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Summary

In recent years, systems based on support vector machines (SVMs) have become standard for
speaker verification (SV) tasks. An important aspect of these systems is the dynamic kernel.
These operate on sequence data and handle the dynamic nature of the speech. In this thesis
a number of techniques are proposed for improving dynamic kernel-based SV systems.

The first contribution of this thesis is the development of alternative forms of dynamic
kernel. Several popular dynamic kernels proposed for SV are based on the Kullback-Leibler
divergence between Gaussian mixture models. Since this has no closed-form solution, typically
a matched-pair upper bound is used instead. This places significant restrictions on the forms
of model structure that may be used. In this thesis, dynamic kernels are proposed based
on alternative, variational approximations to the divergence. Unlike standard approaches,
these allow the use of a more flexible modelling framework. Also, using a more accurate
approximation may lead to performance gains.

The second contribution of this thesis is to investigate the combination of multiple systems
to improve SV performance. Typically, systems are combined by fusing the output scores.
For SVM classifiers, an alternative strategy is to combine at the kernel level. Recently an
efficient maximum-margin scheme for learning kernel weights has been developed. In this
thesis several modifications are proposed to allow this scheme to be applied to SV tasks.
System combination will only lead to gains when the kernels are complementary. In this thesis
it is shown that many commonly used dynamic kernels can be placed into one of two broad
classes, derivative and parametric kernels. The attributes of these classes are contrasted and
the conditions under which the two forms of kernel are identical are described. By avoiding
these conditions gains may be obtained by combining derivative and parametric kernels.

The final contribution of this thesis is to investigate the combination of dynamic kernels
with traditional static kernels for vector data. Here two general combination strategies are
available: static kernel functions may be defined over the dynamic feature vectors. Alterna-
tively, a static kernel may be applied at the observation level. In general, it is not possible
to explicitly train a model in the feature space associated with a static kernel. However, it
is shown in this thesis that this form of kernel can be computed by using a suitable metric
with approximate component posteriors. Generalised versions of standard parametric and
derivative kernels, that include an observation-level static kernel, are proposed based on this
approach.

Keywords: speaker recognition; dynamic kernels; support vector machines; classifier
combination.
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Notation

These are the terms and notation used throughout this work.

Vectors and Matrices

x vector

xj scalar value that is the jth element of x

A matrix

AT transpose of matrix A

Tr[A] trace of matrix A

diag[A] a diagonalised version of matrix A
∣

∣A
∣

∣ determinant of matrix A

A-1 inverse of matrix A

ai row vector that is ith row of A

aij scalar value that is the element in row i and column j of A

Variables, Symbols and Operations

≈ approximately equal to

x scalar quantity

argmax
x

f(x) the value of x that maximises the value of f(x)

max
x

f(x) the maximum value of f(x) as x is varied

log(x) logarithm base e of x

exp(x) exponential of x

E{f(x)} the expected value of f(x)
∑N

n=1 an summation from n = 1 to N—that is, a1 + a2 + · · · + aN

∇xf(x) vector derivative of a function f(x) with respect to x
∫

f(x) dx indefinite integral of f(x) with respect to x
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I identity matrix

〈a, b〉 inner product of a and b

Observations

O sequence of observations

T number of frames in a sequence of observations O

t time frame index

ot speech observation vector at time t

D number of dimensions of full feature vector

d dimension index

GMM Parameters

λ set of current acoustic model parameters

λ(s) set of acoustic model parameters associated with speaker s

M number of GMM components

m index for the mth component of an GMM

cm mixture weight associated with GMM component m

µm mean of component m

Σm variance of component m

SVM Parameters

α dual variables

w primal weight vector

ξ slack variables

b bias parameter

C regularisation constant

Kernels and Feature spaces

k(xi,xj) static kernel function between vectors xi and xj

K(Oi,Oj) dynamic kernel function between sequences Oi and Oj

ψ(x;λ) static feature expansion of vector x

φ(O;λ) dynamic feature expansion of sequence O
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Parameter Estimation



viii

P (θt = m|ot) posterior probability of component m at time t

Probability and Distributions

f(·) probability distribution

P (·) probability mass function

p(·) probability density function

p(x, y) joint probability density function—that is, the probability density of
x and y

p(x|y) conditional probability density of x given y

N (µ,Σ) multivariate Gaussian distribution with mean vector µ and covariance
matrix Σ

N (o;µ,Σ) probability of vector o given a multivariate Gaussian distribution

KL(fi||fj) Kullback-Leibler divergence between distributions fi and fj
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CHAPTER 1
Introduction

Many speech processing tasks, such as speech recognition [61], speaker [23, 172] and lan-
guage [145] identification and gender detection [155] require the classification of speech utter-
ances. Many speech classification techniques have been developed, however the most success-
ful have been based on statistical classifiers [91]. Here, instead of applying hard-coded rules,
a set of models are learned from the data that capture the relationships between the speech
and the class labels. By analysing these models, unlabeled speech data may be classified.

Statistical techniques for speech classification generally fall into one of two broad cat-
egories: generative and discriminative classification schemes [17]. In the first approach, a
generative model is trained to approximate the probability density function of the speech
observations associated with each class. A classification decision is then made using a com-
bination of Bayes’ rule and Bayes’ decision rule. Discriminative schemes are an alternative
classification approach. These include discriminative models, which are trained to model the
distribution of the class posteriors, and discriminative classifiers, which model the location of
a decision boundary that separates the classes. A popular example of this last approach is the
support vector machine (SVM) [198], which has been successfully applied to many different
applications [10, 21, 33].

1.1 Kernel-based speech classification
A useful property shared by several forms of discriminative classifier, including the support
vector machine, is that they can be kernelised [181]. Here, all references to the data are
in the form of an inner product between two data examples. Instead of applying an inner
product directly, a kernel function may be defined that implicitly maps each data example
into a high-dimensional feature space where the inner product is evaluated. Hence, through
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CHAPTER 1. INTRODUCTION 2

the selection of a suitable kernel function, classification may be performed in a space in which
the classes are more easily separated. Many kernels used with discriminative classifiers only
handle data of a fixed-dimensionality. In this thesis, these are referred to as static kernels.
In contrast, speech utterances are typically parameterised as variable-length sequences of
observation vectors. This has led to the use of dynamic kernels [204], also known as sequence
kernels. These dynamic kernels map variable-length sequences into a fixed dimension feature
space in which the inner product, or static kernel, can be computed. Hence, through the use
of an appropriate dynamic kernel, discriminative classifiers can used to classify variable-length
sequences such as speech.

The development of dynamic kernels is an important area of research. The features ex-
tracted from each sequence by a dynamic kernel should emphasize information useful for
discriminating between classes and remove any non-useful information that may affect the
classification decision. Ideally, dynamic kernels should also be efficient to compute. Many
forms of dynamic kernel have been proposed for classification of speech sequences. An early
example of this type of kernel is the generalised linear discriminant sequence (GLDS) ker-
nel [24, 142]. Here, each observation vector is initially mapped into a high-dimensional space
using a static kernel. A fixed dimensional set of features is then obtained by taking the mean
of the expanded observations.

More recent approaches have examined dynamic kernels based on generative models, ex-
amples include the Fisher kernel [90, 205], the Gaussian mixture model (GMM) supervector
kernel [28], the maximum likelihood linear regression (MLLR) kernel [189] and the cluster-
adaptive training (CAT) kernel [211]. These kernels use the generative model to extract
structure from the utterance. Despite the large number of dynamic kernels that have been
proposed in the literature, there have so far been few attempts to identify relationships be-
tween these kernels. One of the contributions of this thesis is to show that many commonly
used dynamic kernels can be placed into one of two broad classes. In this thesis, these are
referred to as parametric kernels and derivative kernels. The two types of kernel are closely
related and under certain conditions the features obtained can be shown to be identical. By
avoiding these conditions, kernels may be obtained that express complementary information.
The framework may also be used to motivate new forms of dynamic kernel.

1.2 Speaker verification
In this thesis, discriminative classification schemes using dynamic kernels are applied to the
task of speaker verification (SV). Here the objective is to decide, given an utterance of speech
and an associated identity claim, whether the speech was uttered by the claimed target
speaker or by an imposter. Speaker verification has several practical applications, including
biometrics for authentication [113], forensics [31], and as a component in speech recognition
systems [215]. This thesis examines the text-independent task, where users of the system are
not constrained to speak a particular sequence of words. Text-independent SV has been the
focus of considerable research effort and is the subject of annual NIST speaker recognition
evaluations [144]. The task is complicated by the fact that speaker-dependent characteristics
of the speech may be masked by environmental or channel conditions. Additionally, the
distinctive characteristics of each speaker’s voice may also vary between recording sessions,
due to changes in emotional state, health or age.
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Traditional approaches to text-independent SV have made use of generative models, nor-
mally Gaussian mixture models, to approximate the distribution of the speech associated
with each target speaker [170]. A standard approach is then to base a classification deci-
sion on the log-likelihood ratio between the target speaker model and a universal background
model trained to represent all speakers [169]. Recent approaches have examined how to apply
support vector machines to the SV task using dynamic kernels [24, 205]. SVMs have gener-
ally been found to outperform traditional log-likelihood based approaches [28, 48, 190] and a
variety of dynamic kernels have been successfully applied to the SV task [28, 189, 205, 211].

The performance of an SVM-based speaker verification system depends on a number
of factors. These include: the form of speech parameterisation used, the scheme used to
estimate the generative model parameters, the choice of dynamic kernel and any schemes
used to normalise the classifier output. This thesis concentrates on the aspect of the dynamic
kernel and proposes a number of techniques that may be used to obtain dynamic kernels that
are more effective at discriminating between speakers. Although this thesis focuses on the
application to SVM-based speaker verification, the approaches described in this thesis are
suitable for any task involving sequences of continuous observations where dynamic kernels
can be applied.

Many state-of-the-art SV systems make use of distributional kernels, such as the GMM-
supervector [28] and the non-linear GMM-supervector kernels [48]. For these kernels, a GMM
is trained to represent each utterance in the dataset. The kernel function between a pair
of utterances is then derived from a Kullback-Leibler (KL) divergence measure between the
corresponding models. However, many standard forms of distributional kernel require that all
GMMs have the same structure and that they are adapted from a single background model.
This restriction may limit the performance of an SV system. In this thesis, alternative forms of
dynamic kernel are proposed that are derived from two variational approximations to the KL
divergence. Unlike standard approaches, these variational kernels do not restrict all GMMs
to have the same structure allowing more complex training schemes to be used. For example,
GMMs may be adapted from a range of gender or noise condition-dependent background
models. Additionally, the use of a kernel that more accurately reflects the true KL divergence
between GMMs may lead to gains.

An alternative approach that may yield more discriminative kernels is to combine multiple
complementary dynamic kernels. This requires selecting a weight for each kernel. An efficient
scheme for learning a suitable set of weights was proposed in [168, 188]. Here kernel weights
are obtained using a maximum-margin criterion and trained using a standard SVM imple-
mentation. In this thesis, a number of modifications to this scheme are proposed to allow
this scheme to be used for SV. The standard scheme has a known tendency to find sparse
kernel weightings. In this thesis, a regularisation term is applied to the objective function
to allows the user to select the desired level of sparsity. Kernel weights are also tied over
multiple target speakers to obtain more robust parameter estimates.

The final contribution of this thesis is to combine dynamic kernels with traditional static
kernels to potentially yield more discriminative features. Two general approaches are avail-
able. In the first approach, dynamic feature vectors are obtained from each utterance as
before. Then, instead of taking the inner product of the feature vectors, a static kernel func-
tion is evaluated. For the second approach, instead of calculating dynamic features using
the original observations, each observation is initially mapped into the higher-dimensional
space associated with a static kernel. Dynamic features are then calculated based on the
expanded observations. Hence, verification may be based on higher order observation level
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features while exploiting the nature of the generative model to obtain a fixed set of features.
In this thesis, generalised versions of standard derivative and parametric kernels are derived
that include a observation-level static kernel. These kernels generalise standard derivative
and parametric kernels respectively, and also the GLDS kernel, providing a theoretical link
between these forms of kernel.

1.3 Thesis organisation
This thesis is organised into three main parts. Chapters 2-4 give a general background to
speech classification techniques and describe how a speaker verification system may be con-
structed. Chapters 5-7 contain the main contributions of the thesis. Alternative forms of
dynamic kernel are proposed based on variational approximations to the KL divergence.
Schemes are described for establishing whether certain forms of dynamic kernels are comple-
mentary and finally techniques for combining multiple static and dynamic kernels are pre-
sented. Chapters 8-9 present detailed experimental results and offer a number of conclusions
and suggestions for future work.

A detailed breakdown of the structure of the thesis is given below.

Chapter 2 provides an introduction to generative and discriminative approaches for
classifying speech. Various generative classification schemes and discriminative functions are
introduced. The use of static kernels within a discriminative framework is also described.

Chapter 3 introduces dynamic kernels and shows how they can be applied to classify
variable-length sequences. Various forms of dynamic kernel suitable for classifying sequences
of discrete and continuous observations are described. Several forms of distributional kernel
are also introduced and a scheme described for applying these to sequence classification.

Chapter 4 describes how the theory introduced in the previous two chapters may be ap-
plied to build a state-of-the-art speaker verification system. Systems based on both generative
models and discriminative classifiers are discussed.

Chapter 5 proposes alternative forms of dynamic kernels, suitable for SVM-based speaker
verification. Two recently developed variational approximations to the KL divergence between
Gaussian mixture models are first described. Then variational dynamic kernels, derived from
these approximations, are proposed. The properties of the variational kernels are then con-
trasted with standard forms of dynamic kernel.

Chapter 6 examines the combination of multiple dynamic kernels to improve SV per-
formance. Two approaches, score- and kernel-level combination, are first described and con-
trasted. Then modifications to a scheme for automatically weighting kernels are proposed for
the SV task. Two general categories of dynamic kernel, derivative and parametric kernels,
are then introduced and the conditions under which they will be complementary described.

Chapter 7 examines the combination of dynamic kernels with traditional static kernels.
Combination of static kernels at both the observation level and dynamic feature vector level is
described. Generalised derivative and parametric kernels, formed by combining observation-
level static kernels with standard derivative and parametric kernels respectively, are proposed
and methods for evaluating these kernels described. Finally, two schemes for handling limited
amounts of data, data partitioning and speaker tying, are described.
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Chapter 8 presents detailed experimental results on the 2002 NIST SRE dataset. Varia-
tional kernels are compared against standard forms of dynamic kernel. Then combinations of
multiple dynamic kernels are evaluated. Finally combinations of static and dynamic kernels
are evaluated.

Chapter 9 gives a summary of the thesis and proposes topics for future research.



CHAPTER 2
Approaches for Speech

Classification

There are many tasks that require assigning utterances of speech to a particular class.
These include isolated word recognition, language identification as well as gender/accent

detection. Speaker verification, discussed in detail in chapter 4, is another example of a
classification task. Modern schemes for classifying speech data generally fall into one of two
broad approaches, based on either generative or discriminative classification schemes. Both
of these approaches are described in this chapter.

In the first approach, generative classification, statistical models are trained to assign
the likelihood of a speech utterance given a particular class. Bayes’ decision rule is then
applied to classify the utterance. The choice of statistical model used is important and the
appropriate form of model to use is usually task and data dependent. This chapter introduces
two forms of model suitable for speech classification, the Gaussian mixture model (GMM)
and the hidden Markov model (HMM). Both of these models are examples of parametric
approaches, where the probability densities are determined by an associated set of model
parameters. This chapter describes several techniques that may be applied to obtain suitable
parameter estimates for these models.

Discriminative schemes are an alternative approach to speech classification. Unlike gener-
ative approaches, these attempt to model either the class boundaries or posterior probabilities
directly. Discriminative schemes described in this chapter include discriminative models, such
as the conditional random field (CRF) [116] and hidden CRF [165], and distance-based dis-
criminative functions such the support vector machine (SVM) [198]. Discriminative functions
are normally applied to static data, where all examples contain the same number of features.

6
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However, through the use of an appropriate kernel function, introduced here and described
further in chapter 3, these techniques may also be applied to sequence data such as speech.

2.1 Generative classification schemes
Generative classification is a popular statistical approach that is suitable for classifying both
static data and sequence data, such as speech. Generative classification schemes for speech
make use of statistical models to represent the probability density function associated with
a sequence of observations. These generative models can then be used to randomly generate
observations according to the probability density function associated with the model. Alter-
natively, given a speech utterance composed of T observations, O = {o1, . . . ,oT }, where ot

is a vector of D features extracted from the speech signal at time t, generative models can
be used to estimate the likelihood of the sequence given the associated density function. It is
this ability that allows generative models to be used for speech classification.

For speech classification tasks, the objective is to label O as belonging to a particular
class ω ∈ Ω, where Ω is the set of all potential class labels. If the conditional likelihood of an
observation sequence given a class p(O|ω) is known, Bayes’ rule can be used to convert the
likelihood into a class posterior [56].

P (ω|O) =
P (ω)p(O|ω)

p(O)
(2.1)

where P (ω) is a prior distribution over the class labels ω and p(O) is the class-independent like-
lihood ofO. This may be calculated by marginalising over all classes, p(O) =

∑

ω∈Ω P (ω)p(O|ω).
A label y ∈ Ω can then be assigned to O using Bayes’ decision rule [56].

y = argmax
ω∈Ω

{P (ω|O)} (2.2)

= argmax
ω∈Ω

{

P (ω)p(O|ω)

p(O)

}

In the binary case, where Ω = {ω1, ω2}, Bayes’ decision rule can be expressed as

log p(O|ω1) − log p(O|ω2)

y = ω1

>
<

y = ω2

b (2.3)

where b is a classification threshold defined by the class priors, b = log P (ω2) − log P (ω1).
In order to classify utterances using Bayes’ decision rule, a method is needed of estimating
p(O|ω). This is generally achieved by training a generative model p(O;λ(ω)) to represent
the conditional likelihood of O given class ω, where λ(ω) is a set of class-dependent model
parameters associated with the generative model. Two common forms of generative model
for speech classification are Gaussian mixture models (GMMs) and hidden Markov models
(HMMs). These are described in the following subsections.
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2.1.1 Gaussian mixture models
One of the most popular forms of distribution for modelling speech observations is the Gaus-
sian distribution. For an observation o, the Gaussian likelihood is given by

N (o;µ,Σ) =
1

√

(2π)D |Σ|
exp

(

−1

2
(o− µ)T Σ−1 (o− µ)

)

(2.4)

where µ and Σ are respectively the mean and covariance of the distribution. The Gaussian
distribution has a number of properties that make it attractive for acoustic modelling. For
example, it is continuous, symmetric and differentiable. However, in practice speech data
can not always be closely approximated by a Gaussian distribution. For example, due to
differences in gender, speech distributions will often be bimodal. Also, speech distributions
are rarely exactly symmetric.

A form of generative model commonly used to model speech is the Gaussian Mixture Model
(GMMs). The GMM is a latent variable extension of the Gaussian distribution comprised
of multiple Gaussian components each with distinct mean and covariance {µm,Σm}, and
an associated prior probability cm, also known as the component weight. GMMs are able
to approximate arbitrary probability distributions, given a sufficient number of Gaussian
components. The likelihood of an observation o given an M -component GMM with model
parameters λ = (µ1, . . . ,µM ,Σ1, . . . ,ΣM , c1, . . . cM ) is a weighted sum of the individual
component likelihoods.

p(o;λ) =
M
∑

m=1

cmN (o;µm,Σm) (2.5)

Figure 2.1: A dynamic Bayesian network corresponding to a Gaussian mixture model.

A dynamic Bayesian network corresponding to a GMM is shown in figure 2.1. Here, square
nodes represent discrete variables and round nodes represent continuous variables. The lack of
a edge from one node to another indicates that the second node is conditionally independent
of the first. It can be seen from the figure that successive observations are independently
distributed and depend only on the latent component θ. Thus, the likelihood of an utterance
O is the product of the individual observation likelihoods.

p(O;λ) =
T
∏

t=1

p(ot;λ) (2.6)

Several parameter estimation schemes for generative models are described in section 2.1.3.
Many of these schemes require calculating the posterior probability P (θt = m|ot) of the

figures/dbn-gmm.eps
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latent Gaussian component m given the observation ot. Since observations are generated
independently, for GMMs this can be calculated using

P (θt = m|ot) =
cmN (ot;µm,Σm)

∑M
n=1 cnN (ot;µn,Σn)

(2.7)

For a D-dimensional feature vector, a full covariance matrix has O(D2) parameters.
When the number of components is large, modelling the shape of the distribution using full-
covariances is expensive and requires a large amount of training data. Typically, the elements
of the observation vector are assumed to be independent, and diagonal or block-diagonal
covariance matrices are used. Approaches based on parameter tying, such as semi-tied co-
variances [64] or SPAM (Subspace Precision and Mean) [7], may also be used.

2.1.2 Hidden Markov models
For many speech classification tasks, such as ASR, it is desirable to model changes in the
speech signal over time. Static models such as Gaussian mixture models are unsuitable for
this as they assume that successive observations are independent. Hidden Markov models
(HMMs) [167] are dynamic generative models that have become the dominant form of gener-
ative model used in state of the art ASR systems [69].

The hidden Markov model is a finite state machine composed of a fixed number of discrete
states including non-emitting initial and end states. The HMM starts in the initial state at
time t = 0. At each subsequent time instance t the HMM transitions into a new state
θt = j. An observation is then generated based on the output distribution, bj(ot) = p(ot|θt),
associated with the new state. Only {o1, . . . ,oT } are observable, the corresponding sequence
of states θ = {θ1, . . . , θT } is unobserved, or latent. The HMM makes the following two
assumptions.

• Conditional independence: the likelihood of generating an observation ot depends
only on the current state θt.

• First order Markov assumption: the probability of transitioning to a particular
state is dependent only on the previous state.

Figure 2.2: A dynamic Bayesian network corresponding to a hidden Markov model.

These dependency assumptions are illustrated by the dynamic Bayesian network in figure
2.2. The horizontal arrows model the first order Markov assumption, while the vertical
arrows model the dependence of the observations on the current state. The state transition
probabilities are often compactly represented using a matrix a, where aij = P (θt = j|θt−1 =

figures/dbn-hmm.eps
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i). The output distribution bj(ot) associated with each state j can take any form. For
speech applications, where the observations are continuous, bj(ot) is typically a diagonal
covariance Gaussian mixture model. In this case the HMM is defined by a set of parameters
λ = {a, c,µ,Σ}, which include a distinct prior cjm, mean µjm and covariance Σjm for each
component m of state j. A particular form of hidden Markov model known as a left-to-right
HMM is also commonly used. In a left-to-right HMM the transition probabilities between
states are constrained to ensure that the states can be ordered such that the only non-zero
transition probabilities are from a state to itself or to its immediate successor. An example
of a left-to-right hidden Markov model with three emitting states is shown in figure 2.3.

Figure 2.3: A three-state left-to-right hidden Markov model.

Likelihood calculations for HMMs are less straightforward than for GMMs. This is because
successive observations are not assumed to be independent. The posterior likelihood of an
utterance O given λ is obtained by marginalising over all possible latent state sequences Θ.

p(O;λ) =
∑

θ∈Θ

T
∏

t=1

P (θt|θt−1)p(ot|θt) (2.8)

It is often impractical to calculate equation 2.8 using an explicit summation over all latent
state sequences. However, due to the conditional independence and first order-Markov as-
sumptions, dynamic programming algorithms may be used to efficiently calculate both the
likelihood of the observation sequence and the posterior probability of each state given the
observations. One such algorithm is the forward-backward algorithm [97]. Here, the forward-
probability αj(t) is the sum of the likelihoods of all partial paths ending in state j at time t.
For a N -state HMM, it can be calculated recursively using

αj(t) = p(o1, . . . ,ot, θt = j;λ)

=

[

N−1
∑

i=2

αi(t − 1)aij

]

bj(ot) (2.9)

where the initial forward probability at time t = 1 is given by

αj(1) = α1jbj(o1) ∀j 6= 1 (2.10)

The likelihood of the utterance p(O;λ) is given by αN (T ), the forward probability of the
end state N at time T . Similarly, the backward-probability βi(t) is the conditional probability

figures/hmm-speech.eps
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that the model will generate the rest of the sequence from time t given θt = i. It is defined
recursively using

βi(t) = p(ot+1, ..,oT |θt = i;λ)

=
N−1
∑

j=2

aijbj(ot+1)βj(t + 1) (2.11)

where the backward probabilities at time T are given by

βi(T ) = aiN (2.12)

Similarly, the likelihood p(O;λ) is given by β1(0), the backward probability of the initial
state at time t = 0. Note that this likelihood may be obtained using either the forward or
the backward probabilities. It is not necessary to calculate both. Using the definition of the
forward and backward probabilities, the posterior probability P (θt = j|O;λ) of being in state
j at time t can be calculated.

P (θt = j|O;λ) =
αj(t)βj(t)

p(O;λ)
(2.13)

The state posterior probabilities are required for various parameter training and adaptation
algorithms, described in the following subsections. Although the conditional independence
and first order Markov assumptions associated with the HMM are known to be incorrect
for speech, the HMM has nonetheless been found to be a useful generative model for speech
classification. Several alternative forms of model have since been developed that attempt to
relax some of these independence assumptions. These include factor-analysed HMMs [175],
buried Markov models [16], and switching linear dynamical systems [176].

2.1.3 Parameter estimation
A standard approach for training generative models is to select values λ∗ for the model
parameters that maximise some training criterion F(λ|O) estimated over a training dataset
O = {O1, . . . ,ON}.

λ∗ = argmax
λ

{F(λ|O)} (2.14)

A number of different criteria have been proposed for training generative model parame-
ters. By far the most popular training criterion is maximum likelihood (ML) estimation. Here,
λ is selected to maximise the likelihood of the training data. Alternatively, discriminative
training criteria can be used. These seek to optimise the model parameters with respect to
the expected error rate. Proposed criteria include maximum mutual information (MMI) [9],
conditional maximum likelihood (CML) [152], minimum Bayes risk (MBR) [99] and minimum
classification error (MCE) [95, 136]. For ASR, a number additional discriminative training
criteria have been proposed. These include minimum phone error [162, 163] and minimum
word error [105, 151]. Two of the most popular training criteria, ML and MMI, are described
below.
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2.1.3.1 Maximum likelihood

Maximum likelihood estimation [13, 167] is a standard approach for training the parameters
of generative models. ML operates by selecting model parameters λ∗ such that the likelihood
of the training data is maximised. For a training set O = {O1, . . . ,ON}, this is equivalent to
maximising the log-likelihood of the training data using the objective function

FML(λ|O) =
N
∑

i=1

log p(Oi;λ) (2.15)

The ML parameter estimates are obtained by maximising equation 2.15 with respect to
the model parameters λ. For GMM and HMM models, differentiating equation 2.15 with
respect to λ does not yield simple closed form estimates for the optimal model parameters,
due to the latent sequence θ. Instead expectation maximisation (EM) [50] can be used to
update the model parameters. Rather than optimising the ML objective function directly,
instead an auxiliary function is iteratively optimised. For the ML criterion the auxiliary
function is

QML(λ(k+1),λ(k)) =
∑

θ∈Θ

P (θ|O;λ(k)) log p(θ,O;λ(k+1)) (2.16)

where λ(k) are parameter estimates at iteration k, and the summation is defined over all
latent sequences Θ. At each iteration, selecting an updated model parameter set λ(k+1) that
increases QML(λ(k+1),λ(k)) is guaranteed to lead to an increase in the ML criterion, due to
the inequality

FML(λ(k+1)|O) −FML(λ(k)|O) ≥ QML(λ(k+1),λ(k)) − QML(λ(k),λ(k)) (2.17)

EM is therefore a two-step procedure where, at each iteration, the auxiliary function is first
calculated (the E step) and then new parameters selected that maximise this function (the
M step). By repeating this procedure, optimal parameters λ∗ will be obtained that locally
maximise the ML criterion over the training data. For GMMs, the latent sequence θ is the
sequence of component indices that generate the observations. Omitting the summation over
all utterances for clarity, the EM estimate for the new parameter set λ(k+1) that maximises
the ML auxiliary function at each iteration is given by

µ(k+1)
m =

∑T
t=1 P (θt = m|ot;λ

(k))ot
∑T

t=1 P (θt = m|ot;λ(k))
(2.18)

Σ(k+1)
m =

∑T
t=1 P (θt = m|ot;λ

(k))(ot − µ(k+1)
m )(ot − µ(k+1)

m )T
∑T

t=1 P (θt = m|ot;λ(k))
(2.19)

c(k+1)
m =

∑T
t=1 P (θt = m|ot;λ

(k))
∑M

m=1

∑T
t=1 P (θt = m|ot;λ(k))

(2.20)

where P (θt = m|ot;λ
(k)) is the posterior probability of component m generating observation

ot given the parameter set λ(k). This can be calculated using equation 2.7.
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For HMMs, the Baum-Welch algorithm [13] is an implementation of EM. Here θ is a
latent sequence over both states and components. Again omitting the summation over all
utterances, the HMM parameter estimates at iteration k + 1 are given by

a
(k+1)
ij =

∑T
t=2 ζij(t)

∑T
t=2

∑N
j=1 ζij(t)

(2.21)

µ
(k+1)
jm =

∑T
t=1 P (θt = {j, m}|O;λ(k))ot
∑T

t=1 P (θt = {j, m}|O;λ(k))
(2.22)

Σ
(k+1)
jm =

∑T
t=1 P (θt = {j, m}|O;λ(k))(ot − µ(k+1)

jm )(ot − µ(k+1)
jm )T

∑T
t=1 P (θt = {j, m}|O;λ(k))

(2.23)

c
(k+1)
jm =

∑T
t=1 P (θt = {j, m}|O;λ(k))

∑M
m=1

∑T
t=1 P (θt = {j, m}|O;λ(k))

(2.24)

where P (θt = {j, m}|O;λ(k)) is the posterior probability of being in state j and component m
at time t, given parameter estimates λ(k). This may be estimated using the forward-backward
algorithm. ζij(t) is the posterior probability of being in state i at time t − 1 and state j at
time t, again this can be calculated using the forward-backward probabilities.

