.4: Clean-trained (HMM), VTS-compensated (VTS), VTS adaptively
trained (VAT) and discriminative VAT (DVAT) HMM WER performance on
the Aurora 2 task averaged over 0-20 dB
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conditions between the clean training data and the noise-corrupted test sets, the

VTS model-based compensation was applied following the procedure described in

[68]. The second, VTS, row in Table 8.4 shows that the average WER decreased

to 9.49%. The HMM parameters were then re-estimated using VAT following the

procedure described in [56]. The third, VAT, row in Table 8.4 shows that the

average WER decreased to 8.65%. The VAT was followed by DVAT analogously

to Aurora 4 task. The fourth, DVAT, row in Table 8.4 shows that the average

WER decreased to 6.74%.

8.1.4 Software

The work presented in this chapter makes heavy use of several publicly available

and proprietary toolkits. Most of the work was conducted using hidden Markov

model toolkit (HTK) [265]. The extended acoustic code-breaking part (Chapter 4

and Section 8.2), in addition to HTK, made use of HMM-based speech synthesis

system (HTS) [271] and SVM light [109] toolkits. The HTS, an extension of

HTK toolkit, was used to artificially generate data. The SVM light toolkit was

used to train pair-wise binary SVM classifiers on real and artificially generated

data. In addition, an extended version of HTK toolkit was used to estimate

and compensate HMM to target noise conditions using vector Taylor series noise

compensation approach (see Section 2.8.2). This version of HTK was kindly

provided by Toshiba Research Europe Ltd. The conditional augmented model

part (Chapter 7 and Section 8.3) was implemented as an extension to the version

of HTK toolkit supporting VTS estimation and compensation.

8.2 Extended acoustic code-breaking

There were two sets of experiments performed with extended acoustic code-

breaking (Chapter 4). The first set of experiments reported in Section 8.2.1

examined the application to digit string recognition where real training data is

available for training the standard, unstructured, discriminative classifiers, such

as support vector machines (SVM) discussed in Section 3.2. The previous work

has examined and reported positive results on applying the SVM to Aurora 2
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[68] and the digit string test set of Toshiba in-car task [67]. For extended acous-

tic code-breaking, this offers an opportunity to compare SVMs trained on real

and artificially generated data. The second set of experiments reported in Sec-

tion 8.2.2 examined application to city name recognition. The city name test set

of Toshiba in-car task, where no training examples of city names exists, offers

an opportunity to apply SVMs in the setting not previously possible with these

classifiers.

8.2.1 Digit string recognition

For digit string recognition, the experimental setup followed the previous work

in [67, 68]. The first variant of acoustic code-breaking in Section 4.1 was im-

plemented. The VTS-compensated HMM was used to produce 1-best hypothe-

sis with segmentation. The segmentation was used to extract observation sub-

sequences with hypothesised word labels. Each observation sub-sequence was

then classified into one of digit classes using a discriminative classifier. The

discriminative classifier was the SVM implementing the max-wins strategy for

multi-class classification (Section 3.2.3.1).

The SVM was trained within the score-space adaptation and compensation

framework to yield noise and speaker independent discriminative classifier (Sec-

tion 6.2.1.3). In order to train the SVM, the multi-style training data was seg-

mented by the VTS-compensated HMM. For each digit pair, an individual SVM

was built (Section 3.2.2). For consistency with previous work [68, 278], a subset

of multi-style training data comprising 3 out of 4 noise types and 3 out of 5 SNR

conditions (10-20 dB) was used. The dynamic kernel associated with the SVM

was based on the likelihood ratio score-space φr in equation (6.6), where the

VTS-compensated HMM was used to extract features. Table 8.5 provides a short

summary of the likelihood ratio score-space.

The extended acoustic code-breaking followed the same approach to training

the SVM though artificially generated training data was used to train the SVM.

Note that examples of silence were not generated as these are always expected to

be available. The artificial data was generated based on the multi-style training

data reference transcriptions. There were two synthesis approaches investigated
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Notation Name Features

φr Likelihood Ratio
log-likelihood ratio

all derivatives

φl Likelihood log-likelihood

φ
(1)
l First-Order Likelihood

log-likelihood
all derivatives

φ
(1,µ)
l Mean Derivative

log-likelihood
mean derivatives

φa Appended Likelihood all log-likelihoods

φm Matched Context subset of log-likelihoods

Table 8.5: A summary of score-spaces

for generating the data: HMM synthesis (Section 4.2.1) and statistical HMM

synthesis (Section 4.2.2). The initial state-component sequence was obtained

based on the inherent HMM state duration densities in equation (2.11). For

the HMM synthesis, the observation sequence was sampled at the mean of the

multivariate Gaussian distribution associated with the initial state-component

sequence. For the statistical HMM synthesis, the static observation sequence was

sampled at the static mean of the multivariate Gaussian distribution obtained

using the EM algorithm. For both approaches, the VTS-compensated HMM was

used to provide the HMM parameters; the VTS transform to be used was drawn

randomly.

The first experiment investigated the synthesis approaches on Aurora 2 task,

where the whole word acoustic models were used to generate the artificial training

data. The WER performance of the SVM trained on real and artificial training

data is compared in Table 8.6. The first block of results corresponds to the VTS-

compensated HMM (VTS). The second block corresponds to the SVM trained

on the real data and the artificial data produced by the HMM synthesis (HMM)

and the statistical HMM synthesis (HTS) approaches. The use of dash, —, in

the second column corresponds to the use of real training data. The results in

Table 8.6 indicate that the VTS-compensated HMM was outperformed by the

SVM both trained on the real and artificial training data. The SVM trained on

real data showed the best result being on average 19% relatively better. Among
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System
Synthesis Test Set (%) Avg
Approach A B C (%)

VTS — 9.84 9.11 9.53 9.49

SVM
— 7.52 7.35 8.11 7.66

HMM 9.20 8.51 9.34 9.02
HTS 8.41 8.03 8.70 8.38

Table 8.6: VTS-compensated HMM (VTS) and SVM restoring WER performance
on Aurora 2 task averaged over 0-20 dB, where —, HMM and HTS stand for the
use of real (—) and artificial training data generated by HMM synthesis (HMM)
and statistical HMM synthesis (HTS)

the synthesis approaches, the statistical HMM synthesis showed the best result

achieving on average 61 % of that improvement. The simplest synthesis approach,

the HMM synthesis, achieved on average only 25 %. These results indicate that

even when the artificial data was produced by the HMM synthesis, which inher-

its the HMM conditional independence assumptions, a range of discrimination

”clues” was nevertheless carried over to the artificial data which made the SVM

possible to correct quarter of the errors corrected based on the real data. The

use of more complex synthesis approach, which overcomes the HMM conditional

independence assumptions, showed even better results.

The second experiment investigated the statistical HMM synthesis approach

on the Toshiba in-car task - a more realistic scenario as the context-dependent

acoustic models were used to generate the artificial training data. Note that com-

pared to Aurora 2 task, the test set data is recorded in real noisy environments.

The WER performance of the SVM trained on the real and artificial data is com-

pared in Table 8.7. The results in Table 8.7 indicate that the VTS-compensated

HMM was outperformed by the SVM both trained on the real and artificial data.

The SVM trained on the real data showed the best result being on average 13%

relatively better. The SVM trained on the artificial data achieved 47 % of that im-

provement. These results indicate that even when the context-dependent phone

acoustic models were used, a range of discrimination ”clues” was carried over to

the artificial data which made the SVM possible to correct almost half of the

word errors corrected based on the real data. In addition, these results suggest

that the SVM trained on artificial data can be successfully applied to test sets
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System
Synthesis Condition (%) Avg
Approach ENON CITY HWY (%)

VTS — 1.25 3.09 3.73 2.69

SVM
— 1.26 2.60 3.13 2.33

HTS 1.22 2.88 3.45 2.52

Table 8.7: VTS-compensated HMM (VTS) and SVM restoring WER performance
on digit string test set of Toshiba in-car task, where — and HTS stand for the use
of real (—) and artificial training data generated by statistical HMM synthesis
(HTS)

recorded in real noisy environments.

8.2.2 City name recognition

The previous experimental setup scales quadratically with the number of classes.

In order to reduce the computational load for larger vocabulary tasks, it is possible

to alter the acoustic code-breaking scheme and/or the discriminative classifier.

Following the previous work [128, 246, 248], the acoustic code-breaking scheme

was altered whilst keeping the discriminative classifier unchanged. The second

variant of acoustic code-breaking was implemented (Section 4.1). The VTS-

compensated HMM was used to produce a word lattice. The word lattice was

converted into a confusion network. The confusion network was pruned such that

each set of parallel arcs contains two confusable city names. The observation sub-

sequence was extracted from the earliest start time to the latest end time of the

two city names. Each observation sub-sequence was then classified into one or

the other city name using the SVM.

The SVM was trained within the score-space adaptation and compensation

framework to yield speaker and noise independent discriminative classifier (Sec-

tion 6.2.1.3). The artificial data was produced based on artificially created refer-

ence transcriptions, where the number of samples for each city was set to the

average number of samples available to each digit in the above experiments.

The HMM parameters for the statistical HMM synthesis were provided by the

VTS-compensated HMMs associated with the multi-style training data. A new,

random VTS-compensated HMM, which is not associated with the underlying
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reference transcription, was selected to produce each sample.

The WER performance of the VTS-compensated HMM and SVM trained on

the artificial data is compared on the most challenging highway (HWAY) condi-

tion in Table 8.8. The relatively high WER performance of the VTS-compensated

System
Synthesis Condition (%)
Approach HWAY

VTS — 22.62

SVM HTS 21.42

Table 8.8: VTS-compensated HMM (VTS) and SVM restoring WER performance
on city name test set of Toshiba in-car task, where HTS stands for the use of
artificial training data generated by the statistical HMM synthesis (HTS)

HMM can be partly attributed to the inherently high perplexity of this test set,

where every city name is equally likely. The results in Table 8.8 indicate that the

VTS-compensated HMM was outperformed by the SVM trained on the artificial

data. The relative improvement obtained on this test set lies above 5 % level

consistent with the digit string test set. These results suggest that for larger vo-

cabulary tasks, where the standard acoustic code-breaking is limited to re-scoring

only the most frequently confusable word pairs, a larger number of word errors

may be corrected by the extended acoustic code-breaking.

8.2.3 Discussion

This section presented the application of extended acoustic code-breaking to digit

string recognition and city name recognition tasks. The experimental results with

digit string recognition on Aurora 2 task showed that when the HMM synthesis

was used then a range of class discrimination ”clues” was carried over to the

artificial training data, which made it possible for the SVM to correct quarter

of the errors that were corrected when the SVM was trained on the real data.

