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Abstract

Currently the most popular acoustic model for speech recognition is the hidden Markov model

(HMM). However, HMMs are based on a series of assumptions, some of which are known to be

poor. In particular, the assumption that successive speech frames are conditionally independent

given the discrete state that generated them is not a good assumption for speech recognition.

State space models may be used to address some shortcomings of this assumption. State space

models are based on a continuous state vector evolving through time according to a state evo-

lution process. The observations are then generated by an observation process, which maps the

current continuous state vector onto the observation space. In this work, the state evolution and

observation processes are assumed to be linear and noise sources are distributed according to

Gaussians or Gaussian mixture models. Two forms of state evolution processes are considered.

First, the state evolution process is assumed to be piece-wise constant. All the variations of

the state vector about these constant values are modelled as noise. Using this approximation,

a new acoustic model called the factor analysed HMM (FAHMM) is presented. In the FAHMM

a discrete Markov random variable chooses the continuous state and the observation process

parameters. The FAHMM generalises a number of standard covariance models such as the inde-

pendent factor analysis, shared factor analysis and semi-tied covariance matrix HMMs. Efficient

training and recognition algorithms for the FAHMMs are presented along with speech recogni-

tion results using various configurations.

Second, the state evolution process is assumed to be a linear first-order Gauss-Markov ran-

dom process. Using Gaussian distributed noise sources and a factor analysis observation process

this model corresponds to a linear dynamical system (LDS). For acoustic modelling a discrete

Markov random variable is required to choose the LDS parameters. This hybrid model is called

the switching linear dynamical system (SLDS). The SLDS is related to the stochastic segment

model, which assumes that the segments are independent. In contrast, for the SLDS the contin-

uous state vector is propagated over the segment boundaries, thus providing a better model for

co-articulation. Unfortunately, exact inference for the SLDS is intractable due to the exponential

growth of posterior components in time. In this work, approximate methods based on both de-

terministic and stochastic algorithms are described. An efficient proposal mechanism for Gibbs

sampling is introduced along with application to parameter optimisation and N-best rescoring.

The results of medium vocabulary speech recognition experiments are presented.

Keywords: Speech recognition, acoustic modelling, hidden Markov models, state space mod-

els, linear dynamical systems, expectation maximisation, Markov chain Monte Carlo methods
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Abbreviations

DARPA Defence Advanced Research Projects Agency

DBN Dynamic Bayesian network

EM Expectation maximisation

FAHMM Factor analysed hidden Markov model

GMM Gaussian mixture model

GSFA Global shared factor analysis

HLDA Heteroscedastic linear discriminant analysis

HMM Hidden Markov model

HTK Hidden Markov model toolkit

IFA Independent factor analysis

KL distance Kullback-Leibler distance

LDA Linear discriminant analysis

LDS Linear dynamical system

LVCSR Large vocabulary continuous speech recognition

MCMC Markov chain Monte Carlo

MFCC Mel-frequency cepstral coefficient

ML Maximum likelihood

MLLR Maximum likelihood linear regression

MLSS Maximum likelihood state sequence

NIST National Institute of Standards and Technology

PLP Perceptual linear prediction

RBGS Rao-Blackwellised Gibbs sampling

RM corpus Resource Management corpus

SFA Shared factor analysis

SLDS Switching linear dynamical system

SSM Stochastic segment model

STC Semi-tied covariance matrix

SWB corpus Switchboard corpus

VTLN Vocal tract length normalisation

WER Word error rate
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Mathematical Notation

A matrix of arbitrary dimensions

A′ transpose of matrix A

A−1 inverse of matrix A

|A| determinant of matrix A

x vector of arbitrary dimensions

xj jth scalar element of x

p(x) probability density function of continuous variable x

x(n) nth sample drawn from p(x)

P (q = j) discrete probability of event q = j, probability mass function

p(x|q = j) conditional density function of x given event q = j

E{x|q = j} expected value of x given event q = j

N (µ,Σ) multivariate Gaussian distribution with mean vector µ and covariance matrix Σ

N (x;µ,Σ) likelihood value for vector x assuming it is Gaussian distributed

General Model Notation

θ set of arbitrary model parameters

θ̂ set of estimated model parameters

θ(k) set of model parameters at kth iteration

Q(θ,θ(k)) auxiliary function for arbitrary θ and fixed θ(k)

η number of model parameters

Ns number of discrete states

M (x) number of GMM components in state space

M (o) number of GMM components in observation space

cjn GMM weight associated with state j and component n

µjn GMM mean vector associated with state j and component n

Σjn GMM covariance matrix associated with state j and component n

Σ
(x)
jn GMM covariance matrix associated with state j and state space

component n

Σ
(o)
jm GMM covariance matrix associated with state j and observation

space component m

Cj observation matrix associated with state j

Q sequence of discrete states

q−t sequence of discrete states, qt not included, {q1, . . . , qt−1, qt+1, . . . , qT }

X sequence of continuous state vectors

O sequence of speech observation vectors

ot tth speech observation vector

o1:t partial observation sequence from 1 to t, {o1, . . . ,ot}

W sequence of words
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HMM and FAHMM Notation

aij discrete state transition probability

bj(ot) observation density associated with state j

αj(t) forward variable associated with state j at time t

βi(t) backward variable associated with state i at time t

γj(t) posterior probability of state j given O

γjn(t) posterior probability of state j and GMM component n given O

γjmn(t) posterior probability of state j, state space and observation space GMM

components n and m given O

µjmn GMM mean vector associated with state j, state space and observation

space GMM components n and m given O

Σjmn GMM covariance matrix associated with state j, state space and observation

space GMM components n and m given O

x̂jmnt estimated state vector associated with state j, state space and observation

space GMM components n and m at time t given O

R̂jmnt estimated state correlation matrix associated with state j, state space and

observation space GMM components n and m at time t given O

LDS and SLDS Notation

µ(i) initial state mean vector

Σ
(i) initial state covariance matrix

Aj continuous state evolution matrix associated with state j

xt+1|t Kalman predictor mean vector

Σt+1|t Kalman predictor covariance matrix

xt|t Kalman filter mean vector

Σt|t Kalman filter covariance matrix

x̂t Kalman smoother mean vector

Σ̂t Kalman smoother covariance matrix

Σ̂t,t+1 Kalman smoother cross-covariance matrix

P−1
t|t backward information filter matrix

P−1
t|t mt|t backward information filter vector

P−1
t|t+1 backward information predictor matrix

P−1
t|t+1mt|t+1 backward information predictor vector
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1

Introduction

Automatic speech recognition systems are currently available for various tasks. These tasks

range from voice dialling to desktop dictation. However, transcription of conversational speech

is still far from mature. In the 2002 NIST Rich Transcription evaluations of English conversa-

tional telephone speech, the best word error rates were as high as 23.9% [49]. These evaluation

systems typically use multiple passes, and very complex acoustic and language models in recog-

nition. This can result in computational complexity of more than 300 times real-time using a

1GHz Pentium III. The faster systems, less than 10 times real-time, achieved 27.2% using an

AMD Athlon XP 1900+ [49]. Although there are many aspects related to this type of recogni-

tion task, the poor performance, despite the highly complex models, suggests that there may

be inherent deficiencies in the modelling paradigm. This work concentrates on the problems

associated with acoustic modelling.

The Hidden Markov model (HMM) [62] is the most popular and successful choice of acoustic

model in modern speech recognisers. However, the HMM is based on assumptions which are not

appropriate for modelling speech signals [37, 60]. These assumptions include the following:

• Speech may be split into discrete states in which the speech waveform is assumed to be

stationary. Transitions between these states are assumed to be instantaneous;

• The probability of an acoustic vector corresponding to the current state depends only on

the vector and the current state. Thus, the acoustic vector is conditionally independent

of the sequence of acoustic vectors preceding and following the current vector given the

state.

In order to compensate for the first assumption, a model having many states would be desirable.

However, obtaining reliable estimates of the model parameters in such a system is a serious

problem. In practical systems the number of states may be up to 100,000. Thus, tying of the state

conditional observation density parameters is often used extensively. The second assumption is

not valid for speech signals due to the dynamic constraints caused by the physical attributes

of articulators and the use of overlapping frames in speech parameterisation. A popular way

to address this problem is to use acoustic vectors which include information over a time span

1



CHAPTER 1. INTRODUCTION 2

of several frames. This is usually achieved by appending the first and second-order regression

coefficients into the acoustic vectors. However, despite greatly enhancing the speech recognition

performance, mathematically this technique conflicts with the independence assumption. This

independence assumption is widely thought to be the major drawback of the use of HMMs for

speech recognition (eg. [24, 37, 60, 102, 105]).

State space models may be used to address the shortcomings of HMM based speech recog-

nition. State space models are based on a hidden continuous state evolution process and an

observation process which maps the current continuous state vector onto the observation space.

This work considers forms of state space models known as generalised linear Gaussian models

[113, 119]. In linear Gaussian models the state evolution and observation processes are based

on linear functions and Gaussian distributed noise sources. Linear Gaussian models are popular

as many forms may be trained efficiently using the expectation maximisation (EM) algorithm

[21]. This work generalises these models to include Gaussian mixture models as the noise

sources. The observation process in this work will be assumed to be based on factor analysis,

although linear discriminant analysis may also be viewed as an alternative observation process

[35]. This work may be divided in two parts depending on the form of state evolution process.

First, a model based on piece-wise constant state evolution process is described. This model

is called the factor analysed HMM (FAHMM). Here a standard diagonal covariance Gaussian

mixture HMM is used to generate the state vectors. While the discrete state associated with the

HMM remains the same, the state vector statistics are constant. Thus, the FAHMM does not

address the independence assumption. However, it generalises many standard covariance mod-

elling schemes such as the shared factor analysis [48] and semi-tied covariance matrix HMMs

[34]. Algorithms to optimise the FAHMM parameters and to use FAHMMs for speech recognition

are presented together with various schemes to improve their efficiency.

Second, a model based on linear first-order Gauss-Markov state evolution process is de-

scribed. This model is called the switching linear dynamical system (SLDS). The standard linear

dynamical system [66] is a linear Gaussian model based on this form of state evolution process

and factor analysis observation process. In the SLDS, standard linear dynamical system param-

eters are selected by an underlying discrete variable with Markovian dynamics. The SLDS is

closely related to the stochastic segment model (SSM) [24]. In the SSM the segments are as-

sumed to be independent of one another. At segment boundaries the state vector is initialised

based on the initial state distribution. However, in the SLDS the state vector is propagated

over the segment boundaries which should provide a better model for co-articulation. Unfor-

tunately, exact inference for the SLDS is intractable and approximate methods have to be con-

sidered. In this work the parameter optimisation and N -best rescoring algorithms are based

on Rao-Blackwellised Gibbs sampling (RBGS). The application of RBGS in speech recognition is

described along with an efficient proposal mechanism for sampling.
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1.1 Detailed Organisation of Thesis

The next chapter introduces speech recognition systems in a statistical framework. The baseline

system, using hidden Markov models as the acoustic model, is described. Chapter 3 begins by

presenting generalised linear Gaussian models in a state space model framework. Possible state

evolution processes are reviewed and then different observation processes are discussed. Factor

analysis and linear dynamical system are used as examples of standard linear Gaussian mod-

els. Bayesian networks are used to illustrate the conditional independence assumptions made in

these models. The learning and inference algorithms for linear Gaussian models are presented

in Chapter 4. The EM algorithm is an efficient approach for maximum likelihood parameter

estimation in these models. Approximate inference algorithms in models for which the exact

inference is intractable are then introduced. The advantages and disadvantages of both deter-

ministic and stochastic algorithms are discussed. Chapter 5 describes factor analysed hidden

Markov models in detail. This is a generalised linear Gaussian model based on a piece-wise con-

stant state evolution process. Likelihood calculation and parameter optimisation are presented

together with the practical implementation issues. A model based on linear continuous state

evolution process called the switching linear dynamical system is introduced in Chapter 6. The

issues of inference in these forms of models are discussed. Possible approximate algorithms are

reviewed. A stochastic algorithm chosen for approximate inference is introduced together with

practical implementation issues in speech recognition. Experimental evaluation of the models is

carried out in Chapter 7. The thesis ends with conclusions and a discussion on potential future

work.

A description of the Resource Management corpus and the baseline HMM system are pre-

sented in Appendix A. A collection of useful mathematical results and derivations are presented

in the remaining appendices. Appendix B reviews some useful matrix algebra and an application

to conditional multivariate Gaussians. A derivation of the EM algorithm for a Gaussian mixture

model, factor analysed HMM and linear dynamical system are presented in Appendices C, D

and F, respectively. The parameter optimisation for the FAHMM is novel whereas the others are

presented in a way consistent with the notation used in this work. Derivation of Kalman filtering

and smoothing algorithms, both in covariance and information forms, are reviewed in Appendix

E. The mean vectors, usually omitted in other literature, have been included to allow extension

to Gaussian mixture models. Finally, Gibbs sampling algorithm for SLDS including the mean

vectors is presented in Appendix G.
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Statistical Framework for Speech Recognition

This chapter describes speech recognition systems in a statistical framework. General speech

recognition systems may be divided into five basic blocks: the front-end, acoustic models, lan-

guage model, lexicon and search algorithm. These blocks are introduced in more detail in the

following sections. First, the standard front-ends are reviewed. The theory of hidden Markov

models (HMMs) is then presented along with schemes to optimise their parameters. Speech

recognition using HMMs as an acoustic model is discussed. Language models, search algo-

rithms, normalisation and adaptation are briefly described. An important decision of the covari-

ance model in HMM based speech recognition is then discussed. Finally, the segment modelling

framework is reviewed. Segment models were developed to address some of the shortcomings

in HMM based speech recognition described in Chapter 1.

2.1 Speech Recognition Systems

The goal of a speech recogniser is to take a continuous speech waveform as the input and

produce a transcription of the words being uttered. First the acoustic waveform is recorded

by a microphone and sampled typically at 8 or 16kHz to allow processing by a digital device.

The acoustic front-end processor converts the sampled waveform into a sequence of observation

vectors (frames), O = {o1, . . . ,oT }, by removing unimportant information such as pitch and

noise. There is a considerable amount of variability in the observation sequences even if the

same words were uttered by the same speaker. Hence a statistical approach is adopted to map

the observation sequence into the most likely sequence of words. The speech recogniser usually

choose the word sequence, W = {w1, . . . , wL}, with the maximum posterior probability given

the observation sequence as follows

Ŵ = arg max
W

P (W |O) = arg max
W

p(O|W )P (W )

p(O)
(2.1)

where Bayes’ formula [127] has been applied to obtain the final form. It should be noted that

the likelihood of the observation sequence, p(O), may be omitted in the maximisation since it

is independent of the word sequence. However, direct modelling of the probabilities, P (W |O),

4
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is not feasible due to the observation sequence variability and the vast number of possible word

sequences.

Recognised
Hypothesis

Acoustic
Models

Lexicon
Language

Model

Processing
Front−end

Speech

Algorithm
Search

Figure 2.1 General speech recognition system.

A general statistical speech recognition system may be described by the formulation in Equa-

tion 2.1. The system consists of five main blocks: the front-end, acoustic models, language model,

lexicon and search algorithm. The acoustic models are used to evaluate the likelihoods, p(O|W ).

However, it is not feasible to directly model whole sentences. Hence appropriate acoustic model

units must be chosen. This is discussed along with HMM based acoustic modelling later in this

chapter. The language model is used to evaluate the probability of the word sequence, P (W ).

Language models are also briefly reviewed later. The final block, search algorithm, implements

the maximisation in Equation 2.1. The search is usually further restricted by using a lexicon

which defines a finite vocabulary of words and how they are formed from the modelling units.

The general speech recognition system is illustrated in Figure 2.1. The performance of speech

recognition systems is evaluated by comparing the recognised hypothesis to a reference tran-

scription to produce the word error rate.

2.2 Standard Front-Ends

Comparing the sampled acoustic waveforms is not easy due to varying speaker and acoustic

characteristics. Instead, the spectral shape of the speech signal conveys most of the significant

information [20]. Acoustic front-ends in speech recognisers produce sequences of observation

vectors which represent the short-term spectrum of the speech signal. The two most commonly

used parameterisations are Mel-frequency cepstral coefficients (MFCC) [19] and perceptual lin-

ear prediction (PLP) [53]. In both cases the speech signal is assumed to be quasi-stationary so

that it can be divided into short frames, often 10ms. In each frame period a new observation vec-

tor is produced by analysing a segment of speech with predefined window duration, often 25ms.

This process is illustrated in Figure 2.2. MFCCs and PLP use different operations to produce the

observation vectors from the windowed segments.

For both approaches, a window function (eg. Hamming) is first applied to each segment
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Frame
Period

ot−1 ot+1 ot+2ot

ot−2

......

Window Duration

Speech waveform

Overlap

Figure 2.2 Acoustic front-end processing using overlapping window functions on speech waveform.

to reduce boundary effects [20] in the subsequent processing. The fast Fourier transform is

used to produce the short-term power spectrum. The linear frequency scale is then warped,

for which MFCCs use the Mel-frequency scale. The warped power spectrum is smoothed by a

bank of triangular filters (eg. 24 channels). This smoothed power spectrum is compressed using

a logarithm and the result is rotated by an inverse discrete cosine transform (IDCT) to reduce

the spatial correlation in the vectors. The output from the IDCT is truncated to the number of

required observation vector elements, often 13. PLPs use the Bark-frequency scale for warping,

critical band filters for smoothing, equal-loudness preemphasis and intensity-loudness power law

for compression, and finally linear prediction (LP) analysis [20] instead of IDCT. The number of

critical band filters is usually larger than the order of the LP analysis. A 12th-order LP analysis

is often used to produce 13-dimensional observation vectors.

In a typical final step, first-order (delta) and second-order (delta-delta) regression coeffi-

cients are appended to the observation vectors [129]. This greatly enhances the performance of

HMM based speech recognisers. However, this is a heuristic technique and its implications are

discussed in more detail later in this chapter. The delta coefficients are given by

∆ot =

∑Tr

τ=1 τ(ot+τ − ot−τ )

2
∑Tr

τ=1 τ
2

(2.2)

where 2Tr + 1 is the regression window size. The delta-delta regression coefficients ∆2ot are

obtained by applying the same equation to the delta coefficients. If Tr = 2, the second-order

coefficients depend on observations from a time span of 9 frames. Thus, a typical front-end

produces 39-dimensional observation vectors.
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2.3 Hidden Markov Models

Currently the most popular and successful speech recognition systems use hidden Markov mod-

els in the acoustic modelling [62]. First, the generative model of HMM is presented along with

typical observation density1 assumptions. The maximum likelihood (ML) parameter estimation

and the Baum-Welch algorithm [9, 10] are then reviewed. Alternative training criteria are also

discussed.

2.3.1 Generative Model of HMM

In HMM based speech recognition, it is assumed that the sequence of p-dimensional observation

vectors is generated by a Markov model as shown in Figure 2.3. The diagram, adopted from

the hidden Markov model toolkit (HTK) [129], has non-emitting entry and exit states, and

three emitting states. Hence, the total number of states is Ns = 5. An observation vector

probability density function, bj(ot) = p(ot|qt = j), is associated with each emitting state along

with transition probabilities, aij = P (qt = j|qt−1 = i). The non-emitting states allow expansion

to composite models built from a number of individual HMMs. Self transitions from the non-

emitting states are not allowed, a11 = a55 = 0, and the transition probabilities must satisfy
∑Ns

j=1 aij = 1. The HMM in Figure 2.3 also exhibits a common transition probability constraint

known as a left-to-right topology where transitions may only occur forward in time. According

to the figure, observation o1 is generated by state j = 2, observations {o2,o3,o4} by state j = 3

and {o5,o6} by state j = 4. The discrete state sequence generating the observation sequence

may be expressed as Q = {1, 2, 3, 3, 3, 4, 4, 5}. It should be noted that the observation at time t is

assumed to be conditionally independent of the past and future observations given the current

discrete state qt = j. This means that all observations generated by state j have the same

statistics.

a12

a22

a23

a33

a34

a44

a45

o1 o2 o3 o4 o5 o6

b2(o1) b3(o2) b (o3)3 b3(o4) b4(o5) b4(o6)

2 3 41 5

Figure 2.3 Hidden Markov model generating observation vectors.

1The words density or density function are used to refer to a probability density function. They should not be

confused with cumulative density function which is not needed in this work.



CHAPTER 2. STATISTICAL FRAMEWORK FOR SPEECH RECOGNITION 8

The state conditional observation vector densities may assume many different forms. The

form chosen is influenced by the choice of front-end parameterisation and the amount of avail-

able training data. A typical choice is a multivariate Gaussian distribution. Its density function

is given by

bj(ot) = N (ot;µj,Σj) = (2π)−
p

2 |Σj |
− 1

2 e−
1
2
(ot−µj)

′
Σ

−1
j (ot−µj) (2.3)

However, a Gaussian distribution has only one mode at the mean µj whereas the speech ob-

servation distributions are generally more complex due to speaker and environment variability.

The form of the covariance matrices, Σj, is either full or diagonal. Often the number of states in

a large vocabulary continuous speech recognition (LVCSR) system is in the thousands. To allow

robust estimation of the model parameters, the covariance matrices are assumed to be diagonal

which is valid only if the observation vectors are spatially uncorrelated. Despite the IDCT or LP

analysis the observation vectors exhibit some correlations.

Instead of single diagonal covariance matrix Gaussians, Gaussian mixture models (GMMs)

[79] are widely used. A GMM observation density is defined as

bj(ot) =
M∑

n=1

cjnN (ot;µjn,Σjn) (2.4)

where M is the number of Gaussian components, cjn are the mixture weights and Σjn are

typically diagonal covariance matrices. The mixture weights must satisfy
∑M

n=1 cjn = 1 to make

bj(ot) a valid probability density function. GMMs with diagonal covariance matrices may also

approximate spatially correlated distributions. However, other forms of covariance matrices

are discussed later in this chapter. The number of Gaussian components per state is usually

the same for each state in the system. Automatic complexity control techniques to choose the

optimal number of components have also been studied [18]. It was found that performance may

be improved by using variable number of components per state with a similar overall complexity.

In LVCSR systems, the computation of the Gaussian components dominates the running time.

Precomputation and caching may be used to increase efficiency [36].

2.3.2 Maximum Likelihood Parameter Estimation

Maximum likelihood estimation is a standard scheme to learn a set of model parameters given

some data [13]. The objective is to find parameters, θ̂, that maximise the likelihood function

p(O|θ). If the data O = {o1, . . . ,oN} are assumed independent, the objective function can be

written as

p(O|θ) =

N∏

n=1

p(on|θ) (2.5)

The models in this work are based on probability density functions in the exponential family. It

is analytically easier to use the logarithm of the likelihood function instead. The logarithm is a
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monotonically increasing function in its argument and has the same maxima. The log-likelihood

function is given by

log p(O|θ) =
N∑

n=1

log p(on|θ) (2.6)

Maximisation of the log-likelihood function with respect to model parameters may often be

carried out using standard optimisation methods. For example, taking the partial derivative

of Equation 2.6 with respect to the parameter and equating this derivative to zero may yield

analytic solutions for the ML estimates. Thus, ML estimation can be expressed as

θ̂ = arg max
θ

p(O|θ) = arg max
θ

log p(O|θ) (2.7)

For example, the ML estimates for the mean and covariance of a Gaussian distribution are the

sample statistics, µ̂ = 1/N
∑N

n=1 on and Σ̂ = 1/N
∑N

n=1(on − µ̂)(on − µ̂)′.

2.3.3 Baum-Welch Algorithm

If the discrete state sequence generating the observation sequence was known, maximum like-

lihood (ML) parameter optimisation for HMMs would involve counting relative transitions for

the state transition probabilities and estimating sample statistics for the state conditional obser-

vation densities. However, since the discrete state sequence is unknown, another approach is

adopted. The Baum-Welch [9, 10] algorithm iteratively finds discrete state posterior probabili-

ties given the observation sequence and the current set of parameters, γj(t) = P (qt = j|O,θ(k)),

and finds expected values for the state conditional densities using γj(t). The discrete state pos-

terior may be viewed as a soft segmentation of the observation sequence as opposed to knowing

the exact transitions. A set of parameters θ̂ that maximise the log-likelihood given this soft seg-

mentation is estimated. These parameters will be used as the set of current parameters in the

following iteration, θ̂ → θ(k+1). The Baum-Welch algorithm is an instance of the expectation

maximisation (EM) algorithm [21] which will be reviewed in more detail in Chapter 4.

The forward-backward algorithm may be used to find the discrete state posteriors. The for-

ward variable, αj(t), is defined as the joint likelihood of the observation sequence up to the

current time instance t and being in state j at time t. Using the state conditional independence

assumption, the forward variable may be defined using the following recursion2

αj(t) = p(o1, . . . ,ot, qt = j|θ(k)) =
[Ns−1∑

i=2

αi(t− 1)aij

]

bj(ot) (2.8)

for 1 < j < Ns and 1 < t ≤ T . The initial conditions are given by

α1(1) = 1 (2.9)

αj(1) = a1jbj(o1) (2.10)

2The forward and backward variables, αj(t) and βi(t), as well as the state conditional observation likelihoods,

bj(ot), are always evaluated using the set of current model parameters, θ(k). Thus, the current model set is omitted

in the notation for brevity. However, it is used explicitly in likelihoods as in p(o1, . . . , ot, qt = j|θ(k)).
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for 1 < j < Ns and final condition given by

αNs(T ) =

Ns−1∑

i=2

αi(T )aiNs (2.11)

The backward variable, βi(t), is defined as the posterior likelihood of the partial observation

sequence from time t+1 to T given being in state j at time t. This can also be defined recursively

for 1 < i < Ns and T > t ≥ 1 as follows

βi(t) = p(ot+1, . . . ,oT |qt = i,θ(k)) =

Ns−1∑

j=2

aijbj(ot+1)βj(t+ 1) (2.12)

with initial conditions given by

βi(T ) = aiNs (2.13)

for 1 < i < Ns and final condition given by

β1(1) =

Ns−1∑

j=2

a1jbj(o1)βj(1) (2.14)

Given the forward and backward variables, the discrete state posterior probability, γj(t), is given

by

γj(t) =
1

p(O|θ(k))
αj(t)βj(t) (2.15)

where p(O|θ(k)) = αNs(T ) = β1(1).

For re-estimation of the discrete state transition probability, the posterior probability of being

in state i at time t− 1 and in state j at time t is needed. This is given by

ξij(t) = P (qt−1 = i, qt = j|O,θ(k)) =
1

p(O|θ(k))
αi(t− 1)aijbj(ot)βj(t) (2.16)

The update formula for the new probability is

âij =

∑T
t=2 ξij(t)

∑T
t=2 γi(t− 1)

(2.17)

for 1 < i < Ns and 1 < j < Ns. The transitions from the non-emitting entry state are re-

estimated by â1j = γj(1) for 1 < j < Ns and the transitions from the emitting states to the

non-emitting exit state are re-estimated by

âiNs =
γi(T )

∑T
t=2 γi(t− 1)

(2.18)

for 1 < i < Ns.

For a HMM with M Gaussian components, the joint posterior probability of being in state j

and mixture component n at time t, γjn(t), is given by

γjn(t) =
1

p(O|θ(k))

Ns−1∑

i=2

aijαi(t− 1)cjnbjn(ot)βj(t) (2.19)
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for 2 < t ≤ T , where cjn is the nth mixture weight associated with state j and bjn(ot) is the nth

Gaussian component evaluated at ot. The initial condition is given by

γjn(1) =
1

p(O|θ(k))
a1jcjnbjn(ot)βj(t) (2.20)

The re-estimation formulae for the parameters of the nth Gaussian mixture component associ-

ated with state j are given by

ĉjn =

∑T
t=1 γjn(t)

∑T
t=1 γj(t)

(2.21)

µ̂jn =

∑T
t=1 γjn(t)ot

∑T
t=1 γjn(t)

(2.22)

Σ̂jn =

∑T
t=1 γjn(t)(ot − µ̂jn)(ot − µ̂jn)

′

∑T
t=1 γjn(t)

(2.23)

The new set of model parameters, θ̂, is used as the current set of parameters, θ̂ → θ(k+1),

in the following iteration. The iterations are continued until the change in the log-likelihood,

log(p(O|θ̂)) − log(p(O|θ(k))), falls below a set threshold. A disadvantage of the ML approach is

that the optimisation favours more complex models which produce higher log-likelihoods. The

models are easily over trained and the goodness of fit has to be evaluated by cross-validation.

The models that produce higher log-likelihoods for the training data do not necessarily perform

better for unseen data. This is due to the incorrect modelling assumptions described in Chapter

1. The ML estimates also tend to be inaccurate if there is not enough training data. The training

does not take any prior knowledge about the model parameters into account.

2.3.4 Bayesian Learning

In Bayesian learning [11], the parameters are also treated as random variables. The Bayesian

approach attempts to integrate over the possible settings of all uncertain quantities rather than

optimise them as ML learning in Equation 2.7. The quantity that results from integrating out

both the hidden variables and the parameters is called the marginal likelihood. For HMMs, this

can be written as

p(O) =

∫

p(θ)
∑

∀Q

P (Q|θ)p(O|Q,θ) (2.24)

where p(θ) is a prior over the model parameters. The marginal likelihood is a key quantity

used to choose between different models in a Bayesian model selection task. The advantage

of Bayesian learning is that it does not favour more complex models and provides a means to

choose optimal models. However, evaluating the marginal likelihood for a HMM is not tractable

and approximate methods have to be used. Another challenge in Bayesian learning is the choice

of priors which is necessarily subjective [11].
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Instead of full Bayesian learning, the maximum a-posteriori (MAP) [38] framework for HMMs

allows prior knowledge about the state conditional observation density parameters to be incor-

porated into parameter estimation. MAP training can be viewed as a parameter smoothing

scheme where the posterior likelihood is a combination of the prior and the ML estimates. In

case of insufficient data the posterior likelihood is close to the prior. In the limit the MAP es-

timates tend towards the ML estimates as the amount of training data increases. For example,

if insufficient data is available for ML estimation of context dependent models, the state con-

ditional observation density parameters from the context independent models may be used as

priors for context dependent models. Different modelling units are discussed in the following

section.

2.3.5 Discriminative Training

If the modelling assumptions were correct, the maximum likelihood criterion would be optimal

given infinite amount of data and an algorithm which finds the global maximum. However, it

has been found that discriminative training yields better performance than ML. Discriminative

optimisation criteria include maximum mutual information (MMI) [6], minimum classification

error rate (MCE) [65], frame discrimination [69] and minimum phone error rate [106] of which

MMI and MPE have been the most successful in speech recognition [49, 128]. In comparison

to ML training, the discriminative methods require recognition runs to be carried out during

training. This makes it much more demanding computationally. However, in this work only ML

training is considered.

2.4 Speech Recognition Using HMMs

The application of HMMs in speech recognition is presented in this section. First, the choice of

recognition units and model topologies is presented. Also, language modelling, recognition al-

gorithms as well as scoring and confidence measures are briefly reviewed. Finally, normalisation

and adaptation for HMM based speech recognition are presented.

2.4.1 Recognition Units

The HMMs may be used to provide the estimates of p(O|W ) in speech recognisers. For isolated

word recognition with sufficient training data it is possible to build a HMM for each word. How-

ever, for continuous speech tasks it is unlikely that there are enough training examples of each

word in the dictionary. HMMs representing some sub-word units have to be used. Linguistic

units such as phonemes or syllables may be used [100]. However, it has been found that au-

tomatically derived units perform better than units based on expert knowledge [5]. HMMs are

usually trained for each sub-word unit called a phone. The phone model set does not have to

represent every phoneme in the language and it often includes silence and short pause models

[129]. The chosen phone set depends on the availability of sufficient training data. The lexicon
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or pronunciation dictionary is used to map word sequences to phone sequences. The HMMs

corresponding to the phone sequence may then be concatenated to form a composite model

representing words and sentences. This is also known as the beads-on-a-string procedure.

t−ih+n t−ih+ng f−ih+l s−ih+l

Figure 2.4 Example of single Gaussian triphones before and after state clustering.

When HMMs are trained for the set of basic phones, it is referred to as a monophone or

context independent system. There is, however, a considerable amount of variation between re-

alisations of the same phone depending on the preceding and following phones. This effect is

called co-articulation and is due to the inertia restricting any abrupt movement of the articu-

lators. Context dependent phone models acknowledge the influence of the surrounding phones

on the realisation. Commonly used context dependent phones are triphones which take the

preceding and following phones into account. Cross word triphones model contexts over word

boundaries and word internal triphones only within a word. Biphones are therefore used with

word internal triphones to allow start and end phones to be modelled. The number of states,

and model parameters, is significantly higher in a triphone system compared to a monophone

system. It is therefore unlikely that sufficient training data will be available for reliable parame-

ter estimation. The most common solution is to share some of the model parameters by tying the

state conditional observation densities among different models. The clustering of single mixture

Gaussian distributions is illustrated in Figure 2.4. An important question is how to determine

when states should share the same parameters.

A phonetic decision tree [130] is often used to produce the state clustering in triphone sys-

tems. Figure 2.5 shows an example of a decision tree where binary ‘yes/no’ questions are asked.

All instances of a phone are first pooled in the root node and the state clusters are split based on

contextual questions. The splitting will terminate in the final leaves or if the number of training

data examples per state falls below a set threshold. Expert knowledge may be incorporated into

the decision tree and every state is guaranteed to have a minimum amount of training data. A

disadvantage of decision tree clustering is that the splits maximise the likelihood of the training

data only locally [98].
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Figure 2.5 Example of a phonetic decision tree for triphone models (from [130]).

2.4.2 Language Models

The language model provides the estimates of P (W ) in speech recognisers. Using the chain rule

this can be expressed as

P (W ) =

L∏

l=1

P (wl|wl−1, . . . , w1) (2.25)

In continuous speech recognition tasks, the vocabulary is too large to allow robust estimation of

P (W ). To reduce the number of parameters, different histories may be divided into equivalence

classes using a function h(wl−1, . . . , w1). The simplest, commonly used, equivalence classes are

defined by truncating the history to N − 1 words. These N -gram language models may be

expressed as

P (W ) =
L∏

l=1

P (wl|wl−1, . . . , wl−N+1) (2.26)

Typical values are N = 2, 3, 4 which are called bi-, tri- or four-gram models respectively. The

ML estimation of the N -grams are obtained simply by counting relative frequencies from real,

often domain specific, text documents. For a vocabulary of V words there are still V N N -gram

probabilities. Some of the word sequences may be so absurd that zero probabilities may be

assigned, but given a finite training data, some valid word sequences may also be assigned a

zero probability. A number of smoothing schemes such as discounting, backing off and deleted

interpolation [70] have been proposed.

There is often a mismatch between the contribution of the acoustic model and the language

model in speech recognisers. This is due to different dynamic ranges of the discrete probability

mass function, P (W ), estimated from a finite set of text documents and the likelihood score,
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p(O|W ), obtained from high dimensional observation densities. To compensate for this mis-

match many systems raise the language model probability to the power of a constant called

the grammar scale factor. The speech recognisers also tend to favour short words resulting in

many insertion errors. This is often compensated for by introducing an insertion penalty which

scales down the total score p(O|W )P (W ) depending on the number of hypothesised words in

the sequence. By taking these modifications into account in Equation 2.1, a practical speech

recogniser uses

Ŵ = arg max
W

(

log
(
p(O|W )

)
+ α log

(
P (W ) + βL

))

(2.27)

where α is the grammar scale factor, β is the insertion penalty and L is the total number of

words in the hypothesis. The parameters α and β are empirically set. The terms inside the

maximisation are often called the acoustic and language model scores. Logarithms are also taken

to deal with the high dynamic range and prevent underflow due to repeated multiplications of

values between zero and one.