ζij(t) = P (θt−1 = i, θt = j|O;λ(k))

=
αi(t − 1)aijbj(ot)βj(t)

αN (T )
(2.25)

2.1.3.2 Maximum mutual information

Discriminative training criteria provide a method of directly optimising the model parameters
to reduce the classification error. One of the most popular discriminative criteria is the
maximum mutual information (MMI) criterion [9]. For a training set O = {O1, . . . ,ON}
with associated class labels Y = {y1, . . . , yN}, MMI training explicitly seeks to maximise
the mutual information between the label sequence and the information extracted from the
observation sequence by a model with parameters λ. This can be expressed in terms of
generative model likelihoods p(O;λ(ω)) and class priors P (ω), where λ(ω) is a set of generative
model parameters associated with class ω ∈ Ω.

FMMI(λ|O) =
N
∑

i=1

log
p(yi,Oi;λ

(yi))

P (yi)p(Oi;λ(yi))
(2.26)

When the prior probability of the classes is fixed, MMI training is equivalent to conditional
maximum likelihood training [116, 152], used in section 2.2.2 for estimating HCRF parameters.
Here the objective function maximises the posterior of the correct class and has the form

FCML(λ|O) = log P (Y|O;λ)

=
N
∑

i=1

log P (yi|Oi;λ) (2.27)
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By applying Bayes’ rule, the MMI criterion may also be expressed in the form of a summation
over all class labels.

FMMI(λ|O) =
N
∑

i=1

log

(

P (yi)p
κ(Oi;λ

(yi))
∑

ω∈Ω P (ω)pκ(Oi;λ(ω))

)

(2.28)

Equation 2.28 includes a scaling factor, κ. This allows the less likely classes to contribute
to the criterion [177]. For ASR tasks, κ is usually set to the inverse of the language model
scaling factor.

In common with other discriminative estimation schemes it is difficult to obtain a suitable
auxiliary function, such that increasing the auxiliary function is guaranteed to not decrease
the MMI objective function. An extended Baum-Welch (EBW) algorithm was proposed
in [153, 210]. This includes a smoothing term to ensure that the auxiliary function remains
convex. Alternatively, a weak-sense auxiliary function may be used [164]. This shares the same
gradient around the the current parameter estimates, but increasing a weak-sense auxiliary
function does not guarantee to increase the original function. For MMI training a suitable
weak-sense auxiliary function is

QMMI(λ(k+1),λ(k)) = Qnum(λ(k+1),λ(k)) −Qden(λ(k+1),λ(k)) + Qsm(λ(k+1),λ(k)) (2.29)

where Qnum(λ(k+1),λ(k)) is the standard ML auxiliary function, defined by equation 2.16. This
function is defined using the model in the numerator of equation 2.28, associated with the
correct class label. Similarly, Qden(λ(k+1),λ(k)) is the equivalent auxiliary function associated
with the denominator model in equation 2.28, representing every possible class label. Finally,
Qsm(λ(k+1),λ(k)) is a smoothing term, required to ensure convergence. For GMMs, a suitable
smoothing term is [217]

Qsm(λ(k+1),λ(k)) =
M
∑

m=1

Dm

∫

o

p(o|θ = m;λ(k)) log p(o|θ = m;λ(k+1)) do (2.30)

where p(o|θ = m;λ) is the likelihood of o being generated by component m and Dm is a
component specific smoothing term that ensures that the weak-sense auxiliary function is
convex. This is typically set to the maximum of a) the scaled component-occupancy of the
denominator model and b) the minimum value D̃m that ensures that the covariance matrices
obtained are positive semi-definite [209].

Dm = max(E
T
∑

t=1

γden
m (t), D̃m) (2.31)

where E is a constant, normally fixed around 1-2 for ASR tasks. For GMMs, optimising
using the auxiliary function defined by equation 2.29 with a single training utterance yields
the same update rules as the EBW algorithm [164].

µ(k+1)
m =

Dmµ
(k)
m +

∑T
t=1 γnum

m (t)ot − γden
m (t)ot

Dm+
∑T

t=1 γnum
m (t) − γden

m (t)
(2.32)

Σ(k+1)
m =

Dm(µ
(k)
m µ

(k)T
m +Σ

(k)
m )+

∑T
t=1 γnum

m (t)oto
T
t − γden

m (t)oto
T
t

Dm +
∑T

t=1 γnum
m (t) − γden

m (t)
− µ(k+1)

m µ(k+1)T
m (2.33)
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Here, γnum
m (t) and γden

m (t) are respectively the posterior probabilities associated with the
numerator and denominator of equation 2.28.

γnum
m (t) = P (θt = m|Oi;λ

yi) (2.34)

γden
m (t) =

∑

ω∈Ω

P (θt = m|O;λ(ω)) (2.35)

A similar approach may be used to update the parameters of a hidden Markov model [210].

2.1.4 Model adaptation
Training generative model parameters using the ML or MMI criteria will only yield robust
parameter estimates when sufficient training data is available. For many speech classification
tasks, the amount of training data available per class is limited and this will not be the case.
One method for handling this issue is to apply Bayesian approaches [173, 207]. Instead of
training ‘point estimates’ for the model parameter values, here the model parameters are
assumed to be random variables associated with a distribution. The likelihood of the training
data is then obtained by marginalising over this distribution and model training consists of
selecting a distribution for the parameters that maximises some training criterion, e.g. ML.

An alternative method of obtaining robust parameter estimates is though model adap-
tation. Here a robust class-independent model is used as a starting point. This is then
transformed into a class-dependent model using a small amount of class-dependent adapta-
tion data. For speech classification tasks, the most common adaptation schemes are maximum
a-posteriori (MAP) adaptation and maximum likelihood linear regression (MLLR). These are
introduced in the following subsections. Cluster-adaptive training (CAT), an adaptive train-
ing scheme where parameters are tied over multiple class-dependent models, is also discussed.
This scheme allows a set of robust class-dependent models to be trained in parallel even when
only minimal training data is available per class.

2.1.4.1 MAP adaptation

Maximum a-posteriori (MAP) adaptation [71] is an adaptation scheme for generative mod-
els that seeks to maximises the posterior probability of the model parameters λ given the
observations. This leads to the following training criterion.

Fmap(λ|O) = log p(λ|O) (2.36)

Using Bayes’ rule the optimal parameters λ∗ can be expressed in terms of a generative model
p(O;λ) and a prior distribution p(λ) over the model parameters.

λ∗ = argmax
λ

log p(O;λ) + log p(λ) (2.37)

The advantage of the MAP approach is that given a robust prior distribution over the model
parameters, the training process will yield robust estimates for the updated parameters, even
when the amount of training data is limited. By using a robust class-independent prior,
MAP can therefore be used to robustly estimate parameters of a class-dependent model given
a small amount of adaptation data. The choice of a suitable prior distribution is problematic
since there is no conjugate prior for a GMM. However, by assuming that the component priors
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and Gaussians are independent, a suitable form of prior may be obtained [71]. Typically, prior
distributions are used that have the form

p(λ) = pD(cprior)
M
∏

m=1

pW(µprior
m ,Σprior

m ) (2.38)

where pD(·) is a Dirichlet distribution over the component priors and pW(·) is a normal-Wishart
distribution. The parameters of the prior distribution may be obtained from a well-trained
class-independent GMM p(O;λprior) where λprior = {cprior,µprior,Σprior}. For GMMs,
EM training using the MAP criterion with this choice of prior yields the following parameter
updates. Similar expressions also exist to adapt HMM parameters [71].

µmap
m =

∑T
t=1 P (θt = m|ot;λ)ot + τmapµ

prior
m

∑T
t=1 P (θt = m|ot;λ) + τmap

(2.39)

Σmap
m =

∑T
t=1 P (θt = m|ot;λ)(ot − µmap

m )(ot − µmap
m )T

∑T
t=1 P (θt = m|ot;λ) + τmap

+
τmap(µ

prior
m − µmap

m )(µ
prior
m − µmap

m )T + τmapΣ
prior
m

∑T
t=1 P (θt = m|ot;λ) + τmap

(2.40)

cmapm =

∑T
t=1 P (θt = m|ot;λ) + τmap

∑M
n=1

∑T
t=1 P (θt = n|ot;λ) + τmap

(2.41)

Here τmap is a parameter that controls the influence of the prior on the MAP estimates.
When τmap equals zero, MAP training will yield the standard ML parameter estimates. As τ
approaches infinity the MAP estimate of the model parameters tends towards the prior. By
comparing the update equations, MAP adaptation can be seen to be closely related to the
parameter smoothing used in MMI training, discussed in section 2.1.3.2.

In situations when only limited adaptation data is available many components will not
be moved far from the prior. It is therefore common to carry out multiple iterations of
MAP to successively increase the likelihood of the adaptation data. In static-prior MAP [71],
the original well-trained model is used as the prior distribution after every iteration, while
the statistics P (θt = m|ot;λ) are generate using the current parameter estimates. This
ensures that new parameter estimates remain robust as the influence of the well-trained prior
distribution is not reduced after successive iterations. Discriminative adaptation schemes
based on MAP have also been developed. MMI-MAP [164] is an example of this approach.

2.1.4.2 Maximum likelihood linear regression

Maximum Likelihood Linear Regression (MLLR) [63, 121, 122] is a popular technique for
adapting generative model parameters. MLLR operates by linearly transforming the mean [121]
and/or variance [68] of a model to better represent a particular class. Transforms are typically
tied over multiple model components using a regression class tree [62, 122].

An example of a regression class tree is shown in figure 2.4. Here each leaf node represents
a set of model parameters and is known as a base-class. For each node in the tree, a transform
is generated using the adaptation data associated with the descendant base-classes. If there
is not enough data to robustly generate a transform for a node, the transform associated with
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Figure 2.4: An example regression tree for a MLLR transform.

the parent node will be used instead. In the worst case a single global transform, estimated
over the entire training set, will be used to adapt all parameters. The sets of base-classes that
share a transform are known as a regression classes. The regression class tree in figure 2.4,
contains four base-classes. Of these, nodes n2, n3 and n4 represent base-classes for which
there is insufficient adaptation data to generate a transform. The transform for class n2 will
be generated from data occupying base-classes n1 and n2 and the parameters associated with
base-classes n3 and n4 form a regression class and will share a transform. The structure of a
regression class tree may be based either on expert knowledge or, more commonly, a suitable
tree may be trained automatically by assuming that ‘close’ Gaussians are adapted using the
same linear transform [121].

For GMMs, the adapted mean µMLLR
m and covariance ΣMLLR

m associated with component m
is given by

µMLLR
m = Arµm + br (2.42)

ΣMLLR
m = HrΣmHr

T (2.43)

where Ar and Hr are DxD transforms associated with regression class r and br is a Dx1
bias vector. CMLLR [52, 63] is a variant of MLLR where Ar and Hr are constrained to
be identical. In that case, an equivalent transform may alternatively be applied directly to
the observations. The transform parameters can be estimated using maximum likelihood
estimation and expectation maximisation. For the case when diagonal covariances are used,
this yields a closed form solution. For a regression class r, the adaptation parameters {air, bir}
associated with row i of the mean transform Ar and bias br are given by

[air bir]
T = G−1

ir kir (2.44)

where Gir and kir are sufficient statistics defined by

Gir =
∑

m∈r

1

σ2
im

T
∑

t=1

P (θt = m|O;λ)ξmξ
T
m (2.45)

kir =
∑

m∈r

1

σ2
im

T
∑

t=1

P (θt = m|O;λ)oitξm (2.46)

figures/rtree.eps
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where σ2
im is the ith diagonal element of Σm and ξm is the extended mean vector associated

with component m.

ξm =

[

µm

1

]

(2.47)

In general, when only a small amount of adaptation data is available, MLLR tends to yield
more robust parameter estimates than MAP. However, for larger amounts of data, better
performance is usually obtained using MAP.

2.1.4.3 Cluster-adaptive training

Adaptive training is a technique that combines the parameter estimation and adaptation ap-
proaches described in the previous sections. For a set of classes, Ω = {ω1, . . . , ωK}, adaptive
training can be used to robustly obtain a set of class-dependent generative models, by simul-
taneously training a single class-independent model, known as the canonical model, and a set
of class-dependent adaptation parameters. An early form of adaptive training was speaker
adaptive training (SAT) [1]. This uses MLLR transforms to define the parameters of the
class-dependent GMM or HMM. Cluster-adaptive training (CAT) [65], described here, is a
related approach originally developed for ASR applications where is it used both to compen-
sate for the variation between training corpora and as a robust speaker-adaptation scheme.
For GMM models, the mean parameters of a class-dependent model p(o;λ(ω)) are defined by
a class-dependent weighted interpolation of a set of P class-independent means, known as the

clusters. For a particular Gaussian component m, µ
(ω)
m is defined by

µ(ω)
m = Mmwr

(ω) (2.48)

where Mm is a matrix of P class-independent mean vectors associated with component m

Mm = [µm1 . . .µmP ] (2.49)

and w
(ω)
r is the vector of cluster weights associated with class ω.

w(ω)
r =







w
(ω)
r1
...

w
(ω)
rP






(2.50)

The cluster weights associated with each class therefore define coordinates within a P-
dimensional space allowing a class-dependent model to be represented compactly. This ap-
proach is closely related to eigenvoices [114]. However, while eigenvoice cluster means are
typically obtained using PCA, CAT parameters are trained using maximum-likelihood esti-
mation.

As in MLLR, components may be partitioned into R regression-classes. This allows
an independent set of cluster weights to be applied to each class. Here the subscript r
is used to indicate the regression class associated with the current component. A bias
cluster can also be used to represent any class-independent aspect of the mean-vectors.

In this case, the final cluster weight w
(ω)
P is fixed at 1 for all classes. Component priors
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and variances are usually tied over all classes. Thus the parameters λ of the CAT model

are given by λ = {M ,w(1), . . . ,w(K), c,Σ1, . . . ,ΣM} where w(ω) = {w(ω)
1 , . . . ,w

(ω)
R } and

M = {M1, . . . ,MM}. Given these parameters, the likelihood of generating an observation o
with label y = ω can be calculated using

p(o;λ) =
M
∑

m=1

cm
1

√

(2π)D |Σm|
exp

(

−1

2

(

o−Mmw
(ω)
r

)T

Σ−1
m

(

o−Mmw
(ω)
r

)

)

(2.51)

CAT systems are typically trained using maximum likelihood estimation, although dis-
criminative criteria may also be used [217]. For a set of training data O = {O1, . . . ,ON} with
associated class labels Y = {y1, . . . , yN} it is not possible to find a closed form solution for
the ML parameter estimates. However by alternatively updating either the cluster means M
or the the weights w, while the other is kept fixed, it is possible to iteratively increase the
likelihood of the training data.

When the cluster means are assumed to be fixed, new ML estimates for the weights can
be obtained via EM by optimising the following auxiliary function [65].

Q(λ(k+1),λ(k)) =
∑

ω∈Ω

R
∑

r=1

w(ω)T
r kw(ω) − 1

2
w(ω)T

r Gw(ω)
r w(ω)

r (2.52)

where G
w(ω)
r and k

w(ω)
r are sufficient statistics accumulated over training utterances Oi with

label yi = ω.

Gw(ω)
r =

∑

m∈r

T
∑

t=1

P (θt = m|ot;λ
(k))MT

mΣ−1
m Mm (2.53)

kw(ω)
r =

∑

m∈r

MT
mΣ−1

m

T
∑

t=1

P (θt = m|ot;λ
(k))(ot − µmP ) (2.54)

Here P (θt = m|ot;λ
(k)) is the probability of the observation at time t being generated by

component m given the previous estimate of the cluster weights and means. µmP is the
cluster mean vector associated with the bias cluster P. This term is required to ensure that
the cluster weights associated with the bias cluster are fixed at 1. A new estimate of the
cluster weights can be obtained by differentiating the auxiliary function with respect to wr

and equating to zero.

w(ω)
r = Gw(ω)−1

r kw(ω)
r (2.55)

Similarly, by keeping the cluster weights w fixed, a new ML estimate for the cluster means
can be obtained via EM by maximising the following auxiliary function [65].

Q(λ(k+1),λ(k))=−1

2

∑

ω∈Ω

M
∑

m=1

T
∑

t=1

P (θt = m|ot;λ
(k))

(

ot−Mmw
(ω)
r

)T

Σ−1
m

(

ot−Mmw
(ω)
r

)

(2.56)
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Differentiating equation 2.56 with respect to the cluster means Mm associated with each
component m yields the following update equation.

MT
m = G−1

m Km (2.57)

where Gm and Km are sufficient statistics accumulated over all training utterances.

Gm =
∑

ω∈Ω

T
∑

t=1

P (θt = m|ot;λ
(k))w(ω)

r w(ω)T
r (2.58)

Km =
∑

ω∈Ω

T
∑

t=1

P (θt = m|ot;λ
(k))w(ω)

r o(t)T (2.59)

A new estimate of the covariances may be obtained in a similar manner and (assuming
diagonal covariances) is given by

Σm = diag

(

Lm −MmKm
∑T

t=1 P (θt = m|ot,λ)

)

(2.60)

where Gm and Km are defined by equations 2.58 and 2.59 and Lm is defined as follows.

Lm =
T
∑

t=1

P (θt = m|ot;λ
(k))oto

T
t (2.61)

In order to train a CAT model it is necessary to obtain initial estimates for either Mm

for each component m or w
(ω)
r for each class ω and regression class r. For CAT models that

contain two non-bias clusters, gender-based initialisation schemes may be used. Alternatively,
when a larger number of clusters is required, an eigenvoice initialisation scheme [65] may be
applied.

2.2 Discriminative classification schemes
There has been considerable interest in applying discriminative techniques to improve speech
classification performance. One approach, discussed in the previous section, is to combine
generative models with discriminative training criteria such as maximum-mutual information.
An alternative is to make use of discriminative classification schemes. Whereas generative
classification schemes attempt to model the likelihood of speech observations given a particular
class, discriminative schemes attempt to model the class boundaries directly.

Many of the approaches discussed in this section are examples of discriminative models.
These attempt to directly model the posterior probability of the class (or class-sequence) given
an observation sequence. Conditional random fields (CRFs), discussed first, and a latent
variable extension, HCRFs, are an example of this approach. Discriminative schemes may
also be based on non-statistical discriminative functions. Here a (typically linear) decision
boundary is trained that separates the classes. The support vector machine, described here,
is an example of this approach and is the primary form of discriminative classifier used in this
thesis. A closely related discriminative model, the relevance vector machine, is also introduced
and schemes are presented for applying these techniques to multi-class tasks.
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Finally, kernel functions are introduced. These allow linear schemes such as the support
vector machine or relevance vector machine to be applied to non-linear data. The static kernel
functions described in this chapter only operate on fixed-dimensional data, and hence can not
be used for speech classification. However, they provide an introduction to the dynamic
kernels described in the following chapter that can be used to classify speech.

2.2.1 Conditional random fields
Conditional random fields (CRFs) [116] are a form of conditional model, related to Maximum
Entropy Markov Models (MEMMs) [20, 148]. Unlike generative models such as GMMs or
HMMs, conditional models directly approximate the conditional likelihood of the class labels
given an observation sequence. The majority of the models described in this chapter operate
on data where each observation sequence, O = {o1, . . . ,oT }, is assigned a single class label,
y ∈ Ω. Unlike these models, CRFs operate on data where each observation is associated
with a distinct class label. Thus, CRFs model the conditional likelihood of a label sequence
Y = {y1, . . . , yT }. CRFs have the form of a normalised log-linear model and the conditional
probability of a label sequence, Y , given an observation sequence, O, is defined by

P (Y |O;α) =
1

Z(O;α)
exp





T
∑

t=1

∑

j

αjfj(yt, yt−1,O)



 (2.62)

where Z(O;α) is a normalisation term, required to ensure that P (Y |O;α) is a valid proba-
bility mass function. Z(O;α) is calculated over all possible label sequences Ȳ .

Z(O;α) =
∑

Y ∈Ȳ

exp





T
∑

t=1

∑

j

αjfj(yt, yt−1,O)



 (2.63)

The conditional model is defined using a fixed set of functions, fj(yt, yt−1,O), each
weighted by a model parameter αj . Functions are dependent on both the observation and
label sequence. Although the CRF framework does not limit the dependencies associated
with the functions, additional constraints are typically introduced to allow Z(O;α) to be
efficiently calculated. In equations 2.62 and 2.63 a second order Markov dependency over
the label sequences is applied. Under these conditions, equation 2.63 may be efficiently cal-
culated using a forward-backward style algorithm [13, 116]. The dynamic Bayesian network
associated with the observation and label sequences is shown in figure 2.5.

Determining appropriate functions for particular applications is an important area of
research. These may be based on acoustic features only or more complex functions may be
used that incorporate label information. One approach is to use expert knowledge to derive an
appropriate set of features [116, 157, 180]. Alternatively, functions may be based on sufficient
statistics obtained from a generative model [74]1. Many dynamic kernels for continuous data,
introduced in chapter 3, also have explicit expansion functions that can be used to obtain
CRF features. Given an initial set of functions, post-processing algorithms may be applied
to refine the set by iteratively combining and pruning functions [147, 157].

1Note that the experiments in [74] were performed using HCRFs. However, the same sufficient statistics
may be used for CRFs
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Figure 2.5: A dynamic Bayesian network corresponding to a conditional random field con-
taining a second order Markov dependency over labels. The nature of the dependencies is
dependent on the form of fj(yt, yt−1,O). Additional dependencies between labels and obser-
vations are not shown, but may be included.

One criterion suitable for training the parameters of a CRF is the conditional maximum
likelihood (CML) criterion [116, 152], introduced in section 2.1.3.2. For a training set of
N utterances, this seeks to select the model parameters α that maximise the conditional
likelihood of the label sequences Y = {Y1, . . . ,YN} given the utterances O = {O1, . . . ,ON}.

FCML =
N
∑

i=1

log P (Yi|Oi;α) (2.64)

When the prior distribution of the class labels is kept fixed, the CML criterion is identical
in form to the MMI criterion in equation 2.26. The difference is due to the form of model
to which it is applied. Whereas the MMI criterion is used to train generative models, the
CML criterion is applied to conditional models. It is not possible to obtain a solution in
closed form that maximises equation 2.64. Instead, iterative approaches may be used. These
may be based on expectation maximisation, such as the generalised iterative scaling [42, 116]
or improved iterative scaling [157] schemes. Alternatively, gradient descent-based algorithms
may be used [180, 202]. These often have simpler implementations and in many cases have
been found to converge faster.

2.2.2 Hidden conditional random fields
The hidden conditional random field (HCRF) [165, 166] is a latent variable extension of the
conditional random field described in section 2.2.1. In the CRF model it is assumed that
there exists a one-to-one relationship between an observation ot and label yt. For many
applications, including ASR and SV, this assumption is not appropriate.

For HCRFs, this one-to-one relationship between observations and labels is relaxed by
incorporating a latent state sequence, θ = (θ1, . . . , θT ), that allows complex dependencies
in the observation structure to be included in the model. The posterior probability of a
class label, y ∈ Ω, given an observation sequence O = {o1, . . . ,oT } is then obtained by
marginalising over all latent state sequences Θ.

P (y|O;α) =
1

Z(O;α)

∑

θ∈Θ

exp





∑

j

αjfj(y,O,θ)



 (2.65)

where α are the model parameters and f(y,O,θ) defines a set of sufficient statistics that are
dependent on the observations, the latent state sequences and the class label. Z(O;α) is a

figures/dbn-crf.eps
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normalisation term, equal to the expectation of the unnormalised model over all classes Ω
and latent sequences Θ.

Z(O;α) =
∑

y∈Ω

∑

θ∈Θ

exp





∑

j

αjfj(y,O,θ)



 (2.66)

As with CRFs, additional constraints may be included in the model to allow Z(O;α) to be
calculated. When a Markov dependency is imposed on the latent state sequence, equation 2.66
can be efficiently estimated using a forward-backward algorithm [74, 165]. In equation 2.65
this dependency is implicitly incorporated into f(y,O,θ).

The nature of the functions f(y,O,θ) determines the form of dependencies included in
the model. One option for defining the latent variable and sufficient statistics associated with
the HCRF is to emulate the structure and sufficient statistics associated with latent variable
generative models such as HMMs [74]. For example, when the latent sequences follows a first
order Markov assumption the following HMM-style sufficient statistics may be used.

fTR
θθ′(y,O,θ) =

T
∑

t=1

δ(θt−1 = θ)δ(θt = θ′) ∀θ∀θ′ (2.67)

fOCC
θ (y,O,θ) =

T
∑

t=1

δ(θt = θ) ∀θ (2.68)

fM1
θd (y,O,θ) =

T
∑

t=1

δ(θt = θ)odt ∀θ∀d (2.69)

fM2
θd (y,O,θ) =

T
∑

t=1

δ(θt = θ)o2
dt ∀θ∀d (2.70)

where δ(θt = θ) is the Kronecker function, equal to one if the condition is true or zero
otherwise. These (Viterbi) statistics correspond respectively to the transition probabilities,
state occupancies and first and second order Gaussian sufficient statistics associated with a
single-component per state, diagonal covariance HMM. Similar statistics may easily be defined
for the general HMM case.

By appropriately selecting a set of sufficient statistics and model parameters α, it is possi-
ble to obtain an HCRF that yields the conditional probability density function associated with
a hidden Markov model [74]. Given a diagonal covariance, single-component HMM defined
by the parameters {µ,Σ,a}, the HCRF will yield an identical conditional likelihood when
the sufficient statistics defined by equations 2.67-2.70 are used and corresponding elements of
α are set to

αTR
θθ′ = log aθθ′ ∀θ∀θ′ (2.71)

αOCC
θ = −1

2

(

log 2πD|Σθ| + µT
θΣ

−1
θ µθ

)

∀θ (2.72)

αM1
θd =

µdθ

σ2
dθ

∀θ∀d (2.73)

αM2
θd =

1

2σ2
dθ

∀θ∀d (2.74)
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where σ2
dθ is the dth diagonal element of Σθ. Similarly, by selecting appropriate functions and

model parameters, the HCRF model will yield the conditional likelihood associated a general
multiple component, full covariance HMM. Since negative values of αM2

θd do not correspond to
valid covariance matrices, equations 2.71-2.74 appear to indicate that the HCRF is able to
model more general dependencies than the HMM. In fact, this is not the case. The decision
boundary associated with the HCRF can be shown to be invariant to certain transforms of
α [84]. By performing an appropriate set of invariance transforms, it is possible to transform
any Gaussian-like HCRF into a corresponding HMM [84, 85]. Hence the two forms of model
are equivalent. Given a suitable training set O = {O1, . . . ,ON} with associated class labels
Y = {y1, . . . , yN}, the model parameters α are usually selected to maximise the conditional
likelihood of the class labels given the data.

FCML(α|O) =
N
∑

i=1

log P (yi|Oi;α) (2.75)

Since HCRFs do not have normalised output distributions or transition probabilities, it is
not necessary to use specialized algorithms such as extended Baum-Welch. Instead the CML
criterion is typically optimised directly. The CML criterion yields a convex objective function
for conditional random fields. However, due to the additional latent structure, this is not
the case for HCRFs. To avoid local maxima when iteratively updating α, stochastic gradient
based methods are usually applied [74, 138, 165, 206].

2.2.3 Support vector machines
The support vector machine (SVM) [19, 35, 198] is a binary discriminative classifier that
has been found to yield good performance on a wide range of machine learning tasks, in-
cluding gene classification [21], handwriting recognition [10] and image classification [33].
Unlike (H)CRFs, SVMs are distance based classifiers that operate by finding a linear decision
boundary according to a maximum-margin criterion.