The use of statistical HMM synthesis, showed even better results by making it

possible for the SVM to correct more than half of the errors. The experimental

results with digit string recognition on Toshiba in-car data showed that the use

of artificial data produced by context-dependent acoustic models adapted to ar-

tificially corrupted training data can be used to train the SVM that shows better
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WER performance than the VTS-compensated HMM on data recorded in real

noisy environments. The experimental results on the city name recognition task

showed that consistent with the digit string test set of Toshiba in-car task task 5

% relative WER improvement over the VTS-compensated HMM can be obtained.

The experimental verification in this section was sub-optimal in many ways.

First, a medium vocabulary task was used to assess the scheme intended for re-

scoring in large vocabulary tasks. Second, the underlying generative model was

clean-trained VTS-compensated HMM rather than a discriminative adaptively

trained HMM. Third, the use of a more advanced acoustic models for synthesis,

such as the trajectory HMM (Section 4.2.2), were not investigated.

There are several aspects that need to be addressed to make the extended

acoustic code-breaking useful for re-scoring in large vocabulary tasks. These in-

clude efficient, computationally and in terms of the number of samples required,

sampling, computationally efficient on-line training and better training data qual-

ity providing acoustic models.

8.3 Conditional augmented models

There were two sets of experiments performed with conditional augmented mod-

els (Chapter 7). The first set of experiments reported in Section 8.3.1 examined

the application of conditional augmented models (CAug) to digit string recog-

nition. The previous work examined and reported positive results on applying

monophone/word CAug models to TIMIT [128] and Aurora 2 [278] tasks though

different score-spaces, discriminative model parameter estimation criteria and

generative models were used. The experiments on Aurora 2 task presented in this

section extended the previous work by comparing discriminative model param-

eter estimation criteria (Section 5.3) and score-spaces (Section 6.2), examining

generative model parameter estimation (Section 7.4), inference (Section 5.2.2)

and the impact of using adaptively (Section 2.8.2.3) and discriminatively adap-

tively trained generative models (Section 2.8.2.4). The second set of experiments

reported in Section 8.3.2 examined the extension of CAug to medium-to-large

vocabulary tasks. The experiments on Aurora 4 task presented in this section

examined the use of context-dependent score-spaces, discriminative model pa-
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rameter tying and adaptively and discriminatively adaptively trained generative

models.

8.3.1 Word CAug models

For the lattice re-scoring experiments with word CAug models, the experimental

setup followed the previous work in [128, 278]. The VTS-compensated HMM was

used to produce a word lattice. For each word arc, the acoustic model score,

the HMM log-likelihood, was replaced by the dot-product between the discrimi-

native model parameters and the corresponding score-space feature vector. The

1-best path through the lattice providing the hypothesised word sequence was

found using the SCRF/CAug variant of the lattice forward algorithm in equa-

tion (5.26), where the summation was replaced by maximum [265]. For the infer-

ence experiments with word CAug models, the semi-Markov Viterbi algorithm in

equation (5.15) was applied to give the optimal with respect to the discriminative

model parameters word sequence. Unless otherwise stated, the WER performance

is reported based on the lattice re-scoring.

The CAug was trained within the score-space adaptation and compensation

framework to yield noise and speaker independent discriminative model parame-

ters (Section 6.2.1.3). In order to estimated the CAug parameters, the multi-style

training data was used. The VTS-compensated HMM was used to produce a pair

of numerator, which encodes the reference transcription, and denominator, which

encodes a large number of possible transcriptions, word lattice for each training

sequence. The numerator lattices contained only the most likely Viterbi segmen-

tation for the reference transcriptions. The denominator lattices contained one

or more alignments for each word sequence. The test set A was used as the

development set.

The score-spaces examined in this section included the likelihood score-space

φl, the appended likelihood score-space φa and the mean derivative score-space

φ
(1,µ)
l . Table 8.5 provides a short summary of these score-spaces. The discrim-

inative model parameters associated with all the score-spaces were initialised in

the way which guarantees the WER performance of the VTS-compensated HMM

(Section 6.2.1.1). For the likelihood score-space, the discriminative model pa-
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rameters were initialised to unit vector. For the appended likelihood and mean

derivative score-space, the discriminative model parameters associated with the

log-likelihood feature were initialised to one and the rest to zero. For the silence

(sil) and short pause (sp) classes , the appended likelihood score-space contained

only the log-likelihood given the corresponding class.

The rest of this section is organised as follows. Section 8.3.1.1 investigates

training criteria for estimating discriminative model parameters using the sim-

plest, likelihood score-space. Section 8.3.1.2 investigates the appended likelihood

score-space which incorporates log-likelihoods give all classes rather than one.

Section 8.3.1.3 investigates re-estimation of generative models parameters based

on CAug using likelihood and appended score-spaces. Section 8.3.1.4 investi-

gates first-order score-spaces based on derivatives of log-likelihood with respect

to generative model parameters. Section 8.3.1.5 investigates inference with CAug

using the mean derivative score-space compared to the lattice rescoring frame-

work adopted in all previous experiments. Finally, Section 8.3.1.6 examines the

use of discriminative and discriminative adaptively trained generative models for

extracting features for the use by CAug.

8.3.1.1 Discriminative model parameter estimation

The first experiment investigated estimating discriminative model parameters.

The acoustic segment features were provided by the likelihood score-space φl in

equation (6.9). There were two parameter estimation criteria examined: CML

and MWE (Section 5.3). Compared to the current implementation of large margin

training [278], the development time offered by these criteria is more suitable for

initial investigation. The regularised versions of these criteria in equations (5.22)

and (5.32) were used. The Gaussian prior in equation (3.15), where the mean

was set to the initial value of the parameters and covariance was set to the

identity matrix scaled by the free parameter σp in equation (3.16), was used.

This provided the guarantee of the WER performance of the VTS-compensated

HMM for sufficiently small values of σp. For both criteria, the gradients were

computed in the lattice framework (equations 5.25 and 5.35) and the parameters

were optimised using the Rprop algorithm [195].
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The optimisation of CML criterion considered multiple values of the free pa-

rameter σp called regularisation constant in the following, where the extreme

values 0 and +∞ would effectively turn off the CML objective function and the

prior respectively. A summary of the optimisation is given by Figure 8.1, where

the left plot shows the change in the CML criterion and the right plot shows the

change in the development set WER for σp ranging from 0 to +∞. Note that

Training Set, CML Criterion Test Set A, WER (%)
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Figure 8.1: Impact of regularisation constant σp on CML criterion and devel-
opment set WER in discriminative model parameter estimation for CAug using
likelihood score-space φl on Aurora 2 task

the CML criterion was normalised by the number of observations in the training

sequences for consistency with the standard practice in MMI estimation of HMM

parameters [265]. The optimisation results in Figure 8.1 can be used to make

several observations. First, the log-likelihood features provide additional useful

for discrimination information. Second, the objective function converges roughly

consistently across all values of σp after 50 iterations. Third, the development set

WER performance, apart from the few cases where σp had large value, indicates

good generalisation. Fourth, the suitable range of values for σp is from 10−2 on-

wards. A range of σp values, 10−1, . . ., +∞ was found optimal with respect to

the development set WER. The optimal value was chosen to be +∞ which yields

the largest value of the CML criterion.
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The optimisation of MWE criterion followed the CML criterion. A summary of

the optimisation is given by Figure 8.2, where the left plot now shows the change

in the MWE criterion. Note that the MWE criterion was normalised by the
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Figure 8.2: Impact of regularisation constant σp on MWE criterion and devel-
opment set WER in discriminative model parameter estimation for CAug using
likelihood score-space φl on Aurora 2 task

number of words in the reference transcriptions for consistency with the standard

practice in MWE/MPE estimation of HMM parameters [265]. The optimisation

results in Figure 8.1 can be used to make several observations. First, the log-

likelihood features provide additional useful for discrimination information similar

to the CML criterion. Second, the objective function requires more iterations to

converge for higher values of σp unlike the CML objective function. Third, the

development set WER performance, apart from the few cases where σp had large

value, indicates good generalisation similar to the CML criterion. Fourth, the

suitable range of values for σp is from 10−1 onwards unlike for the CML criterion.

The optimal with respect to the development set WER value of σp was 103.

The WER performance of the VTS-compensated HMM and, CML and MWE

estimated CAug using the likelihood score-space are compared on Aurora 2 task

in Table 8.9. The results in Table 8.9 can be used to make several observa-

tions. First, the VTS-compensated HMM was outperformed by the CAug using

the likelihood score-space, which essentially introduced HMM-dependent acous-
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tic de-weighting constants (Section 2.7.2.1), on average relatively by 15 % and

18 % respectively. Second, the estimates tuned on the development set show

good generalisation on the rest test sets. Third, the use of more complex MWE

criterion offers small but consistent improvement over the CML criterion. Since

the computation overhead from the use of MWE criterion is marginal, the rest

of this chapter will adopt the MWE/MPE criterion.

System Criterion
Test Set (%) Average

A B C (%)

VTS — 9.84 9.11 9.53 9.49

φl
CML 8.27 7.79 8.36 8.10
MWE 8.05 7.44 8.18 7.83

Table 8.9: VTS-compensated HMM (VTS) and CAug (φl) lattice restoring WER
performance on Aurora 2 task, where φl is likelihood score-space

8.3.1.2 Appended likelihood score-spaces

The CAug using the likelihood score-space φl in Section 8.3.1.1 introduced only

one discriminative model parameter for each word. The appended likelihood

score-space φa offers the simplest way to increase the number of discriminative

model parameters. In addition to the given class log-likelihood, this score-space

makes use of log-likelihoods given competing classes.

The second experiment investigated whether the use of competing class log-

likelihoods provides additional useful for discrimination information. The opti-

misation of MWE criterion with CAug using φa followed the approach with φl.

The lowest WER on the development set, 7.74 %, was achieved when the MWE

criterion was equal 0.976 compared to 8.05 % achieved when the MWE criterion

was equal to 0.968 with φl. This indicates that the use of competing class log-

likelihoods provides useful for discrimination information. The optimal value for

the regularisation constant σp was 103 which is consistent with φl. However, the

number of iterations required with φa was 150 compared to 50 with φl.