2.4.3 Recognition Algorithms

An efficient recognition algorithm is required to solve Equation 2.27. An optimal decoder must

be able to search through all the word sequences to find the one yielding the maximum com-

bined score from the acoustic and language model. Direct implementation of this is not practical.

Instead the word sequence producing the maximum likelihood state sequence is searched for.

There is an efficient algorithm to find the maximum likelihood state sequence called the Viterbi

algorithm [125]. The Viterbi algorithm is based on a variable φj(t) which represents the max-

imum likelihood of observing vectors {o1, . . . ,ot} and being in state j at time t. This variable

differs from the forward variable in Section 2.3.3 by replacing the summation with a maximum

operator. The initial conditions are given by

φ1(1) = 1 (2.28)

φj(1) = a1jbj(o1) (2.29)

for 1 < j < Ns and the rest of the variables are given recursively by

φj(t) = max
i

(
φi(t− 1)aij

)
bj(ot) (2.30)

for 1 < j < Ns. The Viterbi algorithm results in the joint likelihood of the observation sequence,

O, and the most likely state sequence, Q̂, given the model. This is given by the variable in the

exit state at time T

φNs(T ) = p(O, Q̂|θ) = max
i

(
φi(T )aiNs

)
(2.31)

The most likely state sequence may be obtained by tracing back from the most likely final state.

It is straightforward to extend the Viterbi algorithm for continuous speech recognition. An

efficient implementation is called the token passing algorithm [131] where the current score and
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a link to the previous word link record are propagated in tokens through the composite models.

A new word link record is generated every time instant by finding the token with the highest

score from the exit states of each composite word model. The language model score and the

insertion penalty are also stored to give the partial joint score. The word link record consists of

the partial score and the link to the previous word link record copied from the best exit token

along with the name of the word model where the token came from. Pruning may be used to

keep the number of active models from growing too large in large vocabulary continuous speech

recognition. However, excessively tight pruning may result in search errors. After the final

observation in the utterance has been processed the final word link record holds the total score

of the best hypothesis. The ML word sequence is found by following back word link records

using the links stored inside the records.

2.4.4 Scoring and Confidence

The performance of a speech recogniser is evaluated by comparing the hypothesised word se-

quence, Ŵ , to a reference transcription. These sequences are matched by performing an op-

timal string match using dynamic programming. Once the optimal alignment has been found,

the number of substitution errors, S, deletion errors, D, and insertion errors, I, are calculated.

Usually, the percentage word error rate (WER) is quoted. The WER is given by

WER = 100 ×
(

1 −
N −D − S − I

N

)

(2.32)

where N is the total number of words in the correct transcription [129].

When comparing the performance of different systems, it is useful to have a measure of

confidence in the relative difference in the WER. McNemar’s test [44] is used in this work to

yield the percentage probability, P (MINUUE|TUUE), where MINUUE is the minimum number

of unique utterance errors of two systems under consideration and TUUE is the total number of

unique errors. A confidence level is given as

Conf = 100 × [1 − P (MINUUE|TUUE)] (2.33)

and a statistically significant difference in two results may be taken at a 95% confidence level.

2.4.5 Normalisation and Adaptation

Characteristics of speech sounds vary substantially depending on the speaker and the acoustic

environment. Models trained on speaker specific data outperform models trained on speaker in-

dependent data. Normalisation attempts to represent all speech data in some canonical form

where the variance between speakers or environments does not lower the recognition per-

formance. For example vocal tract length normalisation [75, 124] for speaker normalisation,

and cepstral mean and variance normalisation [49] for environment normalisation are widely

adopted. Instead of normalising all speech data, the models may be adapted to represent the
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characteristics of a new speaker or environment. The MAP [38] framework, discussed in Section

2.3.4, may be applied to speaker adaptation by using the speaker independent model parameters

as the priors which are gradually updated using the MAP rule towards parameters representing

the new speaker as more speaker dependent data comes available.

Maximum likelihood linear regression (MLLR) [77] is another model based adaptation scheme.

The adaptation of the mean vectors may be expressed as

µ̂jn = Aµjn + b = Mξjn (2.34)

where ξjn is the augmented mean vector, [1 µjn]
′, and M is the extended transform, [b′ A′]′.

The transform parameters are optimised using the EM algorithm with adaptation data from the

new speaker. The lth row vector m̂l of the extended transform matrix can be written as [78]

m̂l = k′
lG

−1
l (2.35)

where the matrix Gl and column vector kl are defined as follows

Gl =

Ns∑

j=1

M∑

n=1

1

σ2
jnl

ξjnξ
′
jn

T∑

t=1

γjn(t) (2.36)

kl =

Ns∑

j=1

M∑

n=1

1

σ2
jnl

T∑

t=1

γjn(t)otlξjn (2.37)

where σ2
jnl is the lth diagonal element of the covariance matrix Σjn and otl is the lth element of

the current observation.

1

2 3

4 5 6 7

Figure 2.6 Example of a binary regression tree for MLLR speaker adaptation.

A single MLLR transform may be applied to all the models in the system in which case it

is called a global adaptation transform. Provided there are enough data the adaptation may

be improved by increasing the number of transforms. To define the number of transforms and

how to group the components into these transform classes, regression class trees [32] are often

used. A binary regression class tree is constructed to cluster together components that are

close in acoustic space. A simple example of such a tree is shown in Figure 2.6. The root

node corresponds to all the components pooled into one transform class; i.e., a global MLLR

transform. The splitting of each node continues until the number of components assigned to a
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specific class falls below a set threshold. In the figure, nodes 5, 6 and 7 do not have sufficient

data and the components are pooled back to the node above. The final number of transform

classes is three in this example.

2.5 Covariance and Precision Modelling

As discussed in Section 2.3.1, the form of the covariance matrix for each Gaussian component

is important in HMM based speech recognition. Traditionally, a simple choice between full and

diagonal covariance matrices has been made. For p-dimensional observations, a full covariance

matrix has p(p + 1)/2 parameters and a diagonal covariance matrix has p parameters. The

number of Gaussian components in LVCSR tasks is tens of thousands and the dimensionality

of the observations is high, often p = 39. The robust estimation of model parameters in such a

large system is hard given a limited amount of training data. Hence diagonal covariance matrices

are a popular choice. Recently a number of schemes to interpolate between the diagonal and

full covariance matrix assumptions have been proposed. The first set of such schemes models

the covariance matrices directly whereas the second models the inverse covariance (precision)

matrices.

Assuming there are J Gaussian components in the HMM system, the jth Gaussian evaluated

at an observation ot may be written as

p(ot|j) = (2π)−
p

2 |Σj |
− 1

2 e−
1
2
(ot−µj)

′
Σ

−1
j (ot−µj) (2.38)

where the constant including the determinant of the covariance matrix may be precomputed for

each component. The quadratic term in the exponent is the most expensive operation computa-

tionally. For diagonal covariance matrices O(p) multiplications and for full covariance matrices

O(p2) multiplications have to be computed. It should be noted that the inverse covariance ma-

trices may be stored to avoid inverting the matrices during the likelihood calculation when full

covariance matrices are used.

2.5.1 Covariance Matrix Modelling

Factor analysis is a statistical method for modelling the covariance structure of high dimensional

data with a small number of hidden variables [63]. The use of factor analysis for covariance

modelling in speech recognition has been investigated [122]. In factor analysis the covariance

matrix assumes the following form

Σj = CjC
′
j + Σ

(o)
j =

k∑

i=1

cjic
′
ji +

p
∑

i=1

σ
(o)2
ji eie

′
i (2.39)

where Σ
(o)
j = diag(σ

(o)2
j1 , . . . , σ

(o)2
jp ) is a component specific diagonal covariance matrix in the p-

dimensional observation space, C j = [cj1, . . . , cjk] is a component specific p by k factor loading

matrix and ei is the ith p-dimensional unit vector. There are fewer model parameters compared
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to full covariance matrices if the number of factors, k, satisfies k < (p − 1)/2. However, this

model has a large number of free parameters due to the component specific loading matrices

and some sharing schemes have been investigated [48]. The covariance matrix for this shared

factor analysis (SFA) may be expressed as

Σj = CsC
′
s + Σ

(o)
j =

k∑

i=1

csic
′
si +

p
∑

i=1

σ
(o)2
ji eie

′
i (2.40)

where the index s defines how the loading matrices are shared among a number of Gaussian

components. For a global loading matrix the index may be omitted. An alternative sharing

scheme called independent factor analysis (IFA) [2] has been proposed in the machine learning

literature. The covariance matrix for IFA assumes the following form

Σj = CsΣ
(x)
j C ′

s + Σ
(o)
s =

k∑

i=1

σ
(x)2
ji csic

′
si +

p
∑

i=1

σ
(o)2
si eie

′
i (2.41)

where Σ
(x)
j = diag(σ

(x)2
j1 , . . . , σ

(x)2
jp ) is a component specific diagonal covariance matrix in the

k-dimensional subspace. In the IFA, both the loading matrices and p-dimensional covariance

matrices are shared among a number of Gaussian components. For all the covariance models

based on factor analysis, the covariance matrices, Σ
(o), are important to guarantee the com-

ponent covariance matrices, Σj , being non-singular since the terms, CC ′ and CΣ
(x)C ′, are at

most rank-k matrices.

Alternative covariance modelling schemes operate in the full p-dimensional observation space

using linear transforms. In these schemes each component has a diagonal component specific

covariance matrix. A number of p by p linear transforms, similar to the loading matrices in

factor analysis, are applied to yield full covariance matrices. It should be noted that since the

transforms are p by p matrices, there is no need for additional observation covariance matrices.

The covariance matrix for this semi-tied full covariance matrix (STC) [34] may be expressed as

follows

Σj = CsΣ
(d)
j C ′

s =

p
∑

i=1

σ
(d)2
ji csic

′
si (2.42)

where Σ
(d)
j = diag(σ

(d)2
j1 , . . . , σ

(d)2
jp ) is a p-dimensional component specific diagonal covariance

matrix and Cs = [cs1, . . . , csp] is a semi-tied transform matrix shared among a number of Gaus-

sian components. If the transform matrices are shared globally, the model reduces to the max-

imum likelihood linear transform (MLLT) [47] scheme. The STC scheme is closely related to

heteroscedastic linear discriminant analysis (HLDA) based schemes [35, 72]. A common ad-

vantage of these schemes compared to factor analysis based schemes is the efficient likelihood

calculation. Since HLDA and STC may be viewed as feature space transforms, the likelihood

calculations operate on diagonal covariance matrices after applying the transforms to the obser-

vation vectors. HLDA has also been successfully used in state of the art systems [49].

The choice of the sharing scheme for SFA, IFA, STC and HLDA schemes is important due to

the total number of free parameters in the system. For STC often a single transform is used
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[34, 47]. However, these systems are very flexible since tying the transforms over a number

of Gaussian components can be used to produce various combinations of transform classes.

The tying may be based on regression class tree clustering as described in Section 2.4.5. The

regression class tree attempts to cluster together components that are close in acoustic space.

HLDA systems have additional degrees of freedom due to the number of retained dimensions

(state vector dimensionality). Automatic complexity control for HLDA systems is under active

research [80, 81]. For SFA the loading matrices may be specific to each HMM state since the

increase in the number of free parameters is not very significant if k � p. Also, various tying

schemes are possible for the IFA and SFA. However, the number of possible configurations is vast

and automatic schemes should be employed.

2.5.2 Precision Matrix Modelling

Direct modelling of the inverse covariance (precision) matrices has recently been investigated

[4, 99]. Having the component Equation 2.38 to yield valid likelihoods, it is required that the

covariance matrices be positive definite; that is, x′
Σjx ≥ 0 for all x ∈ R

p. In cases of the

covariance matrix modelling schemes above, this means that all diagonal elements of Σ
(o)
j , Σ

(x)
j

and Σ
(d)
j have to be positive. If instead the MLLT scheme is generalised as follows

Σ
−1
j = AΛjA

′ =

k∑

i=1

λjiaia
′
i (2.43)

where A = [a1, . . . ,ak] is a global p by k matrix, Λj = diag(λj1, . . . , λjk) is a diagonal compo-

nent specific matrix of expansion coefficients and k > p, the coefficients are not required to be

positive. The only restriction on the coefficients {λji} is that the resulting precision matrix must

be positive definite. This scheme is called the extended MLLT (EMLLT) [99]. Using the sum

representation on the right hand side in Equation 2.43, the precision matrix may be viewed as

a linear combination of a collection of k rank-1 matrices {aia
′
i}. By using particular bases, the

EMLLT scheme may be viewed as interpolating between MLLT when k = p and full covariance

model when k = p(p+ 1)/2.

Recently a generalisation of EMLLT called subspace model for precision matrices and means

(SPAM) has been proposed [4]. Instead of using rank-1 matrices as the basis, a collection of k

shared p by p basis matrices Si are used to model the precision matrix as follows

Σ
−1
j =

k∑

i=1

λjiSi (2.44)

where 1 ≤ k ≤ p(p + 1)/2. The basis matrices are not required to be positive definite. In

common with EMLLT, the only restriction on the coefficients λji and basis matrices Si is that the

resulting precision matrix must be positive definite. In the SPAM scheme also the mean vectors

are assumed to lie in a subspace of R
p spanned by k basis vectors.
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Both EMLLT and SPAM systems have been shown to outperform global STC (MLLT) systems.

The SPAM was found to outperform EMLLT systems with similar complexity in [4]. The perfor-

mance of EMLLT systems using multiple subspaces instead of the one defined by a set of global

rank-1 matrices {aia
′
i} was investigated in [23]. It was found that multiple subspace scheme

outperforms the standard EMLLT and a data driven clustering based on matrix norms outper-

forms phonetic and sub-phonetic clustering schemes. Regression tree clustering may also be

used for the clustering.

2.6 Segment Models

Segment models [71, 102] have been proposed to address the state conditional independence

assumption made in the HMM. Instead of generating conditionally independent observation

vectors, the discrete states in a segment model generate a sequence of observations length l.

The joint likelihood of an observation sequence given a discrete state q may be written as

p(o1:l, l|q) = p(o1:l|l, q)P (l|q) = bq,l(o1:l)P (l|q) (2.45)

where P (l|q) is a duration model and bq,l(o1:l) is an output probability density function for

variable length observation sequences. If the output density function assumes the observations

independent and identically distributed, the segment model reduces to a HMM with an explicit

duration model. However, the goal of the segment models is to provide an explicit model for

the temporal correlation between observations in a segment and more elaborate output density

functions have been considered.

General inference and training schemes for segment models have been described in [102].

Viterbi decoding was generalised for segment models. Due to the underlying duration model, the

Viterbi algorithm has to consider all the possible segmentations of the observation sequence. For

an utterance of length T there are O(2T ) segmentations that must be considered in an optimal

search. A number of schemes to reduce the search space have been introduced [102]. Also, a

generalised forward-backward algorithm was presented. Due to the increased complexity, the

most likely state sequence estimation has often been used [24, 102]. Segmental HMMs [37, 56,

57, 58, 59, 60] have also been proposed to overcome the inter-frame correlation problem with

some success on monophone and biphone classification tasks using TIMIT corpus. However,

segment models and segmental HMMs scale poorly to larger tasks.

2.6.1 Stochastic Segment Model

A linear dynamical system (LDS) has been used as a segment conditional output density function

[24, 101]. This model is called the stochastic segment model (SSM). A LDS is described by the

following two equations

xt = Axt−1 + w (2.46)

ot = Cxt + v (2.47)
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where xt is a k-dimensional state vector. The matrices A and C are called the state evolu-

tion matrix and the observation matrix, respectively. The noise vectors w ∼ N (µ(x),Σ(x))

and v ∼ N (µ(o),Σ(o)) are assumed to be independent and called state evolution noise and

observation noise, respectively. The initial state is also assumed to be Gaussian distributed,

x1 ∼ N (µ(i),Σ(i)).

In the original work on SSMs [24], the dimensionality of the state vectors was assumed

to be k = p, the state evolution noise mean vector equal to zero µ(x) = 0, observation noise

covariance matrix Σ
(o) shared globally and the observation matrix equal to the identity matrix

C = I . Due to variable speaking rates, either deterministic or dynamic distribution mappings

were used for each segment. The deterministic mapping assumed a number of regions within

segments having fixed parameters. This corresponds to a segment model with multiple discrete

states per phone in the general notation above. The dynamic distribution mapping assumed a

single set of parameters per phone but a linear time warping was used to normalise segment

durations before the model was applied. Some gains compared to HMMs in phone classification

task using TIMIT [73] corpus were reported. The application of LDSs for speech recognition has

recently been addressed elsewhere [29, 30].

Most of the other segment models presented in the literature may be regarded as a special

case of the SSM. A good review of these approaches has been provided [102]. A number of

disadvantages in the segment models may be identified. Firstly, the increased number of free

parameters in the models may result in poor estimates due to limited amount of training data.

Secondly, the segments are assumed to be independent. It is believed that due to strong co-

articulation in speech, this assumption is not valid. Thirdly, most of the segment conditional

output densities considered can only represent unimodal distributions although the observation

vector distributions are often more complex due to speaker and environment variability.

2.6.2 Hidden Dynamic Models

Recently, similar models to SSMs called hidden dynamic models (HDMs) have been proposed

[22, 84, 105, 111, 133]. HDM is based on a non-linear state evolution process as opposed to

the linear state evolution in the LDS above. This non-linear state evolution is approximated

by the first two terms of its Taylor series expansion. The observation process in HDMs is often

implemented by a global multi-layer perceptron. However, factor analysis based observation

process has been proposed [84] as in the standard LDS above but the parameters were allowed

to switch between frames. This approach effectively can model non-Gaussian distributions the

same way as the mixture of LDSs [113]. Despite the linearisation in state space, the inference

algorithms for the HDM are intractable. A number of approximate methods have been pro-

posed [76, 82, 83, 85, 123]. Some gains compared to HMMs were reported in N -best rescoring

experiments using various subsets of the Switchboard [45] corpus.
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2.7 Summary

The statistical framework for speech recognition has been described in this chapter. First, the

standard front-ends were briefly reviewed. The hidden Markov model was then described as a

generative model for multivariate observation vectors. Parameter optimisation schemes based

on the maximum likelihood estimation, Bayesian learning and discriminative training were pre-

sented. The application of HMMs to acoustic modelling was described. Language models,

recognition algorithms, scoring and adaptation for HMM based speech recognition were also

presented. The form of the covariance matrix is important in HMMs. A number of covari-

ance and precision matrix modelling techniques were described. Finally, segment models were

presented as alternative acoustic models to HMMs. Segment models have been developed to

address the shortcomings in HMMs described in Chapter 1.



3

Generalised Linear Gaussian Models

This chapter presents generalised linear Gaussian models in a generative model framework.

First, standard state space model terminology is reviewed. Then, dynamic Bayesian networks

are reviewed as a method to illustrate conditional independence assumptions made in the model.

Linear Gaussian models and a generalisation to include Gaussian mixture models are also dis-

cussed. Classification of linear Gaussian models according to different state evolution and obser-

vation process assumptions is presented followed by a discussion about standard models using

factor analysis and linear dynamical system as examples.

3.1 State Space Models

State space models are generally based on a k-dimensional state vector, xt, and a p-dimensional

observation vector, ot, which satisfy the following generative model

xt+1 = f(x1, . . . ,xt,wt)

ot = g(xt,vt)
(3.1)

where the functions f(·) and g(·) define the state evolution and observation processes, respec-

tively. The random vectors wt and vt are called the state evolution noise and observation noise.

Although the models described above may exhibit any linear or non-linear functions, the models

presented in this work are restricted to linear ones. By the strict definition of linear Gaussian

models, the noise sources wt and vt are Gaussian distributed with the following densities

wt ∼ N (µ
(x)
t ,Σ

(x)
t ) (3.2)

vt ∼ N (µ
(o)
t ,Σ

(o)
t ) (3.3)

However, in many problems the observation vectors do not have unimodal distributions. In

speech signals, for example, the feature vector distributions have several modes due to speaker

and environment variability. In this work the unimodal assumption is relaxed by including

mixture models – hence the name generalised linear Gaussian models.

24
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The state evolution process may be viewed as some underlying phenomenon which may be

inherent for the signal being modelled. Alternatively, it may only be viewed as a compact repre-

sentation of the correlation in the high dimensional observation vectors. For example, in speech

recognition the state vector may be viewed as representing positions of the articulators and the

state evolution process, f(·), describes their movement in time. Although the above generic

model fits into this interpretation, the linear Gaussian models are a crude approximation since

the movement of articulators is non-linear [14]. Due to this non-linear nature, the articulatory

interpretation is not often stressed in this work.

The observation equation, g(·), describes the function mapping the current state vector, xt,

mixed with the observation noise, vt, onto the current observation, ot, which is usually higher in

dimensionality; that is, p > k. For example, in speech recognition the observation process may

be viewed as mapping the positions of the articulatory organs onto the acoustic representation

where the observation noise, vt, represents all the noise induced by the environment and the

recording equipment. As in the case of the state evolution process, this interpretation is only

valid for non-linear models [14]. In this work, the observation process is an important part of

the correlation model for the high dimensional observation vectors.

3.2 Bayesian Networks

In this work, Bayesian networks [39, 96] are used to illustrate the statistical independence as-

sumptions between different random variables in probabilistic models. Bayesian networks are

directed acyclic graphs, also known as graphical models. The notation used in this work is

adopted from [93] where round nodes were used to denote continuous and square nodes dis-

crete random variables. The observable variables are shaded. Missing arrows between variables

represent conditional independence assumptions.

z

x

o

z

x

o

t+1qqt

1 2 3

Figure 3.1 Examples of Bayesian networks representing different assumptions on conditional independence.

1) No independence assumptions between continuous random variables z, x and o (shading denotes observ-

able), 2) random variable o is conditionally independent of z given x, 3) discrete random variable qt+1 is

conditionally independent of all its predecessors given qt (discrete Markov chain).
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As an example, three continuous random variables z, x and o are considered. The variable o

is observed and the others are hidden (latent). The joint likelihood can be factored as a product

of conditional likelihoods as follows

p(z,x,o) = p(z)p(x|z)p(o|x, z) (3.4)

This factorisation is perfectly valid in every case. If no assumptions of conditional indepen-

dence can be made, the corresponding Bayesian network must be illustrated as the first network

in Figure 3.1. There are two arrows pointing to the node representing o, since in the above

factorisation o depends on both z and x.

If the random variable o is assumed to be conditionally independent of z given x the joint

likelihood can be rewritten as follows

p(z,x,o) = p(z)p(x|z)p(o|x) (3.5)

The corresponding Bayesian network is depicted as the second graph in Figure 3.1. Thus, the

arrow between the nodes representing z and o can be deleted.

As another example, an ordered set of discrete random variables, Q = {q1, . . . , qT }, is consid-

ered. The joint likelihood of the variables up to time instant t+1 can be written using conditional

likelihoods as follows

P (q1, . . . , qt+1) = P (q1)P (q2|q1)P (q3|q1, q2) . . . P (qt+1|q1, . . . , qt) (3.6)

Often a simplification is achieved by using a Markov assumption, which says that the likeli-

hood of the variable qt+1 is conditionally independent of all other preceding variables, given the

immediate predecessor qt; that is,

P (qt+1|q1, . . . , qt) = P (qt+1|qt) (3.7)

This is often called a discrete Markov chain and is illustrated as the third graph in Figure 3.1.

ot ot+1

t+1qqt

Figure 3.2 Dynamic Bayesian network representing a hidden Markov model.

Dynamic Bayesian networks (DBN) [135] may be used to illustrate the conditional indepen-

dence assumption made in a HMM. A DBN representing a HMM is shown in Figure 3.2. It can

be seen that the new observation, ot+1, is conditionally independent of the previous discrete

states and observations given the new state, qt+1. Furthermore, the new discrete state, qt+1, is

conditionally independent of the previous discrete states, given the immediate predecessor, qt;

that is, Markov assumption.
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3.3 State Evolution Process

The number of possible state evolution processes in linear Gaussian models is restricted. Several

static models may also be classified as linear Gaussian models [119]. However, only dynamic

state evolution processes are considered in this work. In this section, a piece-wise constant and

a first-order linear Gauss-Markov state evolution process are described. The continuous state

trajectories that may be represented by these models are discussed.

3.3.1 Piece-Wise Constant State Evolution

The first dynamic state evolution process is based on a hidden Markov model. As described in

Chapter 2, a HMM is defined by the state transition probabilities, aij , and state conditional ob-

servation densities, bj(ot). When a HMM is used as the state evolution process the observation

vectors, ot, are replaced by the state vectors, xt. The discrete HMM state controls which contin-

uous state density generates these state vectors. The continuous state statistics remain constant

until the discrete state switches – hence the name piece-wise constant state evolution.

The piece-wise constant state evolution process may be represented by the following gener-

ative model1

qt ∼ P (qt|qt−1)

xt = wqt , wj ∼
∑

n c
(x)
jn N (µ

(x)
jn ,Σ

(x)
jn )

(3.8)

This state evolution process is illustrated by the state vector element trajectory on the left hand

side in Figure 3.3. Three discrete states with different discrete state conditional continuous state

vector densities are shown. It should be noted that the conditional independence assumption

of standard HMMs is present in any linear Gaussian model based on piece-wise constant state

evolution process, since the observation process depends only on the current state vector.

t

x1

t

x1

Figure 3.3 Trajectories of a state vector element illustrating different dynamic state evolution processes. The

piece-wise constant state evolution on the left hand side is based on a HMM. The linear continuous state

evolution on the right hand side is based on a first-order Gauss-Markov random process.

1The ∼ symbol in qt ∼ P (qt|qt−1) is used to represent a discrete Markov chain. Normally it means that the

variable on the left hand side is distributed according to the probability density function on the right hand side as in

x ∼ N (µ,Σ).
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3.3.2 Linear Continuous State Evolution

The second dynamic state evolution process is a linear first-order Gauss-Markov random process.

A Markov assumption is made to the general state evolution process in Equation 3.1 so that the

current state vector xt is conditionally independent of the previous state vectors, given the

immediately preceding one, xt−1. The new state vector is generated by a linear state evolution

process from the current state vector as follows

xt+1 = Axt + w, w ∼
∑

n

c(x)n N (µ(x)
n ,Σ(x)

n ) (3.9)

where A is a k by k state evolution matrix2 and w is the state evolution noise which usually

is a single Gaussian. Since the initial state vector, x1, is assumed to be a Gaussian with mean

vector µ(i) and covariance matrix Σ
(i), all the subsequent state vectors are Gaussian distributed

as follows

p(xt|xt−1) = N (xt;Axt−1 + µ(x),Σ(x)) (3.10)

Furthermore, the state evolution noise is often assumed to be zero mean and spatially uncor-

related; that is, Σ
(x) is diagonal. With a Gaussian mixture model a zero mean cannot be used.

Using diagonal covariance matrices reduces the number of model parameters and allows the

correlations to be modelled by the state evolution matrix.

Since the state evolution process encodes the temporal correlation in a linear Gaussian

model, it is interesting to see the kind of continuous state vector trajectories it can represent.

This requires more analysis compared to the piece-wise linear state evolution process described

above. The mean vector, µt, evolves according to a first-order ordinary difference equation with

constant coefficients

µt = Aµt−1 + µ(x) (3.11)

The homogeneous equation, µt − Aµt−1 = 0, has a solution µ
(h)
t = UΛ

t−1c [127] where U

is a matrix of eigenvectors of the state evolution matrix, A, the diagonal matrix, Λ, has the

eigenvalues of A as its elements, and c is a constant vector. A constant, µ
(p)
t = (I − A)−1µ(x),

may also be shown to be a particular solution to this difference equation. The general solution is

the sum of these two solutions. The constant vector c may be solved using the initial condition

µ1 = µ(i). Thus, the solution of the differential equation is

µt = At−1µ(i) + (I − At−1)(I − A)−1µ(x) (3.12)

The stability of this solution depends on the eigenvalues of the state evolution matrix. For

multiplying an arbitrary vector y repeatedly by the matrix A, the following limit may be derived

[127]

lim
t→∞

At−1y = λt−1
1 b1u1 (3.13)

2The discrete state transition probabilities aij are often represented as a state transition matrix A in speech

recognition literature. However, in this work A is used to represent the continuous state evolution matrix. Also, it

should not be confused with the MLLR and EMLLT transforms in Chapter 2.
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where b1 is a constant and, λ1 and u1 are the eigenvalue with the largest absolute value and

the corresponding eigenvector of A, respectively. Therefore, if |λ1| is greater than one, the state

vector grows exponentially in the direction of u1. If |λ1| is less than one, the state mean vector

converges towards the following limit

lim
t→∞

µt = (I − A)−1µ(x) (3.14)

Provided the largest eigenvalue of the state evolution matrix is less than one, the state evolution

process is stable. Thus, the individual state vector element trajectories for a stable linear first-

order Gauss-Markov state evolution process are damped oscillations buried in the observation

noise. One such trajectory is shown on the right hand side in Figure 3.3. The covariance matrix

of the state evolution process evolves through time as follows

Σt = AΣt−1A
′ + Σ

(x) (3.15)

with initial condition Σ1 = Σ
(i). The state evolution matrix may be enforced to be stable in the

parameter estimation [29]. However, the stability may not be an issue as long as the sequences

are short. Later in this work, the switching process guarantees short sequences.

3.4 Observation Process

Two different observation processes are presented in this section. Both processes handle dimen-

sion changes. Thus lower dimensional state spaces may be used; that is, k < p. The first process

is closely related to factor analysis and the second to linear discriminant analysis.

3.4.1 Factor Analysis

The first observation process is called factor analysis (FA) [120] since in a static case the model

reduces to a standard FA model with explicit factor mean and variance elements. The factor

analysis observation process can be represented as

ot = Ctxt + vt, vt ∼ N (µ
(o)
t ,Σ

(o)
t ) (3.16)

where C t is a p by k observation matrix and vt is a p-dimensional observation noise. The

observation noise is independent of the state vector, xt, and its covariance matrix is assumed

to be diagonal. This is an important modelling assumption as the observation matrix is used

to represent the spatial correlation in the data. In the case of static data modelling, the time

indexes in the observation equation may be omitted. Due to the Gaussian observation noise, the

conditional likelihood of the observation vector given the state vector is given by the following

Gaussian

p(ot|xt) = N (ot;Ctxt + µ
(o)
t ,Σ

(o)
t ) (3.17)
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xt

xt

ot

vt

Ct

Figure 3.4 An example illustrating factor analysis. The lower dimensional state vectors, xt, are stretched

and rotated by the observation matrix, Ct, in the observation space. This is convolved with the observation

noise distribution to produce the final distribution.

If the state vector is Gaussian distributed, the joint likelihood of the observation and state vector

is also a Gaussian.

The traditional factor analysis model assumes the state vectors are generated by a standard

normal distribution; that is, N (0, I). The factor analysis and different mixture assumptions are

described in more detail in Section 3.5.2. Factor analysis is illustrated in Figure 3.4. The samples

of the lower dimensional state vectors, xt, are first stretched and rotated by the observation ma-

trix, C t, in the observation space. This new distribution is then convolved with the observation

noise distribution which yields the final distribution.

3.4.2 Linear Discriminant Analysis

The second type of observation process is called linear discriminant analysis (LDA) [63] because

in the static case, the model reduces to a standard LDA. The meaningful dimensions are mod-

elled by a state vector, xt, and the “nuisance” dimensions are modelled by a single Gaussian

distributed observation noise as follows

ot = C

[

xt

v

]

, v ∼ N (µ(o),Σ(o)) (3.18)

where C is a global p by p matrix and v is a global (p− k)-dimensional noise vector. By defining

B = C−1 (3.19)
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the state vector is given by a deterministic linear projection

xt = B[p−k]ot (3.20)

where B[p−k] denotes a matrix consisting of the p−k top rows of matrix B. LDA may be viewed

as a projection scheme where the state vectors lie in the useful space and the noise spans the

nuisance dimensions. If the aim is to classify a set of observation vectors, the LDA projection

B may be optimised to maximise the between class variance and minimise the within class

variance. The standard LDA assumes within class covariance matrices to be same (global). An

extension to LDA called heteroscedastic LDA (HLDA) [72] relaxes this assumption. In the case

of piece-wise constant state evolution, the classes may be the different Gaussian components in

the system. HLDA and a number of other extensions have been applied to HMM based speech

recognition [35].

x

2

1

x

Figure 3.5 An example illustrating linear discriminant analysis. The black equal probability contours repre-

sent two classes which are not separable in the original space. LDA finds a projection down to one dimensional

space, x1, with maximum between class and minimum within class distance.

Linear discriminant analysis is illustrated in Figure 3.5. The black equal probability contours

represent covariance matrices of two classes, which are not easy to separate in the original

two dimensional space. LDA finds a projection that minimises the within class distance and

maximises the between class distance. The two classes may be easily separated in the new

1-dimensional space along the x1 axis, whereas the x2 axis represents the nuisance dimension.
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3.5 Standard Linear Gaussian Models

Different models combining the state and observation processes presented in the previous sec-

tions are reviewed in this section3. First, static models are presented using a factor analysis as

an example. Second, dynamic models with relations to the static models are reviewed. A linear

dynamical system is used as an example.

3.5.1 Static Models

Figure 3.6 depicts models based on static state evolution process. At the top of the diagram

is a single static multivariate Gaussian as the root for all the subsequent models. A mixture

of Gaussians can be regarded as a vector quantisation with the Gaussian mean vectors as the

cluster centres. Vector quantisation is often used in the initialisation of, for example, HMM

parameters [129]. Instead of using only one code-book to assign a vector into a single cluster,

cooperative vector quantisation [132] or factorial mixture of Gaussians uses several independent

code-books in a distributed manner. All of these three models correspond to a state space model

with identity matrix as the observation matrix and zero observation noise.

Gaussian

Factor Analysis
Independent

Mixtured FA
(MFA and SFA)

Factor Analysis

Factorial Mixture
of Gaussians

(CVQ)

Mixture of
Gaussians (VQ) Analysis

Linear Discriminant

Factor Analysis=FA
Linear Discriminant Analysis=LDA
Mixture=MIX
Distributed Representation=DIST

VQ = Vector Quantisation
=CVQ Cooperative VQ

SFA = Shared Factor Analysis
=MFA Mixture of Factor Analysers

MIX

DISTDISTMIX

FA

FA LDA

Figure 3.6 Diagram of static linear Gaussian models. The arrows represent additional properties to the

model they are attached to.

Factor analysis [46, 63, 120] is based on a static multivariate Gaussian state process and a

factor analysis observation process. In standard factor analysis the state vectors are assumed to

be distributed according to a standard normal distribution, N (0, I). Independent factor analysis

[2], mixture of factor analysers [40] and shared factor analysis [48] are based on the factor

analysis model with different mixture assumptions. These models are discussed in the example

below. Linear discriminant analysis [63] is another static data modelling scheme with linear

discriminant analysis observation process.