Consider a training set, O = {o1, . . . ,oN}, where each oi is a vector of D elements and
has an associated binary label yi = ω where ω ∈ {−1, +1}. For each example oi, the elements
of oi define the position of the example within a D-dimensional space. When the training set
is linearly separable, it is possible to locate a separating hyperplane within this space such
that all training examples are correctly classified. Given this hyperplane, defined by weight
vector w and bias b, a test example ov may be classified according to

yv = sign (〈w,ov〉 + b) (2.76)

where 〈oi,oj〉 indicates the inner product between oi and oj . For the linearly separable
case, also known as the hard margin case, the task of finding a separating hyperplane is ill-
posed. There will usually be infinitely many hyperplanes that correctly classify all training
examples. It is therefore necessary to define additional requirements in order to obtain a
unique solution. For SVMs, the optimal separating hyperplane is one which maximises the
perpendicular distance between the decision boundary and the closest training examples,
known as the margin. This maximum-margin decision boundary has been shown to minimise
a bound on the generalisation error [198].

Equation 2.76 is invariant under a positive rescaling of the hyperplane parameters. Thus,
in order to obtain a unique solution it is necessary to introduce additional constraints. For
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(a) hard margin (b) soft margin

Figure 2.6: Optimal SVM hyperplane for (a) linearly separable data using a hard margin and
(b) non-linearly separable data using a soft margin with slack variables.

SVMs this is achieved by defining canonical hyperplanes on either side of the decision hyper-
plane. For a fixed value of w and b these are defined by the values of o that form solutions
to 〈w,o〉+ b = 1 and 〈w,o〉+ b = −1. Training examples are then constrained to lie outside
this region. This arrangement is depicted in figure 2.6(a) for two-dimensional data. Under
these conditions the size of the margin can be calculated using the expression [41]

Margin =
1

〈w,w〉 (2.77)

The maximum-margin decision boundary is therefore defined by the parameters w, b that
maximise equation 2.77 such that all training examples lie outside the margin. This yields the
following quadratic optimisation problem, known as the (hard margin) primal SVM problem.

min
1

2
〈w,w〉 (2.78)

w.r.t w, b

s.t. yi(〈w,oi〉 + b) ≥ 1 ∀i

In many situation, particularly when dealing with noisy data, it is not possible to lin-
early separate the training set. To allow SVMs to be trained in such conditions, the margin
constraints, yi(〈w,oi〉 + b) ≥ 1 ∀i, are often relaxed to allow some training examples to
be misclassified. A slack variable ξi is introduced for each training example oi to provide
a measure of the training error associated with the example. For each training example oi,
the slack variable ξi is non-negative, and is equal to the distance by which oi violates the
original margin constraints. For correctly-classified training examples, ξi = 0. This is known
as the soft margin case and is depicted in figure 2.6(b). To avoid increasing the margin at
the expense of misclassifying the training examples, the objective function is then altered to
additionally penalize training errors. The (soft margin) primal SVM problem is defined by

figures/svm.eps
figures/svm-slack.eps
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min
1

2
〈w,w〉 + C

N
∑

i=1

ξi (2.79)

w.r.t. w, b

s.t. yi(〈w,oi〉 + b) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

The constant C acts as a regularisation term controlling the trade-off between reducing
the training set error and maximising the margin. For small values of C the margin will be
maximised at the expense of making more training set errors. When C is large the number of
training set errors will be reduced at the expense of a smaller margin. For linearly separable
data, the optimal w, b tend to the hard margin solution as C → ∞. A suitable value for C
may be selected using a development set. Alternatively, a data-dependent algorithm may be
used to select C. In SVMlight [94], by default C is selected according to equation 2.80. In
this case, the optimal decision boundary is also invariant to global scalings of the dataset.

C =
N

∑N
i=1〈oi,oi〉

(2.80)

By introducing Lagrange multipliers associated with each constraint in equation 2.79, a
dual form of the SVM optimisation function can be derived.

max
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj〈oi,oj〉 (2.81)

w.r.t. α

s.t.
N
∑

i=1

yiαi = 0

0 ≤ αi ≤ C ∀i

In the dual form, the decision boundary is parameterised by the Lagrange variables α. Each
element of α corresponds to a training example and determines the influence of the example
on the position of the decision boundary. Given the dual variables, α, the primal weights and
bias can be reclaimed using equations 2.82 and 2.83.

w =
N
∑

i=1

αiyioi (2.82)

b = −maxyi=−1(〈w,oi〉) + minyi=1(〈w,oi〉)
2

(2.83)

where maxyi=−1(·) selects the training example from class y = −1 that is closest to the
decision boundary and minyi=1(·) selects the example from class y = 1 that is closest. By
combining equations 2.82 and 2.76 the classification function can also be expressed in the
dual form.
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yv = sign

(

N
∑

i=1

αiyi〈oi,o
v〉 + b

)

(2.84)

The optimal decision boundary may be obtained by solving either the primal or dual prob-
lems using standard quadratic programming methods such as gradient decent or quadratic
programming (QP) optimisation [88]. Specialized algorithms such as Sequential Minimal Op-
timisation (SMO) [160] and the decomposition and chunking algorithms [94, 178] have also
been developed to efficiently solve SVM optimisation problems. At optimality, the condi-
tions expressed in equation 2.85, known as the Karush-Kuhn-Tucker (KKT) conditions, are
true [41].

αi [yi(〈w,oi〉 + b) − 1 + ξi] = 0 ∀i (2.85)

An interesting consequence of the KKT conditions is that only the elements of α associated
with training examples lying on or within the margin are non-zero. This subset of training
examples entirely determines the position of the decision boundary and is collectively known
as the support vectors of the training set. Equation 2.84 can therefore be evaluated efficiently
by only including support vectors in the summation.

The use of a soft margin allows a robust decision boundary to be obtained when linearly
separable data is corrupted by noise. However, for many classification tasks the boundary
between the classes is not linearly separable and a more complex representation is needed.
One method of separating non-linear data without introducing additional model parameters
is to introduce a static kernel function to implicitly map training examples into a a high-
dimensional, separable, feature space. A linear decision boundary can then be obtained in
the feature space that corresponds to a non-linear boundary in the input space. Static kernels,
and their relationship to SVMs, are discussed in further detail in section 2.2.6.

2.2.4 Relevance vector machines
The relevance vector machine (RVM) [194, 195] is a form of discriminative classifier that is an
implementation of the sparse Bayesian learning framework introduced in [137]. The RVM is
closely related to the support vector machine and is defined in a similar form. However unlike
the SVM, where the distance between a training example and the decision boundary does
not have a probabilistic interpretation, for the RVM the output scores model the conditional
likelihood of a class given the example and the current hyperparameter estimates. Thus
the RVM is a conditional model, similar to the CRF and HCRF described in sections 2.2.1
and 2.2.2.

A common approach in statistical classification is to classify a test example ov based on
a weighted linear combination of a set of basis functions fi(o

v).

S(ov;α, b) =
N
∑

i=1

αifi(o
v) + b (2.86)

where fi(·) is typically non-linear. In the RVM model, each function fi(·) is defined by a
common function k(ov,oi) between ov and a training example oi. This yields a model of
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similar functional form to the support vector machine.

S(ov;α, b) =

N
∑

i=1

αik(ov,oi) + b (2.87)

The properties of the RVM model are defined by the function k(ov,oi). One class of function
that may be applied is the class of static kernel functions. These implicitly map each vector
o into a higher dimensional feature space, where an inner product is evaluated. Static kernel
functions are described in more detail in section 2.2.6. For classification of speech data,
dynamic kernel functions may be used as described in chapter 3. This approach was used
successfully in [76]. Unlike standard kernel-based techniques such as the SVM classifier, where
k(o,oi) represents an inner product in some feature space, for the RVM k(o,oi) is only used
to derive a suitable set of basis functions. Hence, unlike standard kernel functions, for RVMs
there is no requirement that k(o,oi) satisfies Mercer’s conditions.

In the SVM, a preference for smoother functions is introduced by using a maximum-margin
training criterion. For the RVM, a similar preference for smooth functions is introduced using
a Bayesian approach by defining a prior distribution over α. Here the prior distribution of
the weights α and bias b is modeled by a zero-mean Gaussian of the form

p(α, b;γ) = N (b; 0, γ−1
0 )

N
∏

i=1

N (αi; 0, γ−1
i ) (2.88)

By fixing the prior means at zero, the resultant weight vector tends to be extremely sparse.
Hence the number of relevance vectors oi with non-zero weights αi is low. The relative sparsity
of the RVM model, compared to the SVM, is one of its main advantages. Classification may
be performed more efficiently, and the model is less prone to overfitting the data. Unlike the
SVM, where the support vectors lie on the class boundary, here the relevance vectors tend to
be representative of a particular class and typically lie far from the decision boundary [195].

For each weight αi and the bias b, the inverse variance of the prior is defined by a hy-
perparameter γi. To complete the Bayesian specification for the model, priors must also be
defined over γi. The hyperparameters γi define the scale of each basis function fi(·). Hence,
a suitable form of prior is the Gamma function. Alternatively, a non-informative prior over
a logarithmic scale may be used [195]. One advantage of this approach is that the RVM
predictions will be invariant to linear scalings of the basis function outputs.

The RVM classifier output is the posterior probability of one of the classes given α and
the test example ov. For the binary case, yv ∈ {ω1, ω2}, the probability of the first class, ω1

is obtained by applying the sigmoid link function to S(ov;α, b).

P (ω1|ov;α, b) =
1

1 + e−S(ov;α,b)
(2.89)

The probability of the second class is equal to 1 − P (ω1|ov;α, b). For a training set O =
{o1, . . . ,oN} with associated labels Y = {y1, . . . , yN}. the conditional likelihood of the train-
ing set labels is given by

P (Y|O;α, b) =

N
∏

i=1

P (yi|oi;α, b) (2.90)
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The optimal hyperparameters {γ∗,α∗, b∗} are then obtained by maximising the posterior of
the unknowns given the data.

{γ∗,α∗, b∗} = argmax
γ,α,b

{p(γ,α, b|Y,O)} (2.91)

It is not possible to obtain a closed form solution to equation 2.91. Instead, an iterative
procedure, based on Laplace’s method, can be applied to obtain a suitable set of hyperpa-
rameter estimates [137]. At each iteration k, the most probable weights α(k) and bias b(k)

are obtained, given the fixed values of γ(k−1). This procedure is equivalent to optimising a
penalized logistic model [195] and may be performed using iterative, second order Newton
methods. The Hessian of equation 2.91 with respect to the weights and bias is then inverted
and negated to obtain the covariance Σ(k) of a Gaussian approximation to the posterior over
the weights and bias centered at α(k), b(k). An update for the hyperparameters γ(k) can then
be obtained using the statistics α(k) and Σ(k) [76].

γ
(k)
0 =

ρ0

b(k)2
(2.92)

γ
(k)
i =

ρi

α
(k)2
i

i > 0 (2.93)

ρi = 1 − γ
(k−1)
i σ

(k)2
i (2.94)

where σ
(k)2
i is the ith diagonal element of Σ(k). This iterative procedure is then repeated

until convergence. Relevance vector machines may also be applied directly to multi-class
classification [195]. However, as the number of classes increases, training quickly becomes
computationally infeasible. Alternatively, a multi-class classifier may be constructed by com-
bining multiple binary classifiers. Examples of this approach are given in the next section.

2.2.5 Multi-class classification
There are many classification problems where the number of potential labels is greater than
two. These tasks are known as multi-class, or polychotomous, problems. For generative clas-
sification schemes, Bayes’ decision rule can be applied to solve multi-class classification prob-
lems directly. In contrast, many discriminative classifiers, including the SVM, are inherently
binary in nature. Although there has been interest in adapting the SVM to handle the multi-
class problem directly, approaches such as [198, 208] yield quadratic optimisation problems
where the size is proportional to the number of classes. Although more efficient approaches
have since been developed [40] multi-class classification is still significantly more complex
than the binary case. Similarly, although the relevance vector machine can be applied to
multi-class tasks, training quickly becomes infeasible as the number of classes increases [195].
An alternative approach to solving multi-class problems is to break them down into a series
of binary classification tasks. This process is known as a reduction. A selection of reduction
schemes are presented in the following subsections.

2.2.5.1 One-versus-one classifiers

A popular scheme is the one-versus-one reduction scheme used in [59, 89]. Here a distinct
binary classifier is trained to distinguish each pair of classes. For a classification task involving
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K classes, a total of K(K − 1)/2 different binary classifiers are required. For each pair of
classes (ωi, ωj), the associated classifier is trained using only data labeled either ωi or ωj . One
advantage of this scheme is that since each classifier is independent, they may be efficiently
trained in parallel.

Given a set of trained one-versus-one classifiers, a number of methods are available for
classifying test data. A commonly used scheme is majority voting [59]. Here, a test example is
classified using each of the one-versus-one classifiers in turn. A vote is then assigned to class ωi

for each classifier that hypothesizes ωi. Finally, the test example is assigned to the class that
received the most votes. In the event of a tie between two classes (ωi, ωj), the test example is
assigned to the class hypothesized by the classifier associated with pair (ωi, ωj). It is unclear
how ties between larger numbers of competing classes should be resolved. One approach is
to randomly assign the test example to a class. Alternatively, a radically different form of
multi-class classifier, such as a generative classifier, may be used to distinguish between the
competing classes.

Consider the case where each binary classier is optimal, i.e. the classifier associated with
pair (ωi, ωj) correctly classifies any data belonging to class ωi or ωi and labels examples
randomly otherwise. Under these conditions, the majority voting scheme will correctly classify
all examples since the true class is guaranteed to receive a minimum of K − 1 votes and
each competing class will receive a maximum of K − 2 votes. In practice this assumption
is unrealistic and successive binary classification errors can cause the scheme to misclassify
examples.

2.2.5.2 Directed acyclic graph classifiers

Various reduction schemes have been developed that use rooted binary directed acyclic graphs
(DAGs) to classify test examples [161, 201]. Typically each leaf node is associated with a
particular class label and a binary classifier is associated with each non-leaf node. A test
example is then assigned to a particular class by following a path from the root to one of the
leaf nodes. At each node, the test example is classified using the associated binary classifier.
Depending on the classification decision, one of the two child nodes is then selected. This
process is repeated until a leaf node is reached. The exact nature of the reduction scheme is
dependent on the structure of the DAG and the binary decision made at each node.

One example of a reduction scheme based on DAGs is the decision DAG classifier [161].
An example binary-DAG for this scheme is depicted in figure 2.7(a). Each node in the
graph is associated with a binary classifier, trained to distinguish between two classes ωi

and ωj , as in the one-versus-one scheme. During classification, a set of potential classes is
maintained. Initially, this set contains every class. At each level of the graph, test examples
are classified using the binary classifier associated with the current node. After each decision,
the losing class is discarded from the set and the corresponding edge is followed to determine
the next node. Once a child node is reached only one possible hypothesised class remains and
the test example can be assigned to this remaining class. Like the one-versus-one scheme,
the decision DAG approach requires a total of K(K − 1)/2 binary classifiers to be trained.
However, only K −1 classification decisions are needed to assign a class to each test example.
Although the structure of the decision DAG is dependent on the ordering of the classes, in
practice, re-ordering the classes has not been found to significantly effect the performance of
the scheme [161].
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(a) (b)

Figure 2.7: Multi-class classification using (a) a decision-DAG (b) a divide-by-two DAG.

An alternative reduction scheme based on binary DAGs is the divide-by-two (DB2) scheme
proposed in [201]. An example DAG for the DB2 scheme is depicted in figure 2.7(b). Unlike
the decision DAG classifier which discards a single class label at each level of the graph,
here the number of potential labels is reduced by half after each classification decision. At
each node, the remaining classes are partitioned into two subsets and a binary classifier is
then trained to distinguish between these subsets. A suitable partitioning scheme may be
obtained via clustering algorithms or by simply splitting the classes such that the number
of training examples associated with each subset is roughly equal [201]. Unlike the decision
DAG approach, only K − 1 binary classifiers need to be trained and test examples may be
classified using only log2 K binary classifiers.

2.2.5.3 Filter trees

The filter tree [14, 70] is a DAG-based reduction scheme closely related to the DB2 scheme
described in section 2.2.5.2. As in the DB2 scheme, the DAG is constrained to be a binary
tree, and at each level a binary classifier is trained to distinguish between two competing sets
of classes. Unlike the DB2 scheme, the filter tree is fundamentally a bottom-up approach. The
training set associated with each node is dependent on the output of the classifiers associated
with its descendants. An example filter tree is shown in figure 2.8.

The filter tree was developed for cost-sensitive classification tasks. For these tasks, there
is a cost, cost(o, ωk), associated with classifying each example o as belonging to class ωk.
The cost associated with the true label is typically zero and the cost associated with mis-
classification is typically positive. The objective is then to classify the data in a way that
minimises the total cost. Note that a cost-insensitive problem can be easily transformed into
a cost-sensitive problem by setting cost(o, ωk) = 0 if o belongs to class ωk and cost(o, ωk) = 1

figures/dag2.eps
figures/dag-db2.eps
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Figure 2.8: Multi-class classification using a filter tree.

otherwise. For cost-sensitive tasks, filter trees require the use of an importance-weighted bi-
nary classifier [14]. Here each training example is augmented with a parameter measuring the
importance of it being classified correctly, determining its influence on the obtained decision
boundary. For tasks where the importance is binary, the importance-weighted classifier may
be substituted with a standard classifier, such as an SVM, by removing any zero-importance
examples from the training set.

A test example is classified using a filter tree by an elimination contest. Starting from the
leaf nodes, classes are initially grouped into pairs according to the graph. At each node, a
binary classifier is used to assign the test example to one of the input classes. The predicted
class label is then propagated to the next layer until the root node is reached. Finally, the
test example is labeled with the class predicted by the root node. By tracing directly from
the root node to the leaf, a test example can be classified using only log2 K binary classifier
evaluations.

The filter tree is also trained using a bottom-up procedure. Training examples are prop-
agated through the tree as for classification. At each node, an importance-weighted binary
classifier is trained to distinguish between the two sets of classes associated with the node.
The importance associated with each training example is set equal to the difference between
the costs of the classes predicted by the left and right subtrees. The effect of this is to penal-
ize training examples misclassified by nodes closer to the leaves, yielding a more robust set
of classifiers. The classification error associated with filter trees has been shown [14] to be
bounded by e log2 K, where e is the average error rate of the binary classifiers.

2.2.5.4 Error correcting output codes

Error correcting output codes (ECOCs) [51] are a reduction scheme based on the analogy of
transmitting data over a noisy channel. Here the class labels represent the data transmitted
and any mistakes made by the binary classifiers are analogous to the effects of noise altering

figures/filtertree.eps
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individual bits of the transmitted data. Unlike more basic schemes, ECOCs are explicitly
designed to recover from individual classifier mistakes.

ECOCs operate by assigning a codeword to each class. Each codeword is unique and
consists of a length-L bitstring. Table 2.1 shows example codes for a three class problem. For
each position l, the classes are partitioned into two sets depending on the value of the lth bit in
the associated codewords. A binary classifier rl is then trained to distinguish between the two
sets. During test, examples are classified by each of the L binary classifiers and the outputs
converted into a bitstring. By comparing this bitstring to the codewords associated with each
potential label, the example can be assigned to a class. If any of the binary classifiers make
mistakes, the resultant bitstring may not correspond directly to any of the codewords. In
this case the example is assigned to the class with the ‘nearest’ codeword. A useful distance
measure is the Hamming distance, defined as the number of bits that differ between the two
strings.

Class
Codeword

r1 r2 r3 r4 r5

ω0 0 1 1 0 0
ω1 1 0 1 0 1
ω2 0 1 0 1 1

Table 2.1: A 5-bit error correcting output code for a three class problem.

The ability of the ECOC scheme to detect and correct for classification errors is related
to the choice of codewords. If the minimum Hamming distance between any two codewords
is equal to d, then the ECOC scheme can correct at most (d − 1)/2 bit errors. In table 2.1,
the minimum Hamming distance is three. Hence this code is able to correct a single binary
misclassification. By choosing a set of codewords such that the minimum Hamming distance
is maximised, the robustness of the scheme to classification errors is increased.

The use of the Hamming distance as a metric assumes that errors in any of the bit positions
are uncorrelated. When two classifiers are trained to distinguish the same sets of classes this
will not be the case. Hence, each column of the code table should be unique. Additionally,
columns should not be complements of each other. This is not the case for the code defined
in table 2.1. Here, the columns r1 and r2 are complementary and the associated classifiers
will not be independent. Similarly columns r3 and r4 are complementary. For a K class
classification task, a maximum of 2K−1 − 1 independent classifiers can be used (all-zero and
all-one columns are not discriminative).

In an ideal code, the minimum Hamming distance between the rows and between both the
columns and their complements will be large. Unless K is at least five it is difficult to satisfy
both of these conditions. For larger number of classes obtaining a suitable code is a non-trivial
task. One approach is to choose codewords by assigning meaning to individual bit positions.
However this typically yields codes where the corresponding columns are highly correlated.
Alternatively, suitable codes may be obtained algorithmically, either by selecting a subset
of columns from an exhaustive list, or by iteratively updating a code using randomised hill
climbing [51]. A number of adaptations to the basic ECOC scheme have also been proposed,
including an extension to cost-sensitive classification [117] and schemes based on continuous
rather than discrete codings [39].
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2.2.6 Kernel functions
Many machine learning algorithms, including the support vector machine, can be expressed
using a representation where the only reference to the data is via the inner product between
training examples. One advantage of this representation is that only the inner products need
to be stored in memory. When dealing with a small number of high dimensional training
examples this can be significantly more efficient. A second benefit is that by replacing the
inner product with a suitable kernel function, classifiers that are inherently linear, such as
the support vector machine, can yield non-linear decision boundaries.

One method of separating non-linear data without introducing additional model param-
eters is to apply a non-linear function ψ(o) to map each example o into a high-dimensional
feature space. The function ψ(·) is often referred to as a score operator and the corresponding
feature space as a score space. The mapped examples are known as feature vectors. According
to Cover’s theorem [38], given a sufficiently high-dimensional feature space, the classes can be
made linearly separable with high probability. A linear decision boundary is then trained in
the feature space, which will correspond to a non-linear boundary in the input space. When
all references to data are in the form of inner products, rather than explicitly evaluating ψ(o),
a (static) kernel function k(oi,oj) may be defined that calculates the inner product in the
feature space defined by ψ(o).

k(oi,oj) = 〈ψ(oi),ψ(oj)〉 (2.95)

By replacing the inner product with a kernel function, a kernelised form of the SVM
decision function defined in equation 2.84 is obtained.

yv = sign

(

N
∑

i=1

αiyik(oi,o
v) + b

)

(2.96)

Similarly, the kernelised dual objective function has the form

max

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjk(oi,oj) (2.97)

w.r.t. α

s.t.
N
∑

i=1

yiαi = 0

0 ≤ αi ≤ C ∀i

The advantage of this approach is that it is often possible to efficiently calculate k(oi,oj)
without explicitly mapping examples into the feature space. Since the dimension of feature
spaces are typically extremely high, and potentially infinite, this can often yield considerable
computational savings. To demonstrate this consider the following expansion function for two
dimensional observations.

ψ

([

o1

o2

])

=





o2
1√

2o1o2

o2
2



 (2.98)
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The kernel function associated with this expansion can be expressed as follows:

k(oi,oj) =

〈





o2
i1√

2oi1oi2

o2
i2



 ,





o2
j1√

2oj1oj2

o2
j2





〉

=

(〈[

oi1

oi2

]

,

[

oj1

oj2

]〉)2

(2.99)

Hence this kernel can be efficiently calculated as a function of the inner product of the original
observations without performing an explicit expansion. To be a valid kernel, a function
k(oi,oj) must correspond to some feature space, however it is not necessary that this feature
space can be explicitly expressed or even that it has finite dimension, so long as it can be
proved to exist. Mercer’s conditions [149, 181, 198] state that a necessary and sufficient
condition for a function k(oi,oj) to correspond to a valid feature space is that the Gram
(or kernel) matrix K induced by k(oi,oj) is symmetric and positive semi-definite, where
Kij = k(oi,oj) ∀i∀j. Many forms of kernel function have been proposed for mapping vector
data into a high-dimensional space. Several standard kernel functions are given in table
2.2. With the exception of the linear kernel, these kernels all correspond to feature spaces
where the dimension varies with the kernel parameters. Although many kernels, such the
polynomial kernel, have fixed-dimensional feature spaces, others, such as the Laplacian or
Gaussian kernels, generate feature spaces where the dimension varies with the number of
training examples.

Kernel Functional form Kernel parameters
k(oi,oj)

Linear 〈oi,oj〉 None
Homogeneous polynomial 〈oi,oj〉p Power, p
Inhomogeneous polynomial (〈oi,oj〉 + c)p Power, p; offset, c
Laplacian exp

(

−‖ oi − oj ‖/2σ2
)

Width, σ

Gaussian exp
(

−‖ oi − oj ‖2/2σ2
)

Variance, σ

Sigmoid tanh (κ〈oi,oj〉 + c) Scale, κ; offset, c

Table 2.2: A summary of several standard kernel functions.

There is no requirement that kernel functions operate on vector data, as long as the corre-
sponding kernel matrix satisfies Mercer’s conditions. Hence, kernel functions may be defined
that operate on alternative data structures such as sequences, graphs, text documents and
sets. The modular nature of the kernel function allows standard machine learning techniques,
such as SVM-based classification, to be applied to a wide range of tasks by selecting a task-
appropriate kernel function. The predominant forms of kernel used in this thesis operate on
sequences, and allow SVM classifiers to be applied to speech classification tasks. To distin-
guish these from kernels that operate on vector data, the term dynamic kernel is used to refer
to kernels that operate on variable-length sequences and static kernel to refer to kernels that
operate on vectors. Many examples of dynamic kernels suitable for speech classification are
given in chapter 3.
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Given a kernel function, it is possible to define new forms of kernel by modifying the
function directly. For kernel functions ka(oi,oj) and kb(oi,oj) the following operations can
be shown to yield valid kernel functions [181].

k(oi,oj) = aka(oi,oj) (2.100)

k(oi,oj) = ka(oi,oj) + α (2.101)

k(oi,oj) = (ka(oi,oj))
p (2.102)

k(oi,oj) = exp(ka(oi,oj)) (2.103)

k(oi,oj) = exp(−α||oi − oj ||2) (2.104)

k(oi,oj) = ka(oi,oj) + kb(oi,oj) (2.105)

k(oi,oj) = ka(oi,oj)k
b(oi,oj) (2.106)

where α is a positive real scalar and p is a positive integer. In chapters 6 and 7, these relation-
ships are used to derive new forms of kernel function for speaker-verification by combining
multiple dynamic and static kernel functions.

If a function k(oi,oj) represents a valid kernel, it may be decomposed into the following
form.

k(oi,oj) = ψ(oi)
TG−1ψ(oj) (2.107)

where ψ(o) is the associated score operator and G−1 is a square (potentially identity) matrix
that does not depend on the data. The matrix G−1 therefore defines a distance metric
in the feature space defined by ψ(o). When a kernel function is defined explicitly via a
score operator, it is often not clear what form of metric should be used. Many kernel-based
algorithms, including SVMs, are not invariant to scaling individual dimensions of the feature-
space. Thus, the choice of unit used to measure each dimension of the feature-space will
affect the decision boundary obtained. It is therefore useful to use a metric that is maximally
non-committal with regards to the data since this will cause all dimensions to be treated
equally regardless of scale. One such metric is given by

G = E
{

(ψ(o) − µψ)(ψ(o) − µψ)T
}

(2.108)

µψ = E{φ(o)} (2.109)

where E{} is the expectation with respect to o. Since equation 2.108 will often have no
closed form solution, the metric is often approximated by calculating the expectation over
the available training examples [44]. This is equivalent to setting G to the covariance matrix
of the feature vectors obtained from the training data.

G =
1

N − 1

N
∑

i=1

[ψ(oi) − µψ] [ψ(oi) − µψ]T (2.110)

Rather than use equation 2.110 directly, it is common to use a further approximation and
constrain G to be diagonal. This significantly reduces the computational cost of calculating
and inverting G for high dimensional feature spaces.

For high-dimensional data, the dynamic range of the feature vectors may vary greatly,
potentially reducing classification performance. One method of avoiding this issue is to
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normalise all feature vectors to unit length. Unfortunately, such an approach can lead to
wrap-around, where two distinct vectors map to the same point in feature space. Spherical
normalisation [205] operates by mapping each feature vector to the surface of a unit hyper-
sphere containing one more dimension than the original feature vector. The resulting feature
vector has unit magnitude but information about the original magnitude is retained by the
additional dimension. Feature vectors ψ(o) can be transformed to spherically normalised
vectors ψSN(o) using equation 2.111.