The WER performance of the VTS-compensated HMM and CAug using the

likelihood and appended likelihood score-spaces are compared on Aurora 2 task

in Table 8.10. The results in Table 8.10 can be used to make several obser-
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System
Test Set (%) Average

A B C (%)

VTS 9.84 9.11 9.53 9.49

φl 8.05 7.44 8.18 7.83
φa 7.74 7.28 7.94 7.60

Table 8.10: VTS-compensated HMM (VTS) and CAug (φl and φa) lattice restor-
ing WER performance on Aurora 2 task, where φl is likelihood and φa is ap-
pended likelihood score-space

vations. First, the VTS-compensated HMM was outperformed by CAug using

the likelihood and appended likelihood score-spaces on average relatively by 18

% and 20 % respectively. Second, the estimates tuned on the development set

showed good generalisation on the rest test sets. Third, the use of competing

class log-likelihoods provided additional though small 3 % relative improvement

in the WER performance.

8.3.1.3 Generative model parameter estimation

The previous work with CAug in [128, 278] and experiments so far in Section 8.3.1

has considered the use of fixed generative model parameters for parametrising the

score-spaces. The experiments so far has considered the use of VTS-compensated

HMM. For this form of generative model, it is required to perform a CAug ana-

logue of HMM discriminative VTS adaptive training (DVAT) in Section 2.8.2.4.

For the likelihood and appended likelihood score-spaces, the HMM parameter

update formulae in the extended Baum-Welch (EBW) form were derived in Sec-

tion 7.4.3. The statistics used in these update rules was shown to be closely

related to the standard statistics. For the likelihood score-space, each lattice arc

provided the standard statistics only for one, current class weighted by the cor-

responding discriminative model parameter. For the appended likelihood score-

space, each arc provided the standard statistics for all classes each weighted

by the corresponding discriminative model parameter. When the discriminative

model parameters are set to their initial values then these update rules yield the

standard update rules.

The third experiment investigated the DVAT of HMM parameters for CAug
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using the likelihood and appended likelihood score-spaces on Aurora 2 task. The

experimental setup followed the approach to the CML/MWE estimation of dis-

criminative model parameters in Section 8.3.1.1. The optimisation was performed

following the standard approach to the MWE estimation of HMM parameters

(Section 2.7.2.2) though the CAug analogue of the standard statistics was accu-

mulated. Note that the standard approach to the DVAT of HMM parameters is

based on the VTS-compensated VAT rather than clean-trained HMM [55]. Fol-

lowing the standard approach to the DVAT of HMM parameters (Section 2.8.2.4),

the VTS transform parameters were not re-estimated.

The WER performance of the VTS-compensated clean-trained and DVAT

HMM, and CAug using the likelihood and appended likelihood score-spaces with

estimated discriminative and/or generative model parameters is compared in Ta-

ble 8.11. The results in Table 8.11 can be used to make several observations.

System
Update Test Set (%) Average
α λ A B C (%)

VTS — — 9.84 9.11 9.53 9.49

φl

7 3 7.16 6.89 7.52 7.12
3 7 8.06 7.44 8.19 7.84
3 3 6.86 6.61 7.35 6.86

φa

7 3 7.16 6.89 7.52 7.12
3 7 7.74 7.28 7.94 7.60
3 3 6.84 6.56 7.25 6.81

DVAT — — 6.70 6.63 7.04 6.74

Table 8.11: Comparative WER performance on Aurora 2 task for VTS-
compensated clean-trained (VTS) and MWE DVAT estimated (DVAT) HMM,
and CAug (φl and φa) with MWE and/or DVAT MWE estimated discriminative
and/or generative model parameters, where φl is likelihood and φa is appended
likelihood score-space

First, the VTS-compensated clean-trained HMM was outperformed by CAug in

every configuration considered. Second, the VTS-compensated DVAT HMM was

not outperformed by CAug in any configuration considered. Third, perform-

ing the DVAT of HMM given VTS-compensated VAT rather than clean-trained

HMM gave on average 5 % relative improvement (lines 2 or 5 and 8). Fourth, for

173



8.3. CONDITIONAL AUGMENTED MODELS

the likelihood and appended likelihood score-spaces estimating generative model

parameters on average gave 13 % and 10 % relative improvement. Fifth, the

CAug with updated discriminative and generative model parameters using the

appended likelihood score-space yielded on average 1 % relative improvement over

the likelihood score-space (lines 4 and 7).

8.3.1.4 Mean derivative score-space

The previous sections considered one option to increase the number of features

available to each discriminative model class which is to use the log-likelihoods

given all classes. A small improvement in the average WER performance was

observed on Aurora 2 task over the use of log-likelihood given one class. The ex-

periments reported in this section investigated another option which is to use the

derivatives of log-likelihood with respect to generative models parameters. For

score-spaces based on the HMM, these derivatives relax the HMM conditional

independence assumptions compared to the log-likelihoods (Section 6.2.1.2). In

order to avoid potential generalisation issues when using all derivatives (Sec-

tion 6.2.1.1), a subset consisting of the derivatives with respect to HMM mean

vectors was used. The associated score-space in equation (6.11) was called the

mean derivative score-space φ
(1,µ)
l .

The fourth experiment investigated whether the use of derivatives with respect

to HMM mean vectors provides additional useful for discrimination information.

The experimental setup followed the approach to the CML/MWE estimation

of discriminative model parameters in Section 8.3.1.1. The lowest WER on the

development set, 7.00 %, was achieved when the MWE criterion was equal to 0.991

compared to 8.05 % and 7.74 % achieved when the MWE criterion was equal to

0.968 and 0.976 with the likelihood φl and appended likelihood φa score-spaces.

This indicated that the use of mean derivatives provides useful for discrimination

information. Note that the value of MWE criterion is very high, close to the

maximum value of 1. The optimal value for the regularisation constant σp was

+∞ compared to 103. This suggests that the use of more complex forms of

prior, such as in equation (3.17) where individual regularisation constants are

introduced for each dimension, may be advantageous.
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The WER performance of the VTS-compensated HMM and CAug using the

likelihood φl, appended likelihood φa and mean derivative φ
(1,µ)
l score-spaces on

Aurora 2 task is compared in Table 8.12. The results in Table 8.12 can be used to

System
Test Set (%) Average

A B C (%)

VTS 9.84 9.11 9.53 9.49

φl 8.06 7.44 8.19 7.84
φa 7.74 7.28 7.94 7.60

φ
(1,µ)
l 7.00 6.64 7.55 6.97

Table 8.12: Comparative WER performance on Aurora 2 task for VTS-
compensated HMM and CAug using likelihood φl, appended likelihood φa and
mean derivative φ

(1,µ)
l score-spaces

make several observations. First, the VTS-compensated HMM was outperformed

by CAug using all score-spaces. In particular, the CAug using the mean derivative

score-space yielded on average 27 % relative improvement. Second, the CAug

using the mean derivative score-space showed good generalisation on the other

test sets. Third, the use of mean derivative features yielded on average 8 %

relative improvement over the use of log-likelihoods given competing classes.

8.3.1.5 Inference

The previous sections reported lattice re-scoring WER performance on Aurora 2

task. These lattices contained a subset of the most likely with respect to the VTS-

compensated HMM word sequences with one or more possible segmentations. A

similar set of lattices was adopted for estimating discriminative model parameters.

These segmentations, however, may not be optimal with respect to the CAug

(Section 5.2.2). In order to infer word sequences with segmentations optimal

with respect to SCRF/CAug, the semi-Markov variant of the Viterbi algorithm

in equation (5.15) can be applied.

The fifth experiment investigated the impact of using sub-optimal segmenta-

tion on the WER performance on Aurora 2 task. In order to obtain initial, rough

estimate, the use of optimal segmentation was investigated in decoding only. Note

that the discriminative model parameters in this case remained estimated based
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on sub-optimal segmentations.

The WER performance of the VTS-compensated HMM and CAug using the

mean derivative score-space φ
(1,µ)
l based on the sub-optimal a and optimal â seg-

mentations is compared on Aurora 2 task in Table 8.13. The results in Table 8.13

System Decoding
Test Set (%) Average

A B C (%)

VTS — 9.84 9.11 9.53 9.49

φ
(1,µ)
l

a 7.00 6.64 7.55 6.97
â 6.78 6.44 7.32 6.75

Table 8.13: Comparative WER performance on Aurora 2 task for VTS-
compensated HMM and CAug using mean derivative score-space φ

(1,µ)
l based

on sub-optimal and optimal segmentations in decoding

can be used to make several observations. First, the VTS-compensated HMM was

outperformed by the CAug based on the sub-optimal and optimal segmentations.

Second, the use of optimal segmentation gave small but consistent improvement

in the WER performance on all test sets. This observation suggests that the es-

timation of discriminative model parameters based on the optimal segmentations

may be advantageous.

8.3.1.6 Advanced generative models

The previous section considered the use of VTS-compensated clean-trained HMM

to yield features for the mean derivative score-space. The use of more advanced

canonical acoustic models, such as the VAT and DVAT HMM, may provide score-

spaces with additional useful for discrimination information.

The sixth experiment investigated the use of more advanced canonical acous-

tic models with CAug using the mean derivative score-space. The experimen-

tal setup followed the approach to the CML/MWE estimation of discriminative

model parameters in Section 8.3.1.1 though the training and test set lattices were

produced by the VTS-compensated VAT and DVAT HMM.

The WER performance of the VTS-compensated VAT and DVAT HMM, and

CAug using the mean derivative score-space is compared on Aurora 2 task in

Table 8.14. The results in Table 8.14 can be used to make several observations.
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System
Test Set (%) Average

A B C (%)

VTS 9.84 9.11 9.53 9.49

φ
(1,µ)
b 7.00 6.64 7.55 6.97

VAT 8.94 8.28 8.79 8.65

φ
(1,µ)
b 6.56 6.53 6.98 6.63

DVAT 6.70 6.63 7.04 6.74

φ
(1,µ)
b 6.13 6.21 6.74 6.28

Table 8.14: Comparative WER performance on Aurora 2 task for VTS-
compensated clean-trained, VAT and DVAT HMM and corresponding CAug using
mean derivative score-space φ

(1,µ)
l

First, the VTS-compensated canonical acoustic models were outperformed by

the corresponding CAug using the mean derivative score-space. In particular, the

WER performance of the VTS-compensated DVAT HMM was improved relatively

by 7 %. Second, the VTS-compensated VAT and DVAT HMM yielded additional

useful for discrimination information, which improved the WER performance of

the CAug using the mean derivative score-space relatively by 5 % and 10 %

respectively, compared to the VTS-compensated clean-trained HMM.

8.3.2 Context-dependent phone CAug models

The previous Section 8.3.1 investigated CAug on Aurora 2 task, where the dis-

criminative acoustic model parameters were associated with individual words.

This section investigated CAug on Aurora 4 task, where the discriminative acous-

tic model parameters are associated with individual context-dependent phones.

The experimental setup in this section followed that discussed in Section 8.3.1.