3These diagrams do not illustrate all the possible forms of linear Gaussian models. For example, several combina-

tions using LDA observation process have not been presented for brevity.
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3.5.2 Example: Factor Analysis

Factor analysis is a statistical method for modelling the covariance structure of high dimensional

data using a small number of latent (hidden) variables [63]. It is often used to model the data

instead of a Gaussian distribution with full covariance matrix. Factor analysis can be described

by the following generative model

x ∼ N (0, I)

o = Cx + v, v ∼ N (µ(o),Σ(o))
(3.21)

where x is a collection of k factors (k-dimensional state vector) and o is a p-dimensional ob-

servation vector. The covariance structure is captured by the factor loading matrix (observation

matrix), C, which represents the linear transformation relationship between the state vector

and the observation vector. The mean of the observations is determined by the error (observa-

tion noise) modelled as a single Gaussian with mean vector µ(o) and diagonal covariance matrix

Σ
(o). The observation process can be expressed as a conditional likelihood given by

p(o|x) = N (o;Cx + µ(o),Σ(o)) (3.22)

This may be illustrated by the simple Bayesian network in Figure 3.7. Also, the observation

likelihood is a Gaussian with mean vector µ(o) and covariance matrix CC ′ + Σ
(o).

x

o

Figure 3.7 Bayesian network representing a standard factor analysis model.

The number of model parameters in a factor analysis model is η = p(k + 2). It should be

noted that any non-zero state space mean vector, µ(x), can be absorbed by the observation mean

vector by adding Cµ(x) into µ(o). Furthermore, any non-identity state space covariance matrix,

Σ
(x), can be transformed into an identity matrix using eigen decomposition, Σ(x) = UΛU ′. The

matrix U consists of the eigenvectors of Σ
(x) and Λ is a diagonal matrix with the eigenvalues

of Σ
(x) on the main diagonal. The eigen decomposition always exists and is real valued, since a

valid covariance matrix is symmetric and positive definite. The transformation can be subsumed

into the observation matrix by multiplying C from the right by UΛ
1/2. It is also essential that

the observation noise covariance matrix be diagonal. Otherwise, the sample statistics of the

data can be set as the observation noise and the loading matrix equal to zero. As the number of

model parameters in a Gaussian with full covariance matrix is η = p(p+ 3)/2, a reduction in the

number of model parameters using factor analysis model can be achieved by choosing the state

space dimensionality according to k < (p− 1)/2.
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The expectation maximisation (EM) algorithm [21] may be used to obtain maximum like-

lihood estimates for the parameters of a factor analyser [120]. Given a set of N observations,

O = {o1, . . . ,oN}, the inference requires simply estimating the state posterior statistics as fol-

lows

x̂n = E{x|on,θ
(k)} = K(on − µ(o)) (3.23)

R̂n = E{xx′|on,θ
(k)} = I − KC + x̂nx̂

′
n (3.24)

where K = C ′(CC ′ + Σ
(o))−1 and θ(k) is the set of model parameters in the kth iteration. It

should be noted that using the result in Appendix B, the inverse of the p by p matrix (CC ′ +

Σ
(o))−1 may be evaluated efficiently as follows

(CC ′ + Σ
(o))−1 = Σ

(o)−1 −Σ
(o)−1C(C ′

Σ
(o)−1C + I)C ′

Σ
(o)−1 (3.25)

where the inverse of the diagonal covariance matrix Σ
(o) is trivial to compute and only an inverse

of a k by k matrix (C ′
Σ

(o)−1C+I) has to be evaluated. This is considerably faster than inverting

a full p by p matrix if k � p.

A new set of model parameters θ̂ may be obtained as follows

[

Ĉ µ̂(o)
]

=
( N∑

n=1

[

onx̂
′
n on

] )( N∑

n=1

[

R̂n x̂n

x̂′
n 1

]
)−1

(3.26)

Σ̂
(o)

=
1

N

N∑

n=1

diag
(

ono
′
n −

[

Ĉ µ̂(o)
] [

onx̂
′
n on

]′ )

(3.27)

These parameters are set as the new parameters θ̂ → θ(k+1) for the following iteration until no

significant change in the log-likelihood is observed.

Factor analysis has been extended to employ Gaussian mixture models for the factors in IFA

[2] and the observation noise in SFA [46, 48]. As in the standard factor analysis above, there is a

degeneracy present in these systems. The covariance matrix of one state space component can be

subsumed into the observation matrix and one state space noise mean vector can be absorbed

by the observation noise mean. Therefore, the factors in SFA can be assumed to conform to

a standard normal distribution. The effective number of free parameters4 in a factor analysis

model with Gaussian mixture noise models is given by η = 2(M (x)−1)k+pk+2M (o)pwhereM (x)

andM (o) are the number of mixture components in the state and observation space, respectively.

3.5.3 Dynamic Models

Dynamic linear Gaussian models and the corresponding static models are illustrated in Figure

3.8. Dynamic models with factor analysis observation process include linear dynamical systems

[24, 25, 41, 89, 102, 119], mixture of linear dynamical systems [113] and switching state space

model [42, 93] as well as different variations of factor analysed HMMs presented later in this

4Mixture weights are not included for brevity.
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Figure 3.8 Dynamic linear Gaussian models and how they relate to some of the static models.

work and its restricted version [122]. The linear discriminant observation process is illustrated

in case of HMM based [35, 47, 72] and linear first-order Gauss-Markov based state evolution

processes [113].

The standard hidden Markov model [108, 129] can be viewed as a special case of both

the observation processes when k = p by just omitting the observation noise and setting the

observation matrix to an identity matrix; that is, C = I. Also semi-tied covariance matrix

HMMs (STC) [34] can be described by both observation processes when k = p and v = 0.

Factorial hidden Markov models [43] use distributed representation of the discrete state space

so that several independent HMMs can be viewed to have produced the observation vectors.

3.5.4 Example: Linear Dynamical System

The linear dynamical system is based on a k-dimensional state vector, xt, generated by a lin-

ear first-order Gauss-Markov process. The factor analysis observation process generates a p-

dimensional observation, ot, from the current state vector. The generative model for a LDS can

be expressed as

xt = Axt−1 + w, w ∼ N (µ(x),Σ(x))

ot = Cxt + v, v ∼ N (µ(o),Σ(o))
(3.28)

where the noises, w and v, are independent Gaussian distributed random vectors with diagonal

covariance matrices and the first state is distributed as

x1 ∼ N (µ(i),Σ(i)) (3.29)

The number of model parameters in a linear dynamical system is η = (4 + k)k + (2 + k)p

where the initial state and the state evolution noise distributions have a total of 4k, the state

evolution matrix k2, the observation matrix pk and the observation noise distribution a total of

2p parameters.

The conditional independence assumptions made in the LDS are illustrated by the dynamic

Bayesian network in Figure 3.9. The current observation ot is conditionally independent of
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tx t+1x

ot ot+1

Figure 3.9 Dynamic Bayesian network representing a standard linear dynamical system.

the previous observations given the current state vector xt. Also, the new state vector xt+1 is

conditionally independent of the past given the immediately preceding state vector xt.

For statistical models, inference usually requires estimating the predicted, filtered or smoothed

statistics of an unknown variable. For the LDS, the predicted statistics are

xt+1|t = E{xt+1|o1:t} (3.30)

Σt+1|t = E{xt+1x
′
t+1|o1:t} (3.31)

where o1:t denotes a partial observation sequence up to time t. The filtered estimates are defined

as

xt|t = E{xt|o1:t} (3.32)

Σt|t = E{xtx
′
t|o1:t} (3.33)

To evaluate these estimates the standard Kalman filter recursion [67, 68] can be written as

follows

Σt|t = Σt|t−1 −Σt|t−1C
′
(
CΣt|t−1C

′ + Σ
(o)

)−1
CΣt|t−1 (3.34)

Σt+1|t = AΣt|tA
′ + Σ

(x) (3.35)

with initial condition Σ1|0 = Σ
(i) and the mean vectors are given by

xt|t = xt|t−1 + Σt|t−1C
′
(
CΣt|t−1C

′ + Σ
(o)

)−1
(ot − Cxt|t−1 − µ(o)) (3.36)

xt+1|t = Axt|t + µ(x) (3.37)

with initial condition x1|0 = µ(i). It should be noted that the efficient inversion formula given

in Appendix B may also be used to invert (CΣt|t−1C
′ + Σ

(o)) if k � p. The above recur-

sion is also known as the covariance form of the Kalman filter [66]. The likelihood defined

by p(xt|o1:t−1) = N (xt;xt|t−1,Σt|t−1) is called the predicted state distribution. The likelihood

p(xt|o1:t) = N (xt;xt|t,Σt|t) is called the filtered state distribution. An observation, ot, given the

history of past observations, o1:t−1, is distributed according to the following Gaussian

p(ot|o1:t−1) = N (ot;Cxt|t−1 + µ(o),CΣt|t−1C
′ + Σ

(o)) (3.38)

which may be used to obtain the joint likelihood of the data by p(O) = p(o1)
∏T
t=2 p(ot|o1:t−1).

The standard derivation of the filtering and smoothing algorithms has been based on minimum
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mean square estimation and the orthogonality principle [66]. Alternatively, the derivation may

be done completely using properties of conditional Gaussian distributions and matrix algebra as

described in Appendix E.

Traditionally, the statistics of the smoothed state distribution, p(xt|O) = N (xt; x̂t, Σ̂t), are

obtained using the Rauch-Tung-Striebel (RTS) smoother [109, 110]. The RTS smoothing al-

gorithm requires the above Kalman filter statistics be known. The recursion can be written as

follows

Σ̂t = Σt|t + Σt|tA
′
Σ

−1
t+1|t

(
Σ̂t+1 −Σt+1|t

)
Σ

−1
t+1|tAΣt|t (3.39)

x̂t = xt|t + Σt|tA
′
Σ

−1
t+1|t(x̂t+1 − xt+1|t) (3.40)

Alternatively, the smoother statistics may be estimated using the information form algorithms

[66]. The derivation of the information form algorithms for models which include the noise

mean vectors is presented in Appendix E. The noise mean vectors need to be explicit to enable

Gaussian mixture model noise sources discussed in Chapter 6. In the information form, the for-

ward and backward passes may be run independently, and the smoother estimates are obtained

by combining the statistics from both passes. The information form statistics will also be used

later in this work.

The EM algorithm for the standard LDS consists of estimating the smoother statistics as

described above and updating the model parameters using these statistics. The observation

process parameters are updated as follows

Ĉ =
( T∑

t=1

otx̂
′
t −

1

T

T∑

t=1

ot

T∑

t=1

x̂′
t

)( T∑

t=1

R̂t −
1

T

T∑

t=1

x̂t

T∑

t=1

x̂′
t

)−1
(3.41)

µ̂(o) =
1

T

T∑

t=1

(
ot − Ĉx̂t

)
(3.42)

Σ̂
(o)

=
1

T

T∑

t=1

(

oto
′
t −

[

Ĉ µ̂(o)
] [

otx̂
′
t ot

]′ )

(3.43)

and the state evolution parameters are updated as follows

Â =
( T∑

t=2

R̂t−1,t −
1

T − 1

T∑

t=2

x̂t

T∑

t=2

x̂′
t−1

)( T∑

t=2

R̂t−1 −
1

T − 1

T∑

t=2

x̂t−1

T∑

t=2

x̂′
t−1

)−1
(3.44)

µ̂(x) =
1

T − 1

T∑

t=2

(
x̂t − Âx̂t−1

)
(3.45)

Σ̂
(x)

=
1

T − 1

T∑

t=2

(

R̂t −
[

Â µ̂(x)
] [

R̂t−1,t x̂t

]′ )

(3.46)

µ̂(i) = x̂1 (3.47)

Σ̂
(i)

= R̂1 − µ̂(i)µ̂(i)′ (3.48)

which require the covariance matrix of a joint posterior of two successive state vectors to be

known. This likelihood, p(xt,xt+1|O), is also a Gaussian and its covariance matrix can be written
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as

Σ̂t,t+1 = Σ̂t+1Σ
−1
t+1|tAΣt|t (3.49)

The inference and maximisation steps are iterated until no significant gain in the log-likelihood

of the data is observed.

3.5.5 Higher-Order State Evolution in LDS

Modelling data with higher than first-order dependencies is possible using the linear dynamical

system [8]. The following linear Gaussian model with a linear second-order state evolution

process

xt = Axt−1 + Bxt−2 + w (3.50)

ot = Cxt + v (3.51)

may be converted into a standard LDS by defining a new state vector

yt ,

[

xt

xt−1

]

(3.52)

An equivalent LDS to the model in Equations 3.50 and 3.51 is now given by

yt =

[

A B

I 0

]

yt−1 + w̃ (3.53)

ot =
[

C 0

]

yt + v (3.54)

where the 2k-dimensional state evolution noise vector w̃ is distributed as

w̃ ∼ N
(

[

µ(x)

0

]

,

[

Σ
(x)

Σ
(x)(A−1)′

A−1
Σ

(x) 2A−1
Σ

(x)(A−1)′

]
)

(3.55)

The second-order model above may be illustrated by the dynamic Bayesian network on the left

hand side in Figure 3.10. The equivalent LDS with extended state space is shown on the right.

ot+1to

yt t+1y

to

tx t+1x

ot+1

xt−1

ot−1

Figure 3.10 Dynamic Bayesian networks representing a model with second-order state evolution and an

equivalent LDS with extended state space.

In this way, any model with linear nth-order state evolution process may be converted into

a standard LDS by expanding the state space to k = np. However, this considerably increases
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the number of model parameters. In the filtering, a p by p matrix has to be inverted at each

time instant. However, a full k by k matrix has to be inverted in the smoothing. This leads

to substantially slower inference if k = np and p is large. In speech recognition p is usually

39 when the dynamic coefficients have been appended. If higher-order state evolution is used

to model longer term temporal dependencies, it may be argued that the dynamic coefficients

are not needed. As discussed in Chapter 2, the observation vectors with delta and delta-delta

coefficients depend on a window of 9 frames. Hence, it is not practical to include dependencies

over such a long period into the state evolution process.

3.6 Summary

A general framework of linear Gaussian models as a particular form of state space model was

presented in this chapter. Bayesian networks were used to illustrate the conditional indepen-

dence assumptions made in these models. The emphasis was mainly on the models based on

dynamic state evolution processes as they may be used to model time varying signals such as

speech. Two alternative state evolution assumptions were discussed, the piece-wise constant and

the linear first-order Gauss-Markov. Also, two alternative observation processes, factor analysis

and linear discriminant analysis, were reviewed.



4

Learning and Inference in Linear Gaussian Models

This chapter presents learning and inference algorithms which may be applied to the gener-

alised linear Gaussian models described in Chapter 3. Only learning algorithms for parameter

optimisation are considered in this work. In particular, maximum likelihood (ML) criterion and

expectation maximisation (EM) algorithm are used in the optimisation. The EM algorithm re-

quires some knowledge about the state of the system to be inferred. However, some models

presented in this work have no tractable inference algorithms. For these models both determin-

istic and stochastic approximate inference algorithms are reviewed.

4.1 Learning in Linear Gaussian Models

For statistical models, learning usually refers to estimating the model parameters. Sometimes it

is also desirable to learn the model structure or even select the most suitable model from a set

of standard models. For example, in state space models it may be necessary to learn the optimal

state space dimensionality or the number of mixture components [80, 81]. In this work, only the

problem of optimising the model parameters is addressed. The most commonly used algorithms

are based on maximum likelihood estimation although techniques based on Bayesian learning

and discriminative methods, as described in Chapter 2, may also be used. In ML estimation

the optimised model parameters are obtained by maximising the likelihood function. Many of

the models considered in this work are based on some hidden variables which makes direct

maximisation intractable. Instead, iterative schemes are used. Bayesian learning is based on

finding a posterior distribution over the parameters, often together with the hidden variables,

and the expected value of this distribution is chosen as the optimal parameter or the distribution

itself may be used. As discussed in Chapter 2, an advantage of Bayesian learning is that it does

not favour more complex models as ML learning does. Strict Bayesian learning often results in

intractable algorithms for which approximations have to be used [11].

For many state space models, iterative schemes have to be used to obtain maximum likeli-

hood parameter estimates. Given the model has some hidden variables, it is possible to derive

a lower bound on the log-likelihood of the data. This bound provides a mechanism, called the

40
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expectation maximisation algorithm, to iteratively optimise the parameters of some state space

models for which direct ML estimation is complex.

4.1.1 Lower Bound on Log-Likelihood

In the presence of some hidden variables, direct ML estimation may not be feasible. For example

the log-likelihood function of a state space model may written as

L(θ) = log p(O|θ) = log

∫

p(O,X |θ)dX (4.1)

where X = {x1, . . . ,xN} is a set of hidden variables. The integral in Equation 4.1 is often

analytically intractable. It may be approximated using numerical methods. However, numerical

integration is computationally expensive. Instead, a lower bound on the log-likelihood may be

obtained efficiently.

The derivation of the lower bound takes advantage of Jensen’s inequality [127]. Given a

convex function f(·) and variables γm ≥ 0 such that
∑M

m=1 γm = 1, Jensen’s inequality can be

written as

f
( M∑

m=1

γmxm

)

≥
M∑

m=1

γmf(xm) (4.2)

It should be noted that the variables γm fulfil all the requirements of a valid probability mass

function. An example of such a convex function is the logarithm. A similar inequality also holds

for continuous variables. Given any valid probability density function over the hidden variables,

q(X), and applying Jensen’s inequality yields

L(θ) = log

∫

q(X)
p(O,X |θ)

q(X)
dX ≥

∫

q(X) log
p(O,X|θ)

q(X)
dX

=

∫

q(X) log p(O,X|θ)dX −

∫

q(X) log q(X)dX = B
(
θ, q(X)

)
(4.3)

This holds for an arbitrary set of model parameters, θ. A density function, q̂(X), that max-

imises the lower bound, B(θ, q(X)), can be found using a Lagrange multiplier, λ, to enforce the

integrate to unity constraint

1 −

∫

q(X)dX = 0 (4.4)

Note, a valid density function is non-negative, q(X) ≥ 0, for all X. The constrained maximisa-

tion of B(θ, q(X)) is equivalent to maximising

G
(
q(X)

)
= λ

(

1 −

∫

q(X)dX
)

+ B
(
θ, q(X)

)
(4.5)

with respect to q(X). Solving for q(X) results in the posterior likelihood over the hidden vari-

ables given the data, q̂(X) = p(X|O,θ). This is a maximum of G(q(X)) since the second

derivative with respect to q(X) is negative. It is easy to check by substitution that the lower

bound becomes an equality; that is, L(θ) = B(θ, q̂(X)). For a discrete hidden variable, the

lower bound and the probability mass function that maximises it may be derived in the same

fashion by replacing the integrals with sums.
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4.1.2 Expectation Maximisation Algorithm

For models with hidden variables and tractable posterior distributions over the hidden variables,

an iterative algorithm to optimise the model parameters may be derived using the result from

the previous section. If a tractable posterior distribution, q̂(X) = p(X |O,θ), exists, the lower

bound in Equation 4.3 becomes an equality. Therefore, finding a set of parameters θ̂ that max-

imises the bound B(θ, q̂(X)), is guaranteed to increase the log-likelihood of the data. In the

expectation maximisation algorithm, evaluating the posterior distribution is called the E (ex-

pectation) step and the maximisation of the bound is called the M (maximisation) step. Since

the posterior distribution in the E step is evaluated using an old set of model parameters, the

new set of parameters obtained in the M step does not necessarily maximise the log-likelihood

function. Thus, the E and M steps have to be iterated until the change in the log-likelihood gets

smaller than some threshold, L(θ(k+1))−L(θ(k)) < δth. However, the optimised parameters may

correspond to a local maximum in L(θ). The EM algorithm is sensitive to initialisation.

After the E step the bound in Equation 4.3 may be written as

B
(
θ, q̂(X)

)
= Q(θ,θ(k)) + H(θ(k)) (4.6)

where H(θ(k)) is the entropy of the posterior distribution evaluated using the set of old parame-

ters θ(k) and is independent of the free parameters, θ. Therefore, it is sufficient to maximise the

first term, Q(θ,θ(k)), which is often called the auxiliary function. The auxiliary function may be

written as

Q(θ,θ(k)) = E
{

log p(O,X |θ)
∣
∣
∣O,θ(k)

}

(4.7)

where the expectation is taken with respect to the hidden variables. A set of parameters, θ̂,

that results in an increase in the auxiliary function, Q(θ̂,θ(k)) ≥ Q(θ(k),θ(k)), is guaranteed to

increase the log-likelihood as well. The full algorithm may be summarised as Algorithm 1.

Algorithm 1 Expectation Maximisation

initialise θ(1), k = 0

repeat

k = k + 1

q̂(X) = p(X|O,θ(k)) {E Step}

θ̂ = arg maxθ Q(θ,θ(k)) {M Step}

θ̂ → θ(k+1)

until L(θ(k+1)) −L(θ(k)) < δth

It is not necessary to find the exact maximum of the auxiliary function in the M step. Any

increase in the auxiliary function will increase the log-likelihood function. This is called the

generalised EM algorithm [12]. For some models, it is not possible to optimise all the parameters

simultaneously. Optimising the parameters one at a time is valid in the generalised EM frame-

work and is useful for some of the models considered in this work. However, if the posterior
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over the hidden variables is intractable, approximate inference methods have to be used. Un-

fortunately, the convergence of the EM algorithm cannot be guaranteed even if the approximate

inference algorithm converges [27].

4.1.3 Gaussian Mixture Model Example

Optimisation of an unknown mean in a mixture of two Gaussians is used as an example of the

expectation maximisation algorithm. A total of 100 samples were generated from the following

distribution

p(on|θ) =
1

2
N (on;m1, 1) +

1

2
N (on;−3, 10) (4.8)

with m1 = 3. The unknown parameter to be estimated is θ = {m1}. The exact log-likelihood

function over the observations is shown as the solid curve in both figures in Figure 4.1. For the

Gaussian mixture model, the observations are considered as the data and the mixture component

indicators, znm, as the hidden variables. Detailed derivation of the EM algorithm for GMMs is

presented in Appendix C.
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Figure 4.1 Log-likelihood function and lower bounds during three EM iterations with different initial values,

m
(1)
1 = 7 and m

(1)
1 = −2. The new estimates m

(k+1)
1 tend towards the nearest local maximum.

The lower bounds, B(θ, q̂(X)), after each E step are shown as the dotted curves in Figure 4.1

for three iterations. On the left hand side the initial mean value is m
(1)
1 = 7 and m

(1)
1 = −2 on

the right hand side. It can be seen that the lower bound touches the log-likelihood curve after

each E step. The new parameter value, θ(k+1), after each M step can also be seen to be directly

above the maximum of the old lower bound. The importance of proper initialisation can be seen

by comparing the two figures. With the initial value m
(1)
1 = 7 the algorithm converges rapidly

towards the global maximum of the log-likelihood function. On the right hand side, the new

estimates tend towards a local maximum between −4 and −5. In an extreme case the initial

value might be equal to the local minimum around −1 and the algorithm would terminate after

a minimum number of iterations. In most practical applications, the models and the associated
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log-likelihood functions are very complex and the chances of hitting a minimum during the

initialisation are close to zero.

4.2 Inference in Linear Gaussian Models

Inference involves deriving some knowledge about the state of a statistical model given a set

of observations. This knowledge may be needed, for example, in parameter estimation in the

form of posterior statistics over the hidden variables as seen in Section 4.1.2. In the case of

simple distributions, such as a Gaussian, the model has no meaningful state. In contrast a Gaus-

sian mixture model (GMM) may be viewed as having a discrete state indicating which mixture

component generated a given observation as described in Section 4.1.3. Inference for a GMM re-

quires evaluating the posterior probability mass function of the mixture component indicator. In

state space models, such as linear dynamical systems, the notion of a state is more obvious. Since

the states are not observed inference algorithms are required to evaluate the posterior distribu-

tion over the states given some observations. In the case of dynamic models with continuous

state vectors, three different forms may be identified. First, prediction is defined as estimating

the posterior over the hidden variables given some observations prior the current time instant.

Most often a one step prediction, p(xt|o1:t−1), is needed. Evaluating the posterior over the hid-

den variables given the observation sequence up to the current time instant, p(xt|o1:t), is called

filtering. Finally, evaluating the posterior given the complete observation sequence, p(xt|O), is

called smoothing.

For some models like the hidden Markov model in Chapter 2 and the linear dynamical system

in Chapter 3, the inference is tractable. In many models the observation likelihoods are not

Gaussians. This results in intractable integrals when estimating the posterior distribution over

the hidden variables. For the Gaussian mixture model the likelihoods are Gaussians if only the

mixture component indicator is hidden as seen in Section 4.1.3. However, the inference becomes

more complicated if one of the mean vectors, m1, in a GMM is unknown and the posterior of

m1 has to be estimated given the observations. For example, a mixture of two Gaussians with

known parameters apart from m1, the observation likelihood is

p(on|m1) =
1

2
N (on;m1, 1) +

1

2
N (on;−3, 10) (4.9)

This is the same problem as in the EM example in Section 4.1.3. The inference examples in

the remainder of this chapter use the Bayesian learning framework. Given the prior distribution

for the mean vector is also a Gaussian m1 ∼ N (0, 100), the marginal likelihood for Bayesian

learning is given by

p(o1:N ) =

∫

p(m1)

N∏

n=1

p(on|m1)dm1 (4.10)

where the integrand is a mixture of 2N Gaussian product components. This exponential growth

in components renders the standard inference algorithms infeasible. Other examples are some
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dynamic models, such as the switching linear dynamical system (SLDS), which has conditionally

Gaussian distributions and will be described in Chapter 6. This has led to the development of

approximate inference algorithms. Approximate inference algorithms may be divided into two

categories: deterministic and stochastic.

4.3 Approximate Inference: Deterministic Algorithms

The deterministic algorithms reviewed in this section are based on approximate distributions

which are made as close to the true distribution function as possible according to some optimality

criterion. Usually the Kullback-Leibler (KL) distance is used as this criterion. The KL distance

is first reviewed. Then three deterministic algorithms for approximate inference are described.

All these deterministic algorithms suffer from a major drawback: very little may be said about

the accuracy of the approximation. However, they are usually relatively fast compared to the

stochastic algorithms which are presented later in this chapter.

4.3.1 Kullback-Leibler Distance

The Kullback-Leibler distance may be used to measure the similarity of two densities, q(x) and

p(x). The KL distance is defined as the relative entropy of q(x) with respect to p(x) [127]

D
(
q(x), p(x)

)
=

∫

q(x) log
q(x)

p(x)
dx (4.11)

This is a convex function of q(x), always non-negative, D(q(x), p(x)) ≥ 0, and equal to zero only

if q(x) = p(x). Note, as it does not satisfy the triangle inequality it is not a metric. For this

reason it is sometimes called the KL divergence.

The KL distance is important in many of the deterministic approximate inference algorithms.

It also provides an alternative derivation for the expectation step in the standard EM algorithm.

Instead of using the method of Lagrange multiplier in Section 4.1.1, it is sufficient to investigate

the difference between the log-likelihood function, L(θ), and the lower bound, B(θ, q(X)), in

Equation 4.3

L(θ) − B
(
θ, q(X)

)
= log p(O|θ) −

∫

q(X) log
p(O,X|θ)

q(X)
dX

=

∫

q(X)
(

log p(O|θ) − log
p(O,X |θ)

q(X)

)

dX

=

∫

q(X) log
q(X)

p(X |O,θ)
dX = D

(
q(X), p(X |O,θ)

)
(4.12)

which is equal to zero only if q(X) = p(X |O,θ). Hence, minimising the KL distance between

q(X) and p(X |O,θ) is the same as minimising the difference between L(θ) and B(θ, q(X)). If

the posterior distribution over the hidden variables can be solved analytically, the difference is

zero and the lower bound in Equation 4.3 becomes an equality.
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4.3.2 Moment Matching

The problem of estimating the posterior of the mean,m1, in Section 4.2 may be solved by approx-

imating the joint likelihood by a Gaussian, q̃n(m1) = N (m1;u, v). The dependence on the ob-

servation sequence is omitted since the function q̃n(m1) is only an approximation of p(m1|o1:n).

In assumed density filtering (ADF) [90] the observations are processed sequentially by updating

the approximate posterior according to the exact inference and projecting the resulting multiple

component distribution down to a single Gaussian using moment matching. Defining the ob-

servation terms as t0(m1) = p(m1) and tn(m1) = p(on|m1), and given the approximate density

after n−1 observations, q̃n−1(m1), another approximate density, p̃n(m1), is obtained by the exact

update

p̃n(m1) =
tn(m1)q̃n−1(m1)

∫
tn(m1)q̃n−1(m1)dm1

(4.13)

which is generally a mixture of two Gaussian product terms. The new approximate parame-

ter posterior, q̃n(m1), is found by matching the first two moments, Eq̃n{m1} = Ep̃n{m1} and

Eq̃n{m1m1} = Ep̃n{m1m1}. This is also known as weak marginalisation and is the best ap-

proximation in the KL sense [74]. It may be shown that the moment matching is equivalent to

minimising the KL distance, D(p̃n(m1), q̃n(m1)). The ADF can be summarised as algorithm 2.

The exact formulae for the example may be found in a variety of studies [91, 94].

Algorithm 2 Assumed Density Filtering

initialise q̃0(θ) = t0(θ)

for n = 1 to N do

zn =
∫
tn(θ)q̃n−1(θ)dθ

p̃n(θ) = tn(θ)q̃n−1(θ)/zn

Eq̃n{θ} = Ep̃n{θ}

Eq̃n{θθ′} = Ep̃n{θθ′}

end for

q̂(θ) = q̃N(θ)

It should be noted that the order of the observations influence the final estimate in the ADF

algorithm. The normalising constants, zn, may be used to approximate the joint likelihood of the

data as p(o1:N ) ≈
∏

n zn. Two estimates for the mean, m1, in the GMM example with different

ordering of the observations are shown on the left hand side in Figure 4.2. In the first setup the

estimated parameter, θ(1), is close to the local maximum. In the second setup the estimate, θ(2),

is close to the prior mean. Thus, the algorithm has performed poorly.

Moment matching has also been applied to dynamic models such as SLDS [8]. The scheme

for SLDS corresponding to ADF for independent observations is called generalised pseudo Bayesian

algorithm of order 1. Though it may seem obvious that the errors introduced at each time step

tend to accumulate, it has been shown [15] that the final error is bounded. The stochastic

process ensures that the variance of the true distribution is high enough to overlap with the
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approximate distribution.
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Figure 4.2 Assumed density filtering and expectation propagation in the Bayesian learning example for the

mean of a Gaussian mixture model. Two different orderings of the observations in ADF result in the estimates

θ(1) and θ(2). The EP algorithm arrives at a good estimate provided it converges at all due to the multimodal

posterior.

4.3.3 Expectation Propagation

Expectation propagation (EP) [91] addresses the shortcomings in assumed density filtering.

Provided the posterior is approximated by any distribution in the exponential family, the ADF

algorithm may be viewed as approximating the observation terms, tn(θ), instead of the updated

posteriors, p̃n(θ). The approximate observation terms can be defined as

t̃n(θ) = zn
q̂(θ)

q̃n−1(θ)
(4.14)

where q̂(θ) is the approximate posterior for the whole set of observations. Since distributions

in the exponential family are closed in division, the approximate observation term has the same

functional form and may be evaluated analytically. Thus, it is always possible to remove the in-

fluence of any observation term from the final approximate posterior, q̂(θ), and refine the term,

t̃n(θ). In this way the order of the observations does not influence the final approximate poste-

rior as long as the refinements are iterated until convergence. The EP algorithm is summarised

in Algorithm 3.

The normalising constants, zn, may again be used to give an approximation to the joint like-

lihood of the observations given by p(o1:N ) ≈
∫ ∏

n t̃n(θ)dθ. Unfortunately, the EP algorithm

performs well only if the posterior distribution is simple. If the posterior is multimodal, as in the

GMM example, some variances of the observation terms may get negative values. The variances

may be restricted to have positive values [90], but this results in inaccurate estimates and con-

vergence problems with some orderings of the observations. The results of the EP algorithm in

the GMM example are shown on the right hand side in Figure 4.2. The estimate for the unknown



CHAPTER 4. LEARNING AND INFERENCE IN LINEAR GAUSSIAN MODELS 48

Algorithm 3 Expectation Propagation

initialise t̃n(θ)

q̂(θ) =
Q

n t̃n(θ)
R

Q

n t̃n(θ)dθ

repeat

for n = 1 to N do

q̃n−1(θ) ∝ q̂(θ)/t̃n(θ)

zn =
∫
tn(θ)q̃n−1(θ)dθ {ADF starts}

p̃n(θ) = tn(θ)q̃n−1(θ)/zn

Eq̂{θ} = Ep̃n{θ}

Eq̂{θθ′} = Ep̃n{θθ′} {ADF ends}

t̃n(θ) = znq̂(θ)/q̃n−1(θ)

end for

until all t̃n(θ) converge

mean is quite accurate, but the approximation of p(o1:N ) is worse due to the restricted variances.

Exact formulae for the example may be found in a variety of studies [91, 94].

4.3.4 Variational Methods

Variational methods have recently been introduced to carry out approximate inference in graph-

ical models [64]. If the posterior distribution over the hidden variables is intractable and it has

to be approximated, the bound in Equation 4.3 never reaches equality. Instead, by introducing

a variational approximation over the hidden variables, q(X), which has a tractable form, the

lower bound may be maximised by minimising the Kullback-Leibler distance between the ap-

proximate distribution and the posterior, L(θ)−B(θ, q(X)) = D(q(X), p(X |O,θ)). The tightest

possible bound is found by varying the parameters of q(X), known as variational parameters.

The variational approximation does not always have to be the simplest density function, since

the model often has tractable substructures if some arcs in the corresponding Bayesian network

are removed [121].

In the context of Bayesian learning the variational methods are often called variational Bayes.

For the GMM example, two hidden variables may be identified: the mixture indicator and the

unknown mean. The log-likelihood over the observations may be bounded as follows

log p(O) ≥
∑

∀Z

∫

q(Z,m1) log
p(O,Z,m1)

q(Z,m1)
dm1 (4.15)

where Z is a matrix of mixture indicators znm defined in Appendix C. Following the derivations

in various studies [3, 92], the variational approximation is constrained to factor q(Z,m1) =

q(Z)q(m1) where the mixture indicator probability may be further simplified to

q(znm) ∝ P (ω = m) exp
(∫

q(m1) log p(on|ω = m,m1)dm1

)

(4.16)
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and the mean distribution is chosen to be a Gaussian, q(m1) = N (m1;u, v). The variational

Bayes algorithm alternates between estimating the mixture indicator probability and the mean

distribution until the bound in Equation 4.15 is minimised. The results of variational Bayes

estimation in the GMM example are shown on the left hand side in Figure 4.3 for two different

prior mean values, u = −2 and u = 0. The estimates are accurate in this example but the

algorithm only finds the local maximum depending on the initialisation of the prior mean.
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Figure 4.3 Variational Bayes and importance sampling in the Bayesian learning example for the mean of a

Gaussian mixture model. Two different prior mean values, m = −2 and m = 0, in variational Bayes result

in different estimates, θ(1) and θ(2). The importance sampling is not challenged by the multimodal posterior

distribution.