ψSN(o) =
1

√

〈ψ(o),ψ(o)〉 + c2

[

ψ(o)
c

]

(2.111)

where c is a positive constant. Alternatively spherical normalisation can be expressed in terms
of the kernel function

kSN(oi,oj) =
k(oi,oj) + c2

√

k(oi,oi) + c2
√

k(oj ,oj) + c2
(2.112)

2.3 Summary
In this chapter, two general approaches for classifying speech utterances were introduced.
Generative classification, discussed first, uses generative models to approximate the proba-
bility distribution associated with the process of generating speech observations. Given a
generative model trained to model the likelihood of the speech observations associated with
each class, classification may be performed using Bayes’ decision rule. Two popular forms
of generative model were presented: Gaussian mixture models, which model the likelihood
of each observation using a mixture of Gaussian density functions, and hidden Markov mod-
els, which include latent variables to model additional temporal dependencies. Schemes for
estimating and adapting generative model parameters were discussed.

The second half of this chapter introduced discriminative classification schemes. Unlike
generative schemes these attempt to model the class boundaries directly. Two different types
of discriminative scheme were discussed in this chapter, based on either discriminative models
or discriminative functions. In the first approach, a conditional model is trained to directly
model the posterior probability of the class labels. Two forms of conditional model were
introduced in this chapter: the conditional random field and the related hidden conditional
random field, which includes a latent state sequence to model additional dependencies. Dis-
criminative functions are an alternative, non-statistical approach where a decision boundary
is trained to separate the classes. A popular form of discriminative function, described in this
chapter, is the support vector machine. This is a binary, distance-based classifier trained using
a maximum-margin criterion. The relevance vector machine, a conditional model defined in a
similar form to the support vector machine was also described. Schemes were then presented
to allow these classifiers to be applied to multi-class tasks. A common property of relevance
and support vector machines is that they can be kernelised. Here, a kernel function is applied
to implicitly map examples into a high-dimensional feature space allowing non-linear decision
boundaries to be efficiently trained.



CHAPTER 3
Dynamic Kernels

In the previous chapter it was shown that, through the use of a suitable kernel function,
classifiers that are inherently linear can yield non-linear decision boundaries. Although

kernel functions were originally developed for fixed-dimensional vector data, it possible to
derive valid kernel functions that operate on many forms of data structure including graphs,
sets and text documents. This has allowed many standard classification algorithms, such as
the support vector machine, to be applied to a wide range of tasks by defining an appropriate
kernel function.

In this chapter, a number of kernels are introduced that are designed to allow kernel-based
classifiers to handle sequence data. To distinguish these from the static kernels introduced
in section 2.2.6 for fixed-dimensional data, these kernels will be referred to as dynamic or
sequence kernels1, as in [204]. These dynamic kernels implicitly map each variable-length
sequence into a fixed-dimensional feature space, before calculating the inner product in that
space. Many of the kernels described in this chapter are examples of generative kernels. These
combine generative and discriminative approaches by using generative models to define a
suitable feature space within a discriminative kernel-based framework.

The dynamic kernels introduced in this chapter are divided into three broad categories
based on the form of data to which they can be applied. The first two forms of dynamic kernel
are discrete-observation kernels and continuous-observation kernels. These are designed to
handle sequences of discrete or continuous data respectively. The final category of dynamic
kernel described here is the distributional kernel. These kernels are closely related to the first
two categories. However, rather than operate on sequence data directly, distributional kernels

1In this work the notation K(Oi,Oj) is used to denote dynamic kernel functions and φ(O) to denote the
associated dynamic score operator. k(oi,oj) and ψ(o) are reserved for static kernels.

38
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define a function between two probability distributions. An example scheme for applying
distributional kernels to the classification of sequence data is also described.

3.1 Discrete-observation kernels
Discrete-observation kernels are characterised by their ability to handle sequences of the form
O = {o1, . . . ,oT }, where ot is a discrete valued observation. Discrete-observation kernels were
primarily developed for use in text-processing and biological applications. The extension of
these kernels to speech-based classification tasks is described in further detail in chapter 4.
A large number of dynamic kernels have been developed for discrete data including the bag-
of-words kernel [93], string kernels [123, 128] and the marginalised count kernel [197].

3.1.1 Bag-of-words kernel
The bag-of-words (BOW) [93] kernel was one of the earliest kernels developed for handling
sequences of discrete data and was originally applied to text classification. Here O represents
a text sequence of length T and each observation ot represents a word within that sequence.
The set of possible words W that may occur within the text sequence is known as the vo-
cabulary. In the simplest form, each text sequence is then mapped into a fixed-dimensional
representation by taking a count, count(wk,O), of the number of times each word wk appears
in O. In the resulting feature vector, the element at index k consists of the count associated
with word wk.

φBOW(O) =







count(w1,O)
...

count(wK ,O)






(3.1)

The kernel function is then defined as the inner product of the feature vectors.

KBOW(Oi,Oj) = φBOW(Oi)
T
φBOW(Oj) (3.2)

An issue that restricts the use of this form of kernel in practice is that the dimensionality of
the feature space K, equal to the size of the vocabulary W, will often be extremely large.
Since φBOW(O) will typically be sparse, it usually more efficient to only evaluate the kernel
function over the set of words W̃ known to appear in both Oi and Oj .

K(Oi,Oj) =
∑

wk∈W̃

count(wk,Oi) count(wk,Oj) (3.3)

For text applications, rather than using each word directly, it is common to replace each word
with its stem [93]. This reduces the total size of the vocabulary and ensures that related words
such as running, runner and runners are treated identically. Similar procedures suitable for
speaker-verification are discussed in more detail in chapter 4.

The BOW kernel defined in equation 3.3 is not invariant to changes in sequence length.
By repeating the words contained in Oi the value of the kernel function will be doubled
without necessarily changing the semantic content of the sequence. To compensate for this
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a normalisation term may be included. In [93] the kernel function is normalised by the
magnitude of each feature vector.

K̂(Oi,Oj) =
K(Oi,Oj)

√

K(Oi,Oi)
√

K(Oj ,Oj)
(3.4)

Alternatively the kernel function may be normalised by the length of each utterance to obtain
a length-independent function.

K̂(Oi,Oj) =
K(Oi,Oj)

TiTj
(3.5)

Although conceptually simple, the BOW kernel is limited in practice since it does not take
any form of word context into account. Permuting the words within each sentence will result
in an identical kernel function even if the meaning of the sentence is radically changed. N-
gram and marginalised count kernels, discussed in the following sections, are an attempt to
overcome this restriction.

3.1.2 N-gram kernel
The N-gram kernel [124], also known as the spectrum kernel, extends the approach used in the
BOW kernel to handle local context. Like the BOW kernel, the N-gram kernel was originally
developed to handle classification of text sequences. Rather than treating each document as
a sequence of words, the N-gram kernel is normally implemented on the level of individual
characters. The kernel operates by comparing the substrings found within each sequence.
For each sequence, the number of times that each possible substring of length N appears is
counted. These counts are then used as a set of fixed-dimensional features that describe the
sequence. For example, when N=3 the feature space has the following form.

φtrigram(O) =







count(aaa,O)
count(aab,O)

...






(3.6)

where count(vk,O) indicated the number of time substring vk occurs in sequence O. For the
case when N=1, the N-gram kernel has the form of a character-level BOW kernel. For larger
values of N , the dimension of the feature vector is equal to KN , where K is the number of
characters (including the empty character) that may appear in the string. Hence for all but
small values of N, evaluating the N-gram kernel can become infeasible. One approach for
handling this issue is to exclude from the feature space any substrings that are considered
unlikely to occur. For text classification using English documents this may include substrings
such as ‘hxj’ or ‘zqx’. Schemes for identifying likely substrings will be application dependent.

A closely related form of string kernel is the binary spectrum kernel [124]. Rather than
recording a count of substrings, the element of the feature vector corresponding to each
substring vk is set to 1 if vk occurs in O or 0 otherwise. One limitation of the N-gram
approach is that only substrings of a particular fixed length are compared. For applications
where insertions or deletions into the sequences are common, this may not be optimal. A
number of kernels have been developed that extend the basic N-gram approach such as the
mismatch kernel [125], the wildcard kernel [123] and the gappy N-gram kernel discussed in
the following section.
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3.1.3 Gappy N-gram kernel
The gappy N-gram kernel [123, 128], also known as the string subsequence kernel (SSK), is
closely related to the N-gram kernel. Whereas the N-gram kernel measures the similarity of
two sequences by considering the number of shared substrings of a given length, the gappy
N-gram kernel attempts to extend this approach to non-contiguous substrings, where the
elements of the subsequence are separated by one or more gaps. Thus the gappy N-gram
kernel is designed to be tolerant to insertions of elements into the sequence.

Like the N-gram kernel, the feature space contains a dimension for each possible substring
vk of length N . However rather than taking a simple count of the number of times vk appears
in O, the influence of each substring vk on the kernel function is weighted according to how
separated the elements of vk are within O. Substrings with consecutive elements are assigned
a higher weighting than substrings with widely spaced elements. This is implemented by
introducing a decay factor, ρ, where 0 ≤ ρ ≤ 1. For each occurrence of a substring vk the
weighting is set to ρl(vk) where l(vk) is the length of the substring of O that completely
encompasses the elements of vk. Thus the element of the feature vector associated with
substring vk is given by

φ
gappy

k (O) =
∑

vk∈O

ρl(vk) (3.7)

where the summation is over all instances of substring vk in O. To demonstrate the gappy
N-gram kernel consider the text strings ran, rat, can and cat. For these sequences, there
are eight possible substrings of length 2. The associated feature spaces for these strings are
given below

φ(ran) φ(rat) φ(can) φ(cat)

r-a ρ2 ρ2 0 0
a-n ρ2 0 ρ2 0
r-n ρ3 0 0 0
r-t 0 ρ3 0 0
a-t 0 ρ2 0 ρ2

c-a 0 0 ρ2 ρ2

c-t 0 0 0 ρ3

c-n 0 0 ρ3 0

Evaluating the gappy N-gram kernel by explicitly calculating the feature space is only possible
for extremely short sequences and when N is small. However it is possible to evaluate the
kernel more efficiently by using either dynamic programming techniques [128] or by using
a retrieval tree data structure [123]. For both of these approaches the complexity of the
algorithms scales linearly with both sequence length and N. Alongside many other forms of
discrete-observation kernel, including the bag-of-words and N-gram kernels, gappy N-gram
kernels may also be efficiently applied using weighted finite state transducers under a rational
kernel framework [36, 37].

The effectiveness of the gappy N-gram kernel compared to the standard N-gram kernel
is likely to be application-dependent. The gappy N-gram kernel was originally applied to
the classification biological sequences [128]. In this case the insertion or deletion of sequence
elements may occur frequently without substantially changing the relationships between se-
quences. By comparison, for text-processing applications the addition of characters within a
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word often substantially changes the meaning, For example in the words rat and rapt. The
suitability of the gappy N-gram kernel for a particular application is therefore related to how
the users concept of sequence similarity is influenced by the insertion or deletion of sequence
elements.

3.1.4 Term frequency log likelihood ratio kernel
The term frequency LLR (TF-LLR) kernel is a kernel function that operates on discrete
sequence data and has been successfully applied to model higher-level features for speaker
verification [29]. The TF-LLR kernel is motivated from an information retrieval perspective
and is related to the term-frequency inverse-document-frequency (TF-IDF) measure. Rather
than using substring counts directly as features, the probability P (vk|O) of the occurrence of
a particular substring vk in sequence O is calculated.

P (vk|O) =
count(vk,O)
∑

v count(v,O)
(3.8)

where count(vk,O) is the count of the number of times that substring vk appears in O and
the summation is over all possible substrings. Typically only the substrings that are present
in a large background dataset OB = {OB

1, . . . ,O
B
N} are included. For two utterances Oi and

Oj , a similarity measure is obtained by determining whether the substrings present in Oi

were more likely to be generated by the model P (vk|Oj) associated with Oj or by the model
P (vk|OB) associated with the background data. A suitable function l(Oi,Oj) may be defined
by taking the log-likelihood ratio of the two models averaged over all substrings present in
Oi.

l(Oi,Oj) =
1

Γi

Γi
∑

t=1

log
P (hit|Oj)

P (hit|OB)
(3.9)

=
∑

vk

P (vk|Oi) log
P (vk|Oj)

P (vk|OB)
(3.10)

where hit is the tth sequential substring in Oi and Γi is the total number of substrings
(including duplicates) present in Oi. It is not possible to use l(Oi,Oj) as a kernel function
directly since it is not symmetric and does not satisfy Mercer’s conditions. However, by
taking a first order Taylor approximation to the log(·) in equation 3.10, a valid TF-LLR
kernel function may be obtained.

KTFLLR(Oi,Oj) =
∑

vk

P (vk|Oi)
√

P (vk|OB)

P (vk|Oj)
√

P (vk|OB)
(3.11)

For each utterance, the dynamic features associated with the TFLLR kernel are the frequency
that each substring occurs normalised by the square root of the frequency that the sub-
string occurs in the background data. This normalisation is similar to the inverse-document-
frequency (IDF) measure in information retrieval. For IDF, typically the log of the back-
ground frequency is used rather than the square root. The TFLOG kernel [29], defined by
equation 3.12, is a variant of the TF-LLR kernel based on this approach.

KTFLOG(Oi,Oj) =
∑

vk

P (vk|Oi)

log P (vk|OB) + 1

P (vk|Oj)

log P (vk|OB) + 1
(3.12)
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3.1.5 Marginalised count kernel
Marginalised kernels were proposed in [197] as a principled method of incorporating context-
dependency into a kernel function by modelling the context using a latent state sequence.
Unlike the previous kernels discussed in this section, marginalised kernels combine standard
kernel techniques with the generative approaches introduced in chapter 2. Here a latent
variable model P (O;λ) is introduced. For example, P (O;λ) may be defined by a HMM
with a discrete output distribution1. Each sequence, O = {o1, . . . ,oT }, is assumed to be
generated by the model according to a latent sequence θ = {θ1, . . . , θT } that incorporates
context information. Given the existence of a suitable kernel function, K̂({Oi,θi}, {Oj ,θj}),
defined over joint observation/latent variable sequences, the marginalised kernel is obtained
by marginalising over all possible latent state sequences Θ.

K(Oi,Oj) =
∑

θi∈Θ

∑

θj∈Θ

P (θi|Oi;λ)P (θj |Oj ;λ)K̂({Oi,θi}, {Oj ,θj}) (3.13)

The precise nature of the marginalised kernel is dependent on both the latent variable model
P (O;λ) and the joint kernel function K̂({Oi,θi}, {Oj ,θj}). In practice, the form of joint
kernel function that may be used is limited since, for many forms of joint-kernel, evaluating
the summation over all possible latent state-sequences will be infeasible. One example of
a joint kernel that leads to a tractable kernel function is the count kernel. This is closely
related to the N-gram kernel described in section 3.1.2 except that for each substring v,
distinct counts are maintained for each context in which the substring appears. For first
(mc1) and second (mc2) order count kernels, the associated marginalised kernels have the
following feature space.

φmc1(O) =









...
∑T

t=1 P (θt = p |O;λ)
...









(3.14)

φmc2(O) =









...
∑T

t=2 P (θt−1 = p, θt = q |O;λ)
...









(3.15)

where p and q indicate distinct contexts. When λ has the form of an HMM, p and q will
represent HMM state indices and P (θt = p | O;λ) and P (θt−1 = p, θt = q | O;λ) may be
efficiently estimated using the forward-backward algorithm described in chapter 2. For an
N -state HMM, the total number of elements in the feature vector will be N for a first order
marginalised count kernel and N2 for a second order kernel. This approach may also be
extended to higher order N-grams to incorporate more complex dependencies [197].

1Marginalised kernels may also be applied to sequences of continuous observations. In this case both
GMMs and HMMs with GMM output distributions are appropriate forms of latent variable models to use.
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3.2 Continuous-observation kernels
Continuous-observation kernels are a form of dynamic kernel designed to operate on sequences
of continuous data. Unlike the discrete-observation kernels described in section 3.1, the
dynamic kernels described in this section may be applied directly to utterances of speech, O =
{o1, . . . ,oT }, where ot is a vector of real-valued observations made at frame t. The majority
of the continuous-observation kernels described in this section are examples of generative
kernels, and make use of generative models to map each variable-length sequence into a fixed-
dimensional space. Continuous-observation kernels described in this section include the GLDS
kernel [24],the probabilistic sequence kernel [120] , the Fisher kernel [90], the LLR kernel [185],
the MLLR kernel [189] and the CAT kernel [211].

3.2.1 GLDS Kernel
The Generalised Linear Discriminant Sequence (GLDS) kernel [24] was one of the earliest
forms of dynamic kernel successfully applied to classification of speech sequences. It operates
by initially mapping each observation ot into a higher order feature space ψ(ot). Here ψ(·)
represents the feature-mapping associated with one of the static kernels introduced in chap-
ter 2 for fixed-dimensional data. A duration-independent fixed-dimensional vector is then
obtained by taking the mean of the expanded observations.

φGLDS(O) =
1

T

T
∑

t=1

ψ(ot) (3.16)

The dimension of φGLDS(·) is dependent on both the dimension of the original observations ot

and the form of static expansion used. Typically, explicitly evaluating φ(O) is only possible
for limited forms for kernel function such as linear, or low order polynomial kernels. However,
this issue may be avoided by expressing the GLDS kernel in terms of a series of static kernel
evaluations. When an identity metric is used, this yields the dynamic kernel function.

KGLDS(Oi,Oj) =
1

TiTj

Ti
∑

t=1

Tj
∑

τ=1

k(oit,ojτ ) (3.17)

where k(oit,ojτ ) is a static kernel. When equation 3.17 is used to evaluate the kernel function,
standard forms of static kernel, such as polynomial or Gaussian kernels, may be efficiently
applied.

The GLDS kernel makes use of static kernels defined at the level of individual observations
to map sequences into a more separable feature space. In chapter 7 this approach is extended
and combined with generative schemes to derive more general dynamic kernels suitable for
speech classification. One disadvantage to using the GLDS kernel is that the static kernel
function must be calculated between all pairs of observations. For longer utterances this can
be computationally expensive. The generalised kernels described in chapter 7 do not suffer
from this restriction.
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3.2.2 Log-likelihood kernels
Given a suitable function, φ(O), that maps sequences of continuous observations into a fixed-
dimensional feature space, a dynamic kernel can easily be defined. The GLDS kernel, de-
scribed in section 3.2.1, maps each sequence into a fixed-dimensional space by taking an
average of the (expanded) sequence elements. This approach is unlikely to be robust, since
useful information is lost by the averaging process. A more principled way of obtaining a suit-
able function φ(O) is through the use of generative models, introduced in chapter 2. Given
a generative model, the output of p(O;λ) maps each sequence into a fixed (one) dimensional
feature space.

φlikelihood(O) =
1

T
[log p(O;λ)] (3.18)

Equation 3.18 includes a length normalisation term. This is important when the length of
sequences vary greatly within the dataset. For GMM models with parameters λ = {c,µ,Σ}
the likelihood of O is given by

p(O;λ) =
T
∏

t=1

M
∑

m=1

cmN (ot;µm,Σm) (3.19)

Alternatively, the likelihood may be obtained using a hidden Markov model. Here the likeli-
hood is obtained as the summation over the set Θ of latent state sequences.

p(O;λ) =
∑

θ∈Θ

T
∏

t=1

P (θt|θt−1)p(ot|θt) (3.20)

where p(ot|θt) is a state-dependent output distribution typically modelled using a GMM.
There has been interest in extending this approach to obtain higher-dimensional feature sets.
One simple approach used in [192, 218] is anchor modelling. Here a fixed-dimensional set of
features is obtained by evaluating the log-likelihood of O given a set of N reference models.
This yields the following feature space.

φanchor(O) =
1

T







log p(O;λ(1))
...

log p(O;λ(N))






(3.21)

The nature of this kernel is determined by the set of reference models used. To ensure
that the features obtained are complementary, it is important that the models are varied and
the probability density functions effectively span the dataset. In practice, anchor modelling
is rarely used as it has been found to perform poorly compared to alternative forms of speech
classifier [192]. However it provides an interesting contrast to the remaining dynamic kernels
described in this section which also attempt to extend the basic likelihood kernel approach.
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3.2.3 Fisher kernel
The Fisher kernel [90] is one of the most commonly used forms of dynamic kernel for classifying
sequences of continuous data. Like the related likelihood kernel, introduced in section 3.2.2,
the feature space associated with the Fisher kernel is derived using a generative model p(O;λ).
Thus the Fisher kernel is a member of the family of generative kernels [184]. Since the
likelihood kernel only extracts a single feature from each utterance, its ability to discriminate
between classes is limited. The Fisher kernel attempts to exploit the nature of the generative
model to capture differences in the generative processes for different classes. This is done by
defining the feature space using the gradients of the generative model.

φF(O;λ) = [∇λ log p(O;λ)] (3.22)

where ∇λ log p(O;λ) indicates the vector of partial derivatives of log p(O;λ) with respect to
each of the generative model parameters, λ. Since these features correspond to the score of
the likelihood function, the feature vectors associated with the Fisher kernel are often referred
to as Fisher scores. When p(O;λ) is a member of the exponential family, the Fisher scores
form sufficient statistics for log p(O;λ) under the natural parameterisation λ [90]. Thus they
provide a well-motivated expansion of the likelihood function to multiple dimensions. Fisher
kernels are usually defined using a maximally non-committal metric.

KF(Oi,Oj) = φF(Oi;λ)TG−1φF(Oj ;λ) (3.23)

where the metric G is given by

G = E
{

(φF(O;λ) − µφ)(φF(O;λ) − µφ)T
}

(3.24)

where E{} is defined with respect to O and µφ is the expected value of the feature vectors
defined by µφ = E{φF(O;λ)}. When the parameters, λ, of the generative model are estimated
to maximise the ML criterion the score space has zero mean. Under these conditions, the
metric has the form of the Fisher information matrix GFI, defined as the variance of the
Fisher scores.

GFI = E
{

[∇λ log p(O;λ)] [∇λ log p(O;λ)]T
}

(3.25)

The elements of the Fisher information matrix provide a measure of the amount of information
that O carries about each parameter in λ. As discussed in section 2.2.6, there is often no
closed form for equation 3.25. Instead, the metric is usually approximated using a diagonalised
expectation over the examples in the training dataset O = {O1, . . . ,ON} [44].

The exact nature of the Fisher kernel features is dependent on the form of the generative
model p(O;λ). For GMMs, first order derivatives of log p(O;λ) with respect to the mean
(µm), covariance (Σm) and component prior (cm) associated with component m are defined
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by

∇µm log p(O;λ) =
T
∑

t=1

P (θt = m|ot;λ)Σ−1
m (ot − µm) (3.26)

∇Σm
log p(O;λ) =

T
∑

t=1

P (θt = m|ot;λ)

2

[

−Σ−1
m + Σ−1

m (ot−µm)(ot−µm)TΣ−1
m

]

(3.27)

∇cm log p(O;λ) =

T
∑

t=1

P (θt = m|ot;λ)

cm
− 1 (3.28)

where P (θt = m|ot;λ) is the posterior probability of ot being emitted by component m. It
is also possible to include higher order derivative features into the score space, however these
have previously been found to contain little useful discriminative information [119].

Alternatively, a HMM may be used as the generative model. Here the first order derivatives
with respect to the mean (µjm), covariance (Σjm), component priors (cjm) associated with
component m of state j and transition probability (aij) from state i to state j are given by

∇µjm
log p(O;λ) =

T
∑

t=1

P (θt = {j, m}|O;λ)Σ−1
jm(ot − µjm) (3.29)

∇Σjm
log p(O;λ) =

T
∑

t=1

P (θt = {j, m}|O;λ)

2

[

−Σ−1
jm+Σ−1

jm(ot−µjm)(ot−µjm)TΣ−1
jm

]

(3.30)

∇cjm
log p(O;λ) =

T
∑

t=1

P (θt = {j, m}|O;λ)

cjm
− P (θt = j|O;λ) (3.31)

∇aij
log p(O;λ) =

T
∑

t=1

P (θt−1 = i, θt = j|O;λ)

aij
− P (θt−1 = i|O;λ) (3.32)

The derivative features associated with the HMM component priors and transition proba-
bilities are closely related to the features of the first and second order marginalised count
kernels. Unlike the marginalised count kernels, equations 3.31 and 3.32 both contain an addi-
tional term involving the state posterior probabilities. These terms arises from the sum-to-one
constraint on the component priors and state transition probabilities and act to centre the
derivatives within the feature space. The derivatives also contain additional scaling terms,
cjm and aij . Although these alter the dynamic range of the features, under a maximally
non-committal metric they will be normalised. Depending on the amount of available data it
may not be possible to robustly generate a complete set of derivative features. In this case it
is common to only include a restricted set of derivative features, such as first order derivatives
with respect to component means. Since these derivatives typically scale with the duration of
the utterance, it is also common to include an additional duration normalisation term. When
GMMs are used, this yields the following score space.

φ(O;λ) =
1

T

[

T
∑

t=1

P (θt = m|O;λ)Σ−1
m (ot − µm)

]

(3.33)

Although Fisher kernels are typically defined using a maximally non-committal metric it is
possible to combine the score space in equation 3.33 with alternative forms of metric, such
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as the identity metric. Since each feature is normalised by the component variance, this can
yield features that vary greatly in dynamic range. SVM classifiers are not scale-invariant so
this will affect the decision. One approach to handling this issue, used in [67], is to instead
normalise each feature by the component standard deviation. This keeps the dynamic range
of each set of feature consistent. Note that this is not normally an issue when a maximally
non-committal metric is used, as the dynamic range effects are handled by the metric.

3.2.4 Log-likelihood ratio kernel
A potential issue that can occur when using the Fisher kernel with latent-variable models such
as GMMs or HMMs is ‘wrap-around’ [184]. This occurs when multiple regions of the input
space map to the same point in the feature space. To illustrate this, consider a GMM with
two widely spaced Gaussian components. For an observation located exactly at the mean
of one of these components, the derivative with respect to either of the component means is
zero. The first due to a zero gradient, the second due to a zero posterior. Similarly, a second
observation emitted at the mean of the other component will also have a zero derivative with
respect to both component means. Thus, the two distinct observations yield identical feature
vectors.

One approach to resolving this problem is to additionally include derivative features that
do not suffer from ‘wrap-around’, such as derivatives with respect to the component priors.
For binary classification problems, another solution to this issue is to instead take derivatives
with respect to the log-likelihood ratio (LLR) between the two classes, defined by

LLR = log p(O;λ(1)) − log p(O;λ(2)) (3.34)

Unlike the Fisher kernel which uses a single generative model, the LLR kernel [185] requires
two generative models λ(1) and λ(2), trained using ML on the data from each class respectively.
By incorporating multiple generative models into the feature space, wrap-around is less likely
to occur. The LLR feature space is defined by

φLLR(O;λ(1),λ(2)) =
1

T





log p(O;λ(1)) − log p(O;λ(2))

∇λ(1) log p(O;λ(1))

−∇λ(2) log p(O;λ(2))



 (3.35)

Note that the LLR itself is usually included as a feature in the score space. Since the generative
model parameters λ(1) λ(2) are assumed to be independent, equation 3.35 does not include
any cross derivative terms of the form ∇λ(1) log p(O;λ(2)). Like the Fisher Kernel, the LLR
kernel is usually defined using a maximally non-committal metric.

KLLR(Oi,Oj) = φLLR(Oi;λ
(1),λ(2))TG−1φLLR(Oj ;λ

(1),λ(2)) (3.36)

where G is the expected value of the covariance of the score space. Unlike the Fisher kernel,
G does not have the form of a Fisher information matrix due to the additional LLR score
space term. The Fisher kernel may be applied to either labeled or unlabeled data, since the
class labels are not required to estimate λ. In contrast, the LLR kernel can only be applied
when labeled data from both classes is available to train p(O;λ(1)) and p(O;λ(2)).
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3.2.5 Probabilistic sequence kernel
The probabilistic sequence kernel (PSK) [120] is an alternative approach to extend the likeli-
hood kernel to obtain a higher-dimensional feature space. Rather than use p(O;λ) directly,
for the PSK a fixed-dimensional set of features is obtained by evaluating the posterior prob-
ability of each model component given O. For GMMs this yields the following PSK feature
space.

φPSK(O) =
1

T









...
∑T

t=1 P (θt = m|ot;λ)
...