The VTS-compensated HMM was used to produce a word lattice. The word

lattice was phone-marked to segment each word arc into a sequence phone arcs

consistent with the underlying pronunciation. For each phone arc, the acous-

tic model score, the context-dependent phone HMM log-likelihood, was replaced

by the dot-product between the discriminative acoustic model parameters and

the corresponding score-space feature vector. The phone arc transitions were

set according to equation (5.12) to incorporate the bigram language model and
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pronunciation probabilities. The 1-best path through the phone-marked lattice

providing the hypothesised phone sequence and the associated word sequence was

found using the SCRF/CAug variant of the lattice forward algorithm in equa-

tion (5.26), where the summation was replaced by maximum [265].

The CAug was trained within the score-space adaptation and compensation

framework to yield noise and speaker independent discriminative model parame-

ters (Section 6.2.1.3). The MPE criterion was used to yield estimates. In order to

train the CAug, the multi-style training data was used. The VTS-compensated

HMM was used to produce a pair of numerator, which encodes the reference

transcription with one or more pronunciations, and denominator, which encodes

a large number of possible transcriptions with one or more pronunciations, word

lattice for each training sequence. The numerator and denominator lattices were

phone-marked. The test set B was used as the development set.

The score-spaces examined in this section included the likelihood score-space

φl, the matched context score-space φm and the mean derivative score-space

φ
(1,µ)
l . Table 8.5 provides a short summary of these score-spaces. The discrimina-

tive acoustic model parameters associated with all the score-spaces were initialised

in the way which guarantees the WER performance of the VTS-compensated

HMM (Section 6.2.1.1). For the likelihood score-space, the discriminative model

parameters were initialised to unit vector. For the matched context and mean

derivative score-space, the discriminative model parameters associated with the

log-likelihood feature given the current class were initialised to one and the rest

to zero. For the silence (sil) and short pause (sp) classes , the matched context

score-space contained only the log-likelihood given the corresponding class.

The rest of this section is organised as follows. Section 8.3.2.1 investigates

the use of phonetic decision tree clustering proposed in Section 7.3 for tying

discriminative acoustic model parameters at the context-dependent phone level

using the simplest, likelihood score-space. Section 8.3.2.2 investigates whether

the use of matched context and mean derivative score-spaces offers advantages

over the likelihood score-space. Section 8.3.2.3 investigates whether for mean

derivative score-spaces tying the discriminative acoustic model parameters at the

state-level improves robustness with small number of context-dependent phone

classes. Section 8.3.2.4 investigates whether the use of more advanced generative
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models provides additional information useful for discrimination.

8.3.2.1 Phonetic decision tree clustering

The CAug investigated on Aurora 4 task associates discriminative acoustic model

parameters with context-dependent phones and generative model, the HMM, pa-

rameters with states. A large number of context-dependent phones had limited

or no examples in the multi-style training data. In order to address robustness is-

sues when training the CAug, the discriminative acoustic model parameters were

tied between context-dependent phones using model-level phonetic decision tree

clustering (Section 2.4). Since the HMM parameters were themselves tied using

state-level phonetic decision tree clustering then it was important to investigate

possible generalisation issues caused by combining the model-level and state-level

decision trees in the CAug - the tree intersect effect (Section 7.3).

The experimental setup followed the standard approach to model-level clus-

tering [265]. A single tree was constructed for each possible central phone of all

context-dependent phones. Three sets of trees were built with 47 (monophone-

level tying), 432 and 4020 leaves. The discriminative acoustic model parame-

ters for seen and unseen context-dependent phones were synthesised by dropping

the context-dependent phones down the trees. There were two levels at which

clustering was investigated: logical and physical HMM. The logical HMM level

referred to clustering all context-dependent phones irrespectively of the state-

tied HMM. The physical HMM level referred to clustering only those context-

dependent phones which had unique HMM parameters (at least one state is

different) associated with them. The latter approach was discussed to be less

prone to generalisation issues. The accuracy of both approaches was investigated

based on CAug using the simplest likelihood score-space. In order to estimate

model-level tied discriminative acoustic model parameters, the MPE criterion

was used (Section 5.3). The optimisation procedure followed the approach in

Section 8.3.1.1.

The WER performance of the VTS-compensated HMM and CAug using the

likelihood score-space based on the two approaches to clustering is compared in

Table 8.15. The results in Table 8.15 can be used to make several observations.
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System
Clustered

Classes
Test Set (%) Average

HMM Classes A B C D (%)

VTS — — 7.05 15.21 11.89 23.01 17.74

φl

Physical
47 7.57 14.64 11.78 22.22 17.17
432 7.18 14.34 11.23 22.13 16.95
4020 6.64 14.24 10.73 21.82 16.70

Logical
47 7.57 14.64 11.78 22.22 17.17
432 7.07 14.45 10.86 22.06 16.93
4020 6.91 14.22 10.76 21.96 16.77

Table 8.15: Model-level phonetic decision tree clustering of physical and logical
HMM classes into 47, 432 and 4020 discriminative acoustic model classes. Com-
parative WER performance on Aurora 4 task for VTS-compensated HMM and
CAug using the likelihood score-space φl

First, the VTS-compensated HMM was outperformed by CAug in all configura-

tions considered. Second, the use of phonetic decision tree clustering gave small

but consistent improvement over monophone-level tying (47 classes). Third, both

approaches to clustering show good generalisation as the number of classes in-

creases. Fourth, clustering physical rather than logical HMMs yielded slightly

better average WER performance with larger number of classes. For large num-

ber of classes, the number of HMMs providing features for each discriminative

model class is small. If any of those HMMs are shared among discriminative

model classes then it can negatively affect the discriminative model class sepa-

rability. In order to avoid possible class discrimination issues, the rest of this

section will adopt the second approach to clustering.

8.3.2.2 Likelihood, matched context and mean derivative score-spaces

In addition to the likelihood score-space, a range of other score-spaces can be

adopted with context-dependent phone CAug (Section 7.2). This section in-

vestigated matched-context and mean derivative score-spaces. The matched-

context score-space is based on log-likelihoods given context-dependent phones

which match the context. For each context-dependent phone the number of such

context-dependent phones is equal to the number of monophones. On the other

hand, the mean derivative score-space introduces derivatives of log-likelihood with
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respect to mean vectors. For each context-dependent phone the number of such

derivatives equal to the number of components in the associated HMM. The

experimental setup followed the approach in Section 8.3.2.1 where 4020 context-

dependent phone CAug using the matched-context and mean derivative score-

spaces were additionally created.

The WER performance of VTS-compensated HMM and CAug using the like-

lihood, matched-context and mean derivative score-spaces is compared in Ta-

ble 8.16 The results in Table 8.16 can be used to make several observations. First,

System
Test Set (%) Average

A B C D (%)

VTS 7.05 15.21 11.89 23.01 17.74

φl 6.64 14.24 10.73 21.82 16.70
φm 6.80 14.21 10.41 21.85 16.69

φ
(1,µ)
l 6.70 13.49 10.16 21.11 16.04

Table 8.16: Context-dependent phone score-spaces: likelihood φl, matched-
context φm and mean derivative φ

(1,µ)
l . Comparative WER performance on Au-

rora 4 task for VTS-compensated HMM and 4020 context-dependent phone CAug

the VTS-compensated HMM was outperformed by CAug using each context-

dependent phone score-space. In particular, the use of mean derivative score-

space yielded on average 10 % relative improvement in the WER performance.

Second, although the use of additional log-likelihoods given context-dependent

phones with matched context gave little if any improvement, the distribution of

errors across test sets is different which suggests that the use of model combi-

nation approaches (Section 2.6.2) may prove successful. Third, the use of mean

derivative score-spaces provided additional useful for discrimination information

which gave on average small but consistent 4 % relative improvement.

8.3.2.3 Within-state tied mean derivative score-spaces

When more than one HMM are used to extract features then typically inconsis-

tent order of components within HMM states may negatively affect discrimination

across context-dependent phone CAug classes (Section 7.3). This holds for the

mean derivative score-space investigated in Section 8.3.2.2, which assumed fixed
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order of derivatives with respect to state-component mean vectors. The more

HMMs are used to extract features the more discrimination using mean deriva-

tive score-space is expected to be affected. On the other hand, the likelihood

and matched-context score-spaces are not affected since log-likelihoods are not

sensitive to the order of components within HMM states. In order to investigate

potential class discrimination issues with the mean derivative score-space, the

two cases of heavy and light tying were separately investigated based on 47 and

4020 context-dependent phone CAug models. For both cases, the CAug models

were built using the mean derivative score-space with mean derivatives summed

within states and not.

The WER performance of VTS-compensated HMM and CAug using the likeli-

hood and mean derivative score-space, where mean derivatives are summed within

states and not in case of heavy and light tying, is compared in Table 8.17. The

Classes System
Testing set

Average
A B C D

— VTS 7.05 15.21 11.89 23.01 17.74

47
φ

(0)
l 7.57 14.64 11.78 22.22 17.17

φ
(1,µ)
l 7.49 14.10 11.31 21.55 16.62

φ
(1,µ)
l 7.38 14.29 11.71 21.87 16.86

4020
φ

(0)
l 6.64 14.24 10.73 21.82 16.70

φ
(1,µ)
l 6.82 13.38 10.56 20.57 16.23

φ
(1,µ)
l 6.70 13.49 10.16 21.11 16.04

Table 8.17: Negative impact of inconsistent component order across HMM states
on class discrimination in case of heavy (47 classes) and light (4020 classes) tying

with CAug using mean derivative φ
(1,µ)
l score-space. Usefulness of within-state

tied mean derivative φ
(1,µ)
l score-space in case of heavy tying. Comparative WER

performance on Aurora 4 task for VTS-compensated HMM and 4020 context-
dependent phone CAug

results in Table 8.17 can be used to make several observations. First, the VTS-

compensated HMM was outperformed by CAug in each case. Second, the CAug

using likelihood score-space was outperformed by CAug using the mean derivative

score-space in each case. Third, the combination of heavy tying and inconsistent

order of HMM components within states indeed affect class discrimination. In
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particular, the use of mean derivative score-space with mean derivatives summed

within HMM states improved the WER performance relatively by 1 %. Fourth,

the combination of light tying and inconsistent order of HMM components within

states is less prone to class discrimination issues. In particular, the use of mean

derivative score-space with mean derivatives summed within HMM states de-

graded the WER performance relatively by 1 %.

8.3.2.4 Advanced generative models

The experiments with context-dependent phone CAug using mean derivative

score-space have so far considered the use of VTS-compensated HMM. The use

of more advanced generative models, such as the VAT and DVAT HMM, may

provide these score-spaces with additional useful for discrimination information.

The experimental setup followed Sections 8.3.1.6 and 8.3.2.2.