4.4 Approximate Inference: Stochastic Algorithms

The deterministic inference algorithms in Section 4.3 are restricted to approximating the poste-

rior distributions by Gaussians or other distributions in the exponential family. These approaches

are fast but accuracy decreases if the posterior distributions are non-Gaussian as seen in some

of the GMM examples. Stochastic algorithms based on Monte Carlo methods assume little about

the posterior distribution. Instead of using the lower bounds or any deterministic optimality

criteria, Monte Carlo methods are based on drawing samples from the posterior distribution

and evaluating the required statistics using these samples. Generally, Monte Carlo methods are

computationally more intensive than the deterministic approximations. Schemes to make the

sampling more efficient will be presented later in this work.

4.4.1 Monte Carlo Methods

Monte Carlo methods may be used to approximate expectations of functions under distributions

which cannot be analytically solved. Two problems arise in this simulation based approach.

Firstly, how to draw samples from a given probability density function. Secondly, how to approx-

imate expectations under these distributions. Given N samples, {x(1), . . . , x(N)}, a probability
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density function may be approximated with the following empirical point-mass function

p̂N (x) =
1

N

N∑

n=1

δ(x− x(n)) (4.17)

where δ(x−x(n)) denotes the Dirac delta function centred around the sample x(n). Consequently,

the expectations (integrals), I(f), of functions, f(x), under the distribution can be approximated

with tractable sums

ÎN (f) =
1

N

N∑

n=1

f(x(n)) −→
N→∞

I(f) =

∫

f(x)p(x)dx (4.18)

which are unbiased and by the strong law of large numbers will converge almost surely1 as N

tends to infinity [112].

The first problem is how to draw samples from a given probability density function. This

is straightforward only if the density, p(x), is of a standard form, for example, in a Gaussian

distribution or in a discrete probability mass function. Otherwise, Monte Carlo methods includ-

ing rejection sampling, importance sampling or Markov chain Monte Carlo (MCMC) algorithms

have to be used [86]. As an example of classical Monte Carlo methods, importance sampling

is considered. Importance sampling is also of fundamental importance in modern sequential

Monte Carlo and particle filter theory [27, 28, 61].

Importance sampling is based on drawing samples from a proposal distribution q(x). As

long as the proposal distribution and the objective are non-zero in the same region; that is,

p(x) ≤ Zq(x), Z <∞, an integral under the distribution p(x) may be written as

I(f) =

∫

f(x)w(x)q(x)dx (4.19)

where the importance weights are defined as w(x) = p(x)
q(x) . An approximation of the density p(x)

using N samples may be expressed as

p̂N (x) =
N∑

n=1

w(x(n))δ(x − x(n)) (4.20)

and any integral under p(x) may be approximated by

ÎN (f) =
N∑

n=1

w(x(n))f(x(n)) (4.21)

The importance sampling algorithm is summarised in Algorithm 4.

The efficiency of importance sampling depends on the choice of the proposal distribution.

For the GMM example the prior distribution, p(m1) = N (0, 100), may be used as the proposal

distribution. The results of importance sampling with N = 100 are shown on the right hand side

in Figure 4.3. It is easy to see that importance sampling is very little challenged by the multi-

modal distribution in finding the global maximum and provides the best parameter estimate in

the Bayesian learning example.

1Almost sure convergence is also known as probability-1 convergence.
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Algorithm 4 Importance Sampling

draw N samples, {x(1), . . . , x(N)}, from q(x)

evaluate importance weights w(x(n)) = p(x(n))

q(x(n))

evaluate any approximate integral required ÎN (f) =
∑N

n=1w(x(n))f(x(n))

4.4.2 Markov Chain Monte Carlo Methods

Importance sampling only works well if the proposal distribution q(x) is a good approximation

to p(x). In complex problems with high dimensional distributions it is difficult to create a single

density q(x) that has this property [86]. Markov chain Monte Carlo (MCMC) methods generate

samples x(n) while exploring the state space using a Markov chain mechanism. This mechanism

is constructed so that the chain spends more time in the most important regions. The MCMC

algorithms are especially suitable for state space models with Markov dynamics.

Gibbs sampling is one instance of Markov chain Monte Carlo methods for sampling from

distributions over at least two dimensions [112]. It is assumed that whilst p(x) is too complex to

draw samples from directly, its conditional distributions, p(xj|x
(n)
−j ) where x

(n)
−j = {x

(n)
1 , . . . , x

(n)
j−1,

x
(n−1)
j+1 , . . . , x

(n−1)
N }, can be used as proposal distributions. The superscript refers to the nth

iteration. For many graphical models these conditional distributions are easy to sample from.

In general, a single iteration of Gibbs sampling involves sampling one parameter at a time as

follows2

x
(n)
j ∼ p(xj |x

(n)
−j ) (4.22)

After Ni iterations the final estimates are computed in common with all Monte Carlo methods

p̂Ni
(x) =

1

Ni

Ni∑

n=1

δ(x − x(n)) (4.23)

which converge towards its invariant density function, p(x), if the Markov chain is irreducible

and aperiodic [1]. Gibbs sampling explores the state space by a random walk steered by the

conditional distributions. It may be slow to converge if the state space is large. Sometimes the

structure of the model allows efficient sampling by separating tractable substructures and thus

drawing samples in a lower dimensional state space. The general Gibbs sampling algorithm is

summarised in Algorithm 5.

As an example of Gibbs sampling a two dimensional Gaussian distribution is considered.

Although, the density function is tractable and its mean vector may be easily estimated from

the sample mean, it provides a simple illustration of how the algorithm works. For a correlated

two dimensional distribution, as shown by the contours of equal probability in Figure 4.4, the

conditional distributions p(x1|x2) and p(x2|x1) may be easily derived using the results from

2In the case of Monte Carlo methods, the ∼ symbol is used to indicate that the sample on the left hand side was

drawn from the density function on the right hand side. The samples, which always have the superscript as in x
(n)
j ,

should not be confused with random variables.
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Algorithm 5 Gibbs Sampling

initialise x(1)

for n = 2 to Ni do

Draw a sample x
(n)
j ∼ p(xj |x

(n)
−j ) for all j

end for

evaluate any approximate integral required ÎNi
(f) =

∑Ni

n=1 f(x(n))
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Figure 4.4 Gibbs sampling example for 8 full iterations. The initial value of the sample is x(0) = [3,−3]′.

The dashed line follows all the sampling steps, {[x
(0)
1 , x

(0)
2 ]′, [x

(1)
1 , x

(0)
2 ]′, [x

(1)
1 , x

(1)
2 ]′, [x
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1 , x

(1)
2 ]′, . . .}.

Appendix B. All the steps of Gibbs sampling are illustrated by the dashed line in the figure.

The black dots represent the samples for each of 8 iterations. For this example the algorithm

converged fast and the mean vector may be easily estimated as the average of the samples.

Sometimes the first Nb samples, which is called the burn in period, are discarded to obtain

samples independent of the initialisation [86].

4.5 Summary

This chapter has reviewed the expectation maximisation algorithm for parameter optimisation.

The EM algorithm may be used to find the maximum likelihood estimates for the parameters of

many linear Gaussian models described in Chapter 3. In the expectation step, the posterior dis-

tribution of the hidden variables in the model given the sequence of observations is evaluated.

The evaluation of these posteriors is also known as inference. For some models inference is not
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feasible due to intractable integrals involved in the evaluation. A number of approximate infer-

ence algorithms were reviewed. Two classes of approximate inference schemes were considered,

deterministic and stochastic. The deterministic algorithms are based on approximating the exact

posterior distributions with tractable densities. These densities are usually Gaussians which may

be a poor approximation for complex posterior distributions. The stochastic algorithms such as

Markov chain Monte Carlo assume little about the form of the posterior, but are often compu-

tationally more demanding than the deterministic algorithms. However, the efficiency of the

MCMC algorithms may be increased by careful design of the proposal mechanism; for example,

Rao-Blackwellisation reviewed later in this work.



5

Piece-Wise Constant State Evolution

In this chapter a state space model based on an underlying hidden Markov model with factor

analysis observation process is introduced. The HMM generates a piece-wise constant state

evolution process as discussed in Chapter 3. The observations are produced from the state

vectors by a factor analysis observation process. The model is called a factor analysed HMM

(FAHMM). Firstly, the theory of FAHMMs is presented including the form of the generative

model and likelihood calculation. Maximum likelihood estimation of the FAHMM parameters

using expectation maximisation algorithm is then presented. Due to the flexibility of FAHMMs,

many configurations correspond to standard systems. Finally, implementation issues including

initialisation, parameter sharing and numerical accuracy are considered.

5.1 Factor Analysed Hidden Markov Models

Factor analysis was described in Chapter 3 as an example of a static linear Gaussian model.

Standard factor analysis may be extended to employ Gaussian mixture models as the observa-

tion noise. This is called shared factor analysis [46]. In factor analysed hidden Markov models

the factors (state vector) are generated by an underlying mixture of Gaussians HMM. The obser-

vation process parameters are chosen by the current HMM state.

5.1.1 Generative Model of FAHMM

The factor analysed hidden Markov model is a dynamic state space generalisation of a multiple

component factor analysis system. The k-dimensional state vectors are generated by a standard

diagonal covariance Gaussian mixture HMM. The p-dimensional observation vectors are gener-

ated by a multiple noise component factor analysis observation process. A generative model for

the FAHMM can be described as follows1

1The ∼ symbol in qt ∼ P (qt|qt−1) is used to represent a discrete Markov chain. Normally it means the variable on

the left hand side is distributed according to the probability density function on the right hand side as in x ∼ N (µ,Σ).

54
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qt ∼ P (qt|qt−1)

xt = wqt, wj ∼
∑

n

c
(x)
jn N (µ

(x)
jn ,Σ

(x)
jn )

ot = Cqtxt + vqt , vj ∼
∑

m

c
(o)
jmN (µ

(o)
jm,Σ

(o)
jm)

(5.1)

The HMM state transition probabilities from state i to state j are represented by aij and the state

and observation space mixture distributions are described by the mixture weights {c
(x)
jn , c

(o)
jm},

mean vectors {µ
(x)
jn ,µ

(o)
jm} and diagonal covariance matrices {Σ

(x)
jn ,Σ

(o)
jm}.

xt xt+1

ot ot+1

t+1qqt

ω t
(x) ωt+1

(x)

ω t
(o) ωt+1

(o)

Figure 5.1 Dynamic Bayesian network representing a factor analysed hidden Markov model.

Dynamic Bayesian networks (DBN), described in Chapter 3, may be presented in conjunc-

tion with the generative models to illustrate the conditional independence assumptions made

in a statistical model. A DBN describing a FAHMM is shown in Figure 5.1. The square nodes

represent discrete random variables such as the HMM state {qt}, and {ω
(x)
t , ω

(o)
t } which indi-

cate the active state and observation mixture components, respectively. Continuous random

variables such as the state vectors, xt, are represented by round nodes. Shaded nodes depict

observable variables, ot, leaving all the other FAHMM variables hidden. A conditional indepen-

dence assumption is made between variables that are not connected by directed arcs. The state

conditional independence assumption between the output densities of a standard HMM is also

used in a FAHMM.

5.1.2 FAHMM Likelihood Calculation

An important aspect of any generative model is the complexity of the likelihood calculations. The

generative model in Equation 5.1 can be expressed by the following two Gaussian distributions

p(xt|qt = j, ω
(x)
t = n) = N (xt;µ

(x)
jn ,Σ

(x)
jn ) (5.2)

p(ot|xt, qt = j, ω
(o)
t = m) = N (ot;Cjxt + µ

(o)
jm,Σ

(o)
jm) (5.3)
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The likelihood of an observation ot given the state qt = j, state space component ω
(x)
t = n and

observation noise component ω
(o)
t = m can be obtained by integrating the state vector xt out

of the product of the above Gaussians. The resulting likelihood is also a Gaussian and can be

written as

bjmn(ot) = p(ot|qt = j, ω
(o)
t = m,ω

(x)
t = n) = N

(
ot;µjmn,Σjmn

)
(5.4)

where

µjmn = Cjµ
(x)
jn + µ

(o)
jm (5.5)

Σjmn = CjΣ
(x)
jn C ′

j + Σ
(o)
jm (5.6)

Hence, the conditional observation density of a FAHMM state j can be viewed as an M (o)M (x)

component full covariance matrix GMM with mean vectors given by Equation 5.5 and covariance

matrices given by Equation 5.6.

The likelihood calculation requires inverting M (o)M (x) full p by p covariance matrices in

Equation 5.6. If the amount of memory is not an issue, the inverses and the corresponding

determinants for all the discrete states in the system can be computed prior to starting off with

a training iteration or recognition. However, this can rapidly become impractical for a large

system. A more memory efficient implementation requires the computation of the inverses and

determinants for each time instant. These can be efficiently obtained using the following equality

for matrix inverses [52]

(CjΣ
(x)
jn C ′

j + Σ
(o)
jm)−1 = Σ

(o)−1
jm −Σ

(o)−1
jm Cj(C

′
jΣ

(o)−1
jm Cj + Σ

(x)−1
jn )−1C ′

jΣ
(o)−1
jm (5.7)

where the inverses of the covariance matrices Σ
(o)
jm and Σ

(x)
jn are trivial to compute since they are

diagonal. The full matrix, C ′
jΣ

(o)−1
jm Cj + Σ

(x)−1
jn , requires only a k by k matrix to be inverted.

This is faster than inverting full p by p matrices if k � p. The determinants needed in the

likelihood calculations can be obtained using the following equality [52]

|CjΣ
(x)
jn C ′

j + Σ
(o)
jm| = |Σ

(o)
jm||Σ

(x)
jn ||C

′
jΣ

(o)−1
jm Cj + Σ

(x)−1
jn | (5.8)

where the determinants of the diagonal covariance matrices are trivial to compute and often

the determinant of the k by k matrix is obtained as a by-product of its inverse; for example

using Cholesky decomposition [127]. In a large system, a compromise has to be made between

precomputing the inverse matrices and computing them for each time instant. For example,

caching of the inverses can be employed, because some components are likely to be computed

more often than others when pruning is used.

The Viterbi algorithm [125] can be used to produce the most likely state sequence in the

same way as with standard HMMs as described in Chapter 2. The likelihood of an observation

ot given only the state qt = j can be obtained by marginalising the likelihood in Equation 5.4 as

follows

bj(ot) = p(ot|qt = j) =

M(o)
∑

m=1

c
(o)
jm

M(x)
∑

n=1

c
(x)
jn bjmn(ot) (5.9)
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Any Viterbi algorithm implementation, such as the token passing algorithm [131], can easily be

modified to support FAHMMs in this way. The modifications to the forward-backward algorithm

are discussed in the following training section.

5.1.3 Optimising FAHMM Parameters

The maximum likelihood (ML) criterion may be used to optimise the FAHMM parameters. It is

also possible to find a discriminative training scheme such as minimum classification error [122].

However, in this work only ML training is considered. In common with standard HMM training

described in Chapter 2 the expectation maximisation (EM) algorithm is used. The auxiliary

function for FAHMMs can be written as

Q(θ,θ(k)) =
∑

∀Q

∫

P (Q|O,θ(k))p(X |O, Q,θ(k)) log p(O,X , Q|θ)dX (5.10)

where all the possible discrete state and continuous state sequences of length T are included in

the sum and the integral. A sequence of observation vectors is denoted by O = {o1, . . . ,oT },

and X = {x1, . . . ,xT } is a sequence of state vectors. The set of current model parameters is

represented by θ(k).

Sufficient statistics for the first term, P (Q|O,θ(k)), in the auxiliary function in Equation

5.10 can be obtained using the standard forward-backward algorithm described in Chapter 2

with likelihoods given by Equation 5.9. For the state transition probability optimisation, two

sets of sufficient statistics are needed, the posterior probabilities of being in state j at time

t, γj(t) = P (qt = j|O,θ(k)), and being in state i at time t − 1 and in state j at time t, ξij(t) =

P (qt−1 = i, qt = j|O,θ(k)). For the state conditional observation density parameter optimisation,

the component posteriors, γjmn(t) = P (qt = j, ω
(o)
t = m,ω

(x)
t = n|O,θ(k)), have to be estimated.

These can be obtained within the forward-backward algorithm as follows

γjmn(t) =
1

p(O|θ(k))

Ns∑

i=1

aijαi(t− 1)c
(o)
jmc

(x)
jn bjmn(ot)βj(t) (5.11)

where Ns is the number of HMM states in the model, αi(t− 1) is the standard forward and βj(t)

is the standard backward variable defined for HMMs in Chapter 2.

The second term, p(X|O, Q,θ(k)), in the auxiliary function in Equation 5.10 is the state

vector distribution given the observation sequence and the discrete state sequence. Only the

first and second-order statistics are required since the distributions are conditionally Gaussian

given the state and the mixture components. Using the conditional independence assumptions

made in the model, the posterior can be expressed as

p(xt|ot, qt = j, ω
(o)
t = m,ω

(x)
t = n) =

p(ot,xt|qt = j, ω
(o)
t = m,ω

(x)
t = n)

p(ot|qt = j, ω
(o)
t = m,ω

(x)
t = n)

(5.12)

which using Equations 5.2, 5.3 and 5.4 simplifies to a Gaussian distribution with mean vector,
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x̂jmnt, and correlation matrix, R̂jmnt, defined by

x̂jmnt = µ
(x)
jn + Kjmn(ot − Cjµ

(x)
jn − µ

(o)
jm) (5.13)

R̂jmnt = Σ
(x)
jn − KjmnCjΣ

(x)
jn + x̂jmntx̂

′
jmnt (5.14)

where Kjmn = Σ
(x)
jn C ′

j

(
CjΣ

(x)
jn C ′

j + Σ
(o)
jm

)−1
. It should be noted that the matrix inverted in

the equation for Kjmn is the inverse covariance matrix in Equation 5.7 and the same efficient

algorithms presented in Section 5.1.2 apply.

Given the two sets of sufficient statistics above the model parameters can be optimised by

solving a standard maximisation problem. The parameter update formulae for the underlying

HMM parameters in FAHMM are very similar to those for the standard HMM [129] except the

above state vector distribution statistics replace the observation sample moments. Omitting the

state transition probabilities, the state space parameter update formulae can be written as

ĉ
(x)
jn =

T∑

t=1

M(o)
∑

m=1

γjmn(t)

T∑

t=1

γj(t)

(5.15)

µ̂
(x)
jn =

T∑

t=1

M(o)
∑

m=1

γjmn(t)x̂jmnt

T∑

t=1

M(o)
∑

m=1

γjmn(t)

(5.16)

Σ̂
(x)
jn = diag

(

T∑

t=1

M(o)
∑

m=1

γjmn(t)R̂jmnt

T∑

t=1

M(o)
∑

m=1

γjmn(t)

− µ̂
(x)
jn µ̂

(x)′
jn

)

(5.17)

where diag(·) sets all the off-diagonal elements of the matrix argument to zeros. The cross

terms including the new state space mean vectors and the first-order accumulates have been

simplified in Equation 5.17. This can only be done if the mean vectors are updated during the

same iteration, and the covariance matrices and the mean vectors are tied on the same level.

Parameter tying is further discussed in Section 5.2.2.

The new observation matrix, Ĉj , has to be optimised row by row as in SFA [48]. The scheme

adopted in this work closely follows the maximum likelihood linear regression (MLLR) transform

matrix optimisation [33]. The lth row vector ĉjl of the new observation matrix can be written

as

ĉjl = k′
jlG

−1
jl (5.18)



CHAPTER 5. PIECE-WISE CONSTANT STATE EVOLUTION 59

where the k by k matrix Gjl and the k-dimensional column vector kjl are defined as follows

Gjl =
M(o)
∑

m=1

1

σ
(o)2
jml

T∑

t=1

M(x)
∑

n=1

γjmn(t)R̂jmnt (5.19)

kjl =

M(o)
∑

m=1

1

σ
(o)2
jml

T∑

t=1

M(x)
∑

n=1

γjmn(t)
(
otl − µ

(o)
jml

)
x̂jmnt (5.20)

where σ
(o)2
jml is the lth diagonal element of the observation covariance matrix Σ

(o)
jm, otl and µ

(o)
jml

are the lth elements of the current observation and the observation noise mean vectors, respec-

tively.

Given the new observation matrix, the observation noise parameters can be optimised using

the following formulae

ĉ
(o)
jm =

T∑

t=1

M(x)
∑

n=1

γjmn(t)

T∑

t=1

γj(t)

(5.21)

µ̂
(o)
jm =

T∑

t=1

M(x)
∑

n=1

γjmn(t)
(
ot − Ĉjx̂jmnt

)

T∑

t=1

M(x)
∑

n=1

γjmn(t)

(5.22)

Σ̂
(o)
jm =

1

T∑

t=1

M(x)
∑

n=1

γjmn(t)

T∑

t=1

M(x)
∑

n=1

γjmn(t)diag
(

oto
′
t −

[

Ĉj µ̂
(o)
jm

]
[

x̂jmnto
′
t

o′
t

]

−
[

otx̂
′
jmnt ot

]
[

Ĉ
′
j

µ̂
(o)′
jm

]

+
[

Ĉj µ̂
(o)
jm

]
[

R̂jmnt x̂jmnt

x̂′
jmnt 1

] [

Ĉ
′
j

µ̂
(o)′
jm

]
)

(5.23)

Detailed derivation of the parameter optimisation can be found in Appendix D.

A direct implementation of the training algorithm is inefficient due to the heavy matrix com-

putations required to obtain the state vector statistics. An efficient two level implementation

of the training algorithm is presented in Section 5.2.4. Since the noise covariance matrices are

assumed to be diagonal there is no need to compute the off-diagonal elements in Equations 5.17

and 5.23.

5.1.4 Standard Systems Related to FAHMMs

A number of standard systems can be related to FAHMMs. Since the FAHMM training algorithm

described above is based on the EM algorithm, it is only applicable if there is observation noise.
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Some of the related systems have the observation noise set to zero, which means that different

optimisation methods have to be used. The related systems are presented in Table 5.1 and their

properties are further discussed below.

Table 5.1 Standard systems related to FAHMMs. FAHMM can be converted to the systems on the left hand

side by applying the restrictions on the right.

System Relation to FAHMMs

HMM M (x) = 0

SFA M (x) = 1

dynamic IFA M (o) = 1

STC k = p and vt = 0

Covariance EMLLT k > p and vt = 0

• By setting the number of state space mixture components to zero, M (x) = 0, FAHMM

reduces to a standard diagonal covariance Gaussian mixture HMM. The observation noise

acts as the state conditional output density of the HMM, and the observation matrix is

made redundant because no state vectors will be generated.

• By setting the number of state space mixture components to one, M (x) = 1, FAHMM

corresponds to SFA [48]. Even though the continuous state space distribution parameters

are modelled explicitly, there are effectively an equal number of free parameters in this

FAHMM and SFA which assumes a continuous state distribution with a zero mean and an

identity covariance matrix.

• By setting the number of observation space distribution components to one, M (o) = 1,

FAHMM corresponds to a dynamic version of IFA [2]. The only difference to the stan-

dard IFA is the independent state vector element (factor) assumption which would require

a multiple stream (factorial) HMM [43] with 1-dimensional streams in the state space.

Effectively, multiple streams can model a larger number of distributions, but the inde-

pendence assumption is relaxed in this FAHMM, assuming uncorrelated factors instead of

independent.

• By setting the observation noise to zero, vt = 0, and setting the state space dimensionality

equal to the observation space dimensionality, k = p, FAHMM reduces to a semi-tied

covariance matrix HMM. The only difference to the original STC model [34] is that the

mean vectors are also transformed in a FAHMM.

• By setting the observation noise to zero, vt = 0, and setting the state space dimensionality

to greater than the observation space dimensionality, k > p, FAHMM becomes a covariance

version of the extended maximum likelihood linear transformation (EMLLT) [99] scheme

described in Chapter 2. The FAHMM is based on a generative model which requires every
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state space covariance matrix to be a valid covariance matrix; that is, positive definite.

However, EMLLT directly models the inverse covariance (precision) matrices and allows

“negative” variance elements as long as the resulting inverse covariance matrices are valid.

5.2 Implementation Issues

When factor analysed HMMs are used for large vocabulary continuous speech recognition (LVCSR)

there are a number of efficiency issues that must be addressed. As EM training is being used to

iteratively find the ML estimates of the model parameters, an appropriate initialisation scheme

is essential. Furthermore, in common with standard LVCSR systems, parameter tying may be

required for robust parameter estimation. In addition, there are a large amount of matrix oper-

ations that need to be computed. Issues with numerical accuracy have to be considered. Finally,

as there are two sets of hidden variables in FAHMMs, an efficient two level training scheme is

presented.

5.2.1 Initialisation

One major issue with the EM algorithm is that there may be a number of local maxima. An

appropriate initialisation scheme may improve the chances of finding a good solution. A sensible

starting point is to use a standard HMM. Although this maybe a local maximum for the trained

HMM, the experiments later in this work show that this is not the case for the initial FAHMM.

A single Gaussian mixture component HMM can be converted to an equivalent FAHMM when

k ≤ p as follows

µ
(x)
j = µj[1:k] (5.24)

Σ
(x)
j =

1

2
Σj[1:k] (5.25)

µ
(o)
j =

[

0

µj[k+1:p]

]

(5.26)

Σ
(o)
j =

[
1
2Σj[1:k] 0

0 Σj[k+1:p]

]

(5.27)

Cj =

[

I [k]

0

]

(5.28)

where I [k] is a k by k identity matrix, µj[1:k] represents the first k elements of the mean vector

and Σj[1:k] is the upper left k by k submatrix of the covariance matrix associated with state j

of the initial HMM. As an example initialisation for FAHMM with k = 2p, the following may be
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used

µ
(x)
j =

[

µj

0

]

(5.29)

Σ
(x)
j =

[
1
4Σj 0

0
1
4Σj

]

(5.30)

µ
(o)
j = 0 (5.31)

Σ
(o)
j =

1

2
Σj (5.32)

Cj =
[

I [k] I [k]

]

(5.33)

Initialisation schemes for an arbitrary k may be found by combining these two approaches.

The above initialisation schemes guarantee that the average log-likelihood of the training

data is equal to the one obtained using the original HMM. The equivalent FAHMM system can

also be obtained by setting the observation matrices equal to zero and initialising the observation

noise as the HMM output densities. However, the proposed method can be used to give more

weight on certain dimensions and can provide better convergence. Here it is assumed that the

first k observation vector elements are the most significant. In the experiments, the state space

dimensionality was often chosen to be k = 13, which corresponds to the static parameters in a

standard 39-dimensional observation vector.

Alternative observation vector element selection techniques such as the Fisher ratio [63] can

also be used within this initialisation scheme. For the Fisher ratio, within and between class

(state) covariance matrices have to be calculated. The within class covariance is defined as

Σ
(w) =

1

Ns

Ns∑

j=1

(
∑T

t=1 γj(t)(ot − µj)(ot − µj)
′

∑T
t=1 γj(t)

)

(5.34)

where Ns is the total number of states in the system. The between class covariance is given by

Σ
(b) =

1

Ns

Ns∑

j=1

(µj − µg)(µj − µg)
′ (5.35)

where µg is the global mean of the data. The Fisher ratio for the ith observation vector element

is given by

Fi =
Σ

(b)
ii

Σ
(w)
ii

(5.36)

which is based on the assumptions that the elements of the observation vector are uncorrelated

and that the observation vectors within each class are Gaussian distributed with equal variance.

For the initialisation, observation vector elements with the highest Fisher ratio may be selected.

5.2.2 Parameter Sharing

As discussed in Section 3.5.2, the number of free parameters per FAHMM state, η, is the same

as a factor analysis with Gaussian mixture models. Table 5.2 summarises the numbers of free
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parameters per HMM and FAHMM state2. Usually the dimensionality of the observation space is

p = 39 and the number of mixture components in a diagonal covariance HMM up to M (o) = 32.

The dimensionality of the state space, k, and the number of observation noise components,M (o),

have the largest influence on the complexity of FAHMMs.

Table 5.2 Number of free parameters per HMM and FAHMM state, η, using M (x) state space components,

M (o) observation noise components and no sharing of individual FAHMM parameters. Both diagonal covari-

ance and full covariance matrix HMMs are shown.

System Free Parameters (η)

diagonal covariance HMM 2M (o)p

full covariance HMM M (o)p(p+ 3)/2

FAHMM 2(M (x) − 1)k + pk + 2M (o)p

When context-dependent HMM systems are trained, the selection of the model set is of-

ten based on decision-tree clustering [7] as discussed in Chapter 2. However, implementing

decision-tree clustering for FAHMMs is not as straightforward as for HMMs. Clustering based

on single mixture component HMM statistics is not globally optimal for HMMs [98]. Since the

FAHMMs can be viewed as full covariance matrix HMMs, decision-tree clustered single mixture

component HMM models may be considered as a sufficiently good starting point for FAHMM

initialisation. The initialisation of the context-dependent models can be done the same way as

using standard context-independent HMMs described in Section 5.2.1.

In addition to state clustering, it is sometimes useful to share some of the individual FAHMM

parameters. It is possible to tie any number of parameters between an arbitrary number of mod-

els at various levels of the model. For example, the observation matrix can be shared globally or

between classes of discrete states as in semi-tied covariance HMMs [34]. A global observation

noise distribution could represent a stationary noise environment corrupting all the speech data.

Implementing arbitrary tying schemes is closely related to those used with standard HMM sys-

tems [129]. Sufficient statistics required for the tied parameter are accumulated over the entire

class sharing it before updating. If the mean vectors and the covariance matrices of the state

space noise are tied on a different level, all the cross terms between the first-order accumulates

and the updated mean vectors, µ̂jn, have to be used in the covariance matrix update formula.

Equation 5.17, including all the cross terms, can be written as

Σ̂
(x)
jn = diag

(

T∑

t=1

M(o)
∑

m=1

γjmn(t)
(
R̂jmnt − x̂jmntµ̂

(x)′
jn − µ̂

(x)
jn x̂′

jmnt + µ̂
(x)
jn µ̂

(x)′
jn

)

T∑

t=1

M(o)
∑

m=1

γjmn(t)

)

(5.37)

where the first-order accumulates,
∑

t

∑

m γjmn(t)x̂jmnt, may be different to those used for the

mean vector update in Equation 5.16.

2The mixture weights are discarded for brevity.
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5.2.3 Numerical Accuracy

The matrix inversion described in Section 5.1.2 and the parameter estimation require many

matrix computations. Numerical accuracy may become an issue due to the vast amount of

sums of products. In the experiments it was found that double precision had to be used in all

the intermediate operations to guarantee that the full covariance matrices were non-singular.

Nevertheless, single precision was used to store the accumulates and model parameters due to

the issue of memory usage.

A large amount of training data is required to get reliable estimates for the covariance ma-

trices in a LVCSR system. Sometimes the new variance elements may become too small for

likelihood calculations. If any variance element becomes too small within the machine preci-

sion, a division by zero will occur. To avoid problems with FAHMMs the full covariance matrices

in Equation 5.6 must be guaranteed to be non-singular. The matrix C jΣ
(x)
jn C ′

j is at most rank k

provided the state space variances are valid. Therefore, it is essential that the observation noise

variances are floored properly. In the experiments it was found that the flooring scheme usu-

ally implemented in HMM systems [129] is sufficient for the observation variances in FAHMMs.

With very large model sets the new estimates for the state space variances may become negative

due to insufficient data for the component. In the experiments such variance elements were not

updated.
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Figure 5.2 Auxiliary function values versus within iterations during 3 full iterations of two level FAHMM

training.

5.2.4 Efficient Two Level Training

To increase the speed of training, a two level algorithm is adopted. The component specific first

and second-order statistics form the sufficient statistics required in the parameter estimation

described in Section 5.1.3. This can be verified by substituting the state vector statistics, x̂jmn(t)

and R̂jmn(t), from Equations 5.13 and 5.14 into the update Equations 5.15-5.23. The sufficient
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statistics can be written as

γ̃jmn =
T∑

t=1

γjmn(t) (5.38)

µ̃jmn =

T∑

t=1

γjmn(t)ot (5.39)

R̃jmn =

T∑

t=1

γjmn(t)oto
′
t (5.40)

Given these accumulates and the current model parameters, θ(k), the required accumulates for

the new parameters can be estimated. Since the estimated state vector statistics depend on

both the data accumulates and the current model parameters an extra level of iterations can be

introduced. After updating the model parameters, new state vector distribution given the old

data accumulates and the new model parameters can be estimated. These within iterations are

guaranteed to increase the log-likelihood of the data. Figure 5.2 illustrates the increase of the

auxiliary function values during three full iterations, 10 within iterations each.
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Figure 5.3 Average log-likelihood of the training data against the number of full iterations for baseline HMM

and an untied FAHMM with k = 13. One level training and more efficient two level training with 10 within

iterations were used.

The efficient training algorithm can be summarised as follows:

1. Collect the data statistics using forward-backward algorithm;
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2. Estimate the state vector distribution p(xt|j,m, n,O,θ
(k));

3. Estimate new model parameters θ̂;

4. If the auxiliary function value has not converged go to step 2 and update the parameters

θ̂ → θ(k+1);

5. If the average log-likelihood of the data has not converged go to step 1 and update the

parameters θ̂ → θ(k+1).

The within iterations decrease the number of full iterations needed in training. The overall

training time becomes shorter because less time has to be spent collecting the data accumu-

lates. The average log-likelihoods of the training data against the number of full iterations are

illustrated in Figure 5.3. Four iterations of embedded training were first applied to the baseline

HMM. The FAHMM system with k = 13 was initialised as described in Section 5.2.1. Both one

level training and more efficient two level training with 10 within iterations, were used and the

corresponding log-likelihoods are shown in the figure.

5.3 Summary

The factor analysed HMM was presented in this chapter. The FAHMM is based on a piece-

wise constant state evolution process and a factor analysis observation process as described

in the generalised linear Gaussian model framework in Chapter 3. The likelihood calculation

and the maximum likelihood parameter optimisation using the EM algorithm were presented.

Some configurations of the FAHMM were related to standard models used in speech recognition.

A number of implementation issues including initialisation and an efficient two level training

scheme were presented.



6

Linear Continuous State Evolution

In this chapter a state space model based on a linear first-order Gauss-Markov state evolution

process with discrete switching variable is described. This switching linear dynamical system

(SLDS) may be viewed as a combination of a hidden Markov model and a linear dynamical

system described in Chapter 3. The theory of SLDS using the generative model framework is

presented. The close relationship between this SLDS and the stochastic segment model (SSM)

is established. The inference algorithms for the SLDS are intractable. Hence, approximate infer-

ence algorithms described in Chapter 4 are presented with applications to SLDS. In particular, an

efficient approximate inference algorithm based on Gibbs sampling is presented. The algorithm

takes advantage of the tractable substructures in the SLDS to reduce the state space the samples

are drawn from. Also, an efficient proposal distribution with a complexity of O(T ) per iteration

is presented. Implementation issues for Gibbs sampling in speech recognition are also discussed.