(3.37)

where P (θt = m|O;λ) is the posterior probability of ot being emitted by component m. From
Bayes’ theorem this is defined by

P (θt = m|O;λ) =
cmN (o;µm,Σm)

∑M
n=1 cnN (o;µn,Σn)

(3.38)

The features associated with the PSK are closely related to the partial derivatives of the
utterance log-likelihood with respect to the component priors. These are given by

∇cm log p(O;λ) =

T
∑

t=1

P (θt = m|ot;λ)

cm
− 1 (3.39)

The only difference between the two sets of features is that each derivative is scaled by the
associated component prior and that a constant term is subtracted from all derivatives. Since
this corresponds to a constant scaling and translation of each dimension of the feature vector,
both sets of features will yield the same decision boundary when the kernels are combined
with (linear) SVMs using a maximally non-committal metric. Thus, the features of the PSK
are closely related to the features of the Fisher kernel, when partial derivatives with respect
to the component priors are used.

The PSK is also related to the GLDS kernel. Whereas the GLDS kernel utilises a static
kernel function to map each sequence element into a higher dimensional space, for the PSK
the static mapping function is defined by a generative model [120]. A suitable kernel function
may be defined by taking the inner product of the features generated by equation 3.37 using
either an identity metric or a maximally non-committal metric. Alternatively, as in [120], a
suitable decorrelating metric may be motivated from an RBF network [139].

3.2.6 MLLR kernel
A recently developed form of dynamic kernel that has been successfully applied to classify
speech utterances is the MLLR kernel [104, 189, 190]. Here the feature space is defined by the
parameters of an MLLR transform [122]. Given an utterance Oi and a suitable HMM/GMM
background model λ, a set of utterance-dependent transforms are trained, as described in

chapter 2. For GMM models, the adapted mean µ
(i)
m and covariance Σ

(i)
m parameters associ-

ated with component m are defined by

µ(i)
m = A(i)

r µm + b(i)
r (3.40)

Σ(i)
m = H(i)

r ΣmH
(i)
r

T
(3.41)
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where r is the regression class associated with component m and A
(i)
r ,b

(i)
r and H

(i)
r are the

utterance-dependent transform parameters associated with regression class r. The MLLR
feature space is constructed by concatenating the set of transform parameters into a feature
vector.

φMLLR(Oi) =



























vec(A
(i)
1 )

b
(i)
1

vec(H
(i)
1 )

...

vec(A
(i)
R )

b
(i)
R

vec(H
(i)
R )



























(3.42)

where vec(·) is a function that transforms the elements of a matrix row-wise into a vec-
tor. Since the MLLR transform parameters are sufficient to encapsulate all the utterance-
dependent information contained within the adapted model, they can potentially be used to
generate an extremely compact set of utterance-dependent features. The dimension of the
feature space can be adjusted, for example by varying the number of regression classes, or by
using block-diagonal transforms. Alternatively, only a subset of transform parameters may be
included in the feature space. The performance of the MLLR kernel is closely related to the
form of the background model used. For speech classification applications, typically the back-
ground model consists of a trained HMM-based speech recogniser [189, 190] although GMM
background models have also been used [103, 104]. It is important that all MLLR transforms
are generated from the same background model otherwise the feature space obtained will not
be consistent.

A closely related form of kernel is the CMLLR kernel used in [58]. Instead of adapting the
background model using MLLR, CMLLR transforms are generated for each utterance. For
each regression class r, a single transform is used to adapt both the mean and the covariance
parameters associated with each component.

µ(i)CMLLR
m = A(i)

r µm + b(i)
r (3.43)

Σ(i)CMLLR
m = A(i)

r ΣmA
(i)
r

T
(3.44)

The CMLLR kernel is then defined in a similar manner to equation 3.42.

3.2.7 CAT kernel
Cluster-adaptive training (CAT), described in chapter 2, is an adaptive training scheme orig-
inally designed to allow generative models to be robustly trained using data from multiple
corpora recorded under different environmental conditions. It can be interpreted as a ro-
bust adaptation scheme where the means of an utterance-dependent GMM are given by the
weighted interpolation of P mean clusters. For a particular Gaussian component m the mean

for the adapted GMM, µ
(i)
m is defined by

µ(i)
m = Mmw

(i)
r (3.45)

(3.46)
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where Mm is a matrix of P cluster mean vectors associated with component m

Mm = [µm1 . . .µmP ] (3.47)

and µmp is the mean of component m of cluster p. w
(i)
r is the vector of cluster weights

associated with utterance i and regression class r.

w(i)
r =







w
(i)
r1
...

w
(i)
rP






(3.48)

Given a trained set of cluster means, w
(i)
r may be trained for each regression class using

the EM update rules described in chapter 2. The CAT kernel [211] is closely related to the
(C)MLLR kernels described in the previous section. However rather than obtaining a set of
utterance dependent features from an (C)MLLR transform, here the cluster weights are used
as features. The feature space associated with the CAT kernel has the form.

φCAT(Oi) =







w
(i)
1
...

w
(i)
R






(3.49)

Like the MLLR kernel, the CAT kernel yields an extremely compact set of dynamic
features. The performance of a classifier based on the CAT kernel will therefore be heavily
dependent on the nature of the background CAT model.

3.3 Distributional kernels
Distributional kernels are a family of dynamic kernels that operate directly on probabilistic
distributions. For two distributions fi and fj defined over the same domain o, a distributional
kernel K(fi, fj) implicitly defines an inner product between fi and fj . Although these kernels
cannot handle sequence data directly, they are closely related to the sequence kernels described
in sections 3.1 and 3.2 and may, through use of an appropriate scheme, be applied to the
classification of sequences containing either discrete or continuous observations. One approach
for applying distributional kernels to the classification of variable-length sequences is to train
a distinct distribution to model each sequence in the dataset. For each utterance, Oi, the
parameters λ(i) of distribution fi are normally selected to maximise the likelihood of Oi.
Thus

λ(i) = argmax
λ

{log p(Oi;λ)} (3.50)

Alternatively, the adaptation schemes described in chapter 2, such as MAP or MLLR or
discriminative training criteria such as MMI, may be applied to obtain an appropriate set
of distributions. Although most of the kernels described in this section may be applied to
either discrete or continuous distributions, this section primarily considers their application
to classification of speech sequences. Thus, the forms of distribution considered in the section,
such as Gaussians and GMMs, are appropriate for modelling speech data. To emphasize that
the distributional kernels are being applied to sequence classification, the notation K(Oi,Oj)
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is used in this section. Distributional kernels are typically motivated from commonly used
measures of similarity between distributions. In this section, distributional kernels are intro-
duced based on both the Kullback-Leibler divergence [115] and the Bhattacharyya affinity
measure [15].

3.3.1 GMM-supervector kernel
The Kullback-Leibler (KL) divergence [115] defines the relative entropy between two distri-
butions. For distributions fi and fj over o, the divergence, KL(fi||fj), is defined by

KL(fi||fj) =

∫

fi(o) log
fi(o)

fj(o)
do (3.51)

The KL divergence has a number of useful properties. The divergence between two distribu-
tions fi and fj is equal to zero if and only if fi = fj . Otherwise the divergence is positive.
Note that the KL divergence is not symmetric, KL(fi||fj) 6= KL(fj ||fi).

For Gaussian distributions a closed form solution to the KL divergence exists. For Gaus-
sians f̃i(o) = N (o;µi,Σi) and f̃j(o) = N (o;µj ,Σj) the KL divergence can be expressed
as

KL(f̃i||f̃j) =
1

2

[

log
|Σj |
|Σi|

+ Tr[Σj
−1Σi] − D

+(µi − µj)
TΣj

−1(µi − µj)
]

(3.52)

where Tr[·] defines the trace of a matrix and D is the dimensionality of o. For GMM distribu-
tions fi(o) =

∑N
n=1 cinN (o;µin,Σin) and fj(o) =

∑M
m=1 cjmN (o;µjm,Σjm) there exists no

closed form solution. Instead the divergence must be approximated. This may be achieved
either by using sampling approaches or by finding a closed form expression that approximates
the true KL divergence. Here the latter approach is examined. When N = M , a commonly
used upper bound to the KL divergence is the matched-pair bound [53]. This is defined by

KLMP(fi||fj) =
M
∑

m=1

cim

[

log
cim

cjm
+ KL(fim||fjm)

]

(3.53)

where KL(fin||fjm) indicates the divergence between component n of fi and component m
of fj . Permuting the components of one distribution will affect the obtained bound. Hence
the matched-pair bound is only suitable when there is a clearly defined coordination between
pairs of components from the two distributions. This may be the case when both are adapted
from the same background distribution but will not be true generally. In chapter 5, related
forms of kernel are proposed that do not suffer from this limitation.

For the GMM-supervector kernel [28], fi and fj are constrained to be GMMs that dif-
fer only in the means. Under these conditions, the matched-pair bound, defined in equa-
tion 3.53, may be used. Since the KL divergence is asymmetric, the symmetric KL diver-
gence, KL(fi||fj) + KL(fj ||fi), is often used instead. This equals zero if and only if fi = fj ,
otherwise it is positive. These properties are typical of a distance metric rather than an
inner product and the symmetric KL divergence does not yield a positive semi-definite Gram
matrix. Thus, it is common to alter the function prior to use such that it behaves more like
an inner product. One approach is to make use of the polarisation identity, which defines a
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relationship between a distance and a kernel function in a particular space. For a distance
D(fi, fj) defined between distributions this identity has the following form.

D(fi, fj)
2 = K(Oi,Oi) − 2K(Oi,Oj) + K(Oj ,Oj) (3.54)

For the GMM-supervector kernel, the distance between fi and fj is defined by

D(fi, fj)
2 = KLMP(fi||fj) + KLMP(fj ||fi) (3.55)

This distance is related, via the polarisation identity, to the standard GMM-supervector [28]
kernel function.

KGMM−SV(Oi,Oj) =
M
∑

m=1

cmµim
TΣ−1

m µjm (3.56)

The GMM-supervector kernel features are closely related to those associated with the
Fisher kernel. The relationship between these two forms of kernel is discussed in more detail
in chapter 6.

3.3.2 Non-linear GMM-supervector kernel
For the GMM-supervector kernel, a suitable kernel function was derived from an approxi-
mation to the KL divergence using the polarisation identity. An alternative procedure for
obtaining a suitable kernel function from a distance metric is exponentiation [181]. Here a
suitable kernel function is obtained by taking the exponent of the negative symmetric KL
divergence.

K(Oi,Oj) = exp (−α [KL(fi||fj) + KL(fj ||fi)]) (3.57)

where α is a constant scaling term, require for numerical stability. When KL(fi||fj) can be
evaluated explicitly, for example when fi and fj are Gaussians, equation 3.57 may be used
directly. The KL kernel, used in [150] has this form. Alternatively, the true KL divergence may
be approximated. The non-linear GMM-supervector kernel [45], like the GMM-supervector
kernel described earlier, operates on GMMs where all distributions are constrained to be
adapted from the same background distribution f and only the mean parameters differ.
Under these conditions the matched-pair bound to the KL divergence may be used.

KLMP(fi||fj) =
M
∑

m=1

cim

[

log
cim

cjm
+ KL(fim||fjm)

]

(3.58)

This yields the following kernel function.

KMP(Oi,Oj)=exp

(

−α
M
∑

m=1

cm(µim − µjm)TΣm
−1(µim − µjm)

)

(3.59)

Equation 3.59 has the form of the non-linear GMM-supervector kernel used in [45]. Polari-
sation and exponentiation are closely related. When α = 1/2σ2 equation 3.59 is equivalent
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to applying an RBF kernel to standard GMM-supervector features. However, unlike the
GMM-supervector kernel, KMP(Oi,Oj) does not have an explicit associated feature space.

One issue with using the non-linear GMM-supervector kernel in practice is that due to
the non-linear feature space, the non-linear kernel is known to perform poorly when the KL
divergence between distributions varies greatly within the dataset. In [48] it was suggested
that this issue can be avoided by normalising all distributions fi such that the divergence
between fi and the background distribution f is equal to one. When the KL divergence is
approximated using the matched-pair bound this may be implemented by normalising the
mean parameters associated with each GMM distribution using equation 3.60

µmnorm
im =

1

KLMP(fi||f)
µim +

(

1 − 1

KLMP(fi||f)

)

µm (3.60)

3.3.3 Bhattacharyya kernel
An alternative measure of similarity between two distributions is the Bhattacharyya affinity
measure [15, 98]. For two distributions fi and fj defined over o, this is defined as

B(fi||fj) =

∫

√

fi(o)
√

fj(o) do (3.61)

The Bhattacharya affinity measure, which is closely related to Hellinger’s distance, forms a
bound on the KL divergence between distributions [196]. Unlike the KL divergence, equa-
tion 3.61 is symmetric and may be shown to be positive semi-definite [112]. Additionally,
0 ≤ B(fi||fj) ≤ 1 for all fi and fj and B(fi||fi) = 1 for all fi. The Bhattacharyya measure is
therefore particularly suited for use as a kernel function and has been applied successfully in
applications such as text-categorisation [92] and speaker recognition [32]. For Gaussian distri-
butions, fi(o) = N (o;µi,Σi) and fj(o) = N (o;µj ,Σj), the Bhattacharyya affinity measure
may be evaluated explicitly. In this case, the Bhattacharyya kernel has the form

Kbhatta(Oi,Oj) =

√

|Σ̃|
√

|Σi||Σj |
exp

[

−1

4

(

µi
TΣiµi + µj

TΣjµj − 2µ̃TΣ̃µ̃
)

]

(3.62)

where Σ̃ = 2(Σi
−1 + Σj

−1)−1 and µ̃ = 1
2(Σi

−1µi + Σj
−1µj). For more complex forms of

distribution, such as when fi and fj are GMMs, the Bhattacharyya affinity measure is not
guaranteed to have a closed form solution. Instead sampling approaches, such as the scheme
used in [92], may be used to estimate equation 3.61.

As with the Kullback-Leibler divergence, for families of distributions where it is not
possible to evaluate equation 3.61 directly, alternative forms of kernels may be derived by
approximating the true Bhattacharyya affinity. The GMM-UBM mean interval (GUMI)
kernel [213, 214] is an example of this approach. For the distributional kernels described
previously in this section, the kernel function K(Oi,Oj) is motivated directly from a statis-
tical measure between fi and fj . The GUMI kernel operates in a different manner. Here
for each utterance Oi, with associated distribution fi, the feature vector φ(Oi; f) is de-
rived from an approximation to the Bhattacharyya affinity between fi and a general back-
ground distribution f representing all the data1. For M-component GMM distributions

1The Bhattacharyya affinity is defined slightly differently in the derivation of the Bhattacharyya and GUMI
kernels. Equation 3.63 is derived from an affinity measure defined as BGUMI = − logB
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fi(o) =
∑M

m=1 cjmN (o;µim,Σim) and background distribution f =
∑M

m=1 cmN (o;µm,Σm)
the GUMI feature space associated with component m has the following form.

φGUMI
m (Oi; f) =

[

Σim + Σm

2

]− 1
2

(µim − µm) (3.63)

Equation 3.63 is closely related to the GMM-supervector feature space defined in equa-
tion 3.56. Unlike the GMM-supervector the GUMI features also includes a sequence-dependent
covariance term. When the covariances are tied over all distributions, a maximally non-
committal metric is applied and the background distribution f has zero mean, the GUMI and
GMM-supervector features will be identical.

3.4 Summary
This chapter has examined three different classes of dynamic kernels that may be applied to
sequence data. The first two classes of dynamic kernel were discrete and continuous observa-
tion kernels, which operate directly on sequences of discrete and continuous data respectively.
The final form of dynamic kernel examined in this chapter were distributional kernels. These
implicitly calculate the inner product between probabilistic distributions in some potentially
high-dimensional space. By training a distribution to represent each sequence in a dataset,
distributional kernels may also be applied to classify sequences of continuous or discrete data,
including speech utterances. The next chapter discusses how these dynamic kernels may be
combined with the classifiers described in chapter 2 to build a speaker verification system.



CHAPTER 4
Speaker Verification

Speaker verification (SV) is a binary classification task in which the objective is to de-
termine, given an utterance of speech and an associated identity claim, whether or not

the utterance was spoken by the specific claimed speaker. This chapter describes how the
theory introduced in chapters 2 and 3 may be applied to construct a state-of-the-art system
for text-independent speaker verification. Current SV systems are typically based around one
of two general frameworks. In the first approach, one generative model is trained to represent
a general background population of speakers, and a second to represent the claimed speaker.
The speech utterance is then classified, as to whether the claimed identity is correct, using
Bayes’ decision rule. Recently there has been interest in applying discriminative classifiers
such as SVMs to the SV task. Dynamic kernels, described in chapter 3, are used to allow the
SVM to handle speech data. Both generative and discriminative approaches are described in
this chapter.

An open problem in SV research is how to handle unwanted variability in the speech
data. This includes additive or channel noise that distorts the speech signal and makes
it harder to distinguish speakers. A related issue is inter-session variability, due to either
changing environmental or recording conditions, or the emotional state or age of the speaker.
A variety of techniques have been developed to handle these issues. Techniques described in
this chapter include frontend techniques such as cepstral mean normalisation [60] and feature-
warping [156], model based techniques such as nuisance attribute projection (NAP) variability
compensation [186] and factor analysis [109] and score-normalisation techniques such as T-
norm [6] and Z-norm [171]. State-of-the art SV systems will typically include multiple forms
of noise-compensation.

This chapter is organised as follows: the next section gives an overview of the compo-
nents of a general speaker-verification system. In section 4.2, appropriate frontend schemes

56
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for parameterising the data are discussed. Section 4.3 describes a generative model-based
framework for SV. A closely related approach, where session and channel variability is mod-
elled using factor analysis is described in section 4.4. Section 4.5 describes how the dynamic
kernels introduced in chapter 3 may be applied to construct an SVM-based speaker verifica-
tion system. Finally, section 4.6 discusses techniques for improving system performance by
normalising the output scores and section 4.7 describes metrics that may be used for assessing
the performance of a speaker-verification system.

4.1 Overview
The process of speaker verification is normally divided into two distinct phases, enrollment
and verification. During enrollment, each user of the system provides a series of utterances
Oe = {Oe

1, . . . ,O
e
N}. These are then used to train a classifier capable of distinguishing

the characteristics of the user’s voice from other speakers. During the verification stage,
an utterance Ov and an identity s are provided. The system is then required to determine
whether the utterance was generated by the target speaker s or by an imposter. Depending
on the particular application, test utterances may be guaranteed to have been spoken by one
of the enrolled speakers (closed-set verification) or they may be from a previously unseen
speaker (open-set verification). SV tasks are also typically divided into two groups, text-
dependent and text-independent, depending on whether the speaker is prompted to speak
a specific sequence of words. Most current SV research, including the annual NIST speaker
recognition evaluations (SREs) [144], is concerned with text-independent speaker verification.
Here utterances are classified based purely on their acoustic content, without requiring a
known transcription. In this thesis, only text-independent speaker verification is considered.
In general, the number of enrollment utterances that each user provides is likely to be limited.
Often only a single enrollment utterance per speaker is available. A common requirement for
SV systems is that they must be robust to these conditions. Techniques for improving the
robustness of SV systems are discussed in more detail in chapter 7.

In this chapter, SV systems are divided into three primary components: the frontend,
the core verification system and a score-normalisation component. The relationship between
these components is shown in figure 4.1. Although these components are considered separately
in this chapter, in the literature the distinction between these components is often blurred,
particularly for SVM-based systems. Each enrollment and test utterance is initially processed
by a frontend system that converts a speech waveform into a sequence of observations. Next,
the utterances are passed to a core verification system where a distinct classifier is trained for
each target speaker using the enrollment data. A score, S(Ov, s), can then be assigned to each
test utterance using the classifier associated with the claimed speaker identity. Classifiers used
in SV systems are usually based on either generative models, such as GMMs, or discriminative
techniques, such as SVMs. Both approaches are described in this chapter. Finally each
score is post-processed to normalise unwanted session and environmental variability and map
the scores from each classifier to a consistent range. The output of the SV system is a
normalised score Ŝ(O, s). A accept/reject design can be made by comparing this score to a
fixed threshold.
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Enrollment Oe and test Ov utterances are initially processed using a frontend to parameterise
each utterance into a sequence of observations. The parameterised utterances are then passed
to the core verification system, where a distinct classifier is then trained for each target speaker
using the available enrollment data. These classifiers are then used to assign a score S(Ov, s)
to each test utterance given the target speaker identity s. Test scores are normalised to reduce
unwanted variation and compared to a fixed threshold to obtain a classification decision.

Figure 4.1: Overview of a text-independent speaker verification system.

figures/sv-overview.eps
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Ŝ(Ov, s) − b

accept
>
<

reject

0 (4.1)

where b is a threshold, set by the user. A speaker verification system can make two dis-
tinct types of error: miss (false rejection) and false alarm (false acceptance). For many
situations the penalties associated with each form of error will not be equal. By adjusting
the threshold b, the operator can compensate. A low threshold will reduce the number of
misses at a cost of increasing the number of false-alarms. Setting a high threshold will give
the opposite behaviour. If Ŝ(Ov, s) approximates a log-likelihood ratio and a known cost
(Cfalse−alarm, Cmiss) is associated with each form of error, the optimal trade-off can be deter-
mined and the threshold may be explicitly set using the Bayes’ detection criterion to minimise
the total cost.

bbayes = log
(1 − P (ωtar))Cfalse−alarm

P (ωtar)Cmiss
(4.2)

where P (ωtar) is the prior probability that Ov was spoken by the target identity. When the
objective is to compare performance of multiple SV systems it is not necessary to explicitly set
a threshold. Threshold-independent evaluation metrics are discussed in detail in section 4.7.

4.2 Frontend processing
Frontend processing is the first stage in constructing a speaker verification system. The
objective is to convert a speech waveform into a compact representation that retains all the
information useful for discrimination between speakers and discards non-useful information.
Frontend precessing schemes for SV have traditionally been adapted from schemes designed for
ASR. These include mel-frequency cepstral coefficients (MFCCs) [43] and perceptual linear
prediction (PLP) coefficients [86]. These are based on short-term spectral features of the
waveform. Since one of the objectives in ASR frontend processing is to minimise interspeaker
variation, these features may not be optimal. However, they have been found to perform well
in practice [55].

Recently, there has been interest in designing systems based on long-term prosodic and
language features. These are typically obtained using a two stage process. First short-
term spectral features are obtained from the waveform. These are then processed using an
ASR system to obtain longer-term features. Both short and long term feature extraction is
described in this section.

4.2.1 Short term feature extraction
The dominant parameterisation for SV systems is based on short term spectral features. Here,
each utterance is initially partitioned into a series of overlapping frames, each comprised of
K samples {x1, . . . , xK}, and a single observation vector ot is extracted from each frame. For
SV, windows sizes of 30ms duration and frame shifts of 10ms are commonly used [12]. One set
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of spectral features that are commonly used for both ASR and SV are mel-frequency cepstral
coefficients (MFCCs) [43]. Figure 4.2 shows the extraction process required to obtain MFCCs
from the speech waveform. Within each speech frame, the waveform is stationary and a

Short-term spectral features are obtained from the waveform by computing a discrete Fourier
transform of the speech signal contained within a 30ms sliding window. Filterbank coefficients
are extracted using triangular bandpass filters spaced according to the mel-scale. A discrete
cosine transform is then applied and dynamic terms appended to obtain the MFCC feature
vector.

Figure 4.2: MFCC feature extraction.

discrete Fourier transform (DFT) is applied to obtain the short term spectrum. Alternatively,
when the number of samples contained in each frame is a power of two, an efficient Fast
Fourier Transform (FFT) may be computed instead. To avoid the introduction of unwanted
high frequencies caused by discontinuities at the edge of the window, a hamming window
is typically applied before computing the spectrum. In this case, each frame may also be
optionally padded with zero-valued samples to allow the use of a FFT. This process is known
as zero-padding. Finally, a pre-emphasis filter is often applied to the short term spectrum to
boost the energy at higher frequencies.

The spectral envelope is sampled using triangular bandpass-filters to obtain a series of R
filterbank coefficients {f1, . . . , fR}. The center of the filters are spaced according to the mel

figures/sv-mfcc.eps
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scale

fmel = (1127) log(1 +
fHz

700
) (4.3)

where fmel is the mel frequency and fHz is the linear frequency. The mel-scale is proportional
to the log of the linear frequency and reflects changes in the pitch of the signal as perceived
by the human auditory system. The filterbank coefficients are then converted into MFCC
features by taking a discrete cosine transform of the log-spectral amplitudes. The MFCC
features oMFCCdt are given by

oMFCCdt =

√

2

R

R
∑

i=1

log(fit) cos(
πd

R
(i − 0.5)) (4.4)

where fit is the amplitude of filterbank i at frame t. The lowest cepstral feature oMFCC0t measures
the average log-energy. MFCCs were originally developed for use in ASR, where it has become
standard to extract 13 MFCC features from each window. For SV this may not be optimal [12].
Current state-of-the-art SV system use a range of parameterisations [22, 102].

An alternative cepstral parameterisation may be obtained via linear prediction (LP) anal-
ysis of the waveform. In the LP model, the amplitude of a sample xk is predicted using the
amplitudes of the previous P samples. The predicted value of sample xk is given by

x̃k =
P
∑

p=1

apxk−p (4.5)

where a = {a1, . . . , aP } are the LP coefficients. In LP analysis, the vocal tract is modelled
as an all-pole filter. The LP coefficients represent the impulse response of the vocal tract.
The difference between the actual samples xk and the prediction x̃k models the source excita-
tion. Speech is quasi-stationary since the vocal tract apparatus takes a finite time to change
position, therefore the LP coefficients may be assumed to be constant within a particular
window of K samples extracted from the waveform at time t. The optimal LP coefficients a∗t
associated with these speech samples are those that minimise the square of the error over all
samples within the window.

a∗t = argmin
a

{

1

K

K
∑

k=1

(xk − x̃k)
2

}

(4.6)

Equation 4.6 may be efficiently minimised using algorithms described in [5, 140]. The LP
coefficients form a compact representation of speech, however they are typically insufficiently
robust to be used as a parameterisation for SV. Instead they can be used to derive linear
predictive cepstral coefficients (LPCC) [4, 60]. These can be computed efficiently using the
recursion oLPCCt1 = a∗1 and

oLPCCtd = a∗d +
d−1
∑

j=1

(

d − j

d

)

oLPCCt(d−j)a
∗
j 1 < d ≤ P (4.7)

oLPCCtd =
d−1
∑

j=1

(

d − j

d

)

oLPCCt(d−j)a
∗
j d > P (4.8)
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Unlike ASR tasks, where they perform poorly [220], there is some evidence [141] to suggest
that LPCC coefficients can outperform MFCCs on SV tasks.

A closely related form of parameterisation that is commonly used in both ASR and SV are
perceptual linear predictive (PLP) coefficients [86]. These are obtained in a similar manner
to LPCC coefficients, except that the spectrum at each time instance is initially modified by
a series of psycho-acoustically motivated transforms. These are intended to generate a set
of coefficients that more accurately reflect perceived changes in the speech signal and apply
a greater weight to perceptually important parts of the frequency range. The short term
power-spectrum is initially convolved with a series of critical band filters. These are spaced
according to the Bark scale [221] and correspond to roughly equal distances along the basilar
membrane in the inner ear, which vibrates in response to incoming sound.

fbark = 6 log





√

1 +

(

fHz

1200π

)2

+
fHz

1200π



 (4.9)

An equal loudness pre-emphasis filter is applied to normalise the relative perceived loudness
of each frequency. The amplitude of all frequencies is then warped using a cubed root so that
changes in intensity are proportional to perceived changes in loudness. Finally, an inverse
DCT is performed to transform the speech back into the time domain. PLP coefficients are
then obtained by performing an LP analysis and converting the LP coefficients to cepstral
coefficients using equation 4.7. Mel-PLP coefficients are a related parameterisation that have
also been used for SV [12]. Here, instead of using the Bark scale the coefficients are derived
using the mel scale defined by equation 4.3.

Speech signals are known to be strongly correlated over time. Since standard forms of
generative model, such as HMMs and GMMs do not explicitly model temporal correlation (for
HMMs, observations are assumed to be conditionally independent given the current state) it
is common to append additional coefficients to the static MFCC/LPCC/PLP feature vector
to model the changing speech signal at each time instance. Often, first (delta ∆) and second
(acceleration ∆2) order derivatives of the static coefficients are appended. For computational
efficiency, delta coefficients are typically approximated using linear regression.