The WER performance of VTS-compensated clean-trained, VAT and DVAT

HMM and the corresponding 4020 context-dependent phone CAug using the mean

derivative score-space is compared in Table 8.18. The results in Table 8.18 can

System
Testing set

Average
A B C D

VTS 7.05 15.21 11.89 23.01 17.74

φ
(1,µ)
b 6.70 13.49 10.16 21.11 16.04

VAT 8.50 13.66 11.81 20.13 15.93

φ
(1,µ)
b 7.43 12.57 10.67 19.01 14.83

DVAT 7.38 12.91 11.25 19.82 15.35

φ
(1,µ)
b 6.97 12.66 11.99 19.47 15.13

Table 8.18: Comparative WER performance on Aurora 4 task for VTS-
compensated clean-trained, VAT and DVAT HMMs and 4020 context-dependent
phone CAug using mean derivative φ

(1,µ)
l score-space

be used to make several observations. First, the CAug gave additional gains over

all generative models. Second, the use of VTS-compensated DVAT HMM gave

little additional information useful for discrimination resulting in 15.13 % average

WER compared to 14.83 % average WER obtained using the VTS-compensated

VAT HMM. The most likely explanation to this is over-training of sufficiently
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complex HMM on small amount of multi-style training data.

8.3.3 Discussion

This section presented the application of CAug models using scores-spaces based

on generative models to noise-corrupted small and medium-to-large vocabulary

Aurora 2 and Aurora 4 tasks.

The experimental results on Aurora 2 task with word CAug models gave

several indications. First, the use of MWE criterion can offer small but consistent

gains over the CML criterion. Second, log-likelihoods for competing words can

provide additional useful for discrimination information. Third, re-estimating

generative model parameters given estimated discriminative model parameters

can give gains. Fourth, derivatives of log-likelihood with respect to mean vectors

can provide more additional useful for discrimination information compared to

log-likelihoods for competing classes. Fifth, inferring the optimal segmentation

of observation sequence into words with respect to CAug rather than relying on

segmentation obtained by external classifier can offer small but consistent gains

and may yield further gains if performed in training. Sixth, the use of score-

spaces based on more complex generative models can give additional useful for

discrimination information.

The experimental results on Aurora 4 task with context-dependent phone

CAug models gave several indications. First, the use of model-level phonetic de-

cision tree clustering can give small but consistent gains over monophone-level ty-

ing. Second, although log-likelihoods for context-dependent phones with matched

context provided little if any gain over the likelihood score-space, these can yield

complimentary information useful for system combination. Third, derivatives of

log-likelihood with respect to mean vectors can provide more additional useful

for discrimination information compared to log-likelihoods for context-dependent

phones with matched context. Fourth, tying parameters associated with deriva-

tives within HMM states can improve robustness with small number of classes.

Fifth, over-trained complex generative models can provide no additional informa-

tion useful for discrimination compared to simpler models.

The experimental verification in this section was sub-optimal in many ways.
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First, only one medium-to-large vocabulary task was used to assess context-

dependent phone CAug models. Second, the use of large margin criterion was not

investigated. Third, the simplest form of prior was investigated with CML and

MWE/MPE criteria. Fourth, only one type of acoustic segment feature-functions

was investigated. Fifth, the simplest of supra-segmental feature-functions were

used and no attempt was made to estimate the associated parameters.

There are several aspects that need to be addressed to make the context-

dependent phone CAug useful for larger vocabulary tasks. These include in-

corporation of other types of feature-functions, adaptation to speaker and noise

conditions with general feature-functions and better optimisation approaches.

8.4 Summary

In this chapter, experimental results with the extended acoustic code-breaking

and CAug models were presented on noise-corrupted small, medium and medium-

to-large vocabulary tasks. In order to handle the mismatch between noise condi-

tions, both approaches were applied within the score-space adaptation and com-

pensation framework. The VTS model-based compensation was applied. A range

of score-spaces were investigated including the likelihood and likelihood ratio

score-spaces.

The extended acoustic code-breaking adopted the likelihood ratio score-space.

There were two approaches investigated for artificial training data generation:

HMM synthesis and statistical HMM synthesis. For digit string recognition on

Aurora 2 task, the HMM synthesis approach was found capable of producing

observation sequences containing useful for the SVM information to correct 25 %

of the errors that can be corrected based on the real training data. The use of

more complex statistical HMM synthesis was found to yield even better results

- 50 % of the errors were corrected in digit string recognition on Aurora 2 and

Toshiba in-car tasks. The results on the city name test set of Toshiba in-car task,

where no examples of city names exist in the training data, showed that the use

of artificial data trained SVMs can yield gains over the VTS-compensated HMM.

The CAug model adopted score-spaces where features were based on log-

likelihoods for one or more classes and derivatives of log-likelihood with respect
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to generative model parameters. There were a number of aspects investigated on

two tasks: Aurora 2 and Aurora 4. The use of CAug models on Aurora 2 task

investigated aspects including training criterion, generative model parameter es-

timation and inference of optimal segmentation. Consistent gains were observed

from the use of MWE criterion over the CML criterion, re-estimation of generative

model parameters and inferring the optimal segmentation of observation sequence

into word sequence with respect to CAug parameters over adopting the segmen-

tations produced by the VTS-compensated HMM. The use of CAug models on

Aurora 4 task investigated context-dependent phone score-spaces and parameter

tying. Consistent gains were observed from the use of model-level phonetic de-

cision tree clustering to increase the number of context-dependent phone CAug

parameters over monophone-level tying. On both tasks the CAug model was

found to benefit more from the use of derivatives of log-likelihood with respect

to generative model parameters than log-likelihoods for competing classes and

perform better than VTS-compensated clean-trained, VAT and DVAT HMMs.

Overall, the concept of using artificial training data for estimating the stan-

dard, unstructured discriminative classifiers and the use of structured discrimina-

tive classifiers in the form of context-dependent phone CAug models were shown

to be promising for larger vocabulary tasks.

————————————————————————
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Chapter 9

Conclusions

This thesis investigated a discriminative approach to speech recognition based

on the standard, unstructured, discriminative models, such as support vector

machines (SVM), and structured discriminative models, such as conditional aug-

mented (CAug) models. This thesis contains two major contributions to this area

presented in Chapters 4 and 7 and summarised in Sections 9.1 and 9.2.

The first contribution is extended acoustic code-breaking which addresses the

limitation of training data insufficiency in the standard acoustic code-breaking

schemes by artificially generating examples of under-represented words. This

contribution makes it possible to examine application of standard discriminative

models to tasks with limited or no examples of the words in the training data,

such as city name or large vocabulary speech recognition.

The second contribution is to introduce context-dependent phone CAug mod-

els - a structured discriminative model adopting partitioning of sentences into

words and words into context-dependent phones. In order to ensure that dis-

criminative acoustic model parameters associated in these models with context-

dependent phones are robustly estimated, the use of model-level phonetic decision

tree clustering was proposed.
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9.1 Extended acoustic code-breaking

One option to handle the vast number of sentences in the discriminative approach

to speech recognition is to decompose the whole-sentence recognition problem

into a sequence of independent word recognition problems that can be addressed

by the standard discriminative models. This serves the basis of a number of

acoustic code-breaking schemes discussed in Section 4.1. These schemes have been

successfully applied to small and large vocabulary tasks. The current application

of these approaches to large vocabulary tasks, however, was limited to re-scoring

only a small number of the most frequently occurring word-pair confusions [245].

The main reason for this limitation is the training data insufficiency problem

which yields many words with limited or no examples in the training data.

In order to address this issue, the use of artificially generated training data

was proposed in Section 4.2 and investigated in Section 8.2. Effectively, a sim-

plified form of speech synthesis is required where observation sequences rather

than waveforms are generated. Thus, many of the issues commonly associated

in speech synthesis with waveform generation, such as excitation and prosody

[166], are not relevant to this approach. Two hidden Markov model (HMM)

based approaches examined. The first approach directly used the HMM to gen-

erate observation sequences. The procedure is a simple generative process but

the generated observation sequences were based on the same conditional indepen-

dence assumptions as the underlying HMM [72]. In order to overcome the HMM

conditional independence assumptions that are often cited as an issue with this

simple generative process [75, 270], the second approach applied statistical HMM

synthesis [235, 272]. This approach takes into account the deterministic relation-

ship that exists between the static and dynamic parts of observation vectors and

produces observation sequences that are not be based on the same conditional

independence assumptions as the underlying HMM.

Extended acoustic code-breaking was evaluated on noise-corrupted digit string

recognition and city name recognition tasks. There were two digit string recogni-

tion tasks investigated: Aurora 2 and digit string test set of Toshiba in-car task.

The previous work with the SVM-based acoustic code-breaking reported positive

results on both tasks [67, 68]. The first task, Aurora 2, based on whole-word
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HMMs was used to compare the two synthesis approaches. It was found that the

use of more complex statistical HMM synthesis made it possible for the SVM to

correct 35 % more errors than the simplest HMM synthesis. In total, the use of

statistical HMM synthesis made it possible for the SVM trained on artificial data

to correct 60 % of the errors that were corrected by the SVM trained on real

data. The second task, the digit string test set of Toshiba in-car task, based on

cross-word triphone HMMs was used to investigate artificial training data gen-

eration based on the context-dependent phone rather than whole-word HMMs.

It was found that the use of statistical HMM synthesis made it possible for the

SVM trained on artificial data to correct approximately 50 % of the errors that

were corrected by the SVM trained on real data. The third task, the city name

test set of Toshiba in-car task, was used to investigate the extended acoustic

code-breaking in the situation, where there is no examples of the words in the

training data, to which the standard acoustic code-breaking can not be applied.

It was found that the extended acoustic code-breaking gave a small 5 % relative

improvement, consistent with digit string test set, over the model-based vector

Taylor series (VTS) compensated HMM (Section 2.8.2). Overall, these results

showed promise for further investigation of extended acoustic code-breaking.

The major contributions of this part of the thesis are listed below:

(a) sampling observation sequences from hidden Markov models (HMM) com-

pensated to noise conditions using vector Taylor series model-based com-

pensation (Section 4.2.1);

(b) same as above yet taking into account the deterministic relationship be-

tween static and dynamic coefficients (Section 4.2.2);

(c) proposing to apply sampling/generation approaches in (a) or (b) with other

HMM model-based adaptation/compensation techniques or without;

(d) using (a) and/or (b) possibly with real observation sequences to estimate

parameters of support vector machines (SVM) (Section 8.2);

(e) proposing to apply the approach in (d) with other discriminative classifiers;
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(f) proposing to use other approaches to sample/generate observation sequences

in (d) or (e);

(g) applying (d) in an acoustic code-breaking style experiment (Section 8.2.1);

(h) same as (g) yet in a task where no real examples of words to estimate SVMs

for are available (Section 8.2.2).