6.1 Switching Linear Dynamical System

There has been interest in hybrid models since the formulation of efficient training and inference

algorithms for linear dynamical systems and hidden Markov models [8]. These hybrid models

have been called by many names such as switching Kalman filter [93, 95], conditionally Gaussian

model [16, 17], jump Markov linear system [26] and switching linear dynamical system [54,

103, 104, 134]. In this work, the term switching linear dynamical system is used due to its

intuitive connection to a linear dynamical system with switching parameters. The SLDS is closely

related to a stochastic segment model [24, 102] which uses linear dynamical systems as models

for observation dynamics within segments. However, the SSM uses an explicit duration model

and a number of LDSs per segment.

The SLDS may also be viewed as an extension to a factor analysed HMM by adding a better

model for inter-frame correlation. In the SSM the segments are assumed to be independent. The

continuous state vector is reset according to the initial state distribution in the segment bound-

aries. The original SSM also had multiple invariant regions within segments [24]. As the num-

ber of invariant regions in this SSM is increased the system starts converging towards FAHMM.

67



CHAPTER 6. LINEAR CONTINUOUS STATE EVOLUTION 68

Thus, SLDS should provide a better model for inter-frame correlation and co-articulation be-

tween modelling units, because the state vector is propagated over the segment boundaries.

6.1.1 Generative Model of SLDS

In SLDS the state vectors evolve according to a first-order Gauss-Markov process. The generative

model for a SLDS can be expressed as1

qt ∼ P (qt|qt−1)

xt = Aqtxt−1 + wqt , wj ∼
∑

n

c
(x)
jn N (µ

(x)
jn ,Σ

(x)
jn )

ot = Cqtxt + vqt, vj ∼
∑

m

c
(o)
jmN (µ

(o)
jm,Σ

(o)
jm)

(6.1)

where both the state transition matrix, Aj , and the observation matrix, C j, are chosen by the

discrete state, qt = j, and the state evolution and observation noises are Gaussian or Gaussian

mixture model distributed as in the factor analysed HMM presented in Chapter 5. The initial

continuous state is also Gaussian distributed, x1 ∼ N (µ
(i)
j ,Σ

(i)
j ). The standard LDS reviewed

in Chapter 3 uses single Gaussian distributions as the state evolution and the observation noise.

The SLDS training presented later in this chapter can also handle GMMs as the noise sources.

The number of model parameters per state is η = (2 + 2M (x) + k)k + (2M (o) + k)p.

In addition to the generative models, the conditional independence assumptions made in

the model can be illustrated by the dynamic Bayesian network (DBN) on the right hand side

in Figure 6.1. The new discrete state, qt+1, is conditionally independent of the history of the

discrete states given the state at time t. For the FAHMM on the left hand side, both the current

observation vectors, ot, and the continuous state vectors, xt, are conditionally independent of

the history of all the other variables given the current discrete state, qt. For the SLDS, the new

continuous state vector, xt+1, is conditionally independent of the history of all the variables

given the new discrete state, qt+1, and the continuous state vector at time t. The current obser-

vation vector, ot, is conditionally independent of the history given both the current discrete and

continuous state.

The state evolution process in the SSM is a compromise between the FAHMM and SLDS.

Instead of propagating the continuous state vector over the segment boundaries, it is reset ac-

cording to the initial state distribution when the discrete state switches. The generative model

of the SSM can be expressed as

1The ∼ symbol in qt ∼ P (qt|qt−1) is used to represent a discrete Markov chain. Normally it means the variable on

the left hand side is distributed according to the probability density function on the right hand side as in x ∼ N (µ,Σ).
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Figure 6.1 Dynamic Bayesian networks representing a FAHMM and SLDS.

qt ∼ P (qt|qt−1)

qt 6= qt−1 : xt ∼ N (µ
(i)
qt ,Σ

(i)
qt )

qt = qt−1 : xt = Aqtxt−1 + wqt , wj ∼ N (µ
(x)
j ,Σ

(x)
j )

ot = Cqtxt + vqt , vj ∼ N (µ
(o)
j ,Σ

(o)
j )

(6.2)

The resetting of the continuous state cannot be graphically expressed in a DBN without introduc-

ing auxiliary switching parameters and is therefore omitted. In the original work [24], the noise

sources were assumed to be single Gaussian distributions. Later in this work, this assumption

is relaxed since the approximate inference scheme allows GMMs to be used. For the SSM, the

number of model parameters per state is the same as for the SLDS.

The difference between SLDS and SSM can be seen by looking at the continuous state

posteriors with fixed segmentation Q in Figure 6.22. The segmentation was obtained using a

FAHMM system. The posterior means, E{xt|O, Q}, are very similar apart from a few transients

at the segment boundaries, marked by dotted vertical lines. However, the posterior variances,

E{xtx
′
t|O, Q}, differ significantly. Since the continuous state statistics are evaluated over the

entire observation sequence in the case of the SLDS, the transitions are smooth. The propaga-

tion of the continuous state posterior in the SLDS smooths the segment boundaries, whereas the

resetting of the continuous state results in large transients and often larger variance in the SSM.

The large variances at the segment boundaries should result in lower log-likelihoods as well.

6.1.2 Inference and Training

For the FAHMM, inference is simple due to the conditional independence assumption. Both the

standard Viterbi and forward-backward algorithms for the HMMs can be easily implemented for

2The phone labels are based on the 47 phone Resource Management setup (see the HTK “RM Recipe” [129]) and

do not correspond to any phonetic labels.
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Figure 6.2 The posterior mean and variance of the first state vector element for an utterance “What’s the

overall re[source...]”.

FAHMMs in O(T ) by modifying the likelihood calculations as described in Chapter 5. Parameter

optimisation can be carried out using the EM algorithm [21]. Due to the additional level of

hidden parameters, an efficient two level algorithm may be used. The inference for the SSM is

more complicated. The position in the continuous state space depends on the number of frames

spent in the current segment. However, the standard optimisation methods are feasible [102]

as reviewed in Chapter 2.

For the SLDS the inference is intractable. Since the current position in the continuous state

space depends on the entire history of the discrete states, marginalisation becomes prohibitively

expensive. Exact computation of the observation likelihood or the posterior likelihood of the

hidden variables given the observation sequence has to be carried out over O(N T
s ) paths where

Ns is the number of the discrete states. However, given the discrete state sequence and the

mixture component indicator sequences when GMMs are used, inference in the SLDS becomes

tractable. Traditional Kalman filtering and RTS smoothing algorithms presented in Chapter 3

may then be used for inference and, EM algorithm for optimising the model parameters. The

intractable inference also renders any standard decoding algorithm infeasible. Instead of full

decoding, evaluating the performance of a SLDS system may be done if the segmentations of a

number of hypotheses are known. The segmentations for the training and N -best rescoring may

be obtained from a tractable system such as the FAHMM.

The posterior mean vectors may also be used to estimate the true trajectory of the modelled

signal. For all the state space models considered above, the estimated trajectory is obtained
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Figure 6.3 True and estimated trajectories of the first Mel-frequency cepstral coefficient for an utterance

“What’s the overall re[source...]”.

by ôt = CtE{xt|O, Q} + µ
(o)
t . The discrete state sequence may be obtained using a system

based on a tractable model such as the FAHMM. The true and the estimated trajectories are

shown in Figure 6.33, where a three emitting states per phone FAHMM was used to obtain the

discrete state sequence. Single state per phone SLDS and SSM systems were used to compare

the trajectories against the FAHMM for which the state alignment within a model was inferred

using Viterbi alignment. Despite the different continuous state propagation assumptions in SLDS

and SSM, the estimated trajectories are very close which could be predicted from the posteriors

in Figure 6.2. However, the difference compared to the FAHMM trajectory is quite remarkable,

especially at ‘ow’ and ‘ao’, and has been used to argue in favour of the LDSs against HMMs

[24, 31] for speech recognition.

6.1.3 Approximate Inference and Learning

The approximate inference and learning algorithms used in the literature can first be categorised

into deterministic and stochastic methods as described in Chapter 4. The deterministic algo-

rithms used for SLDS include:

• Generalised pseudo Bayesian algorithm of order r (GPB(r)) approximates N t
s mixture

components at time t by a Gaussian mixture with r components using moment matching

3The phone labels are based on the 47 phone Resource Management setup (see the HTK “RM Recipe” [129]) and

do not correspond to any phonetic labels.
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[8, 93]. Usually orders r = 1 and r = 2 have been used. Moment matching can be

shown to be optimal in the Kullback-Leibler sense and it has been shown that the error is

bounded [15] despite the fact that the errors accumulate over time. This kind of collapsing

technique can be used for both filtering and smoothing;

• Expectation Propagation [91] is an iterative algorithm related to GPB(1) where the result-

ing mixture distribution at each time instant is approximated by a single Gaussian. The

use of the expectation propagation algorithm allows the estimates to be refined iteratively.

The first two moments at any time instant can be made arbitrarily close to the first two

moments of the true mixture distribution [54, 55, 134];

• The approximate Viterbi algorithm keeps only the path with the highest log-likelihood

active [103]. Unfortunately, since the observation likelihood depends on the entire history

of the discrete state sequence, a true Viterbi algorithm [125] is not admissible. The ap-

proximate Viterbi algorithm can only be justified if one can argue that the corresponding

positions in the state space are the same for different discrete state sequences. In the ex-

periments, the state evolution process parameters were found to be sufficiently different

to contradict this argument;

• A structured variational approximation [121] exploits the tractable substructures in the

SLDS by decoupling the discrete state evolution from the standard LDS. Instead, a tractable

variational distribution is used as approximate HMM output densities and discrete state

posteriors. The variational approximation consists of alternating between the standard

forward-backward algorithm for HMM and standard inference for LDS. The HMM output

densities are estimated from the sufficient statistics obtained in the LDS inference and

the time varying LDS parameters are obtained using the discrete state posteriors from the

HMM inference [95, 104].

In all the above algorithms, the model parameters are updated using the standard equations

presented in Chapter 3, once the posterior distributions have been estimated. Also, all the

algorithms are based on modifying the distributions or removing some dependencies in the

model. None of them can be guaranteed to converge even in the limit. Employing GMM noise

sources introduces even more approximation errors and is often impossible to implement in

practice. In contrast, the stochastic algorithms do not modify the model structure in any way

and they are guaranteed to converge in the limit.

The stochastic algorithms in the literature are all based on Gibbs sampling, which is one of

the Markov chain Monte Carlo (MCMC) methods [112]. One such algorithm uses an explicit

definition of a backward state space model and it is the first algorithm that implements the

proposal distribution in O(T ) operations [16, 17]. The Gibbs sampling algorithm described in

the following section is very similar to another algorithm [26]. They both take advantage of

backward information filtering which does not require explicit computation of the backward

state space model although implicit assumption of invertible state evolution matrices is made
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[66]. Also, the covariance matrices are assumed to be diagonal and positive definite in this work.

The mean vectors of all the noise sources have been included as well to make the extension to

GMMs natural.

6.2 Rao-Blackwellised Gibbs Sampling

As discussed in Chapter 4, the efficiency of Gibbs sampling depends on the size of the state space

the samples are drawn from. Rao-Blackwellisation [112] can be used to increase the efficiency

of Gibbs sampling for the SLDS. Instead of drawing samples directly from the joint posterior of

the discrete and continuous states4, p(qt,xt|O, q
(n)
−t ,x

(n)
−t ), samples are drawn from the posterior

of the discrete state, P (qt|O, q
(n)
−t ). Standard inference for the posterior of the continuous state

vectors, p(xt|O, Q
(n)), can be used given the estimated discrete state sequence, Q(n).

Rao-Blackwellised Gibbs sampling (RBGS) for the SLDS [26] can be summarised5 as Algo-

rithm 6.

Algorithm 6 Rao-Blackwellised Gibbs sampling for the SLDS

initialise {q
(1)
1 , . . . , q

(1)
T }

for n = 2 to Ni do

draw samples q
(n)
t ∼ P (qt|O, q

(n)
−t ) for all t ∈ [1, T ]

estimate statistics x̂
(n)
t = E{xt|O, Q

(n)} and R̂
(n)
t = E{xtx

′
t|O, Q

(n)}.

end for

Once all Ni iterations are finished, the final estimates can be approximated as follows

γj(t) ≈
1

Ni

Ni∑

n=1

δ(j − q
(n)
t ) (6.3)

x̂t ≈
1

Ni

Ni∑

n=1

x̂
(n)
t (6.4)

R̂t ≈
1

Ni

Ni∑

n=1

R̂
(n)
t (6.5)

which converge almost surely [26] towards the true posterior statistics γj(t) = P (qt = j|O),

x̂t = E{xt|O} and R̂t = E{xtx
′
t|O}. Only estimating the first and second-order statistics

inherently assumes that the continuous state posteriors are Gaussian distributed. In general,

this assumption is not true for the SLDS.

4The sequence q
(n)
−t = {q(n)

1 , . . . , q
(n)
t−1, q

(n−1)
t+1 , . . . , q

(n−1)
T } is defined in the same way as in Chapter 4.

5In the case of Monte Carlo methods, the ∼ symbol is used to indicate that the sample on the left hand side was

drawn from the probability density function on the right hand side. The samples, which always have the superscript

as in q
(n)
j , should not be confused with random variables.
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6.2.1 Efficient Proposal Distribution for SLDS

The proposal distribution has to be estimated for every time instant during each iteration. Thus,

it is essential that the evaluation be efficient. A simple solution to obtain P (qt|O, q
(n)
−t ) would

require running a standard Kalman filter for all the Ns discrete states for every time instance per

iteration since

P (qt = j|O, q
(n)
−t ) ∝ p(O|qt = j, q

(n)
−t )P (qt = j|q

(n)
−t ) (6.6)

Unfortunately, this solution has a complexity of O(T 2) per iteration, since the observation dis-

tributions are dependent on the entire discrete state history. A more efficient algorithm can be

derived using the following result [26]

P (qt|O, q
(n)
−t ) ∝

P (q
(n−1)
t+1 |qt)P (qt|q

(n)
t−1)p(ot|o1:t−1, q

(n)
1:t )

∫

p(ot+1:T |xt, q
(n−1)
t+1:T )p(xt|o1:t, q

(n)
1:t )dxt (6.7)

where the term immediately before the integral, p(ot|o1:t−1, q
(n)
1:t ), and the second term inside

the integral, p(xt|o1:t, q
(n)
1:t ), are given by the standard Kalman filter, described in Appendix E.1,

as follows

p(ot|o1:t−1, q
(n)
1:t ) = N (ot;Ctxt|t−1 + µ

(o)
t ,CtΣt|t−1C

′
t + Σ

(o)
t ) (6.8)

p(xt|o1:t, q
(n)
1:t ) = N (xt;xt|t,Σt|t) (6.9)

Defining parameters C
(f)
t|t+1, µ

(f)
t|t+1 and Σ

(f)
t|t+1 for the likelihood p(ot+1:T |xt, q

(n−1)
t+1:T ) as in Ap-

pendix E.4, the integral in Equation 6.7 can be expressed as the following Gaussian

∫

p(ot+1:T |xt, q
(n−1)
t+1:T )p(xt|o1:t, q

(n)
1:t )dxt =

N (ot+1:T ;C
(f)
t|t+1xt|t + µ

(f)
t|t+1,C

(f)
t|t+1Σt|tC

′(f)
t|t+1 + Σ

(f)
t|t+1)

∝
∣
∣Σt|tP

−1
t|t+1 + I

∣
∣−

1
2 exp

{

x′
t|tP

−1
t|t+1mt|t+1 −

1

2
x′
t|tP

−1
t|t+1xt|t

+
1

2
(mt|t+1 − xt|t)

′P−1
t|t+1

(
P−1
t|t+1 + Σ

−1
t|t

)−1
P−1
t|t+1(mt|t+1 − xt|t)

}

(6.10)

where P−1
t|t+1 and P−1

t|t+1mt|t+1 are obtained using the backward information filter derived in

Appendix E.4

P−1
t|t = C ′

tΣ
(o)−1
t Ct + P−1

t|t+1 (6.11)

P−1
t−1|t = A′

t

(
P−1
t|t Σ

(x)
t + I

)−1
P−1
t|t At (6.12)

with initial condition P −1
T |T+1 = 0 and

P−1
t|t mt|t = P−1

t|t+1mt|t+1 + C ′
tΣ

(o)−1
t (ot − µ

(o)
t ) (6.13)

P−1
t−1|tmt−1|t = A′

t

(
P−1
t|t Σ

(x)
t + I

)−1
P−1
t|t (mt|t − µ

(x)
t ) (6.14)
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with initial condition P −1
T |T+1mT |T+1 = 0. The time varying parameters are chosen by the

current state based on the alignment Q(n). These algorithms differ from the ones in literature

[26] by including the mean vectors which allows an extension to Gaussian mixture model noise

sources.

Finally, the proposal distribution, P (qt|O, q
(n)
−t ), to draw the samples from in Rao-Blackwellised

Gibbs sampling for SLDS can be expressed as

P (qt|O, q
(n)
−t ) ∝

P (q
(n−1)
t+1 |qt)P (qt|q

(n)
t−1)N (ot;Ctxt|t−1 + µ

(o)
t ,CtΣt|t−1C

′
t + Σ

(o)
t )

∣
∣Σt|tP

−1
t|t+1 + I

∣
∣−

1
2

× exp
{

x′
t|tP

−1
t|t+1mt|t+1 −

1

2
x′
t|tP

−1
t|t+1xt|t

+
1

2
(mt|t+1 − xt|t)

′P−1
t|t+1

(
P−1
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(6.15)

This proposal distribution guarantees a complexity of O(T ) per iteration. A detailed derivation

can be found in Appendix G. It should be noted that the predicted backward information filter

estimates P−1
t|t+1 and P−1

t|t+1mt|t+1 given in Equations 6.14 and 6.12, respectively, do not depend

on the current state qt. Thus, only the Kalman filter estimates, xt|t and Σt|t have to be computed

for all the discrete states that the current state may assume.

6.2.2 Gaussian Mixture Models in SLDS

As discussed in Section 6.1.1, Gaussian mixture models may be used as the noise sources for the

SLDS. They can be easily incorporated into the Gibbs sampling framework. In the initialisation

step in Algorithm 6, the mixture component indicator sequences must also be initialised. A

possible initialisation scheme is discussed later in this chapter. Given the fixed state and mixture

component alignments, the Kalman filter described in Chapter 3 may be expressed as

Σt|t = Σt|t−1 −Σt|t−1C
′
t

(
CtΣt|t−1C

′
t + Σ

(o)
t

)−1
CtΣt|t−1 (6.16)

Σt+1|t = At+1Σt|tA
′
t+1 + Σ

(x)
t+1 (6.17)

with initial condition Σ1|0 = Σ
(i)
1 and the mean vectors are given by

xt|t = xt|t−1 + Σt|t−1C
′
t

(
CtΣt|t−1C

′
t + Σ

(o)
t

)−1
(ot − Ctxt|t−1 − µ

(o)
t ) (6.18)

xt+1|t = At+1xt|t + µ
(x)
t+1 (6.19)

with initial condition x1|0 = µ
(i)
1 . The time varying parameters are chosen by the current state,

qt = j, and mixture components, ω(x) = n and ω(o) = m, based on the alignments Q(n), Ω(xn)

and Ω(on), respectively. Also, the backward information filter defined by Equations 6.11-6.14

needs to be based on the current mixture component alignment.

The proposal distribution in Equation 6.15 has to be modified by multiplying it by the mixture

component priors. For example, if a GMM is used as the observation noise distribution, the

proposal distribution has the form

P (qt, ω
o
t |O, q

(n)
−t , ω

(on)
−t ) = P (ωot )P (qt|O, q

(n)
−t ,Ω

(on)) (6.20)
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The proposal distribution may be factored as above, since the mixture components are indepen-

dent of the past and future. The second term, P (qt|O, q
(n)
−t ,Ω

(on)), has to be evaluated for all

M (o) possible mixture components at time t. The predicted backward information filter estimates

P−1
t|t+1 in Equation 6.12 and P−1

t|t+1mt|t+1 in Equation 6.14 needed for the proposal distribution

do not depend on the current time instant. Therefore, these values do not have to be updated

for the mixture component candidates. Only the Kalman filter estimates need to be updated for

all different discrete state and mixture component configurations at time t to find the correct

proposal distribution values. Given M (o) observation noise components and Ns possible states

at a time instant t, the sample has to be drawn from M (o)Ns alternatives.

6.2.3 RBGS in Speech Recognition

The convergence of Gibbs sampling depends heavily on the initialisation and the size of the state

space where the samples are drawn from. The initialisation is discussed in the following sec-

tion. The number of discrete states in a speech recognition system is typically in the thousands.

The state space may be reduced by taking the transition restrictions into account. Since the

transcriptions for the training data and rescoring hypotheses are given, the alignments from the

Gibbs sampling iterations have to satisfy the restrictions imposed by the transcriptions. These

restrictions can be summarised as follows:

• An utterance has to start in the first label in the transcription;

• The correct order of the labels in the transcription has to be retained at all times;

• An utterance has to finish in the last label in the transcription.

An example iteration for an utterance “what” is shown in Figure 6.46. The utterance consists

of three phones ‘w’, ‘ah’ and ‘td’. No samples have to be drawn for the first and the last state

since the transcription starts in the label ‘w’ and finishes in the label ‘td’. The sampling iteration

moves to the right and at time t = 2 the sample has to be drawn from two alternatives, ‘w’

and ‘ah’. Since the state boundaries can move to the left only by a single time instant, a similar

restriction is imposed on movements to the right. Therefore, at time t = 3 no samples have to

be drawn. At time t = 4, no samples can be drawn to retain the correct order of the labels in the

transcription. Finally, the boundary between ‘ah’ and ‘td’ must be contested at time t = 5.

6.2.4 SLDS Initialisation

For the initialisation of the SLDS parameters, a factor analysed HMM may be used. The only

difference between the FAHMM and SLDS is in the state evolution process. Thus, the obser-

vation parameters of a SLDS may be initialised from the FAHMM. The state noise distribution

6The phone labels are based on the 47 phone Resource Management setup (see the HTK “RM Recipe” [129]) and

do not correspond to any phonetic labels.
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Figure 6.4 Example iteration of Gibbs sampling for utterance “what”.

of the FAHMM may be used as the initial state distribution, the state evolution matrix may be

initialised as an identity matrix, and the state evolution noise with zero mean and covariance

from the FAHMM state noise distribution. Gaussian mixture models may also be initialised from

a multiple component FAHMM. However, initialising GMMs in the state evolution noise is not

as straightforward as in the observation noise. Thus, GMMs in the state evolution noise is not

considered in this work.

The initial discrete state segmentation, {q
(1)
1 , . . . , q

(1)
T }, for Gibbs sampling may be obtained

by using the FAHMM system to align the training data and the rescoring hypotheses. This should

be a reasonable initialisation if the same FAHMM system is used in the parameter initialisation.

For Gaussian mixture models in the observation noise, the initial mixture component sequence,

{ω
(o1)
1 , . . . , ω

(o1)
T }, may also be obtained by using the FAHMM system alignments. The most likely

mixture components are recorded during the Viterbi alignment the same way as in the discrete

state alignment.

6.2.5 Parameter Optimisation

The Gibbs sampling outlined above explores different segmentations of the training data and,

given the initialisation is satisfactory, only a few samples have to be drawn to get reasonable

estimates for the state posteriors. The standard expectation maximisation algorithm [21] can

be generalised by using a Monte Carlo approximation in the E step. In the case where multiple

samples are drawn, this is known as Monte Carlo EM (MCEM) [126]. The auxiliary function of
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the SLDS for the EM algorithm can be expressed as

Q(θ,θ(k)) =
∑

∀Q

∫

p(X, Q|O,θ(k)) log p(O,X, Q|θ)dX (6.21)

Using standard techniques to maximise the log-likelihood of the data, the new discrete state

parameters are given by

âij =

T∑

t=2

ξij(t)

T∑

t=2

γi(t− 1)

(6.22)

where ξij(t) = P (qt−1 = i, qt = j|O) must be replaced by the counts of the hypothesised

transitions from state i to j and γj(t) as defined in Equation 6.3.

The new linear dynamical system parameters are updated according to the standard formu-

lae where sufficient statistics are accumulated along the fixed discrete state and possible mixture

component indicator sequences. The observation process parameters are updated as follows

Ĉj =
( ∑

t∈ψ
(o)
tj

otx̂
′
t −

1

T
(o)
j

∑

t∈ψ
(o)
tj

ot
∑

t∈ψ
(o)
tj

x̂′
t

)( ∑

t∈ψ
(o)
tj

R̂t −
1

T
(o)
j

∑

t∈ψ
(o)
tj

x̂t
∑

t∈ψ
(o)
tj

x̂′
t

)−1
(6.23)

µ̂
(o)
jm =

1

T
(o)
jm

∑

t∈ψ
(o)
tjm

(
ot − Ĉjx̂t

)
(6.24)

Σ̂
(o)
jm =

1

T
(o)
jm

∑

t∈ψ
(o)
tjm

(

oto
′
t −

[

Ĉj µ̂
(o)
jm

] [

otx̂
′
t ot

]′ )

(6.25)

where ψ
(o)
tj is the set of time indexes where qt = j, T

(o)
j is the total number these time indexes,

ψ
(o)
tjm is the set of time indexes where qt = j and ω

(o)
t = m, and T

(o)
jm is the total number of these

time indexes. The state evolution parameters are updated as follows

Âj =
( ∑

t∈ψ
(x)
tj

R̂t−1,t −
1

T
(x)
j

∑

t∈ψ
(x)
tj

x̂t
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×
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(6.26)

µ̂
(x)
j =

1

T
(x)
j

∑

t∈ψ
(x)
tj

(
x̂t − Âjx̂t−1

)
(6.27)

Σ̂
(x)
j =

1

T
(x)
j

∑

t∈ψ
(x)
tj

(

R̂t −
[

Âj µ̂
(x)
j

] [

R̂t−1,t x̂t

]′ )

(6.28)

where ψ
(x)
tj is the total number of time indexes where qt = j not including t = 1, and T

(x)
j is the
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total number of these time indexes. The initial continuous state parameters are given by

µ̂
(i)
j =

1

T
(i)
j

∑

t∈ψ
(i)
tj

x̂t (6.29)

Σ̂
(i)
j =

1

T
(i)
j

∑

t∈ψ
(i)
tj

R̂t − µ̂(i)µ̂(i)′ (6.30)

where ψ
(i)
tj is the set of time indexes immediately after switching occurred, and T

(i)
j is the total

number of these time indexes. These update formulae are based on the assumption that the

posteriors are single component Gaussians. For the SLDS this is not true since there should

be NT
s posterior components at every time instance in an utterance. Thus, the convergence of

MCEM cannot be guaranteed.

An alternative approach to parameter update is to use a single most likely discrete state

sequence (MLSS) found during RBGS and update the LDS parameters along this path. Given

the discrete state sequence, the continuous state posteriors are distributed according to a single

Gaussian and the standard LDS parameter update formulae may be used. In MLSS training,

only the alignment producing the highest likelihood is used in the update formulae given above.

Full Bayesian learning is not considered in this work since the efficient sampling mechanism

presented in Section 6.2.3 may not be used.

6.3 Summary

The switching LDS was described in this chapter. The LDS is based on a linear first-order Gauss-

Markov state evolution process and a factor analysis observation process presented in Chapter

3. In the SLDS, a set of LDS parameters are chosen by a discrete state with Markovian dy-

namics. Due to exponential growth in the posterior components, inference for the SLDS is

intractable. Thus, standard training and evaluation schemes are not applicable. An efficient

inference scheme based on Rao-Blackwellised Gibbs sampling was presented. Applications of

the RBGS in both training and N -best rescoring in speech recognition were introduced. Also,

Gaussian mixture models may be used as the LDS noise sources. This extension can be easily

incorporated into the Gibbs sampling framework. The initialisation of the model parameters as

well as the state and mixture component alignments for the Gibbs sampling may be obtained

from a closely related FAHMM system.



7

Experimental Evaluation

In this chapter, speech recognition experiments using factor analysed hidden Markov models,

described in Chapter 5, and switching linear dynamical systems, described in Chapter 6, in

acoustic modelling are presented. For initial experiments, a medium vocabulary task, the DARPA

Resource Management (RM) was used. The performance of a FAHMM system was evaluated

against standard HMM and semi-tied full covariance matrix HMM systems on this task. In

addition, the results using SLDS systems are compared to a FAHMM system with a closely related

configuration and an equivalent stochastic segment model. The performance of FAHMM systems

in large vocabulary tasks, Minitrain and Hub5 68h, are also presented. These tasks were based

on the Hub5 evaluation data using Switchboard-I (SWB-I), Switchboard-II (SWB-II) and Call

Home English (CHE) corpora.

7.1 FAHMM Experiments

Speech recognition experiments using FAHMMs in the acoustic modelling are presented in this

section. Initially, a medium vocabulary Resource Management task was used to compare a

FAHMM system with a global observation matrix and 39-dimensional state space and a semi-

tied full covariance matrix HMM system with a global transformation. A HMM system with

diagonal covariance matrix Gaussian mixture models was used as a baseline. The performance

of FAHMMs with different configurations in large vocabulary tasks using Hub5 evaluation data

was also evaluated. Some tying schemes and the selection of state space dimensionality are

discussed at the end of this section.

7.1.1 Resource Management

The single mixture component decision-tree clustered tied-state triphone HMM system was pro-

duced from the initial triphone system described in Appendix A. This baseline HMM system was

built by standard iterative mixture splitting [129] using four iterations of embedded training per

mixture configuration until no decrease in the word error rate was observed. The word error

80
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rates for the full 1200 utterance test set and the number of free parameters per HMM state up to

6 components are presented on the first row in Table 7.1, marked HMM. The best performance

was 3.76% obtained with 10 mixture components. The number of free parameters per HMM

state in the best baseline system was η = 780 per state.

Table 7.1 Word error rates (%) and number of free parameters per state, η, on the RM task (1200 utter-

ances), versus number of mixture components for the observation pdfs, for HMM, STC and GSFA systems.

System M (o) 1 2 3 4 5 6

HMM
η 78 156 234 312 390 468

wer[%] 7.79 6.68 5.05 4.32 4.09 3.99

STC
η 78 156 234 312 390 468

wer[%] 7.06 5.30 4.32 3.93 3.83 3.85

GSFA
η 117 195 273 351 429 507

wer[%] 6.52 4.88 4.28 3.94 3.68 3.77

As an additional baseline a semi-tied full covariance matrix HMM system [34] with global

transformation was built. The single mixture baseline HMM system was converted to the STC

system by incorporating a global full 39 by 39 transformation matrix. The transformation matrix

was initialised to an identity matrix. Thus, the number of free parameters in the STC system

was 1521 more than in the baseline HMM system. Since the number of physical states in the

system was about 1600, the number of model parameters per state, η, would be increased by

less than one. Again, the number of mixture components was increased by the mixture splitting

procedure. Four full iterations of embedded training were used with 20 within iterations and 20

row by row transform iterations [34]. The results are presented on the second row in Table 7.1,

marked STC. The best semi-tied performance was 3.83% obtained with 5 mixture components.

A FAHMM system with state space dimensionality k = 39 and a global observation matrix,

denoted as global shared factor analysis (GSFA), was built for comparison with the STC system

above. The global full 39 by 39 observation matrix was initialised to an identity matrix and the

variance elements of the single mixture baseline HMM system were evenly distributed between

the observation and state space variances as discussed in Section 5.2.1. The number of state

space components was set to one, M (x) = 1, and the observation space components were in-

creased using the mixture splitting procedure. The system corresponds to a global full loading

matrix SFA with non-identity state space covariance matrices. The number of additional free

parameters per state was 39 due to the state space covariance matrices, which could not be

subsumed into the global observation matrix, and 1521 globally due to the observation matrix.

Nine full iterations of embedded training were used, each with 20 within iterations. The results

are presented on the third row in Table 7.1, marked GSFA. The best performance, 3.68%, was

achieved with 5 mixture components in the observation space. The difference in the number of

free parameters between the best baseline, M (o) = 10, and the best GSFA system, M (o) = 5, was

351 per state. Compared to the STC system, GSFA has only 39 additional free parameters per
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state. However, the GSFA system provides a relative word error rate reduction of 4% compared

to the STC system.

These initial experiments showed that a FAHMM could outperform the standard HMM and

STC systems. McNemar’s test [44] was used to obtain the confidence in the significance. How-

ever, the differences between both FAHMM vs. HMM and FAHMM vs. STC were not statistically

significant. It should also be noted that training and recognition using full state space FAH-

MMs is far more complex than using global STC, although a single observation matrix is shared

globally. Since STC does not have observation noise, the global transform can be applied to the

observation vectors in advance and only diagonal covariance matrices can be used in the like-

lihood calculation. So the 39-dimensional state space is not used in the following experiments

using larger tasks.

7.1.2 Minitrain

The Minitrain 1998 Hub5 HTK system [51] was used as a larger speech recognition task. The

system used perceptual linear prediction coefficients derived from a Mel-frequency scale filter-

bank. A total of 13 coefficients, including c0, and their first and second-order regression coef-

ficients were used. Cepstral mean subtraction and variance normalisation was performed for

each conversation side. Vocal tract length normalisation (VTLN) was applied in both training

and test.

Table 7.2 Word error rates (wer%) and number of free parameters per state, η, for the baseline HMM systems

with M (o) components.

M (o) 1 2 4 6 8 10 12 14

η 78 156 312 468 624 780 936 1092

wer% 58.9 56.7 54.0 52.6 51.7 51.6 51.0 51.3

The baseline was a decision-tree clustered tied state triphone HMM system. Cross-word

triphone models with GMMs and three emitting states were used. The 18 hour Minitrain set

defined by BBN [88] containing 398 conversation sides of SWB-I [45] corpus was used as the

acoustic training data. The test data was a subset of the 1997 Hub5 evaluation set [51]. The

subset consisted of 20 conversation sides from SWB-II and CHE. The word error rates against

the number of components for the baseline system are given in Table 7.2. The best baseline per-

formance, 51.0%, was achieved with 12 components which corresponds to η = 936 parameters

per state.

A three state FAHMM system with 13-dimensional state space was built starting from the

single mixture component baseline system. The state space dimensionality was chosen based

on the number of static coefficients in the observation vectors. A separate 39 by 13 observation

matrix was attached to each state. The observation matrices were initialised by setting the top 13

by 13 submatrix as an identity matrix and zeroing the elements otherwise. The first 13 variance
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elements of the HMM models were evenly distributed among the observation and state space

variances as discussed in Section 5.2.1.

Table 7.3 Word error rates (%) and number of free parameters per state, η, on the Minitrain task, versus

number of mixture components for the observation and state space pdfs, for FAHMM system with k = 13.

M (o) 1 2 4
M (x)

1
η 585 663 819

wer[%] 53.3 51.7 51.0

2
η 611 689 845

wer[%] 53.3 51.4 51.3

4
η 663 741 897

wer[%] 53.0 51.0 50.9

6
η 715 793 949

wer[%] 52.8 50.7 51.0

8
η 767 845

wer[%] 52.6 51.0

Mixture splitting was started from the single mixture component baseline system by increas-

ing the number of state space components, while fixing the number of observation space com-

ponents to M (o) = 1. The number of observation space components of a single state space

component system was then increased and fixed to M (o) = 2. The number of the state space

components was again increased until no further gain was achieved and so on. The results

up to the best performance per column are shown in Table 7.3. The same performance as the

best baseline HMM system was achieved using FAHMMs with 2 observation and 4 state space

components, 51.0% (η = 741). The difference in the number of free parameters per state is

considerable: the FAHMM system has 195 fewer than the HMM system. The best FAHMM per-

formance, 50.7% (η = 793), was also achieved using fewer free parameters per state than the

best baseline system, though the improvement is not statistically significant.