∆ot =

∑∆
δ=1 δ(ostatict+δ − ostatict−δ )

2
∑∆

δ=1 δ2
(4.10)

where ostatict is a vector of MFCC/LPCC/PLP features extracted from frame t. When
∆ = 1 the delta coefficients are simply the difference between the previous and following
frame. The use of larger values of ∆ will lead to more robust estimates of the dynamic
features. Acceleration coefficients may be calculated from the delta coefficients in a similar
manner using equation 4.10. However, unlike ASR where they improve classification accuracy,
MFCC and PLP acceleration coefficients have been found to contain little useful speaker-
discriminative information [55]. Static, delta and (optionally) acceleration coefficients are
concatenated to obtain the final feature vector ot at time t.

ot =





ostatict

∆ot

∆2ot



 (4.11)
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4.2.2 Short term feature normalisation
Short term cepstral features obtained using the parameterisation schemes in section 4.2.1
are often distorted by additive and convolutional noise. This typically introduces additional
dependencies between the elements of the feature vector [127], which can not effectively be
modelled using diagonal covariance matrices. Three normalisation techniques are discussed
in this section that attempt to reduce the effect of noise on the features. These are cepstral
mean and variance normalisation [60], cepstral feature warping [156] and principal component
analysis [17].

4.2.2.1 Cepstral mean and variance normalisation

In the cepstral domain, convolutional noise is additive. Cepstral mean normalisation (CMN) [60],
also known as cepstral mean subtraction, is a noise-compensation approach that operates by
normalising the mean of the cepstral features to zero, effectively removing fixed convolutional
noise. The CMN normalised feature vector is given by

oCMN
t = ot −

1

T

T
∑

τ=1

oτ (4.12)

CMN is known to remove speaker-specific information about the vocal tract length [156].
Under clean conditions, applying CMN has been found to degrade SV performance [170].
However under different channel conditions applying CMN can lead to gains [12]. A related
form of normalisation is cepstral variance normalisation (CVN). Here the variance of each
cepstral feature is normalised to one. Since the variance is estimated independently for each
cepstral feature, CVN cannot be used to decorrelate the feature vector. If decorrelation is
required, then a PCA transform, discussed in section 4.2.2.3, may be applied instead.

4.2.2.2 Cepstral feature warping

Cepstral mean normalisation only removes convolutional effects from the speech signal. When
additive noise is present then CMN will not necessarily improve SV performance. Cep-
stral feature warping [156] is a form of short-term gaussianisation developed for SV that
can remove both additive and convolutional noise. The objective of feature warping is to
apply a (non-linear) transformation to the features such that the transformed observations
OFW = {oFW1 , . . . ,oFWN } will be normally distributed.

oFW ∼ N (0, I) (4.13)

Unlike CMN and CVM, which normalise the first and second order moments of the data
respectively, cepstral feature warping also normalises higher order moments.

Cepstral feature warping operates by normalising each observation relative to its neigh-
bours in the sequence. To simplify the transformation, each dimension is normalised indepen-
dently. Hence, the transformed features will only be approximately Gaussian. A fixed-width
window of N observations is moved along the utterance, one observation at a time. At each
interval, the features contained within the window are sorted by value into descending order
and the position Rdt of the central feature odt within the sorted list is determined. The feature
value is then warped such that the cumulative density to odt in the observed distribution is



CHAPTER 4. SPEAKER VERIFICATION 64

equal to the cumulative density to the transformed feature within a normal distribution. The
value of the transformed feature oFWdt is given by

N + 1
2 − Rdt

N
=

∫ oFW
dt

z=−∞

1√
2π

exp

(−z2

2

)

dz (4.14)

For a fixed window size, the transformation may be efficiently implemented using a lookup
table [156]. Typically windows of three seconds duration are used. Since cepstral feature
warping normalises the global mean and variance of the cepstral features, it is not necessary
to perform additional CMN or CVN normalisation. A closely related form of short-term
Gaussianisation was used in [34]. Unlike cepstral feature warping, which is a histogram-based
scheme, the scheme proposed in [34] uses GMMs to model the observed distribution of the
features. Thus, the user is required to select an appropriate model complexity. This is not
necessary for cepstral feature warping.

4.2.2.3 Principal component analysis

Cepstral mean normalisation and cepstral feature warping are techniques that can be applied
to independently normalise the mean and variance of each observation. When the speech
signal contains additive noise, the cepstral features will often be highly correlated [127].
One technique that can be used to decorrelate the feature vector is principal component
analysis (PCA) [17]. PCA is an unsupervised technique that applies a linear transform to
each observation.

oPCAt = APCAot (4.15)

The PCA transformAPCA is obtained by performing an eigen-decomposition Σo = APCATΛAPCA,
where Σo is the covariance of the features. PCA may also be used as a feature-selection tech-
nique, by retaining the transformed features that correspond the the largest eigenvalues. This
assumes that dimensions with the largest variance are most important, PCA is therefore not
robust to scalings of individual dimensions of the observation vector.

4.2.3 Long term feature extraction
A recent trend in SV research has been the use of parameterisations based on long-term
features. Unlike parameterisations such as PLP or MFCC coefficients that represent the
spectral distribution over a 30ms window, long term features are calculated over an interval
that can span multiple seconds and incorporate prosodic or language information associated
with the speaker. When a suitable speech recogniser is available, a simple parameterisation
that may be applied is to tokenise each utterance into a sequence of T words [54]. Here each
utterance has the form

O = [w1, . . . , wT ] (4.16)

where wt is the tth word in the sequence. Alternatively, O may be tokenised at the phone
level [2, 3].

A more complex form of parameterisation that has been applied successfully to SV are
SNERFs (syllable-based nonuniform extraction region features) [182]. SNERFs are obtained
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by processing the output of a speech recogniser using a set of handcrafted rules to tokenise
the speech utterance into a sequence of T syllables.

O = [c1, . . . , cT ] (4.17)

In the absence of an ASR system, pseudo-syllable regions may be identified as the regions
between consecutive local minima in the energy signal over voiced regions [102]. For each
syllable region ct a phone alignment is obtained from the speech recogniser and used to
extract a variety of features related to the duration, pitch and energy of the speech segment.
A vector of duration features dt is extracted from ct using the alignments of the speech
recogniser. Distinct duration features are extracted from different regions of the syllable:
onset, nucleus, coda, onset+nucleus, nucleus + coda and the full syllable. Two vectors of
pitch features, pvt and put are extracted from voiced and unvoiced regions of the syllable
respectively. Initially, the fundamental frequency f0 is calculated for each sample. Then
for each region, the following pitch features are extracted: the maximum pitch, minimum
pitch, mean pitch, the difference between the maximum and minimum pitch, the number of
frames that are rising/falling/doubled/halved/voiced, the length of the first/last slope, the
number of changes from falling to rising, the value of first/last average slope and the maximum
positive/negative slope. Vectors of energy features are calculated from four different regions:
the nucleus en

t , the nucleus minus unvoiced frames en−u
t , the whole syllable est and the whole

syllable minus unvoiced frames es−u
t . Energy features are obtained from each region in a

similar manner to pitch features. Finally, a SNERF feature vector oSNERFt is obtained from
each syllable region ct by concatenating the respective duration, pitch and energy features.

oSNERFt =





















dt

pvt
put
ent
en−u

t

est
es−u

t





















(4.18)

SNERFs contain a combination of discrete and continuous features. To enable a consistent
modelling approach, the continuous elements of the SNERF feature vector are discretised
using a series of bins. The bin thresholds are set such that each bin contains roughly equal
amounts of data. While short-term parameterisations generally involve sequences of con-
tinuous observations, the features associated with long term parameterisations are generally
discrete. Generative classification schemes can usually be applied to both continuous and
discrete data, given an appropriate generative model. However, for SVM-based classifiers,
it is often not possible to use kernels developed for sequences of continuous observations to
classify discrete data. This is because many popular forms of dynamic kernel, such as the
GMM-supervector [28] and MLLR [189] kernels are explicitly defined in terms of specific
continuous variable generative models, such as GMMs and HMMs.

4.3 GMM-based speaker verification
Traditionally, speaker verification systems have made use of generative models. Generative

models, introduced in chapter 2, can be used to assign a likelihood to a speech utterance.
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A GMM universal background model (UBM) is initially trained using data from many speak-
ers. A set of target speaker-dependent GMMs are then MAP adapted from the UBM using the
available target-specific enrollment data Oe. For each test utterance Ov and identity claim s
the classifier output is computed as the log-likelihood ratio between the target speaker model
λ(s) and the UBM.

Figure 4.3: Speaker verification using generative models.

figures/sv-llr.eps
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The nature of the model is usually determined by an associated set of parameters λ. Given
two models, the first p(O;λ(s)) representing the target speaker s, and the second p(O;λI(s))
representing all competing speakers, a classification score S(Ov, s) is assigned to each test
utterance Ov using a log-likelihood ratio [170].

S(Ov, s) = log p(Ov;λ(s)) − log p(Ov;λI(s)) (4.19)

The dominant form of generative model used in text-independent SV is the GMM. For
efficiency, diagonal covariance matrices are normally used with up to 1000 Gaussian com-
ponents. GMMs are suitable when utterances are parameterised as sequences of continuous
observations. This includes widely used cepstral parameterisations such as MFCCs and PLP
coefficients. For discrete parameterisations such SNERFs or word sequences, N-gram models
may be used instead [3, 11, 77, 79].

4.3.1 Parameter estimation
The background model p(Ov;λI(s)) acts to normalise some speaker-independent aspects of
Ov and can therefore be interpreted as a form of score-normalisation. Alternative score-
normalisation schemes are discussed in section 4.6. In early SV systems, p(O;λI(s)) was
modelled using a cohort approach [174].

pcohort(O;λI(s)) = Q(p(O;λ(1)), . . . , p(O;λ(S))) (4.20)

where Q(·) is a function (i.e. max, average) over all the competing speaker models. This
approach has a number of disadvantages. It is only suitable for closed-set identification,
where the identities of the potential imposters is known in advance. It is also inefficient, since
a unique background model is used for each target speaker. Instead, current GMM-based SV
systems typically use universal background models (UBMs). Here a single generative model
is trained using data from many speakers. This approach is more efficient, since a single
background model can be used to classify all speakers, and can be applied to open-set SV
tasks.

p(O;λI(s)) = p(O;λUBM ) (4.21)

Figure 4.3 outlines the main components of a GMM/UBM-based SV system. Given a large
background dataset {OB

1, . . . ,O
B
N}, containing utterances from a wide range of speakers, the

UBM parameters λUBM are typically trained using a maximum likelihood criterion.

λUBM = argmax
λ

{

N
∑

i=1

log p(OB
i ;λ)

}

(4.22)

If the gender of the target speaker is provided, or can be detected from each utterance,
gender-dependent UBMs can be used. This approach is most effective when the background
utterances are recorded under the same environmental conditions as the enrollment and test
data. For applications where the noise-conditions vary between recording sessions, it may be
more appropriate to use a range of noise condition-dependent background models. Alterna-
tively, factor analysis-based approaches, described in section 4.4, may be used instead.
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The amount of enrollment data provided by each speaker is usually limited and is typically
insufficient to robustly estimate the parameters of a speaker-dependent GMM. Instead, robust
speaker-dependent models may be obtained by adapting the parameters of the UBM using a

small amount of speaker-dependent enrollment data Oe = {o(s)
1 , . . . ,o

(s)
T } [169]. A commonly

used technique is MAP, described in chapter 2. When the UBM is used as a robust prior
distribution, the adapted speaker-dependent GMM means are given by

µ(s)
m =

∑T
t=1 P (θt = m|o(s)

t ;λUBM )o
(s)
t + τmapµUBM

m
∑T

t=1 P (θt = m|o(s)
t ;λUBM ) + τmap

(4.23)

where P (θt = m|o(s)
t ;λUBM ) is the posterior probability of o

(s)
t being emitted by UBM

component m. The MAP adaptation constant τmap controls the trade-off between the prior
and posterior parameter estimates. Suitable values for τmap are dependent on the amount of
available adaptation data and the size of model used. Depending on the amount of available
adaptation data, variance and component priors can also be adapted. Multiple iterations
of MAP may also be used to obtain a speaker-dependent model. Discriminative adaptation
schemes, such as MMI-MAP have been applied to SV [129]. However they have not been
found to provide significant gains over the standard MAP approach.

4.4 Factor analysis-based speaker verification
One of the principal causes of performance degradation in SV systems is due to unwanted vari-
ation in the speech signal. This variation may be either speaker-dependent, caused by natural
variation in a user’s speech between recording sessions, or speaker-independent, caused by en-
vironment or channel effects. There has been significant interest in attempting to effectively
model this variation to improve the performance of SV systems. One approach that has been
found to be successful is factor analysis modelling [109, 110]. Here a fixed GMM structure
is used, where each component has associated mean and covariance parameters. The value
of each component mean is then assumed to be distributed according to a small number of
latent factors, each associated with either the current speaker or current session (channel)
conditions. All latent factors are assumed to be normally distributed with zero mean and
unit variance. Factor analysis has been successfully applied to model both cepstral [111] and
continuous prosodic [46] features.

The factor analysis model is defined as follows. For each utterance O
(s)
i , spoken by speaker

s during recording session i, the observations generated by mixture component m are assumed

to be distributed with covariance Σm and mean µ
(s)
im. The session and speaker dependent mean

µ
(s)
im is then modelled as the sum of a session-independent, speaker-dependent mean µ

(s)
m and

a term dependent on a vector xi of session factors associated with O
(s)
i .

µim
(s) = µm

(s) +Umxi (4.24)

where Um is a factor loading matrix that defines the orientation of a low dimensional subspace
containing all session-dependent variation.

Similarly, for each speaker s, the speaker-dependent, session-independent component mean
µm

(s) is modelled as the sum of a speaker-independent mean parameter µm and two speaker-
dependent terms.

µ(s)
m = µm + Vmy

(s) +Dmz
(s)
m (4.25)
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Vector y(s) consists of latent speaker factors which determine the position of speaker s within
a low dimensional speaker subspace defined by the factor loading matrix Vm. The factor
analysis model can also optionally includes an additional set of speaker and component-

dependent factors z
(s)
m , where the associated factor-loading matrix Dm is diagonal. The

purpose of these additional factors is to model any additional speaker-dependent variation not
modelled by ym. For example, when Vm = 0 and Um = 0 the model resembles the standard

GMM approach. The inclusion of the Dmz
(s)
m term dramatically increases the complexity of

the model. It is therefore common to make the assumption Dm = 0. In the literature this
approach is referred to as the PCA case. A related model, in which only channel variability
is modelled with latent factors was used in [200].

For each component m the parameters of the factor-analysis model are defined by a
tuple λm = {µm,Um,Vm,Dm,Σm}. The complete set of model parameters is defined by
λ = {λ1 . . .λM}. This form of model is closely related to cluster-adaptive training with
a Gaussian prior defined over the cluster weights. The factor analysis model described by
equation 4.24 is analogous to a CAT system in which a subset of cluster weights are tied over
all utterances belonging to a particular speaker. Schemes for calculating likelihoods and for
iteratively updating the model parameters are described in the following subsections.

4.4.1 Likelihood function
The joint likelihood of a set of N utterances {O(s)

1 , . . .O
(s)
N } associated with speaker s is

dependent on both the model parameters λ and on the latent factors x̄(s) associated with
speaker s and the session conditions for each utterance .

x̄(s) = [xT1, . . . ,x
T
N ,y(s)T, z

(s)T
1 , . . . ,z

(s)T
M ]T (4.26)

If the values of the latent factors were known then µim
(s) could be explicitly calculated for each

utterance and the associated likelihood estimated directly. Since x̄(s) is unknown, calculating

p(O
(s)
1 , . . . ,O

(s)
N ;λ) requires marginalising over the latent factors.

p(O
(s)
1 , . . . ,O

(s)
N ;λ) =

∫

p(O
(s)
1 , . . . ,O

(s)
N |x̄(s);λ)N (x̄(s);0, I) dx̄(s) (4.27)

A closed form solution to this integral can be calculated [106] in terms of the expected value
E{x̄} and covariance Σx̄ of the latent variables.

log p(O
(s)
1 , . . . ,O

(s)
N ;λ) = G +

1

2
log |Σx̄| +

1

2

N
∑

i=1

[

E{xTi }
M
∑

m=1

UT
mΣ−1

m fim

+ E{y(s)T}
M
∑

m=1

V T
mΣ−1

m fim +
M
∑

m=1

E{z(s)T
m }DmΣ−1

m fim

]

(4.28)

G =
N
∑

i=1

M
∑

m=1

[

Nim log
1

(2π)
D
2 |Σm| 12

− 1

2
Tr(Σ−1

m Sim)

]

(4.29)

where D is the dimension of the observations and fim, Sim, Nim are sufficient statistics

calculated for each utterance O
(s)
i = {oi1, . . . ,oiT }.
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fim =
∑

t

P (θt = m|oit)(oit − µm) (4.30)

Sim =
∑

t

P (θt = m|oit)(oit − µm)(oit − µm)T (4.31)

Nim =
∑

t

P (θt = m|oit) (4.32)

where P (θt = m|ot) is the posterior probability of component m given observation ot. These
probabilities may be estimated from a background GMM, such as the UBM.

In order to calculate the likelihood function and re-estimate the model parameters it

is necessary to first calculate the expected value E{x̄(s)
i } of the latent factors as well as the

determinant of their covariance |Σ(s)
x̄ |. The details of obtaining E{x̄(s)

i } and |Σ(s)
x̄ | are omitted

here for brevity, but can be found in [106]. When Dm = 0 and Vm = 0 for all m, the expected
value associated with xi is

E{xi} =

[

I +
M
∑

m=1

NimU
T
mΣ−1

m Um

]−1 [ M
∑

m=1

UT
mΣ−1

m fim

]

(4.33)

Aside from the identity matrix, this has a similar form to the cluster weight re-estimation
formula for CAT, described in chapter 2.

In the factor analysis model, it is assumed that speaker-dependent factors are fixed over
all recordings from a speaker. Hence equation 4.27 can only be used to calculate the joint-
likelihood of all utterances associated with a particular speaker. For a test utterance Ov

and enrollment utterances {Oe
1, . . . ,O

e
N} associated with the claimed identity s, a score may

be assigned to Ov by comparing the joint likelihood of Ov and the enrollment data given
that they are independent (different speakers) with the likelihood given that they are not
independent (same speaker).

Sbatch(Ov; s) = log
p(Ov,Oe

1, . . . ,O
e
N ;λ)

p(Ov,λ)p(Oe
1, . . . ,O

e
N ;λ)

(4.34)

Sbatch(Ov; s) may be calculated using equation 4.27. However, the expected value and covari-
ance of the latent factors must be estimated independently for each term in equation 4.34.
This approach is often computationally infeasible when speakers have many enrollment utter-
ances. However, equation 4.34 may be approximated by adapting λ to a particular speaker
and evaluating the score.

S(Ov; s) = log
p(Ov;λ(s))

p(Ov;λ)
(4.35)

Equation 4.35 is conceptually similar to the standard LLR approach for GMMs. This approx-
imation is only equal to equation 4.34 in the PCA case (Dm = 0) [110]. However, due to the
difficulty in evaluating equation 4.34 it is typically also used in the general case. Generally
only µm, Vm and Dm are adapted to a particular target speaker. Um and Σm are kept fixed
since it is assumed that channel effects are speaker-independent.
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4.4.2 Maximum likelihood parameter estimation
In [108], a parameter re-estimation scheme for factor analysis was proposed that seeks to
maximise the total likelihood of the training data. At each iteration k the likelihood of the
training data is guaranteed to not decrease.

S
∑

s=1

p(O(s);λ(k+1)) ≥
S
∑

s=1

p(O(s);λ(k)) (4.36)

where O(s) is a set of N (s) enrollment utterances associated with speaker s. A suitable
estimate of the speaker and session independent mean vector µm may be obtained from the
parameters of a UBM, if available. In the following re-estimation scheme µm is assumed
to be known and fixed at each iteration. An alternative scheme where µm is additionally
re-estimated is provided in [106].

At each iteration, the expected values E{x̄(s)} and second order moments E{x̄(s)x̄(s)T} of
the latent factors associated with each training speaker s are estimated as described in [106].

The sufficient statistics N
(s)
im , S

(s)
im and f

(s)
im are also accumulated for each utterance in O(s)

according to equations 4.30, 4.31 and 4.32. Given E{x̄(s)} and E{x̄x̄T}, new estimates of
Um, Vm and Dm may then be obtained. For each row j of the factor loading matrices, new

estimates of U
(k+1)
mj ,V

(k+1)
mj and D

(k+1)
mj are given by

(

U
(k+1)
mj V

(k+1)
mj D

(k+1)
mj

)

=
(

Cmj Qmj

)

(

Am BT
mj

Bmj Pmj

)−1

(4.37)

(4.38)

where Bmj ,Cmj are the jth rows of Bm, Cm and Pmj ,Qmj are the jth entries of the diagonal
matrices Pm,Qm, defined below.

Am =
S
∑

s=1

N(s)
∑

i

N
(s)
im E{x(s)

i x
(s)T
i } (4.39)

Bm =
S
∑

s=1

N(s)
∑

i

N
(s)
im E{z(s)

m x
(s)T
i } (4.40)

Cm =
S
∑

s=1

N(s)
∑

i

f
(s)
im E{x(s)T

i } (4.41)

Pm =
S
∑

s=1

diag



E{z(s)
m z(s)T

m }
N(s)
∑

i

N
(s)
im



 (4.42)

Qm =
S
∑

s=1

diag



E{z(s)T
m }

N(s)
∑

i

f
(s)
im



 (4.43)

Given these statistics, an updated estimate Σ
(k+1)
m of the covariance matrices may also be

calculated.

Σ(k+1)
m =

1

Nm

[

Sm − diag
(

Cm [UmVm]T + QmDm

)]

(4.44)
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where

Sm =
S
∑

s=1

N(s)
∑

i=1

S
(s)
im (4.45)

Nm =

S
∑

s=1

N(s)
∑

i=1

N
(s)
im (4.46)

An alternative training algorithm for factor analysis models, based on minimising a di-
vergence measure, was proposed in [107]. This algorithm is known to be faster than the
maximum likelihood scheme. However, it keeps the orientation of the speaker and session
subspaces fixed throughout successive iterations. Hence, the maximum likelihood algorithm
is typically used to train λ on a large background dataset, while the minimum divergence is
used to adapt the parameters µm, Vm and Dm to a particular speaker.

4.5 SVM-based speaker verification
Recently there has been interest in applying discriminative classifiers to the SV task. One form
of discriminative classifier that has become popular is the support vector machine (SVM),
described in chapter 2. SVM-based classifiers have been found to outperform traditional
generative model based approaches [28, 48, 190] and, alongside factor analysis techniques,
have become the dominant approach for SV in state of the art systems [75, 102, 126].

An overview of an SVM-based SV system is given in figure 4.4. Distinct SVM classifier
parameters {α(s), b(s)} are trained for each enrolled speaker s. Positive training examples
(y(s) = 1) are obtained from the enrollment utterances provided by the speaker. Negative
examples (y(s) = −1) are obtained from a large background dataset that contains utterances
from a range of speakers. Given a test utterance Ov with identity claim s, the SVM classifier
score is given by

S(Ov, s) =
N
∑

i=1

α
(s)
i y

(s)
i K(Oi,O

v) + b(s) (4.47)

where y
(s)
i ∈ {−1, 1} is the label associated with training utterance Oi and is dependent on

the identity of the enrolled speaker. The bias term b(s) associated with each classifier acts
as a speaker-dependent threshold. It also maps the output scores from each classifier into a
consistent range, allowing a global threshold to be set for all target speakers.

4.5.1 Dynamic kernels for SVM-based speaker verification
The nature of the SVM classifier is dependent on the form of dynamic kernel K(Oi,Oj)
used. Many of the dynamic kernels described in chapter 3 have been applied to SV, see for
example [24, 28, 48, 120, 189, 205, 211, 213]. Most state-of-the-art SVM-based SV systems
parameterise utterances as sequences of continuous cepstral observations. For these systems,
the dominant form of dynamic kernel is the GMM-supervector kernel. Systems submitted
to the 2008 NIST SRE that used this form of dynamic kernel include [75, 102, 126]. The
GMM-supervector kernel is typically implemented using GMMs with up to 1000 Gaussian
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A dynamic kernel is used to (implicitly) transform each variable-length observation sequence
O into a fixed-dimensional representation φ(O). A distinct SVM classifier is then trained for
each target speaker using the available enrollment data φ(Oe) and a background dataset of
imposter utterances OB

1, . . . ,O
B
N . The classifier output for a test utterance Ov with associ-

ated identity claim s is obtained using the SVM classifier parameters (αs, b(s)) trained using
enrollment data from target speaker s.

Figure 4.4: Speaker verification using support vector machines.

figures/sv-svm.eps
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components. A UBM is initially trained using background data from many speakers, as
described in section 4.3. The mean parameters of this UBM are then adapted using MAP
to generate a range of utterance dependent distributions. Typically the MAP adaptation
constant τmap is in the range 10-25. In practice, the use of a fixed number of components and
a single background model may limit the performance of the system. These restrictions are
caused by the matched-pair bound on the KL divergence used to derive the GMM-supervector
kernel. Variational kernels, closely related to GMM-supervector kernels, are proposed in
chapter 5. Unlike the GMM-supervector kernel these are compatible with multiple background
model and a range of model sizes.

A second form of dynamic kernel that is used in state-of-the art SV systems [102, 126] is
the MLLR kernel, described in chapter 3. Here the kernel is implemented by using MLLR to
adapt the mean parameters of a trained HMM-based speech recogniser. Typically up to 16
full MLLR transforms are used, each associated with a distinct regression class. The MLLR
transform coefficients are then concatenated to obtain the final feature vector. Dynamic ker-
nels derived from factor analysis modelling have also been applied to SV [47]. Here a factor
analysis model is trained as described in section 4.4. For each utterance, the speaker factors

y(s) and/or the speaker and component dependent factors z
(s)
m are concatenated to obtain an

compact utterance-dependent feature vector. However, this combined SVM/FA approach was
not found to yield gains over standard factor analysis modelling. SVM-based systems may
also be combined with long-term prosodic and language features. Word and SNERF param-
eterisations, described in section 4.2.3, were used in [102]. Unlike cepstral parameterisations,
these features are typically discrete. N-gram and term-frequency log likelihood ratio kernels,
described in chapter 3 have been successfully applied [25, 182] using these features. Although
systems based on prosodic features tend to perform worse than those built using spectral
features, they have been found to give gains in combination [78, 102]. For all SVM-based
systems, normalisation techniques such as NAP or WCCN, described in the following section,
are usually applied to reduce session-variability.

In recent evaluations, many sites have achieved performance gains by combining multiple
classifiers [22, 102]. This is usually implemented by combining the output scores using tech-
niques such as logistic regression [158]. For SVM-based systems, an alternative approach is
to combine at the kernel level. The combination of multiple dynamic kernels, as well as a
scheme for obtaining suitable kernel weights, is discussed in more detail in chapter 6. In order
to effectively combine dynamic kernels, the features must be complementary. The relation-
ship between many forms of dynamic kernel applied to SV are also discussed in chapter 6.
Alternatively, dynamic kernels may be combined with traditional static kernels to improve
SV performance. Suitable combination approaches are discussed in more detail in chapter 7.

4.5.2 Intersession variability modelling
A significant source of performance degradation in SV systems is caused by variation in acous-
tic conditions (environment, channel, handset etc) between recording sessions. Recently, there
has been interest in explicitly modelling session variability to improve system performance.
Factor analysis-based approaches, described in section 4.4, include explicit factors that model
channel and speaker variation and have been found to outperform traditional GMM-based
SV systems. For SVM-based systems, one approach for modelling intersession variability is
via the kernel metric G. Here the kernel function is defined by equation 4.48.
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K(Oi,Oj) = φ(Oi)
TG−1φ(Oj) (4.48)

In the absence of prior information about session variability, it is appropriate to use
a maximally non-committal metric, as described in chapter 2. However, when a suitably-
labeled background dataset is available, a metric may be trained that minimises unwanted
session variability. Two popular metric-based methods for reducing intersession variability
are described in this section. These are nuisance attribute projection (NAP) and within-class
covariance normalisation (WCCN).

4.5.2.1 Nuisance attribute projection

Nuisance attribute projection (NAP) [186, 187] is an intersession variability compensation
technique that operates by removing a k-dimensional subspace associated with unwanted
variability, for example due to changes in handset or background conditions, from the feature
space. Here the metric has the form.

GNAP−1
= P TP (4.49)

where P is a projection defined as P = (I − V V T) and V is a matrix with k orthonormal
columns that defines the subspace to be removed. Given a set of labeled background utter-
ances OB = {OB

1, . . . ,O
B
N} the optimal V is obtained when the average cross-channel/session

distance between projected feature vectors Pφ(OB
i ) is minimised.

V ∗ = argmin
V

N
∑

i,j=1

Wij ||Pφ(OB
i ) − Pφ(OB

j )||22 (4.50)

where Wij defines the relationship betweenOB
i andOB

j . Wij can be selected in several different
ways, dependent on the type of variability to be removed and the availability of labeled
data. When each background utterance OB

i is labeled with the form of handset used, hi ∈
{carbon, electrolet, . . .}, Wij may be defined to minimise cross-handset variability [187].