9.2 Conditional augmented models

As an alternative to acoustic code-breaking, the use of structured discriminative

models can be considered to address the vast number of possible sentences. A

number of these models were discussed in Chapter 5. These range from max-

imum entropy models (MEMM), which introduce similar to HMM frame level

conditional independence assumptions, to segmental conditional random fields

(SCRF), which relax them to the word level. The SCRF, similar to acoustic

code-breaking, associates model parameters with individual words. This means

that with limited amounts of training data it is hard to ensure robustness of

estimates. On the other hand, conditional augmented (CAug) models relax con-

ditional independence assumptions to the phone level, which provides modelling

of longer-span dependencies compared to the HMM and MEMM, and better cov-

erage in the training data over the SCRF. The previous work reported positive

results on two small vocabulary tasks, Aurora 2 and TIMIT, based on word [278]

and monophone [128] CAug models.

In order to make CAug models more generally applicable, the two directions

of word and phone level modelling need to be combined. The context-dependent

phone CAug model proposed in Chapter 7 applies word-level conditional indepen-

dence assumptions to extract information from word and pronunciation sequences

(Section 6.3), and phone-level conditional independence assumptions to extract

information from observations sequences (Section 6.2). In order to ensure that

parameters associated with context-dependent phones are robustly estimated, the

use of model-level phonetic decision tree clustering was proposed to automatically

balance the complexity of CAug model against the amount of training data.
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The use of acoustic segment feature-functions (Section 6.2) based on gen-

erative models to extract features, such as likelihood, appended likelihood and

mean derivative score-spaces (Section 6.2.1.1), introduces generative model pa-

rameters into the set of CAug model parameters. There are several advantages

of using these feature-functions, such as the availability of systematic approaches

to introduce more features, and giving opportunities for training speaker and

noise independent discriminative models by adapting generative model param-

eters using model-based adaptation/compensation techniques. In the previous

work, the generative model, the HMM, parameters were assumed to be given

and fixed. This work derived update rules in the extended Baum-Welch form

for re-estimating HMM parameters based on conditional maximum likelihood

(CML) and minimum word/phone error criteria for CAug models using the like-

lihood and appended likelihood score-spaces (Section 7.4). In addition to the

standard discriminative parameter estimation, the update rules were derived for

discriminative (DSAT) speaker adaptive training based on constrained maximum

likelihood linear regression (CMLLR), CMLLR-based DSAT, and discriminative

VTS adaptive training (DVAT).

The context-dependent phone CAug models were evaluated on two noise-

corrupted tasks: small vocabulary Aurora 2 and medium-to-large vocabulary

Aurora 4. The first task, Aurora 2, was used to investigate the various options

available with this structured discriminative model such as parameter estima-

tion criteria, inference of optimal segmentation of observation sequences into

words, feature-functions, and re-estimation of generative model parameters for

those feature-functions based on generative models. The experimental results in

Section 8.3.1 gave several indications which were summarised in Section 8.3.3.

In particular, it was found that the use of mean derivative over likelihood and

appended likelihood score-spaces gave consistent gains as well as re-estimating

over fixing the HMM parameters in the likelihood and appended likelihood score-

spaces. The second task, Aurora 4, was used to investigate the context-dependent

phone CAug model on a medium-to-large vocabulary task. The experimental re-

sults in Section 8.3.2 gave several indications which have been summarised in

Section 8.3.3. In particular, the use of model-level phonetic decision tree cluster-

ing over monophone-level tying gave consistent gains as the use of mean derivative
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over likelihood and matched context score-spaces. Overall, these results showed

promise for further investigation of context-dependent phone CAug models.

The major contributions of this part of the thesis are listed below:

(a) conditional augmented (CAug) model where acoustic model parameters/classes

are defined at the context-dependent phone level and language and pronun-

ciation model parameters/classes are defined at the word level (Section 7.1);

(b) parameter tying of context-dependent phone CAug classes based on model-

level phonetic decision trees (Section 7.3);

(c) same as above yet parameters of context-dependent phone CAug classes are

ties at the monophone level (Section 8.3.2.1);

(d) investigating the use of likelihood, matched-context and mean derivative

score-spaces based on context-dependent hidden Markov models (HMM)

adapted to noise using vector Taylor series (VTS) approach (Section 7.2);

(e) deriving conditional maximum likelihood and minimum phone/word error

update rules in the extended Baum-Welch form for estimating HMM pa-

rameters of CAug models based on likelihood and appended all score-spaces

(Section 7.4);

(f) same as above yet canonical HMM parameters are adapted to speaker condi-

tions using constrained maximum likelihood linear regression (Section 7.4);

(g) same as above yet canonical HMM parameters are adapted to noise condi-

tions using VTS (Section 7.4);

(h) verifying the above experimentally in noise-corrupted small and medium-

to-large vocabulary speech recognition tasks (Sections 8.3.1 and 8.3.2).

9.3 Future work

There are several aspects presented in this thesis that may benefit from further

investigation. A number of suggestions are given below.
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For the extended acoustic code-breaking, it may be worth investigating the

following aspects.

• The acoustic model used for generating artificial training data was the

HMM. More advanced acoustic models such as the trajectory HMM, and

synthesis approaches such as those using global variance, may yield artificial

data of better quality (Section 4.2.2).

• The discriminative model used for the experiments in Section 8.2.1 was

the SVM implementing multi-class classification using max-wins strategy

(Section 3.2.3.1). The use of direct multi-class discriminative models, such

as the MaxEnt models, may be advantageous. In addition, the use of more

powerful feature-functions over the likelihood ratio score-space based on the

HMM (Section 6.2) adopted in this work may be advantageous.

• The evaluation presented in this thesis considered a medium vocabulary

task. An application to larger tasks are required to give a fair assessment

of the approach intended to be used for large vocabulary tasks.

• Finally, the need for efficient (computationally and in terms of the number

of samples required) sampling and computationally efficient on-line discrim-

inative model training must be addressed to make this approach practically

useful for re-scoring in speech recognition tasks.

For the context-dependent phone CAug models, it may be worth investigating

the following aspects.

• The acoustic segment feature-functions, which were investigated in Sec-

tion 8.3, included zero- and first-order score-spaces, such as the likelihood,

appended-likelihood, and mean derivative score-spaces. The second-order

score-spaces as discussed in Section 6.2.1.2 offer an opportunity to model

more complex dependencies, which may benefit the CAug model. In addi-

tion, the use of alternative to HMM generative models, such as the trajec-

tory HMM (Section 4.2.2), may yield even more powerful features.

• The use of supra-segmental features, which were investigated in Section 8.3.2,

were limited to n-gram language and pronunciation model log-probabilities.
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The use of other supra-segmental feature-functions, as discussed in Sec-

tion 6.3, can provide additional information.

• The parameter estimation criteria, which were investigated in Section 8.3.1,

included CML and MWE/MPE. The use of margin-based criteria, such as

the perceptron (Section 2.7.1.5) and large margin (Section 5.3.3), may be

advantageous. In addition, the use of kernelisation (Section 3.2) may help

to address computational issues associated with high-dimensional feature-

spaces.

• The inference of optimal segmentation of observation sequences into words

were investigated only in decoding in Section 8.3.1.5. The use of optimal

segmentation, also in training, may be advantageous (Section 5.2.2). In

order to extend this approach to larger vocabulary tasks, it is important

to address high complexity of semi-Markov Viterbi algorithm. For com-

plex feature-functions, such as high-order score-spaces, this is particularly

important.

• The optimisation approach used for the experiments in Section 8.3 was

the Rprop algorithm, which required on average more than 50 iterations

to converge. Availability of better optimisation approaches converging in

fewer iterations would be an advantage.

————————————————————————
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Appendix A

Conditional augmented model

parameter estimation

A.1 Gradients of the CML objective function

The CML objective function is given by

Fcml(α,λ;D) =
1

R

R∑
r=1

log(P (w
(r)
1:Lr
|O(r)

1:Tr
;α,λ)) (1)

where α are the discriminative model parameters, λ are the generative model

parameters and P (·) is the CAug posterior given by equation (7.1). Substituting

the CAug posterior into Fcml(α,λ;D) gives

Fcml(α,λ;D) =
1

R

R∑
r=1

log

(∑
a

exp(αTφ(O
(r)
1:Tr

, a,w
(r)
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)
− (2)

log

(∑
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∑
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exp(αTφ(O
(r)
1:Tr

, a,w;λ))

)

The CML objective function can be split into two parts

Fcml(α,λ;D) = Fnum(α,λ;D)− Fden(α,λ;D) (3)
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where

Fnum(α,λ;D) =
1

R

R∑
r=1

log
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(r)
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is the numerator term objective function and

Fden(α,λ;D) =
1

R

R∑
r=1
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(∑
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exp(αTφ(O
(r)
1:Tr
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(5)

is the denominator term objective function. The gradients with respect to dis-

criminative α and generative λ model parameters are derived in Sections A.1.1

and A.1.2 respectively.

A.1.1 Gradient with respect to discriminative model pa-

rameters

The gradient of Fcml(α,λ;D) with respect to α is given by

∇αFcml(α,λ;D) = ∇αFnum(α,λ;D)−∇αFden(α,λ;D) (6)

where the gradient of Fden(α,λ;D) with respect to λ can be computed as follows
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and, following the same approach as above, the gradient of Fden(α,λ;D) with

respect to α is given by

∇αFnum(α,λ;D) =
1

R
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Thus

∇αFcml(α,λ;D) =
1

R

R∑
r=1

[∑
a

P (a|w(r)
1:Lr

,O
(r)
1:Tr

;α,λ)φ(O
(r)
1:Tr

, a,w
(r)
1:Lr

;λ)−

∑
w

∑
a

P (a,w|O(r)
1:Tr

;α,λ)φ(O
(r)
1:Tr

, a,w;λ)

]
(11)

A.1.2 Gradient with respect to generative model param-

eters

The gradient of Fcml(α,λ;D) with respect to λ is given by

∇λFcml(α,λ;D) = ∇λFnum(α,λ;D)−∇λFden(α,λ;D) (12)

where the gradient of Fden(α,λ;D) with respect to λ can be computed as follows
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and, following the same approach as above, the gradient of Fden(α,λ;D) with

respect to λ is given by

∇λFnum(α,λ;D) =
1
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Thus
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For example, when the acoustic segment features φ(O{as}, as;λ) are provided by

the zero-order likelihood score-space in equation (6.9) then the gradient above

becomes
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A.2 Gradients of the MBR objective function

The MBR objective function is given by

Fmbr(α,λ;D) =
1
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The variant based on accuracy function is adopted with CAug

Fmbr(α,λ;D) =
1
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) (20)

In this work the accuracy function is defined at the level of generative models:

word or phone. The objective function to maximise for minimum word/phone

error (MWE/MPE) estimation of generative model parameters is given by

Fmbr(α,λ;D) =
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The gradients with respect to discriminative α and generative λ model parame-

ters are derived in Sections A.2.1 and A.2.2 respectively.