These experiments show how the FAHMM system performs in a large vocabulary speech

recognition task when a low dimensional state space is used. However, it should be noted that a

different selection of the state space dimensionality and mixture component configurations may

yield different results. A FAHMM system may even have a different mixture configuration and

state space dimensionality for each state. Choosing the optimal configuration automatically is a

very challenging problem, and it can be expected to improve performance. However, the experi-

ments show how an equivalent and slightly better performance over standard HMM system may

be obtained with considerably fewer parameters using a rather naive configuration.
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7.1.3 Hub5 68 Hour

For the experiments performed in this section, a 68 hour subset of the Switchboard (Hub5)

acoustic training data set was used. 862 sides of the SWB-I [45] and 92 sides of the CHE

were used. The set is described as “h5train00sub” in the CU-HTK March 2000 Hub5 English

transcription system [50]. As with Minitrain, the baseline was a decision-tree clustered tied

state triphone HMM system with the same front-end, cross-word models and GMMs. The 1998

Switchboard evaluation data set containing 40 sides of SWB-II and 40 sides of CHE were used

for testing.

Table 7.4 Word error rates (%) and number of free parameters per state, η, on the Hub5 68 hour task, versus

number of mixture components for the observation pdfs, for HMM, STC, SFA and GSFA systems with k = 13.

SFA is a FAHMM with a single state space mixture component, M (x) = 1. SFA has state specific observation

matrices whereas STC and GSFA have global ones.

System M (o) 1 2 4 6 8 10 12 14 16

HMM
η 78 156 312 468 624 780 936 1092 1248

wer[%] 55.1 52.4 49.6 48.5 47.7 47.2 46.7 46.5 46.5

STC
η 78 156 312 468 624 780 936 1092 1248

wer[%] 54.3 50.4 48.4 47.3 46.7 46.3 46.3 45.8 45.7

SFA
η 585 663 819 975 1131 1287 1443 1599 1755

wer[%] 49.1 48.0 47.2 46.6 46.3 46.4 46.0 45.8 45.9

GSFA
η 91 169 325 481 637 793 949 1105 1261

wer[%] 55.2 52.1 49.4 48.4 47.4 46.9 46.7 46.4 46.1

The baseline HMM system word error rates with the number of free parameters per state are

presented on the first row in Table 7.4, marked HMM. The word error rate of the baseline system

went down to 45.7% with 30 mixture components. However, the number of free parameters

in such a system is huge, η = 2340 per state. The 14 component system was a reasonable

compromise because the word error rate, 46.5%, seems to be a local stationary point. As an

additional baseline a global semi-tied covariance HMM system was trained in the same way as

in the RM experiments. The results for the STC system are presented on the second row in

Table 7.4, marked STC. The best performance, 45.7%, in the STC system was obtained using 16

components. Again, this shows how only one semi-tied transformation should provide a better

model for the intra-frame correlation with considerably fewer components.

A FAHMM system with state space dimensionality k = 13 was built starting from the single

mixture component baseline system. The initialisation and mixture splitting were carried out

the same way as in the Minitrain experiments in Section 7.1.2. Due to the large number of

states in the system it was not practical to test every configuration. The most interesting results

here are achieved using only one state space component which corresponds to SFA. The results

are presented on the third row in Table 7.4, marked SFA. However, increasing only the number

of state space components with a single observation space component, M (o) = 1, (IFA) did not
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show much gain. This is probably due to the small increase in the number of model parameters

in such a system. Also, the Switchboard data may benefit from more complex observation noise

distributions due to the challenging background noise. It is worth noting that the best baseline

performance was achieved using FAHMMs with considerably fewer free parameters. The 12

component baseline performance, 46.7% (η = 936), was achieved by using FAHMMs with fewer

parameters – namely M (o) = 2 and M (x) = 8 which corresponds to η = 845 free parameters per

state.

7.1.4 Observation Matrix Tying

As discussed in Chapter 5, the observation matrix has a large influence on the number of free

parameters in FAHMM. Often in transformation schemes such as STC and HLDA, the transforma-

tion is shared globally or among a class of states. To see how the tying of observation matrices

in FAHMMs influence the results, a system with state space dimensionality k = 13 and a global

observation matrix C was built starting from the single mixture component baseline system as

usual. The initialisation was carried out in the same way as in the Minitrain experiments in

Section 7.1.2.

Table 7.5 Word error rates (%), number of free parameters per state, η, and average log-likelihood scores,

ll, on training data on the Hub5 68 hour task for 12-component HMM, STC, GSFA, 65SFA and SFA systems

with k = 13.

System wer[%] η ll

HMM 46.7 936 -67.192

STC 46.3 936 -63.510

GSFA 46.7 949 -64.443

65SFA 46.7 949 -64.394

SFA 46.0 1443 -63.829

As previously noted, only systems with varying numbers of observation noise components

were examined. The results for the single state space component system are presented on the

fourth row in Table 7.4, marked GSFA. The 12 observation space component system achieved

the same performance as the 12 component baseline system, but further increasing the number

of components proved to be quite interesting. The 16 observation space component system

achieved 46.1% (η = 1261), the same performance as 24 component baseline system, but with

611 free parameters fewer. It should also be noted that the STC system outperforms these

configurations of FAHMMs in this task, although the improvement is not statistically significant.

The final log-likelihood scores on the training data for the 12 component systems are shown

in Table 7.5. Surprisingly, the log-likelihood for the STC system was the highest even though

the number of free parameters is the highest for SFA. This may be a result of the more efficient

STC training algorithm, which includes the row by row transform iterations [34] as well as the

within iterations.
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Instead of using only a global observation matrix, a binary regression class tree may be used

to cluster the states of the single mixture component baseline HMM and an observation ma-

trix may be shared among all the states in one regression class. A centroid-splitting algorithm,

using a Euclidean distance measure, was used to grow the regression tree in common with

the regression class tree construction described in Chapter 2. Instead of clustering the mixture

components, each leaf node specified a particular state cluster. A similar clustering for HLDA

transforms has been found to yield better performance compared to a single transform setup

[80]. In common with the HLDA system, all the silence states were assigned to a single obser-

vation matrix class while all the speech states were clustered into 64 classes. The performance

of this 65 observation matrix SFA system, marked by 65SFA in Table 7.5, was not better than

GSFA with more than 10 components. The average log-likelihood on the training data is better,

as expected, due to the increased number of model parameters.

7.1.5 Varying State Space Dimensionality

In all of the experiments reviewed above, the state space dimensionality was chosen to be k =

13. This decision was based on the number of static observation vector elements used by the

front-end. However, finding the optimal state space dimensionality is not an easy problem.

Automatic complexity control for HLDA systems has previously been studied [81, 80]. However,

another variable to be considered by the complexity control schemes is the number of mixture

components. Optimising the state space dimensionality and the number of mixture components

simultaneously is a standard problem. This issue is not considered in this work.
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Figure 7.1 The word error rate against the state space dimensionality on the Hub5 68h FAHMM experiments.
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Ultimately, the criterion for complexity control should be the word error rate on unseen data.

For the FAHMM experiments using the Hub5 68h training data set, performance on the test data

is shown in Figure 7.1 for single component and 12 component systems with varying state

space dimensionalities. It should be noted that the minimum WER for the different component

configuration was achieved with different dimensionalities. For the single component system the

best performance was found with 15-dimensional and for the 12 components system with 11-

dimensional state space. It could be argued that the initialisation scheme described in 5.2.1 is not

reasonable for different dimensionalities. However, it was found that no significant improvement

was achieved by using the Fisher ratio in the initialisation. Also, the average log-likelihood

scores on the training data were not significantly different, which suggests that the initialisation

described in Chapter 5 is not sensitive to ordering of the observation vector elements. Given the

results in Figure 7.1, the decision to use 13-dimensional state space in the experiments above

seems reasonable.

Also, the sharing scheme influences the decision of the state space dimensionality. In STC

systems, full transform matrices are used [34]. Tying the transforms either globally or within a

small number of classes keeps the increase in the number of model parameters low. With full

state space dimensionality k = p in FAHMMs, tying of the observation matrices should be used

as in the Resource Management experiments outlined above. Also, the training and recognition

time increases significantly when using a large state space dimensionality. Thus, k = p was

not used in the Switchboard experiments. For the STC and HLDA, training and recognition are

more efficient since, after applying the projections, likelihood calculation operates on diagonal

covariance matrices. This is not possible with the FAHMM.

7.2 SLDS Experiments

In this section, experiments using SLDSs on the RM task are presented. The aim of the first

group of experiments was to make a clean comparison between systems using different state

evolution assumptions. Also the SLDS and SSM systems were compared using the fixed align-

ment and Rao-Blackwellised Gibbs sampling based training and evaluation schemes to see how

the resetting of the state vector in SSM influences the results. Even though exact inference is

possible for the SSM, it cannot be extended to include Gaussian mixture models in the noise

sources.

Two forms of SLDS were examined. The first used a single discrete state model for each

of the context dependent phones. In this case all the variations withing the phone are mod-

elled by the first-order Gauss-Markov state evolution process. The second used a standard three

discrete states model. This is closely related to the multiple invariant region scheme for SSMs

[24]. Decision-tree clustering was applied to the initial triphone models described in Appendix

A to make the final model sets. The clustering was done in both model (single state systems)

and state level (three state systems) to produce two different systems. Furthermore, two ob-

servation vector configurations based on MFCCs were used, the 13-dimensional (p = 13) and
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the 39-dimensional (p = 39). A 13-dimensional state space (k = 13) was used for all the con-

figurations. In some of the experiments, two component observation mixture configurations

were used. Finally, experiments on a SLDS based on linear second-order Gauss-Markov process,

k = 2p, are presented.

7.2.1 Single State System Training

The baseline FAHMM with 13-dimensional state space was based on a HMM system with three

emitting states. All the FAHMM parameters apart from the continuous state space mean vectors

were tied at the model level. However, the SLDS system had a single discrete state per model.

The observation process parameters of SLDS and SSM systems were initialised based on the

baseline FAHMM. Both the SLDS and SSM systems used a single set of LDS parameters per

triphone. The initial continuous state vector distribution was initialised to the parameters of the

first emitting state of the baseline FAHMM. The state evolution noise mean vectors were set to

zeroes and the variances equal to the initial state variances. The state transition matrices, Aj ,

were all initialised to an identity matrix. The standard initialisation scheme was described in

Chapter 6. By tying the FAHMM parameters this way, it is possible to see how the different state

evolution assumptions, piece-wise constant in the FAHMM and linear continuous in the SLDS

and SSM, perform on the same task with approximately equal complexity.

The baseline FAHMM system was used to align the training data and produce the aligned

100-best lists. The training data with fixed phone level alignments was used to train the SLDS

and SSM systems with the EM algorithm. For the FAHMM, the Baum-Welch algorithm [9] was

used to infer the discrete state alignments keeping the model alignments fixed. In this way the

algorithm could find the optimal discrete state alignments within the fixed phone segments.

The average log-likelihood of the training data against the number of iterations are shown

in Figure 7.2. The first four iterations correspond to the baseline FAHMM training with full

Baum-Welch algorithm, which does not assume fixed phone segments. The last nine iterations

correspond to training with fixed phone level alignments. Therefore, the increase in the FAHMM

log-likelihood is very small after the fourth iteration. For the SLDS training with the fixed phone

level alignments, the log-likelihood increased slowly. The larger number of free model parame-

ters resulted in higher final log-likelihoods compared to the FAHMM system. Also the initialisa-

tion of the state evolution parameters could not guarantee equal log-likelihood to the FAHMM

system after the first training iteration.

The Monte Carlo EM algorithm described in Chapter 6 used the sufficient statistics from 5

iterations of Rao-Blackwellised Gibbs sampling in parameter estimation. For the MCEM the log-

likelihood always increased, though not as smoothly, and yielded a lower final log-likelihood

than the fixed alignment training in Figure 7.2. As discussed in Chapter 6, the MCEM is not

guaranteed to increase the log-likelihood. As MCEM gave a significantly worse performance

than other forms of training and was not investigated further.

The maximum likelihood state sequence training, described in Chapter 6, uses the sufficient
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Figure 7.2 Average log-likelihood of the training data against the number of iterations.

statistics from the iteration of RBGS with highest log-likelihood in parameter estimation. The

MLSS training log-likelihoods with 5 iterations of Gibbs sampling are also shown in Figure 7.2.

MLSS training clearly finds alignments with higher log-likelihood than using the fixed align-

ments. The maximum log-likelihood value was found during the first 5 sampling iterations with

these model and data sets. A higher number of iterations up to 1000 for some utterances, were

tested with no significant improvement.

The same training scheme was applied to the SSM. Despite a tractable training scheme exist-

ing for the SSM, the MLSS training was used to enable extension to multiple component noise

distributions. The standard SSM training also used a Viterbi-style training scheme where max-

imum likelihood state sequence was used in the parameter optimisation [24]. Since the initial

alignments from the FAHMM system should be reasonable, the MLSS training should find an

alignment very close to the one using the Viterbi-style training.

7.2.2 Single State System Results

Evaluation of the speech recognition performance of the SLDS and SSM in acoustic modelling

was performed using N -best rescoring. The full 1200 test utterances, test, the February 1989,

feb89, and a randomly selected 300 utterance subset of the training data, train, were used for

evaluation. The full decoding results of the baseline FAHMM system may be used as benchmarks

for the rescoring. It is also interesting to know the range of performance which it is possible to

obtain with the N -best lists.

The full decoding word error rates for the 13 and 39-dimensional baseline FAHMMs are
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Table 7.6 Number of free parameters per model and full decoding results for the 13 and 39-dimensional single

and two observation noise component baseline FAHMMs on the 1200 utterance test set and 300 utterance

train set.

Task
13-dim FAHMM 39-dim FAHMM

M = 1 M = 2 M = 1 M = 2

η 221 247 611 689

test 19.39 17.60 8.85 7.28

train 6.37 4.37 1.28 0.60

shown in Table 7.6. Also, the number of free parameters per model is given. As a reference, it

is interesting to compare these results to the FAHMM results in Section 7.1.1. Due to the non-

standard model clustering, tying schemes and lower state space dimensionality, the baseline

FAHMM results are far from the best achievable. The 39-dimensional single component baseline

FAHMM results on the test set are 2.33% absolute worse than the GSFA with 351 free param-

eters per model in Section 7.1.1. The results also show that an increased number of parameters

does not always yield better recognition results. However, non-standard clustering and tying

were used to make a clean comparison between the different state evolution assumptions in the

FAHMM and SLDS systems with similar complexity. These baseline FAHMM systems were used

to produce the 100-best lists for the rescoring experiments below.

Table 7.7 The “oracle – idiot” word error rates for the 13 and 39-dimensional baseline FAHMMs. These give

the limits for the word error rates that may be obtained by rescoring the corresponding 100-best lists.

Task
13-dim FAHMM 39-dim FAHMM

M = 1 M = 2 M = 1 M = 2

test 5.28 - 60.31 4.59 - 59.14 1.13 - 59.47 0.73 - 57.02

train 0.19 - 44.20 0.11 - 42.61 0.0 - 44.88 0.0 - 42.73

To give an idea of the range of the word error rates that may be obtained by rescoring

the 100-best lists, the “oracle” (best) and “idiot” (worst) error rates are shown in Table 7.7.

Comparing these numbers to the full decoding results in Table 7.6 confirm that better results

may be obtained using improved models. Also the range is large enough to generate an accurate

picture of whether the new models are reasonable or not. For example, the 100-best list produced

by the 39-dimensional baseline FAHMM contain the correct transcriptions, but may still yield

error rates of over 40%.

Since a model with completely different state evolution assumption was used to produce the

N -best lists, it should be large enough to contain a variety of hypotheses to minimise the cross-

system effect. The baseline FAHMM system might confuse completely different transcriptions

compared to the SLDS system. The word error rates for the test data against the number of

hypotheses for the SLDS with fixed aligned N -best rescoring is shown in Figure 7.3. The error

rates varied significantly up to about 20 hypotheses and 50-best rescoring seems to give slightly
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Figure 7.3 Word error rate for the 1200 utterance test data against the number of hypotheses for the 39-

dimensional SLDS with fixed aligned N -best rescoring. Since a different system was used to produce the

N -best lists, a larger number of hypotheses than 50 should be used to obtain independent results.

worse results compared to the 100-best. However, after about 75 hypotheses, the word error

rate appears to be very stable. It is believed that the 100-best lists are large enough to give SLDS

performance sufficiently independent of the baseline FAHMM system. It is also interesting to

note that with very small number of hypotheses, the word error rate first goes down.

Table 7.8 Fixed alignment 100-best rescoring word error rates for the single state SLDS systems trained with

fixed alignments, and MLSS using Ni = 5 Gibbs sampling iterations.

Task p
fixed SLDS MLSS SLDS

M = 1 M = 2 M = 1 M = 2

test
13

16.36 16.67 16.21 19.51

train 4.94 4.56 5.12 6.48

test
39

9.16 9.48 11.68 15.18

train 1.09 1.06 2.03 3.17

The SLDS systems trained with the fixed alignments and MLSS using 5 iterations of Gibbs

sampling were evaluated by rescoring the aligned 100-best lists. The rescoring results are shown

in Table 7.8. The numbers of free parameters per model in the 13-dimensional system were

η = 416 for M = 1 and η = 442 for M = 2. The 13-dimensional systems trained with the fixed

alignments yield a better performance than the 13-dimensional baseline FAHMM. This could be

a result of the better temporal correlation modelling in SLDS compared to the FAHMM with
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no delta or delta-delta parameters. Moreover, there are almost twice as many free parameters

per model in the SLDS compared to the FAHMM. Comparing the 13-dimensional system perfor-

mance to the 39-dimensional, it can be seen that the linear first-order Gauss-Markov state evolu-

tion process does not provide a good enough model for the temporal correlation. As discussed in

Chapter 2, the delta and delta-delta parameters usually depend on observations over 9 frames.

However, the 39-dimensional systems yield a worse performance than the 39-dimensional base-

line FAHMM. The numbers of free parameters per model in the 39-dimensional system were

η = 806 for M = 1 and η = 886 for M = 2. The difference to the number of parameters in

the baseline FAHMM is not as considerable as in the 13-dimensional system due to the large

difference between the state and observation space dimensionalities. Surprisingly, performance

is much worse when the MLSS training was applied even though the average log-likelihoods on

the training data suggest the training is more efficient. Especially, for the 13-dimensional two

component system the performance of the systems trained with MLSS is poor. However, it is

well known in speech recognition that the models producing higher log-likelihoods for the seen

data do not necessarily perform better on recognising unseen data. This is often explained by

the model correctness [97]. For speech signals, the true data source is not a FAHMM or SLDS.

Table 7.9 Fixed alignment 100-best rescoring word error rates for the single state SSM systems trained with

fixed alignments, and MLSS using Ni = 5 Gibbs sampling iterations.

Task p
fixed SSM MLSS SSM

M = 1 M = 2 M = 1 M = 2

test
13

17.52 17.23 17.86 23.44

train 6.37 5.95 7.01 11.79

test
39

9.07 9.66 12.96 12.18

train 1.06 0.98 2.86 2.15

The rescoring results for the SSM systems trained with the fixed alignments and MLSS using

5 iterations of Gibbs sampling are shown in Table 7.9 for comparison with SLDS. The perfor-

mance of the 13-dimensional SSM systems is worse than the 13-dimensional SLDS. This may

be due to the better modelling for co-articulation in the SLDS. Only the 39-dimensional single

component SSM with fixed alignment training yields better performance than the equivalent

SLDS, although the improvement is not statistically significant. However, the results do not

show that either system is evidently superior over the other, despite the intuitively better model

for co-articulation provided by SLDS as discussed in Chapter 6.

N -best rescoring using Gibbs sampling was done using the 300 utterance feb89 evaluation

data set, because five sampling iterations through all the 100 hypotheses for each of 1200 ut-

terances was not practical. The number of sampling iterations was chosen based on the finding

that the alignment with highest log-likelihood value was usually obtained during 5 iterations.

To illustrate this, the average of the maximum likelihoods for a set of 100 test utterances against

the number of Gibbs sampling iterations is shown in Figure 7.4. The first iteration had average
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Figure 7.4 Average of maximum log-likelihood for feb89 data set with 100 hypotheses against the number

of Gibbs sampling iterations. The highest log-likelihoods are mostly obtained within the first 5 iterations.

log-likelihood of -65.3150. It has not been included in the figure to allow more detail to be

seen in the following log-likelihoods. Despite successfully finding alignments with higher log-

likelihoods, the rescoring results were generally worse than the baseline FAHMM results. This

result was not very encouraging, given that the algorithm was working properly according to

the log-likelihood values.

7.2.3 Three State System Results

As the results for the single state systems show above, linear first-order state evolution does

not appear to be a good assumption. To allow a more complex state evolution, three state

systems based on state clustered triphone HMMs and 39-dimensional front-end were built. The

baseline FAHMM with 13-dimensional state space was built from the baseline HMM system using

standard initialisation described in Chapter 5. It should be noted that the SSM system with three

discrete states is closely related to the baseline FAHMM due to the resetting of the continuous

state vector as discussed in Chapter 6. The FAHMM with piece-wise constant state evolution

may be viewed as a SSM with a new discrete state for each time instant.

The SLDS and SSM systems were built using the baseline FAHMM in the initialisation. The

SLDS and SSM observation process parameters were initialised to the FAHMM observation pro-

cess. The FAHMM continuous state distributions were used as the initial state distributions,

the state evolution noise mean vectors were initialised to zero, the covariance matrices to the

FAHMM continuous state covariance matrices and the state evolution matrices were initialised
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to an identity matrix. Only fixed alignment training was carried out since the number of Gibbs

sampling iterations would have to be large due to the increased number of discrete states.

Table 7.10 Number of free parameters per state for the three state HMM, FAHMM, SLDS and SSM.

M HMM FAHMM SLDS/SSM

1 78 585 806

2 156 663 884

The number of free parameters per state for each of the three state systems are given in Table

7.10. The baseline HMM system has a very small number of free parameters compared to the

FAHMM, SLDS and SSM. Compared to the state of the art RM systems in Section 7.1.1, these

systems have more free parameters than the systems producing the best performance. Robust

estimation of this many model parameters with only 4 hours of training data is, perhaps, impos-

sible. However, training with larger databases was not practical due to increased computational

complexity.

Table 7.11 100-best rescoring results in the feb89 set for the three state systems and fixed alignment training.

Oracle: 0.12 (M = 1), 0.08 (M = 2). Idiot: 51.78 (M = 1), 51.43 (M = 2).

M HMM FAHMM
SLDS SSM

Ni = 0 Ni = 10 Ni = 0 Ni = 10

1 6.40 3.67 3.67 3.98 4.49 4.49

2 3.98 2.97 3.36 3.44 4.30 4.30

For the rescoring, hypotheses with fixed alignments, Ni = 0, and with 10 Gibbs sampling

iterations, Ni = 10, were used. The rescoring results for the SLDS and SSM systems are shown

in Table 7.11. For the SSM, Gibbs sampling did not produce any better discrete state alignments

and the results are equal to the fixed alignment results. As discussed in Chapter 6, the more

discrete states there are in a SSM system the closer it becomes to a FAHMM system. This close

relationship between the SSM and FAHMM systems may explain why no better alignments were

found. Unfortunately, the SLDS performance is again worse than the baseline performance,

especially for the two component case and when Gibbs sampling was used.

7.2.4 Second-Order State Evolution

As the results above show, the assumption of a linear state evolution process seems not to be

valid. It was also seen in the single state experiments that the first-order state evolution assump-

tion is not strong enough to model the temporal correlation, since the 13-dimensional system

performance was far inferior to the 39-dimensional system. As described in Chapter 3, any nth-

order state evolution process may be converted into a first-order state evolution by expanding

the state space to k = np. However, this considerably increases the number of model parameters.
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Therefore, a 13-dimensional three state SLDS system with only a second-order state evolution

was examined.

A 13-dimensional (p = 13) baseline FAHMM was built with two configurations. The first con-

figuration with k = 13 was used to produce the 100-best list for the rescoring. The second with

k = 26 was used to initialise the SLDS system with extended state space. First, a 13-dimensional

state clustered triphone HMM system was built. This was used to initialise both FAHMM sys-

tems according to the initialisation schemes described in Chapter 5. A 13-dimensional and

39-dimensional SLDS systems were initialised by the FAHMM systems as described in Chapter

6. The SLDS systems were trained using fixed alignments from the FAHMM system with k = 13.

The two FAHMM systems are closely related as seen in the rescoring results below. Thus, the

100-best list and alignments were used from only one FAHMM system.

Table 7.12 Number of free parameters per state and 100-best rescoring word error rates for the 13-

dimensional (p = 13) three state systems and fixed alignment training. Oracle: 1.18 (test), 0.08 (train).

Idiot: 63.43 (test), 52.45 (train).

Task FAHMM SLDS

k 13 26 13 26

η 195 364 416 1144

test 11.64 11.69 10.16 10.07

train 4.33 4.45 4.45 2.79

The number of free parameters per state and the 100-best rescoring results are shown in

Table 7.12. As the state space dimensionality doubles, the number of FAHMM parameters almost

doubles and the number of SLDS parameters almost triples. The large difference in the number

of SLDS parameters is due to the initial state distribution and the state evolution matrix. The

rescoring results for the different FAHMM systems are almost identical. This shows that the

extended state space does not give additional modelling power to the FAHMM system due to the

state conditional independence assumption. However, the results should be different between

the SLDS systems since the extended state space should carry temporal information from a

longer span than the k = 13 system. As seen from the table, the extended state space reduces the

word error rate on the train set, but the difference in test set performance is not statistically

significant. The better train set performance may be a result of over training. However, the

difference in the test set given the increase in the number of model parameters is not very

impressive. To model dependencies over as many frames as the delta and delta-delta parameters

would usually require an 8th-order state evolution process. This would result in a considerable

increase in the number of model parameters and is not considered in this work.
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7.3 Summary

Experimental results using FAHMMs in three speech recognition tasks were presented in this

chapter. In the Resource Management experiments, a decision tree clustered tied state HMM

was compared to a global semi-tied system and a global observation matrix FAHMM with full

39-dimensional state space. The FAHMM system was found to outperform both systems despite

having fewer model parameters than the baseline HMM system. In the Minitrain and Hub5

68h experiments, a FAHMM with lower dimensional state space, k = 13, was compared to a

standard HMM system. Although not statistically significant, a slight word error rate reduction

was found on the Minitrain task with a FAHMM having fewer parameters than the baseline

HMM system. Several tying schemes were examined on the Hub5 68h task. An equivalent

performance compared to the baseline HMM was obtained with some FAHMM configurations.

However, it is not possible to conduct all the possible configurations of the FAHMM. Hence,

automatic complexity control schemes should be developed.

The performance of the training and N -best rescoring for the SLDS was evaluated on the RM

task using the FAHMM as the baseline. A clean comparison between the different state evolution

assumption made in FAHMMs and SLDSs was carried out. Unfortunately, the SLDS did not pro-

duce any statistically significant improvements. Using the Gibbs sampling based MLSS training

scheme resulted in worse performance despite the higher log-likelihoods in training. In the next

set of experiments, the performance of three state SLDS and SSM was investigated. Since better

performance over the single state systems was achieved, it may be argued that the linear state

evolution assumption is not valid for speech signals. Also, the performance of a second-order

state evolution process was investigated. However, it was found that the higher-order state evo-

lution did not result in better performance on the test data. Due to the log-likelihood increase

in training but bad performance in testing, it may be concluded that the SLDS is a better gen-

erative model for speech signals, but not a good model for speech recognition. Also, the state

evolution process parameters of the trained SLDS and SSM systems were examined. The noise

variance elements were generally large especially for unvoiced phones. The unvoiced phones

would probably benefit from the resetting of the state vectors in common with SSMs. However,

these results and the large variance elements suggest that the linear first-order state evolution

process is inappropriate for speech recognition.
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Conclusions

This thesis describes an investigation into a subset of state space models called linear Gaussian

models. In particular, it examines the application of these models to acoustic modelling in speech

recognition. Linear Gaussian models should provide improved inter and intra-frame correlation

modelling compared to a standard mixture of Gaussians hidden Markov model with diagonal

covariance matrices. The standard HMM based speech recognition systems were reviewed in

Chapter 2. The thesis may be divided in two parts depending on the state evolution process.

The observation process for both parts was based on factor analysis. Firstly, a model based on

piece-wise constant state evolution called factor analysed hidden Markov model was presented.

The continuous state vector evolution is based on a HMM which may have Gaussian or Gaussian

mixture models as the discrete state conditional output densities. The FAHMM should provide a

better model for the intra-frame correlation compared to a standard HMM. However, the state

conditional independence assumption is made also in the FAHMM. Secondly, a model based on

linear first-order Gauss-Markov state evolution process called switching linear dynamical system

was presented. SLDS should also provide a better inter-frame correlation model. Also, the SLDS

provides a better model for speech feature trajectories compared to HMMs and FAHMMs. A

number of generalised linear Gaussian models including the FAHMM and SLDS were reviewed

in Chapter 3. Maximum likelihood training and the expectation maximisation algorithm for

optimising the parameters of linear Gaussian models were reviewed in Chapter 4. The chapter

also reviewed a number of approximate inference algorithms, because for some models the

standard inference schemes are not feasible. In this chapter, a more detailed summary of the

thesis is given. The chapter concludes by reviewing some directions for future work.

8.1 Summary

The theory of FAHMMs was presented in Chapter 5. FAHMMs combine the standard mixture of

Gaussians HMM with diagonal covariance matrices and factor analysis with Gaussian mixture

model observation noise. The HMM observations are used as the factors (state vector) to the

factor analysis observation process. In this fashion the dimensionality of the state vectors gen-

97
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erated by the HMM may be smaller than the observations. The number of mixture components

in the state and observation space may be independently chosen as well as the size of the state

space. Thus, the FAHMM is a very flexible but compact model for spatially correlated time se-

ries data. A number of standard models including shared factor analysis, semi-tied covariance

matrices and independent factor analysis are forms of FAHMM with different configurations.

FAHMMs were first introduced in a generative model framework. A dynamic Bayesian net-

work was also presented to illustrate the conditional independence assumptions made in the

model. An efficient likelihood calculation was discussed along with practical issues for precom-

puting and caching of the required full covariance matrices. Optimisation of FAHMM parameters

using the maximum likelihood criterion was presented. For ML training the expectation max-

imisation algorithm was used. Chapter 5 also presented a number of implementation issues for

using FAHMMs as the acoustic model in speech recognition. Initialisation, parameter sharing

and numerical accuracy were all addressed. Finally, an efficient two level training scheme was

introduced.

In Chapter 6, a switching linear dynamical system was introduced to improve the inter-frame

correlation modelling. SLDSs extend the FAHMM by providing a smooth linear continuous state

vector evolution. The state evolution is based on linear first-order Gauss-Markov process. In

the SLDS, the parameters of the state evolution process and factor analysis observation process

are chosen by a discrete state with Markovian dynamics. Thus, the SLDS may be viewed as

a hybrid of a HMM and a linear dynamical system. The close relationship between SLDS and

stochastic segment model was discussed. SLDS should provide a better model for strong co-

articulation effects in speech, whereas the stochastic segment model assumes segments being

independent. A SSM with multiple discrete states per model is closely related to the FAHMM

due to the resetting of the continuous state vector on the segment boundaries.

The SLDS was first introduced in a generative model framework and using dynamic Bayesian

networks. Inference for the SLDS is intractable. Thus, standard training and recognition algo-

rithms may not be used for SLDS based speech recognition. A number of approximate inference

methods used in the literature with SLDSs were reviewed. Rao-Blackwellised Gibbs sampling

was chosen as the inference algorithm in this thesis, because the model does not have to be

modified and convergence can be guaranteed. Usually, the deterministic algorithms are faster.

However, a careful design of the proposal mechanism may dramatically improve the efficiency of

Gibbs sampling. Also, the deterministic algorithms cannot be easily extended to apply to SLDS

with Gaussian mixture model noise sources. Parameter optimisation and N -best rescoring algo-

rithm using RBGS were introduced. Initialisation of the model parameters based on FAHMMs

was also described.

Speech recognition experiments using FAHMMs and SLDSs in acoustic modelling were pre-

sented in Chapter 7. Three experimental setups were used for FAHMMs. Initially, the Resource

Management task was used to compare a FAHMM with 39-dimensional state space with single

component state noise and global observation matrix to a standard diagonal covariance mixture

of Gaussians HMM and semi-tied covariance matrix HMM systems. The best FAHMM system
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used 5 observation noise components and achieved a word error rate of 3.68%. In comparison,

the best HMM system with 6 components produced a WER of 3.99% and STC yielded 3.83%.

However, the differences were not statistically significant according to McNemar’s test [44]. The

number of free parameters per state in the best FAHMM system was 39 less than in the best

HMM and 39 more than in the best STC systems. In the Minitrain experiments, a FAHMM sys-

tem with 13-dimensional state space and state specific observation matrices was compared to

a standard diagonal covariance matrix HMM. The best FAHMM had 2 observation and 6 state

noise components, and produced a WER of 50.7% with 793 free parameters per state. The

baseline HMM system achieved a WER of 51.0% with 12 components which corresponds to 936

free parameters per state. In the Hub5 68 hour setup, the 12 component baseline HMM per-

formance was equalled by a FAHMM system with 2 observation and 8 state noise components,

which corresponds to 91 free parameters per state fewer than in the baseline HMM.

The Resource Management setup was used in SLDS experiments. Comparisons between a

closely related FAHMM system and a single state per model SLDS and SSM systems were carried

out. The 3 state FAHMM parameters were tied so that only the state space mean vectors were al-

lowed to switch inside a model. All the other parameters were tied in the model level. This way

a clean comparison between different state evolution processes could be made. The SLDS and

SSM training were carried out both using fixed alignments obtained from the FAHMM system

and finding better alignments by RBGS in the maximum likelihood state sequence scheme. Un-

fortunately, both the SLDS and SSM systems were outperformed by the baseline FAHMM system

even when the higher log-likelihood alignments obtained by RBGS were used in rescoring. The

two observation noise component systems performed even worse. By inspecting the trained pa-

rameters of the SLDS and SSM systems in this setup, it was found that the state evolution noise

variances were large enough to mask any modelling power obtained by using the first-order

Gauss-Markov process. The second set of experiments was carried out to investigate whether

the linear state evolution assumption was valid for speech signals. Systems with 3 discrete states

were compared. The results showed that FAHMM can outperform both the SLDS and SSM sys-

tems using single and 2 component observation noises. The best single component FAHMM and

SLDS achieved a WER of 3.67% and SSM produced a WER of 4.49%. With the same setup a sin-

gle component HMM achieved a WER of 6.40%. This could explain the gains achieved by SSM

over HMM reported earlier in simple phone classification task [24]. The last set of experiments

was carried out to investigate higher-order state evolution processes. A 13-dimensional SLDS

correponding to a model with second-order state evolution was examined. Despite better perfor-

mance on a subset of the training data, this form of SLDS did not yield significant performance

improvements on the test data. The number of model parameters in a system with higher-order

state evolution process is substantially larger due to the extended state space. Finally, it was

concluded that no further experiments with SLDS and SSM on larger tasks needed to be carried

out.