Wij =

{

1 when hi 6= hj

0 when hi = hj
(4.51)

Alternatively, when the background dataset contains multiple sessions from each speaker, Wij

may be defined to reduce the global intersession variability of the background data [28].

Wij =

{

1 when si = sj

0 when si 6= sj
(4.52)

where si indicates the speaker identity associated with OB
i . Weighted combinations of these

two approaches may also be used [187]. The solution to equation 4.50, is obtained by solving
an eigenvector problem

V = eig(XZXT) (4.53)
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where the function eig(A) returns the k eigenvectors of A with the largest eigenvalues and

X =
[

φ(OB
1) · · · φ(OB

N )
]

(4.54)

Z = diag(W1) −W (4.55)

diag(a) is a function that returns a square diagonal matrix whose diagonal elements are the
indices of a. 1 is a column vector with all elements equal to one. The dimension k of the
nuisance subspace is usually tuned on a development dataset and will typically be around 1%
of the dimension of the feature space.

NAP is closely related to the factor analysis-based approach described in section 4.4. When
NAP is applied to appropriately normalised GMM-supervector features and W is selected
using equation 4.52 the subspace obtained is identical to the channel-dependent factor loading
matrix Um associated with factor analysis [28]. Although the subspaces are identical, they
are used in very different ways. In NAP, the nuisance subspace is projected out using an
appropriate metric. In factor analysis, an iterative approach is used to estimate the latent
session-dependent factors, which are then subtracted from the mean supervector.

For kernel functions where the associated feature space is sufficiently high-dimensional or
does not have an explicit representation, φ(O), it is not possible to evaluate equation 4.53.
One alternative is to use the form of kernelised NAP derived in [219]. Here kernel PCA [179] is
applied to implement NAP without needing to explicitly evaluate φ(O). The NAP normalised
kernel function is defined by

KNAP(Oi,Oj) = K(Oi,Oj) − ki
TZ

1
2Y Y TZ

1
2kj (4.56)

where Y ,ki and Z are defined by

Y = eig(Z
1
2KBZ

1
2 ) (4.57)

ki =
[

K(Oi,O
B
1), . . . , K(Oi,O

B
N )
]

(4.58)

Z
1
2 = diag(W1)

1
2 [I −W ] (4.59)

The elements of the background kernel matrix KB are defined by KB
ij = K(OB

i ,O
B
j ). Unlike

equation 4.53, equation 4.56 can be evaluated for kernels that do not have an explicit feature
space.

4.5.2.2 Within-class covariance normalisation

The effect of a maximally non-committal metric is to normalise the global covariance of
the feature space. When a labeled training set is available that contains multiple recording
sessions per speaker, an alternative approach is to apply within-class covariance normalisation
(WCCN) [81]. WCCN is a metric-based scheme that aims to reduce intersession variability.
Here the metric is defined to normalise the expected within-class covariance matrix defined
by

GWCCN =
S
∑

s=1

P (s)G(s) (4.60)



CHAPTER 4. SPEAKER VERIFICATION 77

where P (s) is the prior probability of speaker s andG(s) is the expected within class covariance
matrix for speaker s defined by

G(s) = E
{

(φ(O) − µφ)(φ(O) − µφ)T
}

(4.61)

µ
(s)
φ = E {φ(O)} (4.62)

where E{} is the expectation over all utterances associated with speaker s. Like NAP, WCCN
uses a labeled training set to define a metric that reduces intersession variability. However,
unlike NAP, WCCN also weights each feature space dimension to minimise an upper bound
on the error rate [80]. G(s) may be approximated by the covariance of the training set feature
vectors associated with speaker s. When the amount of training data available for estimating
GWCCN is limited, the estimate obtained may not be robust. One option is to use a weighted
interpolation between GWCCN and the identity metric. A smoothed estimate ĜWCCN is then
given by

ĜWCCN = (1 − υ)GWCCN + υI (4.63)

where υ is a smoothing factor in the range [0 . . . 1] that is empirically set by the user.
When the dimension, F , of φ(O) is large, it may not be feasible to invert GWCCN. Since

the dimension of the feature space is typically significantly larger than the number of training
speakers, one option is to apply PCA to project each feature vector into a smaller, F PCA-
dimensional space. WCCN may then be efficiently applied within this space [80, 100]. The
projected feature vector φPCA(O) is defined by

φPCA(O) = UTφ(O) (4.64)

where U is the eigenvector decomposition of the global covariance of the training data Σφ.

Σφ = UΛUT (4.65)

The PCA feature space contains all of the covariance information contained within the training
feature vectors. However test feature vectors will contain additional information that can not
be fully expressed within the PCA subspace. This issue can be overcome by defining a PCA-
complement feature vector that contains all the information contained in the original features
but not in the PCA set. The PCA-complement feature vector is defined by

φPCA(O) = (I −UUT)φ(O) (4.66)

The PCA-complement feature vector is only non-zero for test utterances. The kernel function
is then defined by a weighted concatenation of the PCA and PCA-complement feature vectors.

KWCCN(Oi,Oj) =

[

φPCA(Oi)

φPCA(Oi)

]T [

γ2GPCA−1
0

0 (1 − γ)2I

] [

φPCA(Oj)

φPCA(Oj)

]

(4.67)

where γ is a constant set by the user in the range range [0 . . . 1]. When γ = 1 only information
contained within the PCA subspace is used by the kernel. In this case the kernel function is
closely related to the function obtained using NAP with k = F−F PCA [101]. GPCA is the metric
defined by equation 4.60 when φ(O) = φPCA(O). Since the training set does not contain any
information about the covariance of the PCA-complement subspace it is not possible to learn
a suitable metric. Instead, an identity metric is used to normalise these features.
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4.6 Score-normalisation
Score-normalisation is a post-processing stage applied to the output scores of a speaker veri-
fication system. Score-normalisation techniques are generally used to perform two functions.
They can be used to perform a classifier-dependent scaling of the output distributions. This
allows a global threshold to be set over a range of speaker-dependent classifiers. Score-
normalisation techniques can also be used to compensate for environmental or channel condi-
tions. The LLR framework described in section 4.3 is one example of score-normalisation. In
this setup the UBM is used to generate a utterance-dependent normalisation term, allowing
a single fixed threshold to be used. Similarly, the use of handset-dependent background mod-
els [83] is an example of score-normalisation designed to improve noise-robustness. Although
the techniques described in this section were developed for use in a GMM-LLR framework,
they may also be applied to normalise the output of SVM-based systems.

4.6.1 Zero normalisation
Zero normalisation (Z-norm) [6, 171] was an early form of score-normalisation. The purpose
of Z-norm is to normalise the output distribution of each speaker-dependent classifier to zero
mean and unit variance, allowing a global threshold to be set. Since the amount of available
enrollment data per speaker is typically limited, rather than normalising the global output
distribution, only the distribution of imposter scores is normalised. Here the normalised scores
are given by

Ŝ(O, s) =
S(O, s) − µI(s)

σI(s)
(4.68)

Where µI(s) and σI(s) is the mean and standard deviation of the scores obtained by classifying
a series of imposter utterances using the speaker-dependent classifiers. An advantage of this
approach is that the speaker-dependent normalisation parameters µI(s) and σI(s) are not
dependent on O and hence may be computed offline. If a development set of utterances is
available that were not spoken by any of the enrolled speakers, then the set may be reused to
obtain all speaker-dependent normalisation parameters.

A closely related form of score-normalisation is handset normalisation (H-norm) [171].
This form of score-normalisation seeks to normalise out variation due to differences in the
type of handset e.g. carbon, electrolet. Here, rather than applying a speaker-dependent
normalisation. handset-dependent normalisation parameters µ(h) and σ(h) are learned from
a development dataset. The normalised scores are given by

Ŝ(O, s) =
S(O, s) − µ(h)

σ(h)
(4.69)

Handset normalisation is dependent on either handset information h being provided for each
utterances, or an effective handset detection scheme being available. In recent systems such
as [111, 126], discrete handset compensation techniques have been superseded by more recent
techniques such as NAP or factor analysis modelling.
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4.6.2 Test normalisation
One issue with applying techniques such as Z-norm, is that normalisation may not be effective
when there is acoustic mismatch between the test data and the development set used to train
the normalisation parameters. Test normalisation (T-norm) [6] is a widely used form of score-
normalisation that does not suffer from this problem. Test normalisation seeks to reduce the
session variability associated with each score. In contrast to Z-norm, where each score is
normalised using a range of imposter utterances, T-norm normalises each score using a range
of classifiers, each trained to distinguish a different speaker. This approach is closely related
to the LLR framework when a set of cohort models are used instead of a UBM. The difference
here is that both the mean and variance of the output distribution is normalised. If µ(O) and
σ(O) are the mean and standard deviation of the scores obtained by classifying O using a
range of speaker-dependent classifiers, the normalised scores are given by

Ŝ(O, s) =
S(O, s) − µ(O)

σ(O)
(4.70)

When T-norm is applied within a LLR framework, the contribution of the UBM will be
normalised away. It is therefore more efficient to score utterances directly using the speaker-
dependent likelihood S(O, s) = log p(O;λ(s)). Unlike Z-norm, µ(O) and σ(O) are dependent
onO and therefore cannot be computed offline. For GMM-LLR based systems, T-norm can be
efficiently approximated by only evaluating the top N most likely Gaussian components given
O. When the T-norm cohort models are all adapted from the same UBM, the components
of the models will be strongly coordinated. Thus the top N components given O may be
assumed to be the same for all cohort models allowing efficient evaluation. Z-norm and
T-norm normalise the scores in different ways and the two forms of normalisation may be
combined. These approaches were found to be complementary in [200].

4.6.3 Adaptive T-norm
In T-norm, a set of cohort speaker-dependent classifiers is used to normalise the score as-
sociated with each utterance during test. Adaptive T-norm (AT-norm) [191] is a variant of
T-norm where the set of classifiers used varies depending on the target speaker. By auto-
matically selecting a set of cohort classifiers designed for speakers that closely resemble the
target speaker, SV performance may be improved.

Given a set of cohort classifiers P, a speaker-dependent subset P(s) is computed offline
for each target speaker s. In [191], cohort sets were selected by scoring a series of imposter
utterances {OI

1, ..,O
I
N} using both the target speaker classifier and each cohort classifier. The

distance Dsp between the target speaker classifier and each cohort classifier p is then obtained
using a Manhattan block distance between the vector of imposter scores.

Dsp =

N
∑

i=1

|S(OI
i , s) − S(OI

i , p)| (4.71)

where S(O, p) is the score obtained by classifying O using the pth cohort classifier. P(s) is
then comprised of the set of k cohort classifiers closest to the target speaker classifier. The
effectiveness of AT-norm is dependent on the availability of a suitable development set from
which a large, varied set of cohort classifiers can be trained.
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4.7 Evaluation metrics
Speaker verification systems make two distinct forms of error. These are: false alarms, where
an imposter speaker is incorrectly accepted, and misses, where a genuine speaker is incorrectly
rejected. Given the number of false alarms Nfalse−alarm and misses Nmiss the miss (P miss)
and false alarm (P false−alarm) probabilities are given by

P miss =
Nmiss

Ntrue
(4.72)

P false−alarm =
Nfalse−alarm

Nimposter
(4.73)

where Ntrue and Nimposter are the number of trials involving genuine and imposter speakers
respectively. When the costs associated with each form of error are the same, a useful metric
is the accuracy. This is defined by

Accuracy =
Nmiss + Nfalse−alarm

Ntrue + Nimposter
(4.74)

For a particular SV system, the relative frequency of each type of error can be adjusted
by varying the operating threshold. Thus directly comparing speaker verification systems is
difficult. Several evaluation metrics are discussed in this section. A common property of most
of these metrics is that they are threshold-independent.

4.7.1 Equal error rate
The equal error rate (EER) is the most commonly used measure of system performance for
SV tasks. The equal error rate is the value of the false alarm and the miss probabilities
when the operating threshold is adjusted such that they are equal. The EER score provides
a threshold-independent score for which the costs of misses and false alarms are equal. This
is demonstrated in figure 4.5

4.7.2 Detection cost function
The equal error rate is only a suitable evaluation metric when the costs of misses and false-
alarms are equal. For NIST evaluations, the ratio of imposter trials to target speaker trials is
extremely high. Hence, the EER is disproportionately biased by those trials involving target
speakers. An alternative metric is the detection cost function (DCF) [143]. This metric is
commonly used in NIST SRE evaluations and is given by the weighted sum of the false alarm
and miss probabilities at a defined threshold.

DCF = P tarCmissP miss + (1 − P tar)Cfalse−alarmP false−alarm (4.75)

where P tar is the prior likelihood of an utterance being spoken by the target speaker and
Cmiss and Cfalse−alarm are respectively the costs associated with a miss and false alarm.
For NIST evaluations, the costs and prior are fixed at Cmiss = 10, Cfalse−alarm = 1 and
P tar = 0.01 [144]. Rather than using 4.75 directly, the score is typically normalised by the
best cost that can be obtained by either naively accepting or rejecting all trials, defined by
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Figure 4.5: Miss and False alarm probabilities for a SV system as the operating threshold
varies. The threshold-independent equal error rate (EER) is the error rate obtained when
the threshold is adjusted to equalize the miss and false alarm probabilities. For the depicted
system an EER of 15.8% is obtained by setting the threshold to zero.

min{P tarCmiss, (1 − P tar)Cfalse−alarm}. When NIST costs are used this normalised DCF
score takes the form

DCF norm = P miss + 9.9P false−alarm (4.76)

A threshold independent version of this score known as minDCF can also be used. Here,
minDCF is the minimum DCF obtained a-posteriori by adjusting the decision threshold.

4.7.3 Receiver operating characteristics graphs
The EER gives the error rate at a single threshold value. It is often more informative to
observe the trade-off between miss and false alarms over a range of operating thresholds.
Receiver Operating Characteristics (ROC) curves [193] are a method of graphically comparing
systems over the entire operating range. In an ROC curve the hit probability (equal to 1 - miss
probability) is plotted against the false-alarm probability as the threshold is adjusted. An
example ROC curve is given in figure 4.6. There are a number of issues related to ROC curves
that have led to them being superseded by alternative graphical techniques. When comparing
two systems, the area under the graph provides a better measure of relative performance than
the absolute position of the line. This makes them hard to interpret. A second drawback
to the ROC graph is that in practice most systems occupy the top left corner of the graph
making it hard to distinguish systems performing at a similar level.

figures/EER_example.eps
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Figure 4.6: a) ROC and b) DET curves for three different SV systems. ROC curves plot the
hit probability (equal to 1 - miss probability) against false alarm probability as the operating
threshold is adjusted. This allows a threshold-independent comparison between systems to
be displayed. Similarly, DET curves plot miss probabilities against false alarm probabilities.
The logarithmic scale associated with a DET curve ensures that plots of system performance
appear close to linear making the graph more readable.
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4.7.4 Detection error threshold graphs
DET curves [146] are a recently developed alternative to ROC curves. For each system, miss
probabilities are plotted against false alarm probabilities over a range of operating thresholds.
An example DET curve is shown in figure 4.6. An advantage to using DET curves compared
to ROC curves is that system performance is plotted on a logarithmic scale. For SV systems
where the true and imposter scores are approximately Gaussian distributed, the line associated
with each system will be approximately linear. This makes it easier to effectively compare
system performance. The EER associated with each system is indicated by the point on the
line where the miss and false alarm probabilities are equal.

4.7.5 Significance testing
When comparing SV systems it is useful to be able to determine whether the results obtained
are statistically significant. One significance measure suitable for comparing SV systems
evaluated on the same test set is McNemar’s test [73]. For two systems this test assesses
the probability of the null hypothesis, that both systems perform at the same level given the
observed results. For a test set consisting of N trials, McNemar’s test compares the unique
errors made by each system. Here N10 is the number of trials misclassified by the first system
but correctly classified by the second system. Similarly, N01 is the number of unique errors
made by the second system. The set of trials that are classified either correctly or incorrectly
by both systems is not used since these trials contain no useful information for discriminating
between the systems. If the null hypothesis is true, then N10 should be binomially distributed
according to B(k, 1/2) where k = N10 + N01. The null hypothesis may be tested by applying
a two-tailed test to the observation of a random variable M drawn from B(k, 1/2). The null
hypothesis may be rejected when the P-value, P null, is less that the significance level, where
P null is given by

P null =







2P (N10 ≤ M ≤ k) when N10 > k/2
2P (0 ≤ M ≤ N10) when N10 < k/2

1.0 when N10 = k/2
(4.77)

These probabilities may be computed explicitly by

P null =

{

2
∑k

m=N10

(

k
m

) (

1
2

)k
when N10 > k/2

2
∑N10

m=0

(

k
m

) (

1
2

)k
when N10 < k/2

(4.78)

For large values of k (k > 50), explicitly computing these probabilities is expensive. However
under these conditions the actual binomial probability may be approximated using a normal
distribution. If the null hypothesis is true, the expected value of N10 is k/2 and the variance
of N10 is k/4. If Z is a random variable, distributed according to N (0, 1), P NULL = 2P (Z ≥ z)
where z is given by

z =
|N10 − K/2| − 1/2

√

K/4
(4.79)

Equation 4.79 has the form of a χ2 test [159] that includes a correction factor [212] for conti-
nuity. The significance measure provided by McNemar’s test is associated with a particular
point on the operating range of the SV systems and will not apply if the thresholds are varied.
For systems that do not have explicitly defined operating thresholds, one option is to evaluate
McNemar’s test at the thresholds associated with either the EER or minDCF metric.
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4.8 Summary
This chapter has described how generative and discriminative classification schemes may be
applied to construct a state-of-the-art speaker recognition system. Three approaches for scor-
ing test utterances were described, given a particular identity claim. The first approach uses
the log-likelihood ratio between a speaker dependent model and a background model repre-
senting all speakers. An adapted version of this scheme, that uses factor analysis to model
session and channel variability, was also discussed. Lastly an SV framework based on discrim-
inative classifiers was introduced. Here dynamic kernels, introduced in chapter 3, are applied
to convert each utterance into a fixed-dimensional representation, suitable for classification
using an SVM. Front end processing schemes based on short-term cepstral features and long
term prosodic and language features were described in this chapter. Score-normalisation tech-
niques for reducing intersession variability and mapping all classifier scores into a consistent
range were also discussed. Finally, metrics suitable for evaluating SV system performance
were presented.



CHAPTER 5
Variational Dynamic

Kernels

In chapter 3, a range of dynamic kernels were introduced that are suitable for SVM-based
speaker verification. Several of these, including the GMM-supervector [28] and the non-

linear GMM-supervector kernels [45], are directly motivated from the Kullback-Leibler (KL)
divergence between two distributions. For text-independent SV, GMM distributions are com-
monly used. In this case there exists no closed form solution of the KL divergence and a
suitable approximation, typically the matched-pair bound, is used instead. However, the use
of this approximation requires that all GMM distributions contain the same number of com-
ponents and that components with the same index are coordinated. In practice, this means
that all distributions must be adapted from a single background distribution. This restriction
may limit the performance of a speaker verification system.

Recently, alternative approximations to the KL divergence between GMMs have been de-
rived, based on introducing additional variational distributions over Gaussian components.
In this chapter, new forms of dynamic kernel are proposed based on two of these approxima-
tions, the variational upper bound [87, 217] and the variational approximation [87]. Unlike
the matched-pair bound, for the variational approximations discussed in this chapter there is
no requirement that all distributions contain the same number of components or that compo-
nents are coordinated between distributions. Thus, variational approximations may be used
to motivate dynamic kernels that do not contain the same restrictions on model structure as
the dynamic kernels in Chapter 3.

In the next section the use of the KL divergence to motivate dynamic kernels is reviewed.
The following section then introduces two approximations to the KL divergence based on

85
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variational techniques. Finally, new forms of dynamic kernel are derived based on these
variational approximations and the properties of these kernels discussed.

5.1 Distributional kernels for speaker verification
Distributional kernel functions were introduced in chapter 3. In this section, the use of
distributional kernels for sequence classification is briefly reviewed. These kernels operate very
differently from continuous-observation kernels such as the Fisher kernel [90] or the GLDS
kernel [24]. Instead of evaluating a kernel function using two utterance Oi and Oj directly, a
distinct distribution fi and fj is trained to model each utterance. For an utterance, Oi, the
parameters λi of distribution fi are typically selected to maximise the likelihood of Oi. Thus

λMLi = argmax
λ

{log p(Oi;λ)} (5.1)

For speaker verification, there is normally too little speech available to yield robust ML
estimates for λi. Instead, λi is normally obtained using MAP adaptation, described in sec-
tion 2.1.4.1.

λMAPi = argmax
λ

{log p(Oi;λ) + log p(λ)} (5.2)

where log p(λ) defines a prior over the model parameters. The density function associated
with the prior is typically defined using the parameters of the distribution fUBM associated
with the UBM. A distributional kernel K(Oi,Oj) can then be defined as a function of fi

and fj allowing an SVM-based speaker verification system to be implemented as described in
chapter 4. The process of applying distributional kernels to SV is shown in figure 5.1.

In chapter 3 dynamic kernels were defined using several different functions over distribu-
tions. However the most commonly used forms of distributional kernels, such as the GMM-
supervector [28] and the non-linear GMM-supervector [45] kernels, use the Kullback-Leibler
divergence [115] to define a suitable function between distributions. The KL divergence was
introduced in section 3.3.1 and defines the relative-entropy between two distributions. For
distributions fi and fj , the divergence is defined by

KL(fi||fj) =

∫

fi(o) log
fi(o)

fj(o)
do (5.3)

For Gaussian distributions f̃i(o) = N (o;µi,Σi) and f̃j(o) = N (o;µj ,Σj) a closed form
solution for the divergence is given by equation 5.4.

KL(f̃i||f̃j) =
1

2

[

log
|Σj |
|Σi|

+ Tr[Σj
−1Σi] − D + (µi − µj)

TΣi
−1(µi − µj)

]

(5.4)

where Tr[·] defines the trace of a matrix and D is the dimensionality of o. For state-of-the
art text-independent speaker verification systems it is common to model the distribution of
speech utterances using Gaussian mixture models. Here the distributions are defined by

fi(o) =
N
∑

n=1

cinN (o;µin,Σin) (5.5)

fj(o) =

M
∑

m=1

cjmN (o;µjm,Σjm)
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Figure 5.1: Speaker verification using distributional kernels. For distributional kernels, a
distinct distribution fi is trained to model each utterance Oi by MAP adapting the UBM.

figures/sv-dist.eps
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Unfortunately no such closed form expression exists for the divergence between two GMMs.
Instead the divergence must be estimated. This may be achieved either by using sampling
approaches, such as Monte Carlo sampling [87], or by finding a closed form expression that
approximates the true KL divergence. Although sampling is the only method that can be used
to obtain the KL divergence to an arbitrary degree of accuracy, calculating the divergence
via sampling approaches is usually far slower than evaluating a closed form expression. Since
SV typically requires a large number of kernel evaluations, this chapter focuses on the latter
approach.

5.2 KL divergence for GMMs
Both the GMM-supervector kernel and the non-linear GMM-supervector kernel are derived
using the matched-pair bound [53] on the KL divergence. This approximation requires that
both GMMs contain the same number of Gaussian components.

fi(o) =
M
∑

m=1

cimN (o;µim,Σim) (5.6)

fj(o) =

M
∑

m=1

cjmN (o;µjm,Σjm)

When fi and fj are distributed according to equation 5.6 the log-sum inequality may be
applied to obtain an upper bound to the true divergence. This matched-pair bound is defined
as follows.

KLMP(fi||fj) ≤
M
∑

m=1

cim

[

log
cim

cjm
+ KL(fim||fjm))

]

(5.7)

where KL(fin||fjm) indicates the divergence between component n of fi and component m
of fj . This may be calculated explicitly using equation 5.4. This upper bound is dependent
on the ordering of the Gaussian components. Permuting the components of one distribution
will affect the obtained bound. Thus the matched-pair bound is only suitable when there is
a clearly defined coordination between pairs of components from the two distributions. This
may be the case when both are adapted from the same background distribution but will not
be true generally. In the following subsections, two variational approximations are described
that do not suffer from these restrictions.

5.2.1 The variational approximation
A variational approximation to the KL divergence between two Gaussian mixture models was
derived in [87]. Here an approximation to the KL divergence is obtained by introducing an
additional variational distribution over components. The parameters of this distribution are
then optimised to tighten the approximation. Unlike the matched-pair bound, this approxi-
mation does not yield an upper bound to the true KL divergence. However it has been shown
experimentally to give a closer approximation to the true KL divergence. A further advantage
of this approach is that unlike the matched-pair bound, the variational approximation does
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not require any restrictions on the structure of the distributions. Thus, it may be applied to
the GMMs defined by equation 5.5.

The variational approximation is derived by initially decomposing the KL divergence into
the difference between two expected values

KL(fi||fj) =

∫

fi(o) log fi(o) do−
∫

fi(o) log fj(o) do (5.8)

A lower bound can then be derived separately for each of the terms in 5.8. Starting with the
second term, a bound may be obtained by introducing a discrete variational distribution qm|n,

such that qm|n > 0 and
∑M

m=1 qm|n = 1. For clarity of notation fin(o) will be used to indicate
likelihood of o given the Gaussian distribution associated with component n of distribution
fi.

∫

fi(o) log fj(o)do =

∫ N
∑

n=1

cinfin(o) log

(

M
∑

m=1

qm|n
cjmfjm(o)

qm|n

)

do

≥
∫ N
∑

n=1

cinfin(o)

M
∑

m=1

qm|n log

(

cjmfjm(o)

qm|n

)

do (5.9)

This lower bound is tightened when the expression is maximised with respect to qm|n. The
optimal value q∗

m|n is given by

q∗m|n =
cjme−KL(fin||fjm)

∑M
m′=1 cjm′e−KL(fin||fjm′ )

(5.10)

Similarly a lower bound may be obtained to the first term in equation 5.8 by introducing a
discrete variational distribution vn′|n such that vn′|n > 0 and

∑N
n′=1 vn′|n = 1.

∫

fi(o) log fi(o)do ≥
∫ N
∑

n=1

cinfin(o)
N
∑

n′=1

vn′|n log
cin′fin′(o)

vn′|n
do (5.11)

This bound is tightest when the expression is maximised with respect to vn′|n. The optimal
value v∗

n′|n is given by

v∗n′|n =
cin′e−KL(fin||fin′ )

∑N
n′′=1 cin′′e−KL(fin||fin′′ )

(5.12)

Substituting q∗
m|n into equation 5.9 and v∗

n′|n into equation 5.11 and taking the difference
between the two bounds yields a variational approximation to the KL divergence.

KLVAR(fi||fj) ≈
N
∑

n=1

cin log

∑N
n′=1 cin′e−KL(fin||fin′ )

∑M
m=1 cjme−KL(fin||fjm)

(5.13)

As the difference of two lower bounds, equation 5.13 is not itself a strict bound on the KL
divergence. However, in practice it forms a close approximation. This variational approxima-
tion is related to the matched-pair bound. For the case where fi and fj have equal numbers
of components and when the variational distributions qm|n and vn′|nare only non-zero when
m = n = n′, the approximation becomes an upper bound and is equivalent to the form given
in equation 5.7.
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5.2.2 The variational upper bound
A variational upper bound was derived independently in [217] and [87]. Like the variational
approximation, two discrete variational distributions vn|m ≥ 0 and qm|n ≥ 0 are introduced.
Here, these distributions satisfy the following constraints.

M
∑

m=1

qm|n = cin (5.14)

N
∑

n=1

vn|m = cjm (5.15)

Using the log-sum inequality the following bound may be defined

KL(fi||fj) = −
∫

fi(o) log

N
∑

n=1

M
∑

m=1

qm|nfin(o)

fi(o)

vn|mfjm(o)

qm|nfin(o)
do (5.16)

≤ −
∫

fi(o)

N
∑

n=1

M
∑

m=1

qm|nfin(o)

fi(o)
log

vn|mfjm(o)

qm|nfin(o)
do (5.17)

KLUP(fi||fj) =
N
∑

n=1

M
∑

m=1

qm|n

[

log
qm|n

vn|m
+ KL(fin||fjm)

]

(5.18)

This bound is tightest when q and v are selected to minimise equation 5.18. Unlike the
variational approximation there is no closed form expression for the optimal q and v. However,
by fixing one set of variational parameters and optimising the other the following update rules
are obtained.

v
(k+1)
n|m =

cjmq
(k)
m|n

∑N
n′=1 q

(k)
m|n′

(5.19)

q
(k+1)
m|n =

cinv
(k)
n|me−KL(fin||fjm)

∑M
m′=1 v

(k)
n|m′

e−KL(fin||fjm′ )
(5.20)

By iteratively reapplying equations 5.19 and 5.20 the upper bound will be tightened. In [87]
the variational parameters were initialised to vn|m = qm|n = cjmcin since any parameters that
are set to zero will be unchanged after each iteration.