A.2.1 Gradient with respect to discriminative model pa-

rameters

The gradient of Fmbr(α,λ;D) with respect to α is given by
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The gradient of log(Z(O
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The gradient of Fmbr(α,λ;D) with respect to α then becomes
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A.2.2 Gradient with respect to generative model param-

eters

The gradient of Fmbr(α,λ;D) with respect to λ can be obtained following the

derivation given in the previous section where, however, the gradients are com-

puted with respect to generative rather than discriminative model parameters.

In particular,

∇λ{exp(αTφ(O
(r)
1:Tr

, a,w;λ))} =

= exp(αTφ(O
(r)
1:Tr

, a,w;λ))

|a|∑
s=1

∇λ{αT
amφ(O{as}, as;λ)} (31)

and

∇λ log(Z(O
(r)
1:Tr

;α,λ)) =

=

∑
w

∑
a

∇λ{exp(αTφ(O
(r)
1:Tr

, a,w;λ))}

Z(O
(r)
1:Tr

;α,λ)
= (32)

=
∑
w

∑
a

P (a,w|O(r)
1:Tr

;α,λ)

|a|∑
s=1

∇λ{αT
amφ(O{as}, as;λ)} (33)
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From which the gradient of Fmbr(α,λ;D) with respect to λ is given by

∇λFmbr(α,λ;D) =
1

R

R∑
r=1

[∑
w

∑
a

P (a,w|O(r)
1:Tr

;α,λ)

(
A(a,w

(r)
1:Lr

)−

∑
w′

∑
a′

P (a′,w′|O(r)
1:Tr

;α,λ)A(a′,w
(r)
1:Lr

)

) |a|∑
s=1

∇λ{αT
amφ(O{as}, as;λ)}

]
(34)

For example, when the acoustic segment features φ(O{as}, as;λ) are provided by

the zero-order likelihood score-space in equation (6.9) then the gradient above

becomes

∇λFmbr(α,λ;D) =
1

R

R∑
r=1

[∑
w

∑
a

P (a,w|O(r)
1:Tr

;α,λ)

(
A(a,w

(r)
1:Lr

)−

∑
w′

∑
a′

P (a′,w′|O(r)
1:Tr

;α,λ)A(a′,w
(r)
1:Lr

)

) |a|∑
s=1

α(ais)
am ∇λ log(p(O

(r)
{as}|a

i
s;λ)

]
(35)

————————————————————————
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Log-linear framework for linear feature transformations in speech recogni-

tion. In Proceedings of IEEE workshop on automatic speech recognition and

understanding, pages 76–81, Merano, Italy, 2009. 77

[228] B. Taskar. Learning structured prediction models: a large margin ap-

proach. PhD thesis, Stanford University, 2004. 38, 76, 77

[229] C. W. Therrien. Decision estimation and classification. John Willey &

Sons, 1989. 125

[230] H. Thompson. Best-first enumeration of paths through a lattice an active

chart parsing solution. Computer Speech and Language, 4[3]:263–274, 1990.

32

[231] T. Toda and K. Tokuda. A speech parameter generation algorithm

considering global variance for hmm-based speech synthesis. IEICE Trans-

actions on Information and Systems, E90-D:816–824, 2007. 96

[232] K. Tokuda, T. Kobayashi, and S. Imai. Speech parameter generation

from HMM using dynamic features. In Proceedings of IEEE international

conference on acoustics, speech, and signal processing, pages 660–663, 1995.

94, 95

[233] K. Tokuda, T. Masuko, T. Yamada, T. Kobayashi, and S. Imai.

An algorithm for speech parameter generation from continuous mixture

HMMs with dynamic features. In Proceedings of the fourth European con-

ference on speech communication and technology, pages 757–760, 1995. 2,

93, 94

[234] K. Tokuda, T. Yoshimura, T. Masuko, and T. Kobayashi, T. Ki-

tamura. Speech parameter generation algorithms for HMM-based speech

synthesis. In Proceedings of IEEE international conference on acoustics,

speech, and signal processing, 3, pages 1315–1318, 2000. 2, 93, 94, 96

231



REFERENCES

[235] K. Tokuda, H. Zen, and A. W. Black. An HMM-based approach to

multilingual speech synthesis. In S. Narayanan and A. Alwan, editors,

Text to speech synthesis: new paradigms and advances, chapter 7, pages

135–153. Prentice Hall, 2004. 93, 94, 188

[236] K. Tokuda, H. Zen, and T. Kitamura. Trajectory modeling based on

HMMs with the explicit relationship between static and dynamic features.

In Proceedings of the eighth European conference on speech communication

and technology, pages 3189–3192, 2003. 97

[237] S. Tsakalidis, V. Doumpiotis, and W. J. Byrne. Discriminative

linear transforms for feature normalisation and speaker adaptation in HMM

estimation. IEEE Transactions on Speech and Audio Processing, 13:367–

376, 2005. 52

[238] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large

margin methods for structured and interdependent output variables. Jour-

nal of machine learning research, 6:1453–1484, 2005. 22, 41, 116

[239] L. F. Uebel and P. C. Woodland. Improvements in linear transforms

based speaker adaptation. In Proceedings of IEEE international conference

on acoustics, speech, and signal processing, pages 49–52, 2001. 52

[240] V. Valtchev, J. J. Odell, P. C. Woodland, and S. J. Young.

MMIE training of large vocabulary recognition systems. Speech Communi-

cation, 22:303–314, 1997. 34, 45

[241] R. C. van Dalen, A. Ragni, and M. J. F. Gales. Efficient decoding

with continuous rational kernels using the expectation semiring. Technical

Report CUED/F-INFENG/TR674, Cambridge University, 2012. i

[242] R. C. van Dalen, A. Ragni, and M. J. F. Gales. Efficient decoding

with generative score-spaces using the expectation semiring. In Proceedings

of IEEE international conference on acoustics, speech, and signal process-

ing, 2013. i

232



REFERENCES

[243] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995. 78,

79

[244] V. Vapnik. Statistical learning theory. John Wiley & Sons, 1998. 38, 69,

78, 79, 81, 82, 84, 85

[245] V. Venkataramani. Code breaking for automatic speech recognition. PhD

thesis, Johns Hopkins University, 2005. 3, 188

[246] V. Venkataramani and W. Byrne. Lattice segmentation and support

vector machines for large vocabulary continuous speech recognition. In Pro-

ceedings of IEEE international conference on acoustics, speech, and signal

processing, pages 817–820, 2005. 89, 91, 92, 164

[247] V. Venkataramani, S. Chakrabartty, and W. J. Byrne. Support

vector machines for segmental minimum Bayes risk decoding of continuous

speech. In Proceedings of IEEE workshop on automatic speech recognition

and understanding, pages 13–18, 2003. 3, 33, 89, 90, 91

[248] V. Venkataramani, S. Chakrabartty, and W. J. Byrne.

Ginisupport vector machines for segmental minimum Bayes risk decoding

of continuous speech. Computer Speech and Language, 21:423–442, 2007.

69, 164

[249] O. Viikki and K. Laurila. Cepstral domain segmental feature vector

normalization for noise robust speech recognition. Speech Communication,

25:133–147, 1998. 78

[250] T. K. Vintsyuk. Speech discrimination by dynamic programming. Cy-

bernetics and Systems Analysis, 4[1]:52–57, 1968. 1

[251] A. J. Viterbi. Error bounds for convolutional codes and asymptotically

optimum decoding algorithm. IEEE Transactions on Information Theory,

13:260–269, 1982. 106, 107

[252] F. Wallhof, D. Willett, and G. Rigoll. Frame-discriminative and

confidence-driven adaptation for LVCSR. In Proceedings of IEEE interna-

233



REFERENCES

tional conference on acoustics, speech, and signal processing, pages 1835–

1838, 2000. 52

[253] L. Wang and P. C. Woodland. Discriminative adaptive training using

the MPE criterion. In Proceedings of IEEE workshop on automatic speech

recognition and understanding, pages 279–284, St. Thomas, Virgin Islands,

USA, 2003. 52, 54, 55, 151

[254] S. Watanabe, T. Hori, and A. Nakamura. Large vocabulary contin-

uous speech recognition using WFST-based linear classifier for structured

data. In Proceedings of eleventh annual conference of the international

speech communication association, pages 346–349, 2010. 130

[255] K. Weston and C. Watkins. Support vector machines for multi-class

pattern recognition. In Proceedings of european symposium on artificial

neural networks, 4, pages 219–224, 1999. 84, 85

[256] S. Wiesler, M. Nußbaum-Thom, G. Heigold, R. Schlüter, and
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Feature selection for log-linear acoustic models. In Proceedings of IEEE

international conference on acoustics, speech, and signal processing, pages

5324–5327, 2011. 121, 127

[258] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Yound.

Large vocabulary continuous speech recognition using HTK. In Proceedings

of IEEE international conference on acoustics, speech, and signal process-

ing, 2, pages II/125–II/128, 1994. 156

[259] P. C. Woodland, D. Pye, and M. J. F. Gales. Iterative unsupervised

adaptation using maximum likelihood linear regression. In Proceedings of

the fourth international conference on spoken language processing, pages

1133–1136, Philadelphia, PA, USA, 1996. 51

234



REFERENCES

[260] Y.-J. Wu and R.-H. Wang. Minimum generation error training for

HMM-based speech synthesis. In Proceedings of IEEE international con-

ference on acoustics, speech, and signal processing, pages 89–92, 2006. 96,

97

[261] H. Xu, M. J. F. Gales, and K. K. Chin. Improving joint uncertainty

decoding performance by predictive methods for noise robust speech recog-

nition. In Proceedings of IEEE workshop on automatic speech recognition

and understanding, pages 222–227, 2009. 63, 64

[262] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Ki-

tamura. Duration modelling for HMM-based speech synthesis. In Pro-

ceedings of the fifth international conference on spoken language processing,

2, pages 29–32, 1998. 93

[263] S. Young. Statistical modelling in continuous speech recognition. In

Proceedings of the Seventeenth Conference on Uncertainty in Artificial In-

telligence, pages 562–571, 2001. 1, 2, 8

[264] S. J. Young. A review of large-vocabulary continuous-speech recognition.