In summary, a framework of generalised linear Gaussian models for speech recognition was

studied. Firstly, the theory and many practical issues of using FAHMM in acoustic modelling
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were developed. Successful experiments on using FAHMMs in acoustic modelling were carried

out. FAHMM is a very flexible model that should provide a better intra-frame correlation model.

In the experiments it was found that a FAHMM system with very basic configuration could out-

perform or achieve an equal performance to a standard diagonal covariance matrix HMM. This

FAHMM system had considerably fewer parameters than the baseline HMM system. Secondly,

the theory and application of SLDS using RBGS in acoustic modelling were developed. RBGS

was successfully used in training and N -best rescoring, in terms of increasing the log-likelihood

of the data. However, the rescoring results were disappointing. The SLDS systems generally

were outperformed by the SSM systems, which were outperformed by the baseline FAHMM.

Given these results and the analysis of the trained model parameters, it is concluded that mod-

els based on linear first-order Gauss-Markov state evolution process are inappropriate for speech

recognition.

8.2 Future Work

Only a small number of simple FAHMM configurations were investigated in this thesis. The state

space dimensionality was chosen by cross validation of single component systems. However, the

optimal state space dimensionality is not necessarily the same when different mixture compo-

nent configurations are used. Due to the extensive flexibility of the FAHMM systems, manual

tuning of mixture component configurations and an optimal state space dimensionality is not

practical. Automatic algorithms for complexity control should be developed.

In an articulatory interpretation, it could be argued that the state evolution process repre-

sents the input by the speaker and the observation noise distribution represents the domain

specific noise. For FAHMMs, maximum likelihood linear regression could be applied to adapting

either of the noise distributions. Even if the articulatory interpretation were false, it would be

interesting to know the consequences of adapting these two noise distributions.

The maximum likelihood criterion was used to optimise the model parameters for FAHMM

in this thesis. ML training, however, is optimal only if the model is close to the true system.

One may argue whether there exists a true model for speech, but it is clearly the case that

the FAHMM does not provide one. For standard HMMs, systems trained using discriminative

training typically outperform ones using ML training. Different discriminative training schemes

for FAHMMs could be investigated.

Rao-Blackwellised Gibbs sampling is a general approach to inference in intractable models

such as switching linear dynamical systems. As concluded earlier, SLDS is not an appropriate

model for speech recognition. An advantage of FAHMM compared to SLDS is that the piece-wise

constant state evolution can model a wider range of signals, even non-linear ones and seems

to be more suitable for speech signals. The Markov chain Monte Carlo methods can also be

applied to non-linear state space models. However, the proposal distributions for non-linear

models cannot be implemented as efficiently as for SLDS. Currently, no practical algorithms

exist for non-linear state space models when applied to speech recognition. As computing power
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increases, these algorithms may finally provide a feasible alternative to HMMs.



A

Resource Management Corpus and Baseline System

The DARPA 1000-word RM database [107] consists of read sentences associated with a naval

resource management task. The speaker-independent (SI) training data set consists of 3990

utterances from a total of 109 subjects. The utterances amount to a total of almost 4 hours.

There are four standard speaker-independent test sets labelled as February 1989, October 1989,

February 1991 and September 1992. Each of the test sets contains 300 utterances each from

10 speakers. Thus, the total SI test set is 1200 utterances from 40 speakers. The database was

recorded in a sound isolated booth and the recordings were sampled at 16kHz.

The HTK “RM Recipe” [129] was used to build the baseline system. A standard Mel-frequency

cepstral coefficient front-end was used to code the data using a 25ms window size, 100Hz frame

rate and 24 filter bank channels. The 13-dimensional observation vectors were composed of the

energy of the frame followed by 12 MFCCs, {c1, . . . , c12}. For most of the experiments, the delta

and delta-delta coefficients were also used to form the 39-dimensional observation vectors.

The baseline HMM systems were trained starting from the single Gaussian mixture compo-

nent monophone models supplied with the HTK “RM Recipe”. After four iterations of embedded

re-estimation, the monophone models were cloned to produce a single mixture component tri-

phone system. These initial triphone models were trained with two iterations of embedded

training after which decision-tree clustering was used to generate a single component triphone

system. A simple word-pair grammar was used as the language model for recognition.
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Useful Results from Matrix Algebra

Some useful results from matrix algebra and their application to conditional multivariate Gaus-

sians are presented in this appendix. The matrix inversion results in the first section may be used

in the likelihood calculations for all the state space models presented in this work. They are ex-

tensively applied in the derivation of the information form filters for linear dynamical systems

in Appendix E. The results on partitioned matrices in Section B.2 are applied in the derivation

of the statistics for conditional multivariate Gaussians. Conditional multivariate Gaussians are

very useful in the derivation of the covariance form inference algorithms for both factor analysed

hidden Markov models in Appendix D and linear dynamical systems in Appendix E.

B.1 Some Results on Sums of Matrices

An inverse of a p by p matrix of the form STU + R has the following decomposition [52]

(STU + R)−1 = R−1 − R−1S(UR−1S + T−1)−1UR−1 (B.1)

which is sometimes called the matrix inversion lemma. It may often be applied in linear estima-

tion problems [66]. Especially, a matrix of the form TU(STU +R)−1 may be seen in minimum

mean square estimation. The following identity for this matrix can be derived using the matrix

inversion lemma

TU(STU + R)−1 = TU
(
R−1 − R−1S(UR−1S + T−1)−1UR−1

)

= T
(
(UR−1S + T−1) − UR−1S

)
(UR−1S + T−1)−1UR−1

= (UR−1S + T−1)−1UR−1 (B.2)

Determinant of a p by p matrix of the form STU + R has the following decomposition [52]

∣
∣STU + R

∣
∣ =

∣
∣R

∣
∣
∣
∣T

∣
∣
∣
∣UR−1S + T−1

∣
∣ (B.3)

Determinant of the k by k matrix UR−1S +T−1 on the right hand side is often obtained as a by

product of its inverse in Equation B.1.
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B.2 Some Results on Partitioned Matrices

Let A represent an arbitrary (n+m) by (n+m) matrix with the following partitioning

A =

[

A1 A2

A3 A4

]

(B.4)

where A1 is an n by n matrix, A2 an n by m matrix, A3 an m by n matrix and A4 an m by

m matrix. Suppose that A4 is non-singular. The matrix A is singular if and only if the n by n

matrix

(A|A4) = A1 − A2A
−1
4 A3 (B.5)

is non-singular [52]. The matrix (A|A4) is called the Schur complement of A4 in A and the

following two identities apply

[

A1 A2

A3 A4

]−1

=

[

(A|A4)
−1 −(A|A4)

−1A2A
−1
4

−A−1
4 A3(A|A4)

−1 A−1
4 + A−1

4 A3(A|A4)
−1A2A

−1
4

]

(B.6)

=

[

0 0

0 A−1
4

]

+

[

In

−A−1
4 A3

]

(A|A4)
−1

[

In

−A2A
−1
4

]′

(B.7)

Determinant of A can be represented in terms of the submatrices as follows

|A| =

∣
∣
∣
∣
∣

A1 − A2A
−1
4 A3 A2A

−1
4

0 I

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

I 0

A3 A4

∣
∣
∣
∣
∣
= |A1 − A2A

−1
4 A3||A4| (B.8)

B.2.1 Application to Conditional Multivariate Gaussians

Let x and y be p and k dimensional Gaussian distributed random vectors with mean vectors, µx

and µy, and covariance matrices, Σx and Σy, respectively. Suppose also that x and y are also

jointly Gaussian with Σyx and Σxy as their cross covariance matrices. The joint distribution

may be represented as follows

p(x,y) = N
(

[

x

y

]

;

[

µx

µy

]

,

[

Σx Σxy

Σyx Σy

]
)

(B.9)

It should also be noted that Σyx = Σ
′
xy.

The posterior distribution function of x given y is obtained by the definition, p(x|y) =

p(x,y)/p(y),

p(x|y) = (2π)−
(p+k)

2

∣
∣
∣
∣
∣

Σx Σxy

Σyx Σy

∣
∣
∣
∣
∣

− 1
2

exp
{

−
1

2

[

x − µx

y − µy

]′ [

Σx Σxy

Σyx Σy

]−1 [

x − µx

y − µy

]
}

/(

(2π)−
k
2 |Σy|

− 1
2 exp

{

−
1

2
(y − µy)′Σy

−1(y − µy)
})

(B.10)

= (2π)−
p

2 |Σx −ΣxyΣ
−1
y Σyx|

− 1
2 exp

{

−
1

2
γ
}

(B.11)
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where the last determinant is obtained using Equation B.8 and the scalar γ is defined as

γ =

[

x − µx

y − µy

]′ [

Σx Σxy

Σyx Σy

]−1 [

x − µx

y − µy

]

− (y − µy)′Σ−1
y (y − µy) (B.12)

The partitioned joint covariance matrix, denoted by Σ, can be inverted using the identity in

Equation B.7. Obviously, the first term on the right hand side of the identity cancels out the last

term in Equation B.12 and therefore the equation simplifies to the following form

γ =
(

(x − µx)′ − (y − µy)′Σ−1
y Σyx

)

(Σ|Σy)−1
(

(x − µx) −ΣxyΣ
−1
y (y − µy)

)

(B.13)

which is the Mahalanobis distance between the vectors x and µx|y = µx +ΣxyΣ
−1
y (y−µy) with

a covariance matrix Σx|y = (Σ|Σy) = Σx −ΣxyΣ
−1
y Σyx.

Indeed, by substituting γ back into Equation B.11 it is obvious that the posterior distribution

of x given y is also a Gaussian with mean vector µx|y and a covariance matrix Σx|y; that is,

p(x|y) = N
(
x;µx + ΣxyΣ

−1
y (y − µy),Σx −ΣxyΣ

−1
y Σyx

)
(B.14)



C

Parameter Optimisation for GMM

The parameter optimisation scheme for a Gaussian mixture model (GMM) using the expectation

maximisation (EM) algorithm is presented in this appendix. The expectation step for the GMM

is trivial, but the derivation of the auxiliary function requires more attention. The posterior of a

mixture component, ω = m, given an observation, on, can be written as

γm(n) = P (ω = m|on,θ
(k)) =

cmN (on;µm,Σm)
∑M

j=1 cjN (on;µj ,Σj)
(C.1)

where the parameters cm, µm and Σm are obtained from the current model set, θ(k). A set of

parameters, θ̂, that maximises the auxiliary function is found during the maximisation step

θ̂ = arg max
θ

Q(θ,θ(k)) (C.2)

These parameters will be used as the set of old parameters in the following iteration, θ̂ → θ(k+1).

The derivation of the auxiliary function is presented in the following section and the parameter

update formulae are derived in the final section.

C.1 Auxiliary Function

The hidden mixture indicator variable is defined as follows

znm =

{

1 ,on was generated by mixture component m

0 , otherwise
(C.3)

The joint likelihood of the observation, on, and the hidden variable, zn, can be written as

p(on, zn|θ) =
M∏

m=1

[

P (ω = m|θ)p(on|ω = m,θ)
]znm

(C.4)

and the likelihood of the complete data given the model parameters can be written as

p(O,Z|θ) =

N∏

n=1

p(on, zn|θ) (C.5)
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Finally, the auxiliary function can be expressed as

Q(θ,θ(k)) =
∑

∀Z

P (Z|O,θ(k)) log p(O,Z|θ) (C.6)

=
N∑

n=1

∑

∀Z

P (zn|on,θ
(k)) log p(on, zn|θ) (C.7)

=

N∑

n=1

∑

∀Z

P (zn|on,θ
(k))

M∑

m=1

znm log p(on, ω = m|θ) (C.8)

=

N∑

n=1

M∑

m=1

P (ω = m|on,θ
(k)) log p(on, ω = m|θ) (C.9)

which applies for an arbitrary mixture model. Only a Gaussian mixture model is considered

below.

C.2 Parameter Update Formulae

For a GMM the auxiliary function, ignoring terms independent of the parameters, can be written

as

Q(θ,θ(k)) =
N∑

n=1

M∑

m=1

γm(n) log cm −
1

2

N∑

n=1

M∑

m=1

γm(n)
(

log |Σm| + (on − µm)′Σ−1
m (on − µm)

)

(C.10)

C.2.1 Mixture Component Priors

Maximising the auxiliary function in Equation C.10 with respect to the mixture component pri-

ors, cm, can be carried out using the Lagrange multiplier λ together with the sum to unity

constraint 1 −
∑M

m=1 cm = 0. It is equivalent to maximising the Lagrangian

G(cm) = λ
(

1 −
M∑

m=1

cm

)

+
N∑

n=1

M∑

m=1

γm(n) log cm (C.11)

Differentiating G(cm) yields

∂G(cm)

∂cm
= −λ+

N∑

n=1

γm(n)

cm
(C.12)

Setting the derivative to zero together with the sum to unity constraint forms the following pair

of equations







−λ+

N∑

n=1

γm(n)

cm
= 0

1 −
M∑

m=1

cm = 0

(C.13)
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Solving for cm, the new mixture component priors can be written as

ĉm =
1

N

N∑

n=1

γm(n) (C.14)

This is a maximum of G(cm) since its second derivative with respect to cm is negative.

C.2.2 Mixture Distribution Parameters

Differentiating the auxiliary function in Equation C.10 with respect to the component mean

vector, µm, yields

∂Q(θ,θ(k))

∂µm

= Σ
(x)−1
m

N∑

n=1

γm(n)
(
on − µm

)
(C.15)

Equating this to zero and solving for µm result in the updated component mean vector

µ̂m =

N∑

n=1

γm(n)on

N∑

n=1

γm(n)

(C.16)

This is a maximum since the second derivative of Q(θ,θ (k)) with respect to µm is negative.

To find the new component covariance matrix, the auxiliary function is differentiated with

respect to its inverse, Σ
−1
m , as follows

∂Q(θ,θ(k))

∂Σ−1
m

=
1

2

N∑

n=1

γm(n)
(

Σm − (on − µm)(on − µm)′
)

(C.17)

Equating this to zero and solving for Σm result in the updated component covariance matrix

Σ̂m =

N∑

n=1

γm(n)
(
on − µm

)(
on − µm

)′

N∑

n=1

γm(n)

(C.18)

This is a maximum since the second derivative of Q(θ,θ (k)) with respect to Σ
−1
m is negative.



D

Parameter Optimisation for FAHMM

The parameter optimisation scheme for factor analysed hidden Markov model (FAHMM) based

on the generalised expectation maximisation (EM) algorithm is presented in this appendix. The

posterior statistics are derived in the first section in common with the standard expectation step

of the EM algorithm. All the sufficient statistics are evaluated using the parameters from the

previous iteration and therefore writing θ(k) explicitly is omitted for clarity. This derivation

assumes that the first discrete state is always the initial state and all states are emitting. It

is easy to extend the derivation for use with explicit initial discrete state probabilities and to

include non-emitting states as described in Chapter 2.

A set of parameters, θ̂, that maximise the auxiliary function is found during the maximisation

step

θ̂ = arg max
θ

Q(θ,θ(k)) (D.1)

These parameters will be used as the set of old parameters in the following iteration, θ̂ →

θ(k+1). The last three sections describe the derivation of the parameter update formulae for the

discrete state transition probabilities, observation process and continuous state distributions,

respectively.

For reference, the conditional distributions in the factor analysed hidden Markov model can

be written as

p(xt|qt = j, ω
(x)
t = n) = N (xt;µ

(x)
jn ,Σ

(x)
jn ) (D.2)

p(ot|xt, qt = j, ω
(o)
t = m) = N (ot;Cjxt + µ

(o)
jm,Σ

(o)
jm) (D.3)

D.1 Evaluation of Posterior Statistics

Given the current discrete state, qt = j, the current continuous state and observation space

mixture components, ω
(x)
t = n and ω

(o)
t = m, the likelihood of an observation, ot, is a Gaussian.
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Using Equations D.2 and D.3, this likelihood can be expressed as follows

bjmn(ot) = p(ot|qt = j, ω
(o)
t = m,ω

(x)
t = n) =

∫

N (ot;Cjx + µ
(o)
jm,Σ

(o)
jm)N (x;µ

(x)
jn ,Σ

(x)
jn )dx

= N (ot;Cjµ
(x)
jn + µ

(o)
jm,CjΣ

(x)
jn C ′

j + Σ
(o)
jm) (D.4)

The likelihood of an observation, ot, given the discrete state, qt = j, is the following mixture of

Gaussians

bj(ot) = p(ot|qt = j) =

M(o)
∑

m=1

c
(o)
jm

M(x)
∑

n=1

c
(x)
jn bjmn(ot) (D.5)

D.1.1 Forward-Backward Algorithm

The likelihood of being in discrete state j and the observations up to time instant t is represented

by the forward variable, αj(t) = p(qt = j,o1:t). Assuming that the first observation is generated

by the first discrete state, the forward variable is initialised as

αj(1) =

{

b1(o1) , j = 1

0 , j 6= 1
(D.6)

Using the conditional independence assumption in FAHMM, the forward variable at time instant

t is defined by the following recursion

αj(t) = p(qt = j,o1:t) = p(ot|qt = j)p(qt = j,o1:t−1)

= p(ot|qt = j)

Ns∑

i=1

p(qt = j, qt−1 = i,o1:t−1)

= p(ot|qt = j)

Ns∑

i=1

P (qt = j|qt−1 = i)p(qt−1 = i,o1:t−1)

= bj(ot)

Ns∑

i=1

aijαi(t− 1) (D.7)

The likelihood of the observations from t + 1 to T given being in state i at time instant t

is represented by the backward variable, βi(t) = p(ot+1:T |qt = i). The backward variable is

initialised as βi(T ) = 1 for all i ∈ [1, Ns]. Using the conditional independence assumption in

FAHMM, the backward variable at time instant t− 1 is defined by the following recursion

βi(t− 1) = p(ot:T |qt−1 = i) =

Ns∑

j=1

p(qt = j,ot:T |qt−1 = i)

=

Ns∑

j=1

P (qt = j|qt−1 = i)p(ot|qt = j)p(ot+1:T |qt = j)

=

Ns∑

j=1

aijbj(ot)βj(t) (D.8)
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The likelihood of the observation sequence, O, can be represented in terms of the forward

and backward variables as follows

p(O) =

Ns∑

i=1

p(qt = i,o1:t)p(ot+1:T |qt = i) =

Ns∑

i=1

αi(t)βi(t) (D.9)

D.1.2 Discrete State Posterior Probabilities

The probability of being in state j at time t given the observation sequence is needed in the

parameter update formulae. This likelihood can be expressed in terms of the forward and back-

ward variables as follows

γj(t) = P (qt = j|O) =
p(qt = j,O)

p(O)
=
p(qt = j,o1:t)p(ot+1:T |qt = j)

p(O)

=
αj(t)βj(t)

∑Ns

i=1 αi(t)βi(t)
(D.10)

The joint probability of being in state j at time t together with being in observation noise

component m and state noise component n given the observation sequence is needed in the dis-

tribution parameter update formulae. This likelihood can be expressed in terms of the forward

and backward variables as follows

γjmn(t) = P (qt = j, ω
(o)
t = m,ω

(x)
t = n|O)

=

∑Ns

i=1 p(qt−1 = i,o1:t−1)P (qt = j|qt−1 = i)c
(o)
jmc

(x)
jn bjmn(ot)p(ot+1:T |qt = j)

p(O)

=

∑Ns

i=1 αi(t− 1)aijc
(o)
jmc

(x)
jn bjmn(ot)βj(t)

∑Ns

i=1 αi(t)βi(t)
(D.11)

The joint probability of being in state i at time instant t − 1 and in state j at time instant

t given the observation sequence is needed in the transition parameter update formulae. This

likelihood can be expressed in terms of the forward and backward variables as follows

ξij(t) = P (qt−1 = i, qt = j|O)

=
p(qt−1 = i,o1:t−1)P (qt = j|qt−1 = i)p(ot|qt = j)p(ot+1:T |qt = j)

p(O)

=
αi(t− 1)aijbj(ot)βj(t)

∑Ns

i=1 αi(t)βi(t)
(D.12)

D.1.3 Continuous State Posterior Statistics

Given the current discrete state, qt = j, the current continuous state and observation space

mixture components, ω
(x)
t = n and ω

(o)
t = m, the joint likelihood of the current observation

and continuous state vector is a Gaussian. Using Equations D.2 and D.3, this likelihood can be

expressed as follows

p(ot,xt|qt = j, ω
(o)
t = m,ω

(x)
t = n) =

N
(

[

ot

xt

]

;

[

Cjµ
(x)
jn + µ

(o)
jm

µ
(x)
jn

]

,

[

CjΣ
(x)
jn C ′

j + Σ
(o)
jm CjΣ

(x)
jn

Σ
(x)
jn C ′

j Σ
(x)
jn

]
)

(D.13)
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Using Equation B.14, the posterior distribution is also a Gaussian and can be written as

p(xt|ot, qt = j, ω
(o)
t = m,ω

(x)
t = n) =

N
(
xt;µ

(x)
jn + Kjmn(ot − Cjµ

(x)
jn − µ

(o)
jm),Σ

(x)
jn − KjmnCjΣ

(x)
jn

)
(D.14)

where Kjmn = Σ
(x)
jn C ′

j

(
CjΣ

(x)
jn C ′

j + Σ
(o)
jm

)−1
. These statistics denoted by x̂jmnt and R̂jmnt are

used in the parameter update formulae below.

D.2 Transition Probability Update Formulae

Discarding terms independent of the discrete state transition probabilities, the auxiliary function

can be written as

Q(θ,θ(k)) =

T∑

t=2

Ns∑

i=1

Ns∑

j=1

ξij(t) log aij (D.15)

Maximising the auxiliary function in Equation D.15 with respect to the discrete state transi-

tion probabilities, aij , can be carried out using the Lagrange multiplier λ together with the sum

to unity constraint 1 −
∑Ns

j=1 aij = 0. It is equivalent to maximising the following Lagrangian

G(aij) = λ
(

1 −
Ns∑

j=1

aij

)

+

T∑

t=2

Ns∑

i=1

Ns∑

j=1

ξij(t) log aij (D.16)

Differentiating G(aij) yields

∂G(aij)

∂aij
= −λ+

T∑

t=2

ξij(t)

aij
(D.17)

Setting the derivative to zero together with the sum to unity constraint forms the following pair

of equations







−λ+

T∑

t=2

ξij(t)

aij
= 0

1 −
Ns∑

j=1

aij = 0

(D.18)

Solving for aij , the new discrete state transition probabilities can be written as

âij =

T∑

t=2

ξij(t)

T∑

t=2

γi(t− 1)

(D.19)

This is a maximum of G(aij) since its second derivative with respect to aij is negative.
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D.3 Observation Space Parameter Update Formulae

Discarding terms independent of the observation space parameters, the auxiliary function can

be written as

Q(θ,θ(k)) =

T∑

t=1

Ns∑

j=1

M(o)
∑

m=1

M(x)
∑

n=1

γjmn(t)
(

log c
(o)
jm −

1

2
log |Σ

(o)
jm|

−
1

2
E

{

(ot − Ctxt − µ
(o)
jm)′Σ

(o)−1
jm (ot − Ctxt − µ

(o)
jm)

∣
∣
∣O,θ(k)

})

(D.20)

D.3.1 Observation Matrix

Maximising the auxiliary function in Equation D.20 with respect to the observation matrices

cannot be done without using the old observation distribution parameters due to the summations

over the mixture components. Instead, a generalised EM algorithm similar to MLLR transform

optimisation [33] may be used. Let cjl denote the lth row vector of C j. Maximising the Equation

D.20 is equivalent to maximising

G(cjl) = −
1

2

p
∑

l=1

(cjlGjlc
′
jl − cjlkjl) (D.21)

where the k by k matrices Gjl and k-dimensional column vectors kjl are defined as follows

Gjl =
M(o)
∑

m=1

1

σ
(o)2
jml

T∑

t=1

M(x)
∑

n=1

γjmn(t)R̂jmnt (D.22)

kjl =
M(o)
∑

m=1

1

σ
(o)2
jml

T∑

t=1

M(x)
∑

n=1

γjmn(t)
(
otl − µ

(o)
jml

)
x̂jmnt (D.23)

where σ
(o)2
jml is the lth diagonal element of the observation covariance matrix Σ

(o)
jm, otl and µ

(o)
jml

are the lth elements of the current observation and the observation noise mean vectors, respec-

tively.

Differentiating G(cjl) yields

∂G(cjl)

∂cjl
= −Gjlc

′
jl + kjl (D.24)

Setting the derivative to zero and solving for cjl result in the updated row vector of the obser-

vation matrix

ĉjl = k′
jlG

−1
jl (D.25)

This is a maximum since the second derivative of G(cjl) with respect cjl is negative.
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D.3.2 Observation Noise Component Priors

Maximising the auxiliary function in Equation D.20 with respect to the observation noise com-

ponent priors, c
(o)
jm, can be carried out using the Lagrange multiplier λ together with the sum to

unity constraint 1 −
∑M(o)

m=1 c
(o)
jm = 0. It is equivalent to maximising the following Lagrangian

G(c
(o)
jm) = λ

(

1 −
M(o)
∑

m=1

c
(o)
jm

)

+
T∑

t=1

M(o)
∑

m=1

M(x)
∑

n=1

γjmn(t) log c
(o)
jm (D.26)

Differentiating G(c
(o)
jm) yields

∂G(c
(o)
jm)

∂c
(o)
jm

= −λ+

T∑

t=1

M(x)
∑

n=1

γjmn(t)

c
(o)
jm

(D.27)

Setting the derivative to zero together with the sum to unity constraint forms the following pair

of equations






−λ+

T∑

t=1

M(x)
∑

n=1

γjmn(t)

c
(o)
jm

= 0

1 −
M(o)
∑

m=1

c
(o)
jm = 0

(D.28)

Solving for c
(o)
jm, the new observation noise component priors can be written as

ĉ
(o)
jm =

T∑

t=1

M(x)
∑

n=1

γjmn(t)

T∑

t=1

γj(t)

(D.29)

This is a maximum of G(c
(o)
jm) since its second derivative with respect to c

(o)
jm is negative.

D.3.3 Observation Noise Parameters

Differentiating the auxiliary function in Equation D.20 with respect to the observation noise

mean vector, µ
(o)
jm, yields

∂Q(θ,θ(k))

∂µ
(o)
jm

= Σ
(o)−1
jm

T∑

t=1

M(x)
∑

n=1

γjmn(t)
(
ot − Cjx̂jmnt − µ

(o)
jm

)
(D.30)

Equating this to zero and solving for µ
(o)
jm result in the updated observation noise mean vector

µ̂
(o)
jm =

T∑

t=1

M(x)
∑

n=1

γjmn(t)
(
ot − Ĉjx̂jmnt

)

T∑

t=1

M(x)
∑

n=1

γjmn(t)

(D.31)
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This is a maximum since the second derivative of Q(θ,θ (k)) with respect to µ
(o)
jm is negative.

Applying some matrix manipulations and discarding terms independent of the observation

noise covariance matrix, Σ
(o)
jm, the auxiliary function in Equation D.20 may be rewritten as

Q(θ,θ(k)) = −
1

2

T∑

t=1

Ns∑

j=1

M(o)
∑

m=1

M(x)
∑

n=1

γjmn(t)
(

log |Σ
(o)
jm| + tr

{

Σ
(o)−1
jm

(
oto

′
t

−
[

Cj µ
(o)
jm

]
[

x̂jmnto
′
t

o′
t

]

−
[

otx̂
′
jmnt ot

]
[

C ′
j

µ
(o)′
jm

]

+
[

Cj µ
(o)
jm

]
[

R̂jmnt x̂jmnt

x̂′
jmnt 1

][

C ′
j

µ
(o)′
jm

]

)})

(D.32)

To find the new observation noise covariance matrix, the auxiliary function above is differenti-

ated with respect to its inverse, Σ
(o)−1
jm , and equated to zero. Solving for Σ

(o)
jm and setting the

off-diagonal elements to zeroes result in the updated observation noise covariance matrix

Σ̂
(o)
jm =

1
∑T

t=1

∑M(x)

n=1 γjmn(t)

T∑

t=1

M(x)
∑

n=1

γjmn(t)diag
(

oto
′
t −

[

Ĉj µ̂
(o)
jm

]
[

x̂jmnto
′
t

o′
t

]

−
[

otx̂
′
jmnt ot

]
[

Ĉ
′
j

µ̂
(o)′
jm

]

+
[

Ĉj µ̂
(o)
jm

]
[

R̂jmnt x̂jmnt

x̂′
jmnt 1

][

Ĉ
′
j

µ̂
(o)′
jm

]
)

(D.33)

This is a maximum since the second derivative of Q(θ,θ (k)) with respect to Σ
(o)−1
jm is negative.

D.4 State Space Parameter Update Formulae

Discarding terms independent of the state space parameters, the auxiliary function can be writ-

ten as

Q(θ,θ(k)) =

T∑

t=1

Ns∑

j=1

M(o)
∑

m=1

M(x)
∑

n=1

γjmn(t)
(

log c
(x)
jn −

1

2
log |Σ

(x)
jn |

−
1

2
E

{

(xt − µ
(x)
jn )′Σ

(x)−1
jn (xt − µ

(x)
jn )

∣
∣
∣O,θ(k)

})

(D.34)

D.4.1 State Noise Component Priors

Maximising the auxiliary function in Equation D.34 with respect to the state noise component

priors, c
(x)
jn , can be carried out using the Lagrange multiplier λ together with the sum to unity

constraint 1 −
∑M(x)

n=1 c
(x)
jn = 0. It is equivalent to maximising the following Lagrangian

G(c
(x)
jn ) = λ

(

1 −
M(x)
∑

n=1

c
(x)
jn

)

+
T∑

t=1

M(o)
∑

m=1

M(x)
∑

n=1

γjmn(t) log c
(x)
jn (D.35)

Differentiating G(c
(x)
jn ) yields

∂G(c
(x)
jn )

∂c
(x)
jn

= −λ+
T∑

t=1

M(o)
∑

m=1

γjmn(t)

c
(x)
jn

(D.36)
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Setting the derivative to zero together with the sum to unity constraint forms the following pair

of equations






−λ+
T∑

t=1

M(o)
∑

m=1

γjmn(t)

c
(x)
jn

= 0

1 −
M(x)
∑

n=1

c
(x)
jn = 0

(D.37)

Solving for c
(x)
jn , the new state noise component priors can be written as

ĉ
(x)
jn =

T∑

t=1

M(o)
∑

m=1

γjmn(t)

T∑

t=1

γj(t)

(D.38)

This is a maximum of G(c
(x)
jn ) since its second derivative with respect to c

(x)
jn is negative.

D.4.2 State Noise Parameters

Differentiating the auxiliary function in Equation D.34 with respect to the state noise mean

vector, µ
(x)
jn , yields

∂Q(θ,θ(k))

∂µ
(x)
jn

= Σ
(x)−1
jn

T∑

t=1

M(o)
∑

m=1

γjmn(t)(x̂jmnt − µ
(x)
jn ) (D.39)

Equating this to zero and solving for µ
(x)
jn result in the updated state noise mean vector

µ̂
(x)
jn =

T∑

t=1

M(o)
∑

m=1

γjmn(t)x̂jmnt

T∑

t=1

M(o)
∑

m=1

γjmn(t)

(D.40)

This is a maximum since the second derivative of Q(θ,θ (k)) with respect to µ
(x)
jn is negative.

To find the new state noise covariance matrix, the auxiliary function is differentiated with

respect to its inverse, Σ
(x)−1
jn , as follows

∂Q(θ,θ(k))

∂Σ
(x)−1
jn

=
1

2

T∑

t=1

M(o)
∑

m=1

γjmn(t)
(

Σ
(x)
jn −E

{

(xt − µ
(x)
jn )(xt − µ

(x)
jn )′

∣
∣
∣O,θ(k)

})

(D.41)

Equating this to zero, solving for Σ
(x)
jn and setting the off-diagonal elements to zeroes result in

the updated state noise covariance matrix

Σ̂
(x)
jn = diag

(

T∑

t=1

M(o)
∑

m=1

γjmn(t)
(
R̂jmnt − x̂jmntµ̂

(x)′
jn − µ̂

(x)
jn x̂′

jmnt + µ̂
(x)
jn µ̂

(x)′
jn

)

T∑

t=1

M(o)
∑

m=1

γjmn(t)

)

(D.42)
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This is a maximum since the second derivative of Q(θ,θ (k)) with respect to Σ
(x)−1
jn is negative.



E

Kalman Filtering, Smoothing and Information Forms

Inference algorithms for a linear dynamical system (LDS) with time varying parameters are

presented in this appendix. In contrast with the classical derivations, all the mean vectors are

included to allow extensions to Gaussian mixture models. In the first two sections, Kalman

filtering and smoothing algorithms in the standard covariance form are derived following a

generic forward-backward algorithm. The information form algorithms are derived in Sections

E.3 and E.4. The covariance form filters have to be run sequentially, since the smoother estimates

are based on the filter estimates. The information filters can be run independently and the

smoothed estimates can be obtained by combining the estimates from the forward and backward

passes. This two filter approach to smoothing is presented in the last section.