IEEE Signal Processing Magazine, 13:45–57, 1996. 22

[265] S. J. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw,

X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev,

and P. C. Woodland. The HTK Book (for HTK Version 3.4.1). Uni-

versity of Cambridge, http://htk.eng.cam.ac.uk, May 2009. 3, 8, 10, 13,

15, 16, 17, 18, 19, 21, 22, 26, 29, 30, 31, 32, 33, 34, 35, 44, 45, 48, 49, 50,

52, 56, 144, 160, 167, 169, 170, 178, 179

[266] S. J. Young, J. J. Odell, and P. C. Woodland. Tree-based state

tying for high accuracy acoustic modelling. In Proceedings of ARPA Work-

shop on Human Language Technology, pages 307–312, 1994. 24, 25, 26, 27,

28, 138

[267] C.-N. J. Yu and T. Joachims. Learning structural SVMs with latent

variables. In Proceedings of the 26-th international conference on machine

learning, pages 1169–1176, Montreal, Canada, 2009. 116

235



REFERENCES

[268] K. Yu, H. Zen, F. Mairesse, and S. Young. Context adaptive training

with factorized decision trees for HMM-based statistical parametric speech

synthesis. Speech communication, 53:914–923, 2011. 26

[269] H. Zen. Reformulating HMM as a trajectory model by imposing explicit

relationships between static and dynamic features. PhD thesis, Nagoya In-

stitute of Technology, 2006. 93, 94, 95, 96, 97

[270] H. Zen, Y. Nankaku, and K. Tokuda. Model-space MLLR for tra-

jectory HMMs. In Proceedings of the tenth European conference on speech

communication and technology, pages 294–299, 2007. 2, 188

[271] H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko, A. W. Black,

and K. Tokuda. The HMM-based speech synthesis system (HTS) version

2.0. In Proceedings of the sixth international speech communication associ-

ation workshop on speech synthesis, pages 294–299, Bonn, Germany, 2007.

160

[272] H. Zen, K. Tokuda, and A. W. Black. Statistical parametric speech

synthesis. Speech Communication, 51:1039–1064, 2009. 93, 188

[273] H. Zen, K. Tokuda, and T. Kitamura. A Viterbi algorithm for a tra-

jectory model derived from HMM with explicit relationship between static

and dynamic features. In Proceedings of IEEE international conference on

acoustics, speech, and signal processing, 1, pages I–837–I–840, 2004. 97

[274] H. Zen, K. Tokuda, and T. Kitamura. Reformulating the hmm as

a trajectory model by imposing explicit relationships between static and

dynamic feature vector sequences. Computer Speech and Language, 21:153–

173, 2007. 94

[275] S.-X. Zhang and M. J. F. Gales. Extending noise robust structured

support vector machines to larger vocabulary tasks. In Proceedings of IEEE

workshop on automatic speech recognition and understanding, pages 18–23,

Big Island, Hawaii, USA, 2011. 76, 77, 116, 124

236



REFERENCES

[276] S.-X. Zhang and M. J. F. Gales. Structured support vector machines

for noise robust continuous speech recognition. In Proceedings of twelfth

annual conference of the international speech communication association,

pages 989–992, 2011. 107, 108, 115

[277] S.-X. Zhang and M. J. F. Gales. Structured SVMs for automatic

speech recognition. IEEE Transactions on Audio, Speech, and Language

Processing, (to appear), 2012. 41, 86, 108, 115, 116

[278] S.-X. Zhang, A. Ragni, and M. J. F. Gales. Structured log-linear

models for noise robust speech recognition. IEEE Signal processing letters,

17:945–948, 2010. i, 3, 4, 76, 77, 85, 86, 91, 110, 113, 115, 116, 123, 124,

129, 133, 135, 138, 141, 161, 166, 167, 168, 172, 190

[279] J. Zheng and A. Stolcke. Improved discriminative training using phone

lattices. In Proceedings of the ninth European conference on speech com-

munication and technology, pages 2125–2128, Lisbon, Portugal, 2005. 38,

39

[280] G. Zweig and S. Chang. A comparison of algorithms for maximum

entropy parameter estimation. In Proceeding of the twelfth annual confer-

ence of the international speech communication association, pages 609–612,

2011. 73

[281] G. Zweig and P. Nguyen. A segmental CRF approach to large vocab-

ulary continuous speech recognition. In Proceedings of IEEE workshop on

automatic speech recognition and understanding, pages 152–157, 2009. 3,

101, 102, 104, 106, 107, 108, 109, 110, 111, 119, 121, 130, 133

[282] G. Zweig, P. Nguyen, D. Van Compernolle, K. Demuynck,

L. Atlas, P. Clark, G. Sell, F. Sha, M. Wang, A. Jansen,

H. Hermansky, K. Karakos, D. Kintzley, S. Thomas, G. S. V. S

Sivaram, S. Bowman, and J. Kao. Speech recognition with segmental

conditional random fields: final report from the 2010 JHU summer work-

shop. Technical Report MSR-TR-2010-173, Microsoft Reasearch, 2010. 112,

113

237



REFERENCES

[283] G. Zweig, P. Nguyen, D. Van Compernolle, K. Demuynck,

L. Atlas, P. Clark, G. Sell, M. Wang, F. Sha, H. Hermansky,

D. Karakos, A. Jansen, S. Thomas, G. S. V. S Sivaram, S. Bow-

man, and J. Kao. Speech recognition with segmental conditional random

fields: a summary of the JHU CLSP 2010 summer workshop. In Proceedings

of IEEE international conference on acoustics, speech, and signal process-

ing, pages 5044–5047, Prague, Czech Republic, 2011. 121, 133

238


	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	2 Generative approach to speech recognition
	2.1 Observations
	2.1.1 Mel-frequency cepstral coefficients
	2.1.2 Dynamic coefficients

	2.2 Hidden Markov models
	2.2.1 Viterbi algorithm
	2.2.2 Forward-backward algorithm
	2.2.3 Maximum likelihood estimation

	2.3 Composite sentence modelling
	2.3.1 Unit selection
	2.3.2 Composite HMMs

	2.4 Phonetic decision trees
	2.5 Language modelling
	2.6 Decoding and lattice generation
	2.6.1 N-best lists
	2.6.2 Lattices
	2.6.3 Character, word and sentence error rates

	2.7 Discriminative parameter estimation
	2.7.1 Discriminative criteria
	2.7.1.1 Maximum mutual information
	2.7.1.2 Minimum classification error
	2.7.1.3 Minimum Bayes' risk
	2.7.1.4 Margin criteria
	2.7.1.5 Perceptron

	2.7.2 Optimisation of discriminative criteria
	2.7.2.1 Optimisation of MMI
	2.7.2.2 Optimisation of MPE


	2.8 Adaptation to speaker and noise
	2.8.1 Maximum likelihood linear regression
	2.8.1.1 Transform parameter estimation
	2.8.1.2 Speaker adaptive training
	2.8.1.3 Regression classes

	2.8.2 Vector Taylor series
	2.8.2.1 Factor analysis generative models
	2.8.2.2 Noise estimation
	2.8.2.3 VTS adaptive training
	2.8.2.4 Discriminative VTS adaptive training


	2.9 Summary

	3 Discriminative models
	3.1 Maximum entropy models
	3.1.1 Feature-functions
	3.1.2 Parameter estimation
	3.1.2.1 Optimisation of CML
	3.1.2.2 Optimisation of MBR
	3.1.2.3 Optimisation of large margin

	3.1.3 Adaptation to speaker and noise

	3.2 Support vector machines
	3.2.1 Standard implementation
	3.2.2 Dynamic kernels
	3.2.3 Multi-class extensions
	3.2.3.1 One-versus-one classifiers
	3.2.3.2 Multi-class SVMs

	3.2.4 Adaptation to speaker and noise

	3.3 Summary

	4 Extended acoustic code-breaking
	4.1 Acoustic code-breaking
	4.2 Extended acoustic code-breaking
	4.2.1 HMM synthesis
	4.2.2 Statistical HMM synthesis

	4.3 Summary

	5 Structured discriminative models
	5.1 Model structures
	5.2 Handling latent variables
	5.2.1 Forward-backward recursions
	5.2.2 Viterbi training and decoding

	5.3 Parameter estimation
	5.3.1 Optimisation of CML
	5.3.2 Optimisation of MBR
	5.3.3 Optimisation of large margin

	5.4 Adaptation to speaker and noise
	5.5 Summary

	6 Feature-functions
	6.1 Frame-level features
	6.2 Acoustic segment features
	6.2.1 Score-spaces
	6.2.1.1 Examples
	6.2.1.2 Dependencies
	6.2.1.3 Adaptation and compensation framework


	6.3 Supra-segmental features
	6.4 Summary

	7 Conditional augmented models
	7.1 Overview
	7.2 Context-dependent score-spaces
	7.3 Parameter tying
	7.4 Generative model parameter estimation
	7.4.1 Optimisation based on CML
	7.4.2 Optimisation based on MWE/MPE
	7.4.3 Optimisation of CMLLR-based DSAT and DVAT

	7.5 Summary

	8 Experimental results
	8.1 Experimental setup
	8.1.1 Toshiba in-car
	8.1.2 Aurora 4
	8.1.3 Aurora 2
	8.1.4 Software

	8.2 Extended acoustic code-breaking
	8.2.1 Digit string recognition
	8.2.2 City name recognition
	8.2.3 Discussion

	8.3 Conditional augmented models
	8.3.1 Word CAug models
	8.3.1.1 Discriminative model parameter estimation
	8.3.1.2 Appended likelihood score-spaces
	8.3.1.3 Generative model parameter estimation
	8.3.1.4 Mean derivative score-space
	8.3.1.5 Inference
	8.3.1.6 Advanced generative models

	8.3.2 Context-dependent phone CAug models
	8.3.2.1 Phonetic decision tree clustering
	8.3.2.2 Likelihood, matched context and mean derivative score-spaces
	8.3.2.3 Within-state tied mean derivative score-spaces
	8.3.2.4 Advanced generative models

	8.3.3 Discussion

	8.4 Summary

	9 Conclusions
	9.1 Extended acoustic code-breaking
	9.2 Conditional augmented models
	9.3 Future work

	Appendices
	Appendix A: Conditional augmented model parameter estimation
	A.1 Gradients of the CML objective function
	A.1.1 Gradient with respect to discriminative model parameters
	A.1.2 Gradient with respect to generative model parameters

	A.2 Gradients of the MBR objective function
	A.2.1 Gradient with respect to discriminative model parameters
	A.2.2 Gradient with respect to generative model parameters


	References