For quick reference, the conditional distributions in the standard LDS with time-varying pa-

rameters can be written as

p(xt|xt−1) = N (xt;Atxt−1 + µ
(x)
t ,Σ

(x)
t ) (E.1)

p(ot|xt) = N (ot;Ctxt + µ
(o)
t ,Σ

(o)
t ) (E.2)

E.1 Kalman Filter

The derivation follows a so called generic scaled forward-backward algorithm [89]. Let the

forward variable, αxt , be defined as follows

αxt = p(xt,o1:t) = p(o1:t)p(xt|o1:t) =
( t∏

τ=1

κτ

)

α̂xt (E.3)

where κt = p(ot|o1:t−1) are the scaling factors and α̂xt = p(xt|o1:t) are the scaled forward

variables. Both, the scaling factors and forward variables, are Gaussian distributed due to the

linear Gaussian model assumption. Let xt|τ denoteE{xt|o1:τ} and Σt|τ denoteE{(xt−xt|τ )(xt−

xt|τ )
′|o1:τ} then the scaled forward variable is distributed as

α̂xt = N (xt;xt|t,Σt|t) (E.4)
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Using the first-order Markov property and the state conditional independence of the obser-

vations in Equations E.1 and E.2, the forward variable, αxt , can be rewritten in the following

recursive form

( t∏

τ=1

κτ

)

α̂xt = p(xt,o1:t) = p(ot|xt)p(xt,o1:t−1) (E.5)

= p(ot|xt)

∫

p(xt,xt−1 = z,o1:t−1)dz (E.6)

= p(ot|xt)

∫

p(xt|xt−1 = z)p(xt−1 = z,o1:t−1)dz (E.7)

= p(ot|xt)

∫

p(xt|xt−1 = z)
( t−1∏

τ=1

κτ

)

α̂xt−1|zdz (E.8)

κtα̂xt = p(ot|xt)

∫

p(xt|xt−1 = z)α̂xt−1|zdz (E.9)

where α̂xt−1|z = N (z;xt−1|t−1,Σt−1|t−1). The recursion starts off with the initial value α̂x1 =

p(x1|o1). All the terms in Equation E.9 can be expressed using Gaussians as follows

κtα̂xt = N (ot;Ctxt + µ
(o)
t ,Σ

(o)
t )

×

∫

N (xt;Atz + µ
(x)
t ,Σ

(x)
t )N (z;xt−1|t−1,Σt−1|t−1)dz (E.10)

where both terms inside the integral are also jointly Gaussian as follows

p(z,xt) =

N
(

[

z

xt

]

;

[

xt−1|t−1

Atxt−1|t−1 + µ
(x)
t

]

,

[

Σt−1|t−1 Σt−1|t−1A
′
t

AtΣt−1|t−1 AtΣt−1|t−1A
′
t + Σ

(x)
t

]
)

(E.11)

and since the integration is carried out with respect to z the term on the right hand side reduces

to the probability of xt. Defining xt|t−1 = Atxt−1|t−1 + µ
(x)
t and Σt|t−1 = AtΣt−1|t−1A

′
t + Σ

(x)
t ,

Equation E.10 becomes

κtα̂xt = N (ot;Ctxt + µ
(o)
t ,Σ

(o)
t )N (xt;xt|t−1,Σt|t−1)

= p(ot|xt,o1:t−1)p(xt|o1:t−1) (E.12)

which is not yet in the required form, but can be transformed into it by using Bayes’ formula as

follows

p(ot|xt,o1:t−1)p(xt|o1:t−1) = p(ot|o1:t−1)p(xt|o1:t) (E.13)

and noticing that ot and xt are also jointly Gaussian with the following parameters

p(ot,xt) =

N
(

[

xt

ot

]

;

[

xt|t−1

Ctxt|t−1 + µ
(o)
t

]

,

[

Σt|t−1 Σt|t−1C
′
t

CtΣt|t−1 CtΣt|t−1C
′
t + Σ

(o)
t

]
)

(E.14)
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The form on the right hand side in Equation E.13 can be easily obtained by applying the

conditioning of two multivariate Gaussians in Equation B.14. Therefore, Equation E.12 becomes

κtα̂xt = N (ot;Ctxt|t−1 + µ
(o)
t ,CtΣt|t−1C

′
t + Σ

(o)
t )

×N
(
xt;xt|t−1 + Kt(ot − Ctxt|t−1 − µ

(o)
t ),Σt|t−1 − KtCtΣt|t−1

)
(E.15)

where K t = Σt|t−1C
′
t(CtΣt|t−1C

′
t + Σ

(o)
t )−1 and which is now the product of the probability

of the current observation given the history up to the time instant t− 1 and the scaled forward

variable as defined earlier.

E.2 Kalman Smoother

The backward variable is defined as usual

βxt = p(ot+1:T |xt) = p(ot+1:T |o1:t)
p(ot+1:T |xt)

p(ot+1:T |o1:t)
=

( T∏

τ=t+1

κτ

)

β̂xt (E.16)

where κt = p(ot|o1:t−1) are the same scaling factors as the ones used with the forward vari-

ables. Using again the first-order Markov property and the state conditional independence of

the observations, the backward variable, βxt−1 , can be rewritten in the following recursive form

( T∏

τ=t

κτ

)

β̂xt−1 =

∫

p(xt = z,ot:T |xt−1)dz (E.17)

=

∫

p(xt = z|xt−1)p(ot|xt = z)p(ot+1:T |xt = z)dz (E.18)

=

∫

p(xt = z|xt−1)p(ot|xt = z)
( T∏

τ=t+1

κτ

)

β̂xt|zdz (E.19)

β̂xt−1 =
1

κt

∫

p(xt = z|xt−1)p(ot|xt = z)β̂xt|zdz (E.20)

The Kalman smoother estimates, x̂t and Σ̂t, are the mean vector and covariance matrix of the

state vector, xt, given the entire observation sequence, O. Therefore, they can be represented as

the product of the scaled forward and backward variables as follows

α̂xt β̂xt = p(xt|o1:t)
p(ot+1:T |xt)

p(ot+1:T |o1:t)
= p(xt|O) = N (xt; x̂t, Σ̂t) (E.21)

The backward recursion can be derived by substituting E.1, E.2, E.4, E.12, E.20 and E.21 into

the product of the scaled forward and backward variables, and doing some algebra as follows

α̂xt β̂xt = N (xt;xt|t,Σt|t)

∫

N (z;At+1xt + µ
(x)
t+1,Σ

(x)
t+1)

×N (ot+1;Ct+1z + µ
(o)
t+1,Σ

(o)
t+1)

N (z; x̂t+1, Σ̂t+1)

κt+1α̂xt+1|z
dz (E.22)

=

∫

N
(
xt;xt|t + J t(z − At+1xt|t − µ

(x)
t+1),Σt|t − J tAt+1Σt|t

)

×N (z; x̂t+1, Σ̂t+1)dz (E.23)

= N
(
xt;xt|t + J t(x̂t+1 − xt+1|t),Σt|t + J t(Σ̂t+1 −Σt+1|t)J

′
t

)
(E.24)
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where J t = Σt|tA
′
t+1Σ

−1
t+1|t and Kalman smoother recursions result obviously.

The cross covariance of two consecutive state vectors is also required. It can be obtained by

the scaled forward and backward variables as follows

p(xt−1,xt|O) =
1

κt
α̂xt−1p(xt|xt−1)p(ot|xt)β̂xt (E.25)

Since the current state and the previous state are jointly Gaussian it is easy to obtain their cross

covariance matrix Σ̂t−1,t = Σ̂tJ
′
t−1.

E.3 Forward Information Filter

An alternative derivation of the Kalman filter using the information form is presented here.

The derivation requires a backward LDS to be introduced. Assuming invertible state evolution

matrices, the backward LDS can be written as

xt−1 = A−1
t xt − A−1

t wt (E.26)

ot = Ctxt + vt (E.27)

where the state evolution noise wt and vt are the same independent noise variables as in the

standard LDS. The observations from time 1 to t, o1:t, can be expressed in terms of xt and xt+1

as

o1:t = C
(b)
t|t xt + v

(b)
t|t (E.28)

o1:t = C
(b)
t+1|txt+1 + v

(b)
t+1|t (E.29)

where the observation matrices, C
(b)
t|t and C

(b)
t+1|t, are constructed as follows

C
(b)
t|t =

[

C
(b)
t|t−1

Ct

]

(E.30)

C
(b)
t+1|t = C

(b)
t|t A

−1
t+1 (E.31)

with the initial condition C
(b)
1|1 = C1, and the observation noises, v

(b)
t|t and v

(b)
t+1|t, are constructed

as follows

v
(b)
t|t =

[

v
(b)
t|t−1

vt

]

(E.32)

v
(b)
t+1|t = v

(b)
t|t − C

(b)
t|t A

−1
t+1wt+1 (E.33)
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with the initial condition v
(b)
1|1 = v1. Since the observation and state evolution noises, vt and wt,

are assumed independent, the statistics of v
(b)
t|t and v

(b)
t+1|t can be expressed as

µ
(b)
t|t =

[

µ
(b)
t|t−1

µ
(o)
t

]

(E.34)

Σ
(b)
t|t =

[

Σ
(b)
t|t−1 0

0 Σ
(o)
t

]

(E.35)

µ
(b)
t+1|t = µ

(b)
t|t − C

(b)
t|t A

−1
t+1µ

(x)
t+1 (E.36)

Σ
(b)
t+1|t = C

(b)
t|t A

−1
t+1Σ

(x)
t+1(A

−1
t+1)

′C
(b)′
t|t + Σ

(b)
t|t (E.37)

with the initial conditions µ
(b)
1|1 = µ

(o)
1 and Σ

(b)
1|1 = Σ

(o)
1 .

The Fisher estimators [66] of xt and xt+1 given the observation sequence o1:t define the

recursions for the forward information filter and predictor covariance matrices, Σ
−1
t|t and Σ

−1
t+1|t,

as follows

Σ
−1
t|t = C

(b)′
t|t Σ

(b)−1
t|t C

(b)
t|t

= C ′
tΣ

(o)−1
t Ct + Σ

−1
t|t−1 (E.38)

Σ
−1
t+1|t = C

(b)′
t+1|tΣ

(b)−1
t+1|t C

(b)
t+1|t

= (A−1
t+1)

′C
(b)′
t|t

(
C

(b)
t|t A

−1
t+1Σ

(x)
t+1(A

−1
t+1)

′C
(b)′
t|t + Σ

(b)
t|t

)−1
C

(b)
t|t A

−1
t+1

= Σ
(x)−1
t+1 −Σ

(x)−1
t+1

(
(A−1

t+1)
′C

(b)′
t|t Σ

(b)−1
t|t C

(b)
t|t A

−1
t+1 + Σ

(x)−1
t+1

)−1
Σ

(x)−1
t+1

= Σ
(x)−1
t+1 −Σ

(x)−1
t+1 At+1

(
A′
t+1Σ

(x)−1
t+1 At+1 + Σ

−1
t|t

)−1
A′
t+1Σ

(x)−1
t+1 (E.39)

with the initial condition Σ
−1
1|0 = Σ

(i)−1
1 . The matrix inversion lemma in Equation B.1 is used

between the second and third line in Equation E.39. The forward information filter and the

predictor mean vectors are

Σ
−1
t|t xt|t = C

(b)′
t|t Σ

(b)−1
t|t (o1:t − µ

(b)
t|t )

= Σ
−1
t|t−1xt|t−1 + C ′

tΣ
(o)−1
t (ot − µ

(o)
t ) (E.40)

Σ
−1
t+1|txt+1|t = C

(b)′
t+1|tΣ

(b)−1
t+1|t (o1:t − µ

(b)
t+1|t)

= (A−1
t+1)

′C
(b)′
t|t

(
C

(b)
t|t

A−1
t+1Σ

(x)
t+1(A

−1
t+1)

′C
(b)′
t|t

+ Σ
(b)
t|t

)−1
(o1:t + C

(b)
t|t

A−1
t+1µ

(x)
t+1 − µ

(o)
t )

= Σ
(x)−1
t+1 At+1

(
A′
t+1Σ

(x)−1
t+1 At+1 + Σ

−1
t|t

)−1
C

(b)′
t|t Σ

(b)−1
t|t (o1:t + C

(b)
t|t A

−1
t+1µ

(x)
t+1 − µ

(o)
t )

= Σ
(x)−1
t+1 At+1

(
A′
t+1Σ

(x)−1
t+1 At+1 + Σ

−1
t|t

)−1
Σ

−1
t|t xt|t + Σ

−1
t+1|tµ

(x)
t+1 (E.41)

with the initial condition Σ
−1
1|0x1|0 = Σ

(i)−1
1 µ

(i)
1 . The matrix identity in Equation B.2 is used

between the second and third line in Equation E.41.

The information form of the Kalman filter can also be derived by applying the matrix inver-

sion lemma in Equation B.1 to the covariance form recursion. Analogously, the covariance form

of the Kalman filter can be derived from the information form provided above.
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E.4 Backward Information Filter

The derivation of the backward information filter follows the same method as for the forward

information filter reviewed above. The observations from time t to time T , ot:T , can be expressed

in terms of xt and xt−1 as

ot:T = C
(f)
t|t xt + v

(f)
t|t (E.42)

ot:T = C
(f)
t−1|txt−1 + v

(f)
t−1|t (E.43)

where the observation matrices, C
(f)
t|t and C

(f)
t−1|t, are constructed as follows

C
(f)
t|t =

[

Ct

C
(f)
t|t+1

]

(E.44)

C
(f)
t−1|t = C

(f)
t|t At (E.45)

with the initial condition C
(f)
T |T = CT , and the observation noises, v

(f)
t|t and v

(f)
t−1|t, are con-

structed as follows

v
(f)
t|t =

[

vt

v
(f)
t|t+1

]

(E.46)

v
(f)
t−1|t = C

(f)
t|t wt + v

(f)
t|t (E.47)

with the initial condition v
(f)
T |T = vT . Since the observation and state evolution noises, vt and

wt, are assumed to be independent, the statistics of v
(f)
t|t and v

(f)
t−1|t can be expressed as

µ
(f)
t|t =

[

µ
(o)
t

µ
(f)
t|t+1

]

(E.48)

Σ
(f)
t|t =

[

Σ
(o)
t 0

0 Σ
(f)
t|t+1

]

(E.49)

µ
(f)
t−1|t = C

(f)
t|t µ

(x)
t + µ

(f)
t|t (E.50)

Σ
(f)
t−1|t = C

(f)
t|t Σ

(x)
t C

(f)′
t|t + Σ

(f)
t|t (E.51)

with initial conditions µ
(f)
T |T = µ

(o)
T and Σ

(f)
T |T = Σ

(o)
T .

The Fisher estimators [66] of xt and xt−1 given the observation sequence ot:T define the re-

cursions for the backward information filter and predictor covariance matrices, P −1
t|t and P−1

t−1|t,

[87] as follows

P−1
t|t = C

(f)′
t|t Σ

(f)−1
t|t C

(f)
t|t

= C ′
tΣ

(o)−1
t Ct + P−1

t|t+1 (E.52)

P−1
t−1|t = C

(f)′
t−1|tΣ

(f)−1
t−1|t C

(f)
t−1|t

= A′
tC

(f)′
t|t

(
C

(f)
t|t Σ

(x)
t C

(f)′
t|t + Σ

(f)
t|t

)−1
C

(f)
t|t At

= A′
tΣ

(x)−1
t

(
C

(f)′
t|t Σ

(f)−1
t|t C

(f)
t|t + Σ

(x)−1
t

)−1
C

(f)′
t|t Σ

(f)−1
t|t C

(f)
t|t At

= A′
t

(
P−1
t|t

Σ
(x)
t + I

)−1
P−1
t|t

At (E.53)
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with the initial condition P −1
T |T+1 = 0. The matrix identity in Equation B.2 is used between the

second and third line in Equation E.53. The backward information filter and predictor mean

vectors are

P−1
t|t mt|t = C

(f)′
t|t Σ

(f)−1
t|t (ot:T − µ

(f)
t|t )

= P−1
t|t+1mt|t+1 + C ′

tΣ
(o)−1
t (ot − µ

(o)
t ) (E.54)

P−1
t−1|tmt−1|t = C

(f)′
t−1|tΣ

(f)−1
t−1|t (ot:T − µ

(f)
t−1|t)

= A′
tC

(f)′
t|t

(
C

(f)
t|t Σ

(x)
t C

(f)′
t|t + Σ

(f)
t|t

)−1
(ot:T − C

(f)
t|t µ

(x)
t − µ

(f)
t|t )

= A′
tΣ

(x)−1
t

(
C

(f)′
t|t Σ

(f)−1
t|t C

(f)
t|t + Σ

(x)−1
t

)−1
C

(f)′
t|t Σ

(f)−1
t|t (ot:T − C

(f)
t|t µ

(x)
t − µ

(f)
t|t )

= A′
t

(
P−1
t|t Σ

(x)
t + I

)−1
P−1
t|t (mt|t − µ

(x)
t ) (E.55)

with the initial condition P −1
T |T+1mT |T+1 = 0.

E.5 Two Filter Formulae for Kalman Smoothing

Sometimes it is beneficial to estimate the smoothed statistics in two independent sweeps. Since

a covariance form of backward Kalman filter in general would require knowledge of the state

noise statistics from time 1 to t [66], the information form has to be used for the backward

sweep. In terms of the current state vector, xt, the observation sequence, O, can be factored as

follows
[

o1:t−1

ot:T

]

︸ ︷︷ ︸

O

=

[

C
(b)
t|t−1

C
(f)
t|t

]

︸ ︷︷ ︸

C
(s)
t

xt +

[

v
(b)
t|t−1

v
(f)
t|t

]

︸ ︷︷ ︸

v
(s)
t

(E.56)

where the parameters C
(b)
t|t−1, v

(b)
t|t−1, C

(f)
t|t and v

(f)
t|t are defined as in Appendices E.3 and E.4.

It should be noted that the observation noises v
(b)
t|t−1 and v

(f)
t|t are independent. The Fisher

estimator [66] of the state vector, xt, given the observation sequence, O, can be expressed in

terms of the parameters C
(s)
t and Σ

(s)
t as follows

Σ̂
−1
t = C

(s)′
t Σ

(s)−1
t C

(s)
t

= C
(b)′
t|t−1Σ

(b)−1
t|t−1 C

(b)
t|t−1 + C

(f)′
t|t Σ

(f)−1
t|t C

(f)
t|t

= Σ
−1
t|t−1 + P−1

t|t (E.57)

Σ̂
−1
t x̂t = C

(s)′
t Σ

(s)−1
t (O − µ

(s)
t )

= C
(b)′
t|t−1Σ

(b)−1
t|t−1 (o1:t−1 − µ

(b)
t|t−1) + C

(f)′
t|t Σ

(f)−1
t|t (ot:T − µ

(f)
t|t )

= Σ
−1
t|t−1xt|t−1 + P−1

t|t mt|t (E.58)

The smoothed statistics can be expressed as

Σ̂t = (Σ−1
t|t−1 + P−1

t|t )−1 (E.59)

x̂t = Σ̂t(Σ
−1
t|t−1

xt|t−1 + P−1
t|t

mt|t) (E.60)
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Similarly, the smoothed statistics can be obtained using the forward filtered estimates, Σt|t, and

backward predicted estimates, P t|t+1, as follows

Σ̂t = (Σ−1
t|t + P−1

t|t+1)
−1 (E.61)

x̂t = Σ̂t(Σ
−1
t|t xt|t + P−1

t|t+1mt|t+1) (E.62)

The equivalence of the RTS and the two filter smoother can be verified using the principle of

mathematical induction. Initially, it holds for the covariance matrix that

Σ̂T = ΣT |T = (Σ−1
T |T + P−1

T |T+1)
−1 (E.63)

because P−1
T |T+1

= 0. Assuming that Σ̂t+1 = (Σ−1
t+1|t

+ P−1
t+1|t+1

)−1 holds, the RTS smoother

covariances can be converted into the two filter smoother covariances as follows

Σ̂t = Σt|t + Σt|tA
′
t+1Σ

−1
t+1|t

(
Σ̂t+1 −Σt+1|t

)
Σ

−1
t+1|tAt+1Σt|t

= Σt|t + Σt|tA
′
t+1Σ

−1
t+1|t

(
(Σ−1

t+1|t
+ P−1

t+1|t+1
)−1 −Σt+1|t

)
Σ

−1
t+1|t

At+1Σt|t

= Σt|t + Σt|tA
′
t+1

(
(Σt+1|t + Σt+1|tP

−1
t+1|t+1Σt+1|t)

−1 −Σ
−1
t+1|t

)
At+1Σt|t

= Σt|t −Σt|tA
′
t+1

(
Σt+1|t + P t+1|t+1

)−1
At+1Σt|t

= Σt|t −Σt|t

(
Σt|t + P t|t+1

)−1
Σt|t

=
(
Σ

−1
t|t + P−1

t|t+1

)−1
(E.64)

where the matrix inversion lemma in Equation B.1 is used between the third and fourth line,

and between the fifth and sixth line. Also, the identities Σt+1|t = At+1Σt|tA
′
t+1 + Σ

(x)
t+1 and

P t+1|t+1 = At+1P t|t+1A
′
t+1 −Σ

(x)
t+1 are used between lines four and five.

The RTS smoother mean vectors can be converted into their two filter equivalents in the

same fashion. Initially, it holds that

x̂T = xT |T = ΣT |T (Σ−1
T |T

xT |T + P−1
T |T+1

mT |T+1) (E.65)

because P−1
T |T+1mT |T+1 = 0. Assuming x̂t+1 = Σ̂t+1(Σ

−1
t+1|txt+1|t+P−1

t+1|t+1mt+1|t+1) holds and

knowing that Σ̂t+1 = (Σ−1
t+1|t + P−1

t+1|t+1)
−1, the RTS smoother mean vectors can be written as

x̂t = xt|t + Σt|tA
′
t+1Σ

−1
t+1|t(x̂t+1 − xt+1|t)

= xt|t + Σt|tA
′
t+1Σ

−1
t+1|t

(
Σ̂t+1(Σ

−1
t+1|txt+1|t + P−1

t+1|t+1mt+1|t+1) − xt+1|t

)

= xt|t + Σt|tA
′
t+1Σ

−1
t+1|t

(
(Σ−1

t+1|t + P−1
t+1|t+1)

−1(Σ−1
t+1|txt+1|t + P−1

t+1|t+1mt+1|t+1) − xt+1|t

)

= xt|t + Σt|tA
′
t+1

(
Σt+1|t + P t+1|t+1

)−1
(mt+1|t+1 − xt+1|t)

= xt|t + Σt|t

(
Σt|t + P t|t+1

)−1
(mt|t+1 − xt|t)

= Σ̂t

(
Σ

−1
t|t xt|t + P−1

t|t+1mt|t+1

)
(E.66)

where the identities xt+1|t = At+1xt|t + µ
(x)
t+1 and mt+1|t+1 = At+1mt|t+1 + µ

(x)
t+1 are used be-

tween the fourth and fifth lines. All the other matrix manipulations are similar to the covariance

derivations described above.



F

Parameter Optimisation for LDS

The parameter update formulae for a standard linear dynamical system (LDS) are derived in this

appendix. The sufficient statistics, x̂t, R̂t and R̂t−1,t, for the update formulae may be obtained

using one of the smoothing algorithms presented in Appendix E. The statistics are evaluated

using the set of parameters, θ(k) = {C,µ(o),Σ(o),A,µ(x),Σ(x),µ(i),Σ(i)}, from the previous

iteration in common with the expectation step of the EM algorithm. In the maximisation step, a

set of parameters that maximises the auxiliary function is found

θ̂ = arg max
θ

Q(θ,θ(k)) (F.1)

These parameters will be used as the set of old parameters in the following iteration, θ̂ → θ(k+1).

The following three sections describe the derivation of the parameter update formulae for the

observation space, state space and initial state distribution parameters, respectively.

F.1 Observation Space Parameter Update Formulae

Discarding terms independent of the observation space parameters, the auxiliary function can

be written as

Q(θ,θ(k)) = −
1

2

T∑

t=1

(

log |Σ(o)| +E
{

(ot − Cxt − µ(o))′Σ(o)−1(ot − Cxt − µ(o))
∣
∣
∣O,θ(k)

})

= −
1

2

T∑

t=1

(

log |Σ(o)| + tr
{

Σ
(o)−1

(
oto

′
t −

[

C µ(o)
]
[

x̂to
′
t

o′
t

]

−
[

otx̂
′
t ot

]
[

C ′

µ(o)′

]

+
[

C µ(o)
]
[

R̂t x̂t

x̂′
t 1

][

C ′

µ(o)′

]

)})

(F.2)

Differentiating the auxiliary function in Equation F.2 with respect to
[

C µ(o)
]

yields

∂Q(θ,θ(k))

∂
[

C µ(o)
] =

T∑

t=1

( [

otx̂
′
t ot

]

−
[

C µ(o)
]
[

R̂t x̂t

x̂′
t 1

]
)

(F.3)
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Equating this to zero and solving for
[

C µ(o)
]

result in the parameter update

[

Ĉ µ̂(o)
]

=
( T∑

t=1

[

otx̂
′
t ot

] )( T∑

t=1

[

R̂t x̂t

x̂′
t 1

]
)−1

(F.4)

This is a maximum since the second derivative of Q(θ,θ (k)) with respect to
[

C µ(o)
]

is negative.

Using the inversion formula for a partitioned matrix in Equation B.6, the individual parameter

update formulae can be written as

Ĉ =
( T∑

t=1

otx̂
′
t −

1

T

T∑

t=1

ot

T∑

t=1

x̂′
t

)( T∑

t=1

R̂t −
1

T

T∑

t=1

x̂t

T∑

t=1

x̂′
t

)−1
(F.5)

µ̂(o) =
1

T

T∑

t=1

(
ot − Ĉx̂t

)
(F.6)

To find the new observation noise covariance matrix, the auxiliary function in Equation F.2

is differentiated with respect to its inverse, Σ
(o)−1, as follows

∂Q(θ,θ(k))

∂Σ(o)−1
=

1

2

T∑

t=1

(

Σ
(o) − oto

′
t +

[

otx̂
′
t ot

]
[

C ′

µ(o)′

]

+
[

C µ(o)
]
[

x̂to
′
t

o′
t

]

−
[

C µ(o)
]
[

R̂t x̂t

x̂′
t 1

] [

C ′

µ(o)′

]
)

(F.7)

Equating this to zero and substituting Equation F.4 into the left hand side of the last term in

Equation F.7, the new observation noise covariance matrix can be written as

Σ̂
(o)

=
1

T

T∑

t=1

(

oto
′
t −

[

Ĉ µ̂(o)
]
[

x̂to
′
t

o′
t

]
)

(F.8)

This is a maximum since the second derivative of Q(θ,θ (k)) with respect to Σ
(o)−1 is negative.

F.2 State Space Parameter Update Formulae

Discarding terms independent of the state space parameters, the auxiliary function can be writ-

ten as

Q(θ,θ(k)) = −
1

2

T∑

t=2

(

log |Σ(x)| +E
{

(xt − Axt−1 − µ(x))′Σ(x)−1(xt − Axt−1 − µ(x))
∣
∣
∣O,θ(k)

})

= −
1

2

T∑

t=2

(

log |Σ(x)| + tr
{

Σ
(x)−1

(
R̂t −

[

A µ(x)
]
[

R̂
′
t−1,t

x̂′
t

]

−
[

R̂t−1,t x̂t

]
[

A′

µ(x)′

]

+
[

A µ(x)
]
[

R̂t−1 x̂t−1

x̂′
t−1 1

][

A′

µ(x)′

]

)})

(F.9)

Differentiating the auxiliary function in Equation F.9 with respect to
[

A µ(x)
]

yields

∂Q(θ,θ(k))

∂
[

A µ(x)
] =

T∑

t=2

( [

R̂t−1,t x̂t

]

−
[

A µ(x)
]
[

R̂t−1 x̂t−1

x̂′
t−1 1

]
)

(F.10)
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Equating this to zero and solving for
[

A µ(x)
]

result in the updated parameters

[

Â µ̂(x)
]

=
( T∑

t=2

[

R̂t−1,t x̂t

] )( T∑

t=2

[

R̂t−1 x̂t−1

x̂′
t−1 1

]
)−1

(F.11)

This is a maximum since the second derivative of Q(θ,θ(k)) with respect to
[

A µ(x)
]

is negative.

Using the inversion formula for a partitioned matrix in Equation B.6, the individual parameter

update formulae can be written as

Â =
( T∑

t=2

R̂t−1,t −
1

T − 1

T∑

t=2

x̂t

T∑

t=2

x̂′
t−1

)( T∑

t=2

R̂t−1 −
1

T − 1

T∑

t=2

x̂t−1

T∑

t=2

x̂′
t−1

)−1
(F.12)

µ̂(x) =
1

T − 1

T∑

t=2

(
x̂t − Âx̂t−1

)
(F.13)

To find the new state noise covariance matrix, the auxiliary function in Equation F.9 is differ-

entiated with respect to its inverse, Σ
(x)−1, as follows

∂Q(θ,θ(k))

∂Σ(x)−1
=

1

2

T∑

t=2

(

Σ
(x) − R̂

′
t +

[

R̂t−1,t x̂t

]
[

A′

µ(x)′

]

+
[

A µ(x)
]
[

R̂
′
t−1,t

x̂′
t

]

−
[

A µ(x)
]
[

R̂t−1 x̂t−1

x̂′
t−1 1

][

A′

µ(x)′

]
)

(F.14)

Equating this to zero and substituting Equation F.11 into the left hand side of the last term in

Equation F.14, the new state noise covariance matrix can be written as

Σ̂
(x)

=
1

T − 1

T∑

t=2

(

R̂t −
[

Â µ̂(x)
] [

R̂t−1,t x̂t

]′ )

(F.15)

This is a maximum since the second derivative of Q(θ,θ (k)) with respect to Σ
(x)−1 is negative.

F.3 Initial State Distribution Parameter Update Formulae

Discarding terms independent of the initial state noise distribution parameters, the auxiliary

function can be written as

Q(θ,θ(k)) = −
1

2

(

log |Σ(i)| +E
{

(x1 − µ(i))′Σ(i)−1(x1 − µ(i))
∣
∣
∣O,θ(k)

})

= −
1

2

(

log |Σ(i)| + tr
{

Σ
(i)−1

(
R̂1 − µ(i)x̂′

1 − x̂1µ
(i)′ + µ(i)µ(i)′

)})

(F.16)

Differentiating the auxiliary function in Equation F.16 with respect to the initial state noise

mean vector, µ(i), yields

∂Q(θ,θ(k))

∂µ(i)
= Σ

(i)−1(x̂1 − µ(i)) (F.17)



APPENDIX F. PARAMETER OPTIMISATION FOR LDS 129

Equating this to zero and solving for µ(i) result in the initial state noise mean vector update

µ̂(i) = x̂1 (F.18)

This is a maximum since the second derivative of Q(θ,θ (k)) with respect to µ(i) is negative.

To find the new initial state noise covariance matrix, the auxiliary function is differentiated

with respect to its inverse, Σ
(i)−1, as follows

∂Q(θ,θ(k))

∂Σ(i)−1
=

1

2

(

Σ
(i) − R̂1 + µ(i)x̂′

1 + x̂1µ
(i)′ − µ(i)µ(i)′

)

(F.19)

Equating this to zero and solving for Σ
(i) result in the initial state noise covariance matrix update

Σ̂
(i)

= R̂1 − µ̂(i)µ̂(i)′ (F.20)

This is a maximum since the second derivative of Q(θ,θ (k)) with respect to Σ
(i)−1 is negative.



G

Gibbs Sampling for SLDS

An approximate inference scheme for the switching linear dynamical system (SLDS) based on

Gibbs sampling is derived in this appendix. In common with standard Monte Carlo sampling

algorithms, the proposal distribution has to be carefully designed. The efficiency of Monte Carlo

methods depends on the size of the state space the samples are drawn from. Due to the tractable

substructures in SLDS, Rao-Blackwellisation may be employed to increase efficiency. For the

SLDS, samples are drawn from the discrete state space and the continuous state space statistics

may be obtained holding the estimated discrete state sequence fixed. The proposal distribution

to draw the discrete states for a time instant is derived in the following section.

G.1 Proposal Distribution

The proposal distribution used in Rao-Blackwellised Gibbs sampling for switching linear dynam-

ical systems can be expressed as [26]

P (qt|O, q
(n)
−t ) ∝

P (q
(n−1)
t+1 |qt)P (qt|q

(n)
t−1)p(ot|o1:t−1, q

(n)
1:t )

∫

p(ot+1:T |xt, q
(n−1)
t+1:T )p(xt|o1:t, q

(n)
1:t )dxt (G.1)

Using the parameters C
(f)
t|t+1, µ

(f)
t|t+1 and Σ

(f)
t|t+1 for the likelihood p(ot+1:T |xt, q

(n−1)
t+1:T ) as defined

in Appendix E.4, the above integral can be written as

∫

p(ot+1:T |xt, q
(n−1)
t+1:T )p(xt|o1:t, q

(n)
1:t )dxt =

∫

N (ot+1:T ;C
(f)
t|t+1xt + µ

(f)
t|t+1,Σ

(f)
t|t+1)N (xt;xt|t,Σt|t)dxt

= N (ot+1:T ;C
(f)
t|t+1xt|t + µ

(f)
t|t+1,C

(f)
t|t+1Σt|tC

(f)′
t|t+1 + Σ

(f)
t|t+1) (G.2)

Using the backward information filter variables from Appendix E.4 and the identity for determi-

nants in Equation B.3, the determinant of the covariance matrix for the above Gaussian can be

130
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expressed as

∣
∣C

(f)
t|t+1Σt|tC

(f)′
t|t+1 + Σ

(f)
t|t+1

∣
∣ =

∣
∣Σ

(f)
t|t+1

∣
∣
∣
∣Σt|t

∣
∣
∣
∣C

(f)′
t|t+1Σ

(f)−1
t|t+1 C

(f)
t|t+1 + Σ

−1
t|t

∣
∣

=
∣
∣Σ

(f)
t|t+1

∣
∣
∣
∣Σt|tP

−1
t|t+1 + I

∣
∣ (G.3)

where
∣
∣Σ

(f)
t|t+1

∣
∣ does not depend on qt.

Using the matrix inversion lemma in Equation B.1, the inverse covariance matrix of the

Gaussian in Equation G.2 can be written as

(C
(f)
t|t+1Σt|tC

(f)′
t|t+1 + Σ

(f)
t|t+1)

−1 =

Σ
(f)−1
t|t+1 −Σ

(f)−1
t|t+1 C

(f)
t|t+1

(
C

(f)′
t|t+1Σ

(f)−1
t|t+1 C

(f)
t|t+1 + Σ

−1
t|t

)−1
C

(f)′
t|t+1Σ

(f)−1
t|t+1

= Σ
(f)−1
t|t+1 −Σ

(f)−1
t|t+1 C

(f)
t|t+1

(
P−1
t|t+1 + Σ

−1
t|t

)−1
C

(f)′
t|t+1Σ

(f)−1
t|t+1 (G.4)

Writing the Gaussian as Z exp(− 1
2γ) where Z is a constant. The term γ can be expressed as

γ = (ot+1:T − C
(f)
t|t+1xt|t − µ

(f)
t|t+1)

′
(
Σ

(f)−1
t|t+1 −Σ

(f)−1
t|t+1 C

(f)
t|t+1

(
P−1
t|t+1 + Σ

−1
t|t

)−1
C

(f)′
t|t+1Σ

(f)−1
t|t+1

)

×(ot+1:T − C
(f)
t|t+1xt|t − µ

(f)
t|t+1)

= (ot+1:T − µ
(f)
t|t+1)

′
Σ

(f)−1
t|t+1 (ot+1:T − µ

(f)
t|t+1) + x′

t|tP
−1
t|t+1xt|t − 2x′

t|tP
−1
t|t+1mt|t+1

−(mt|t+1 − xt|t)
′P−1

t|t+1

(
P−1
t|t+1 + Σ

−1
t|t

)−1
P−1
t|t+1(mt|t+1 − xt|t) (G.5)

where (ot+1:T −µ
(f)
t|t+1)

′
Σ

(f)−1
t|t+1 (ot+1:T −µ

(f)
t|t+1) does not depend on qt. The proposal distribution

results discarding all terms independent of qt

P (qt|O, q
(n)
−t ) ∝

P (q
(n−1)
t+1 |qt)P (qt|q

(n)
t−1)N (ot;Ctxt|t−1 + µ

(o)
t ,CtΣt|t−1C

′
t + Σ

(o)
t )

∣
∣Σt|tP

−1
t|t+1 + I

∣
∣−

1
2

× exp
{

x′
t|tP

−1
t|t+1mt|t+1 −

1

2
x′
t|tP

−1
t|t+1xt|t

+
1

2
(mt|t+1 − xt|t)

′P−1
t|t+1

(
P−1
t|t+1 + Σ

−1
t|t

)−1
P−1
t|t+1(mt|t+1 − xt|t)

}

(G.6)
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