Like the variational approximation, the variational upper bound is related to the matched-
pair approximation. When both distributions contain the same number of components and
qm|n = cin and vn|m = cjm where m = n otherwise qm|n = vn|m = 0 the variational upper
bound will have the form

KL(fi||fj) =
M
∑

m=1

cim

[

log
cim

cjm
+ KL(fin||fjm)

]

(5.21)

This is identical to the form of the matched-pair bound in equation 5.7. The likelihood of
this occurring in practice is related to the dimension D of the distribution. When D is high
qm|n and vn|m are more likely to be sparse.
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5.3 Variational dynamic kernels
In chapter 3 a number of distributional kernels were described that were motivated directly
from an approximation to the KL divergence. These included the GMM-supervector kernel
and the non-linear GMM-supervector kernel. Typically the KL divergence is not used directly,
but instead is used to derive a kernel function with similar characteristics. Since no closed
form solution exists for the KL divergence between two GMMs, it is necessary to make use of
an approximation. The matched-pair bound was used for the kernels described in chapter 3,
however, as discussed in section 5.2, this approximation has a number of disadvantages: it
may not be particularly accurate and restricts the structure of distributions that may be used.

In this section, new forms of dynamic kernel are proposed, motivated from the two vari-
ational approximations introduced in sections 5.2.1 and 5.2.2. These variational kernels do
not suffer the same restrictions and may be applied using GMMs adapted from different
background models and consisting of varying numbers of components.

5.3.1 Symmetric KL divergence
The KL divergence between two distributions is not suitable for use directly as a kernel
function. As described in chapter 2, to be a valid kernel a function must be symmetric and
the associated Gram matrix must be positive semi-definite. This is not the case for the KL
divergence, which is asymmetric. Additionally, the KL divergence equals zero if and only
if fi = fj , otherwise it is positive. These properties are typical of a distance metric rather
than an inner product. Thus the KL divergence must be modified in some way before it may
be used as a kernel function. A symmetric version of the KL divergence may be defined as
follows

KLsym(fi||fj) = KL(fi||fj) + KL(fj ||fi) (5.22)

When KL(fi||fj) is approximated by the variational upper bound, the following expression
is obtained.

KL(fi||fj) = KL(qL||vL) + KL(vR||qR)

+

N
∑

n=1

M
∑

m=1

qLm|nKL(fin||fjm) + vRn|mKL(fjm||fin) (5.23)

where qL and vL indicate the variational distributions associated with the left asymmetric
term and qR and vR indicate the distributions associated with the right asymmetric term.
Here KL(q||v) defines the KL divergence between the discrete variational distributions.

KL(q||v) =

N
∑

n=1

M
∑

m=1

qm|n log
qm|n

vn|m
(5.24)

Evaluating equation 5.23 requires optimising four sets of variational parameters. (This process
is implicit when the variational approximation is used.) An alternative approach is to obtain
a variational upper bound to the true symmetric KL divergence. In this case only two sets
of variational parameters must be optimised. However, this approach yields a weaker bound
and hence is not considered here.
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5.3.2 Variational kernel functions
Although the divergence defined by equation 5.22 is symmetric, it does not yield a valid
kernel function as the corresponding Gram matrix is not positive semi-definite. It is therefore
common to alter the function prior to use so that it behaves more like an inner product. One
approach, introduced in section 3.3.1 for the GMM-supervector kernel, is to make use of the
polarisation identity. This defines a relationship between a distance and a kernel function in
a particular space. Given a distance metric D(fi, fj) defined between two distributions, an
appropriate kernel function Kpol(Oi,Oi) is one that satisfies the following relationship.

D(fi, fj)
2 = Kpol(Oi,Oi) − 2Kpol(Oi,Oj) + Kpol(Oj ,Oj) (5.25)

The GMM-supervector kernel was then defined using the matched-pair bound by using the
following distance metric.

D(fi, fj)
2 = KL(fi||fj) + KL(fj ||fi) (5.26)

Given a kernel function, the polarisation identity defines a unique distance metric. However
the inverse is not true. Unfortunately, due to the form of the variational approximations it is
difficult to obtain a suitable kernel using the polarisation identity. For example, even when
component variance and prior parameters are tied over all models, both approximations still
require evaluating the KL divergence between Gaussian components with different variances
yielding a more complex distance measure.

In this work, an alternative approach is used, based on exponentiation. This makes use
of the following relation.

Kexp(Oi,Oj) = exp
[

−αD(fi, fj)
2
]

(5.27)

where α is a positive real scalar. By applying the operations described in section 2.2.6, this
can be shown to yield a valid kernel function. This is the same approach used to derive the
non-linear GMM-supervector, described in section 3.3.2.

When the distance metric in equation 5.26 is used, the following kernel can be defined
using the variational approximation.

KVAR(Oi,Oj) = exp
(

−α
[

KLVAR(fi||fj) + KLVAR(fj ||fi)
])

(5.28)

Similarly, a kernel may also be derived using the variational upper bound.

KUP(Oi,Oj) = exp
(

−α
[

KLUP(fi||fj) + KLUP(fj ||fi)
])

(5.29)

When both GMMs consist of M components and the variational parameters between
components n and m are non-zero only when n = m, the kernels obtained will be identical to
the non-linear GMM-supervector kernel.
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5.3.3 Comparison to non-variational kernels
Unlike the GMM-supervector or non-linear GMM-supervector kernels, for the variational
kernels there is no requirement that all GMMs have the same structure or are adapted from
the same background model. There are a number of situations where this is useful. If the
duration of utterances vary greatly within the dataset, performance gains may be obtained
by allowing the number of components per GMM to vary. Hence an utterance-dependent
trade-off could be made between increasing model flexibility and avoiding overfitting the
data. Alternatively, when utterances come from speakers of varying genders or dialects, or
are recorded under a range of different noise-conditions it may be advantageous to adapt each
utterance from a background model that more closely resembles the characteristics of the
utterance. This approach may also be combined with speaker-clustering schemes to obtain
more accurate background models.

A second advantage of using variational kernels that they do not require that components
are coordinated across distributions. For kernels such as the GMM-supervector kernel that
use the matched-pair bound, any experimental conditions that weaken the coordination be-
tween components are likely to also degrade performance. This includes performing multiple
iterations of adaptation or applying MAP with low values of τmap. In contrast, variational
kernels are likely to be robust to these conditions.

5.4 Summary
In this chapter new forms of dynamic kernel were proposed, derived from two different vari-
ational approximations to the KL divergence between GMMs. Unlike standard forms of
dynamic kernel, such as the GMM-supervector kernel, these variational kernels do not re-
quire all distributions to be adapted from a single background distribution, allowing more
complex training schemes to be used. For example, multiple background distributions may
be used to reflect clusters of dialect or gender. Alternatively, a range of model sizes may be
used if the training set contains large variations in utterance duration, potentially yielding
gains over standard approaches.



CHAPTER 6
Dynamic Kernel

Combination

There has been considerable interest and success in improving the performance of speaker
verification systems by fusing the output scores from multiple classifiers. For SVM

classifiers, a known alternative strategy is to combine systems at the dynamic kernel level.
This involves finding a suitable weighting for each kernel, known as multiple kernel learning
(MKL). Recently, an efficient maximum-margin scheme for MKL was proposed in [168]. This
scheme allows kernel weights to be trained without the need for an auxiliary dataset, in
contrast to standard score-fusion techniques. In this chapter, a number of modifications
are proposed to allow this scheme to be successfully applied to speaker-verification1. The
standard scheme has a known tendency towards sparse weightings, which may not be optimal
for SV. Here a regularisation term is proposed, allowing the appropriate level of sparsity to
be selected. Cross-speaker tying of kernel weights is also proposed to improve the robustness
of the parameter estimates.

Dynamic kernel combination will only provide gains if the features expressed by the kernels
are complementary. In the second half of this chapter two general categories of dynamic kernel
are defined. These are parametric kernels, where the feature space consists of parameters from
an utterance-dependent generative model, and derivative kernels, where the derivatives of the
log-likelihood with respect to parameters of a generative model are used. It is then shown
that many of the dynamic kernels introduced in chapter 3 can be placed into one of these two

1A similar approach for learning kernel weights for SV was independently proposed in [49]. The main
differences between that approach and the one proposed in this chapter are the form of the objective function
used and the use of cross-speaker tying of kernel weights in this work.
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classes. Finally, the attributes of these two classes of kernel are contrasted and the conditions
under which they yield identical feature spaces are described. By avoiding these conditions,
the combination of derivative and parametric kernels may lead to gains.

6.1 Classifier combination
In recent SV evaluations there has been a focus on combining multiple classifiers to improve
overall performance. For SVM classifiers two general combination strategies are available,
score-fusion and kernel combination. These are discussed in the following sections.

6.1.1 Score-fusion
Score-fusion is a standard technique used to combine classifiers that has been effectively used
to improve performance in a number of SV systems, such as [22, 30, 126, 154]. Score-fusion
is applied as follows: given a training set, K independent classifiers are trained. During
verification, a score is then obtained from each classifier which are then combined using a
post-classifier to provide a final output. This process is illustrated in figure 6.1.

The fused output score S(Ov, s;β) associated with a verification utterance Ov is typically
a weighted sum of the individual classifier scores.

S(Ov, s;β) =

K
∑

k=1

βkSk(O
v, s) (6.1)

where Sk(O
v, s) is the score output for utterance Ov by classifier k and βk is the weight

associated with classifier k. When only SVM classifiers are used and Kk(Oi,Oj) is the kernel
associated with classifier k the decision may be expressed as

S(Ov, s) =
K
∑

k=1

βk

[

N
∑

i=1

α
(s)
ik y

(s)
i Kk(Oi,O

v) + b
(s)
k

]

(6.2)

where α
(s)
k and b

(s)
k are the dual variables and bias for classifier k trained to discriminate

speaker s. Score-fusion is most effective when the classifiers used are complementary. This is
usually achieved by combining a diverse range of classifiers.

6.1.1.1 Logistic regression

Various forms of post-classifier may be used to train an appropriate score-weighting. For
example, an additional SVM may be trained using the individual scores obtained from clas-
sifying an auxiliary dataset. A commonly used post-classifier for score-fusion is logistic re-
gression [158]. Logistic regression is normally used to train a set of scores to approximate a
log-odds ratio between two classes. For the case of speaker-verification the prior likelihood of
a particular test utterance belonging to a true speaker P (ωtar) is often known. As this may
differ from the training distribution, the fused-scores are instead usually trained to resemble
a log-likelihood ratio.

S(O, s;β) ≈ log
p(S(O, s;β);Htar)

p(S(O, s;β);Hnon)
(6.3)
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Figure 6.1: Score-fusion: a distinct classifier is trained using each kernel. The final score is
then determined by combining the classifier outputs using a post-classifier.

figures/dyncom-class.eps


CHAPTER 6. DYNAMIC KERNEL COMBINATION 97

where Htar is the hypothesis that the score was emitted by the target speaker and Hnon is the
hypothesis that the score was actually emitted by an imposter. A suitable set of score-weights
may be obtained by maximising the following optimisation function [22].

FLR(β, P (ωtar)) =
P (ωtar)

Ntar

Ntar
∑

i=1

log(1 + e−S(Oi,s;β)−logitP(ωtar)) (6.4)

+
1 − P (ωtar)

Nnon

Nnon
∑

i=1

log(1 + eS(Oi,s;β)+logitP(ωtar))

where Ntar and Nnon are the number of target and imposter trials in the training set respec-
tively. logitP(ωtar) is the prior log odds given by

logitP(ωtar) = log
P(ωtar)

1− P(ωtar)
+ log

Cmiss

Cfalse−alarm
(6.5)

where Cmiss and Cfalse−alarm are the costs associated with a miss and false-alarm respectively.
FLR(β, P (ωtar)) can be efficiently minimised using projected-gradient schemes. A benefit of
logistic regression compared to other schemes is that the scores obtained are well-calibrated.
For a given set of costs an optimal threshold bLR may be determined. This is simply the
negative of equation 6.5.

bLR = − log
P (ωtar)

1 − P (ωtar)
− log

Cmiss

Cfalse−alarm
(6.6)

Thus, when β is obtained using logistic regression, the optimal classifier for a particular set
of costs, Cmiss Cfalse−alarm, is given by equation 6.7.

S(Ov, s;β) − bLR

accept
>
<

reject

0 (6.7)

6.1.2 Kernel combination
For kernel-based classifiers, an alternative combination scheme is to to combine systems at
the kernel level. Given a set of K kernels, {K1(Oi,Oj), . . . , KK(Oi,Oj)}, a combined kernel
may be defined as the weighted sum of the individual kernels. The combined kernel has this
form.

K(Oi,Oj ;β) =
K
∑

k=1

βkKk(Oi,Oj) (6.8)

To ensure that the resultant kernel function is positive semi-definite, the weights are con-
strained such that βk ≥ 0 ∀k. By applying the operations described in section 2.2.6 this ap-
proach can be shown to yield valid kernel functions. An additional constraint,

∑K
k=1 βk = 1,
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Figure 6.2: For kernel combination a single classifier is trained using a kernel formed by the
weighted sum of K distinct kernels. Kernel combination using three kernels is depicted in the
figure.

figures/dyncom-kern.eps
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is also typically applied. Combining kernels using equation 6.8 is equivalent to a weighted
concatenation of the associated feature spaces.

φ(O;β) =







√
β1φ1(O)

...√
βKφK(O)






(6.9)

A single SVM classifier is then trained using the kernel defined in equation 6.8. This
process is illustrated in figure 6.2. The score S(Ov, s;β) associated with an utterance Ov is
given by

S(Ov, s;β) =
N
∑

i=1

α
(s)
i y

(s)
i

K
∑

k=1

βkKk(Oi,O
v) + b(s) (6.10)

Like score-fusion, kernel combination will provide gains only when complementary kernels are
used. Schemes for learning kernel weights from data are discussed in section 6.2

6.1.3 Relationship between score-fusion and kernel
combination

Kernel combination and score-fusion are closely related. This can be observed by comparing
equations 6.2 and 6.10. Both equations have a similar form and will yield identical scores
when αk and bk are tied over all classifiers during score-fusion. In practice, αk and bk will
vary between classifiers. Since there is little comparison of these schemes in the literature, it
is interesting to briefly compare the optimisation functions associated with score-fusion and
kernel combination. Dropping the reference to the target speaker s, the combined optimisation
for score-fusion in the unweighted case may be expressed as

min

K
∑

k=1

(

1

2
〈wk,wk〉 + C

N
∑

i=1

ξik

)

(6.11)

w.r.t. w1, . . . ,wK , b1, . . . , bK , ξ1, . . . , ξK

s.t. yi (〈wk,φk(Oi;λ)〉 + bk) ≥ 1 − ξik ∀i ∀k

ξik ≥ 0 ∀i ∀k

where φk(O;λ) is the feature space and ξk is the training error associated with classifier k.
For kernel combination, the combined kernel in the unweighted case is defined as

K(Oi,Oj) =
K
∑

k=1

Kk(Oi,Oj) (6.12)

The primal form optimisation problem that corresponds to an SVM with this kernel is
given by
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min
1

2

K
∑

k=1

〈wk,wk〉 + C
N
∑

i=1

ξi (6.13)

w.r.t. w1, . . . ,wK , b, ξ

s.t. yi

K
∑

k=1

〈wk,φk(Oi;λ)〉 + b ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

The relationship between the optimisation functions associated with score-fusion and
kernel combination can be expressed more clearly through a substitution of variables. By
introducing new variables bk and ξ1k, . . . , ξNk for each kernel k such that b =

∑K
k=1 bk,

ξi =
∑K

k=1 ξik and ξik ≥ 0 ∀i∀k, the optimisation problem defined by equation 6.13 can
be expressed in a similar form to equation 6.11

min
K
∑

k=1

(

1

2
〈wk,wk〉 + C

N
∑

i=1

ξik

)

(6.14)

w.r.t. w1, . . . ,wK , b1, . . . , bK , ξ1, . . . , ξK

s.t. yi

K
∑

k=1

(〈wk,φk(Oi;λ)〉 + bk) ≥ 1 −
K
∑

k=1

ξik ∀i

K
∑

k=1

ξik ≥ 0 ∀i

The optimisation functions 6.11 and 6.14 differ only in the constraints. The constraints for
score-fusion are more restrictive since each example must satisfy a separate margin constraint
for each kernel. For kernel combination, individual terms associated with each kernel in the
constraint may be violated if on average the example lies outside the margin. One consequence
of this is that kernel combination may generalise more effectively than score-fusion schemes
when training errors are made by individual classifiers.

For case when each score/kernel is individually weighted, and the weights are fixed during
training, the relationship between score-fusion and kernel-combination is similar. Since each
classifier is trained independently, the score-fusion problem in the weighted case has the same
form as equation 6.11. Similarly, by redefining b as b =

∑K
k=1

√
βkbk, the weighted primal

optimisation problem for kernel combination can be expressed in a form that has the same
objective function as equation 6.14 and a modified margin constraint given by

yi

K
∑

k=1

√

βk (〈wk,φk(Oi;λ)〉 + bk) ≥ 1 −
K
∑

k=1

ξik (6.15)

Thus, the effect of the kernel weights is to adjust the relative importance of each margin term
in determining whether the constraint is satisfied. However, as in the unweighted case, for
score-fusion a separate margin constraint must be satisfied for each kernel.
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6.2 Multiple kernel learning
Learning a suitable set of kernel weights {β1, . . . , βK} for kernel combination is known as the
multiple kernel learning (MKL) problem [8]. One approach to solving the MKL problem is to
select kernel weights that reduce the cross-validation error on some development dataset. This
could be achieved by conducting a grid search over all possible weightings and selecting the
weights that minimise the Equal Error Rate. In this thesis, this criterion is termed minEER.
Unfortunately this approach is generally impractical for anything other than pairwise kernel
combination. However, in cases where calculating the minEER kernel weights is feasible this
metric can provide an upper bound for the gains that can be achieved using other criteria to
select an appropriate set of kernel weights.

6.2.1 Maximum-margin MKL
An efficient approach to MKL was developed in [188] and extended in [168]. Here the kernel
weights are incorporated into the standard SVM objective function. For a set of N utterances
O = {O1, . . . ,ON} each with associated label yi ∈ {−1, 1}, the optimal set of weights are
those that maximise the margin.

min
1

2

K
∑

k=1

1

βk
〈wk,wk〉 + C

N
∑

i=1

ξi (6.16)

w.r.t. β,wk, b, ξ

s.t. yi

(

K
∑

k=1

〈wk,φk(Oi;λ)〉 + b

)

≥ 1 − ξi ∀i

ξi ≥ 0 ∀i, βk ≥ 0 ∀k,
K
∑

k=1

βk = 1

where wk are the primal SVM weights associated with kernel k and b, ξ and C are the
standard SVM bias, slack vector and regularisation term. In this formulation βk is subsumed
into the definition of the primal weights and hence does not directly appear in the margin
constraint1. The primal weight vector can be expressed in terms of the dual variables as

wk =
N
∑

i=1

αiyiβkφk(Oi;λ) (6.17)

There are a number of issues to address when applying this form of MKL directly to speaker
verification.

1By defining ŵk = wk/
√

βk, an equivalent primal form may be obtained that includes the kernel weights
in the constraints only. Here the objective function becomes min 1

2

PK

k=1 〈ŵk, ŵk〉+C
PN

i=1 ξi and the margin

constraints become yi

“

PK

k=1

√
βk 〈ŵk,φk(Oi;λ)〉 + b

”

≥ 1 − ξi ∀i. This is the form used in section 6.1.3.
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6.2.1.1 Regularisation term

In equation 6.16, an l1-norm constraint is applied to the kernel weights via the sum-to-
one constraint. A known consequence of this is to introduce a tendency towards sparse
solutions [168]. For a given set of kernels, there is no guarantee that the level of sparsity will
be optimal. One solution is to incorporate a regularisation term R into the objective function
to allow the user to control the level of sparsity. A suitable form of regularisation is

R = ζ
K
∑

k=1

(

βk − 1

K

)2

(6.18)

= ζ

(

K
∑

k=1

β2
k − 2

K

[

K
∑

k=1

βk

]

+
1

K2

[

K
∑

k=1

1

])

(6.19)

= ζ

(

K
∑

k=1

β2
k − 1

K

)

(6.20)

due to the sum-to-one constraint on the kernel weights. Since the optimal solution is inde-
pendent of any constant terms in the objective function, R = ζ

∑K
k=1 β2

k may be used instead.
This allows the same form of regularisation term irrespective of K. Here ζ is an empirically
set constant. For positive values of ζ the effect of this form of regularisation is to drive to-
wards a uniform set of weights. When ζ is negative the solution will tend to be sparse and
the objective function will perform kernel selection. Although an additional parameter has
been introduced, an appropriate value for ζ may be obtained through cross-validation even
when the number of kernels is large. Note that only a single value needs to be estimated,
irrespective of the number of kernels.

6.2.1.2 Cross-speaker tying

In most SVM-based speaker verification systems, such as [22, 30], a distinct set of SVM
parameters is trained for each speaker. However, the amount of enrollment data available
per speaker is typically limited. Hence, learning a set of speaker-dependent kernel weights in
addition to the SVM parameters may lead to over-training. One way to obtain a more robust
set of weights is to tie β over all enrolled speakers. This can be achieved by redefining the
MKL objective function to sum over all speakers, while maintaining a separate set of margin
constraints for the enrollment data associated with each speaker.

6.2.1.3 Dynamic range normalisation

The form of objective function given in equation 6.16 is biased towards those kernels for which
the average magnitude of the associated feature vectors is greatest. Under a maximally non-
committal kernel metric, this corresponds to the kernels for which the associated score space
has the greatest dimensionality. It is therefore important that the kernel function includes
some form of dynamic range normalisation. One option is spherical normalisation, described
in section 2.2.6, where each feature vector is mapped onto the surface of a unit sphere. An
alternative approach is to perform normalisation at the kernel level. This may be achieved
by replacing

Kk(Oi,Oj) →
1

Fk

Kk(Oi,Oj) (6.21)
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where Fk is the dimensionality of φk(O;λ).

6.2.1.4 Objective function

The maxMargin MKL criterion used in this thesis includes a regularisation term and cross-
speaker tying of kernel weights. It is defined by the following objective function.

min
S
∑

s=1





1

2

K
∑

k=1

1

βk

〈

w
(s)
k ,w

(s)
k

〉

+ C
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∑

i=1

ξ
(s)
i



+ ζ
K
∑
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β2
k (6.22)

w.r.t. β,wk, b, ξ

s.t. y
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i ;λ)

〉
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≥ 1 − ξ
(s)
i ∀i ∀s

ξ
(s)
i ≥ 0 ∀i ∀s, βk ≥ 0 ∀k,

K
∑

k=1

βk = 1

where wk = {w(1)
k , . . . ,w

(S)
k }, b = {b(1), . . . , b(S)} and ξ = {ξ(1), . . . , ξ(s)}.

Equation 6.22 may be efficiently optimised by a similar approach to that used in [168].
First, an equivalent constrained optimisation problem is defined.

min β

∑S
s=1 J(s,β) + ζ

∑K
k=1 β2

k (6.23)

s.t. βk ≥ 0 ∀k (6.24)
∑K

k=1 βk = 1

where J(s,β) is the optimal value of the objective function associated with an SVM with the
kernel defined by equation 6.8 and fixed kernel weights β after training on data associated
with speaker s.

J(s,β) = max
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α
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i α
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w.r.t. α(s)

s.t.
N
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α
(s)
i y

(s)
i = 0 (6.26)

0 ≤ α
(s)
i ≤ C ∀i

where K(Oi,Oj ,β) is the combined kernel function, defined by equation 6.8, for a fixed set
of kernel weights β. A projected-gradient scheme can then be used to optimise equation 6.23.
At each iteration J(s,β) can be estimated using a standard efficient SVM implementation
such as [94]. The derivatives of J(s,β) evaluated at β are given by [168].

∂J(s,β)

∂βk
= −1

2

N
∑

i,j=1

αiαjy
(s)
i y

(s)
j Kk(Oi,Oj) (6.27)



CHAPTER 6. DYNAMIC KERNEL COMBINATION 104

6.3 Derivative and parametric kernel combination
In order to achieve gains by combining kernels, it is necessary to select kernels whose associated
feature spaces express complementary features. In this following sections two general classes of
dynamic kernel are defined, parametric kernels and derivative kernels. Many of the dynamic
kernels described in chapter 3 can be placed within one of these two classes. Derivative
and parametric kernels are closely related and under certain conditions, described here, the
features obtained can be shown to be identical. When these conditions are avoided, kernel
combination may be applied to improve system performance.

6.3.1 Parametric kernels
Parametric kernels are a form of dynamic kernel where the feature space consists of a set
of parameters λ associated with a generative model. A variable-length utterance is mapped
to a fixed-dimensional feature representation by training a generative model to represent the
utterance and then concatenating the model parameters into a feature vector. Hence the
location of an utterance within the feature space is determined, for example, by maximum
likelihood parameter estimates given the verification utterance Ov. Thus

φλ(O
v;λ) = [λ∗] , λ∗ = argmax

λ

{log p(Ov;λ)} (6.28)

where the notation φλ(O;λ) indicates the score space associated with a parametric kernel.
The notation φλ(O;λ) implies that the parametric feature vector is dependent on the current
value of the generative model parameters. This is not true when ML estimates are used.
However, for other parameter estimation schemes, such as MAP adaptation, this may be the
case. One property of this form of kernel is that the derivative with respect to the parameters
of the generative model is zero when differentiated at the ML estimate, i.e.

∇λ log p(Ov;λ)
∣

∣

∣

λ∗

= 0 (6.29)

The precise nature of the parametric kernel is determined by the generative model used to
represent the speaker. One parametric kernel that has been successfully used for speaker
verification is the GMM-supervector kernel [28], described in section 3.3.1. In this kernel, the
feature space is formed from the concatenated means of an utterance-dependent GMM. As
there are typically not enough observations per component to robustly estimate the parame-
ters, MAP adaptation, using the UBM as a prior, is used instead. Here

λ∗ = argmax
λ

{log p(Ov;λ) + log p(λ)} (6.30)

where p(λ) is based on the UBM parameters. In this case the property in equation 6.29
will not be satisfied. For a GMM the ML or MAP estimate has no closed form solution.
Instead, as described in chapter 4, iterative approaches based on EM are commonly used. For
component m the MAP-adapted mean at iteration k is given by

µ(k)
m =

∑T
t=1 P (θt = m|ot;λ

(k−1))ovt + τmapµUBM
m

∑T
t=1 P (θt = m|ot;λ(k−1)) + τmap

(6.31)
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where µUBM
m is the UBM mean vector associated with component m (which is also used as

the initial parameters µ
(0)
m ). If k iterations of mean-only MAP adaptation are performed the

feature space for the GMM-supervector kernel is

φλ(O
v;λ(k)) =







µ
(k)
1
...

µ
(k)
M






(6.32)

In section 3.3.1, a metric is defined such that the kernel function is related to an upper bound
on the KL divergence between the two utterance-dependent models. This normalises each
component mean by the associated mixture weight and the inverse of the covariance matrix.
However, when a maximally non-committal metric is applied, these terms will be normalised
yielding the form in equation 6.32.

Parametric kernels may be based around alternative forms of generative model. The
MLLR [189] and CMLLR [58] kernels, described in section 3.2.6, are examples of parametric
kernels where the generative model includes an utterance-dependent linear transform. In
both cases the feature space consists of the concatenated transform parameters only. Other
forms of parametric kernel include the CAT kernel [211], described in section 3.2.7, and the
factor-analysis based kernel used in [47].

6.3.2 Derivative kernels
Derivative kernels provide an interesting contrast to parametric kernels. Rather than using
model parameters as the feature space, the partial derivatives of the utterance log-likelihood
with respect to individual model parameters are used instead. The set of partial derivatives
form a sufficient statistic for the utterance log-likelihood. They are therefore a natural choice
for an utterance-dependent fixed-dimensional feature set. For a set of model parameters, λ,
the derivative feature space generated from a verification utterance Ov has the form

φ∇(Ov; λ̂) =

[

∇λ log p(Ov;λ)
∣

∣

∣

λ̂

]

(6.33)

where φ∇(Ov; λ̂) denotes the score space associated with a derivative kernel and λ̂ is the
model parameter value at which the derivative is evaluated. Derivative kernels may also
include higher order derivative terms in the feature space. This is not possible for parametric
kernels. However, generally only first order derivatives have been found to contain useful
discriminative information [118]. Some derivative kernels, such as the log-likelihood ratio
kernel [185], described in section 3.2.4, also include a log-likelihood ratio term in the score
space. This is effectively a form of equally weighted kernel combination. The probabilistic
sequence kernel [120], described in section 3.2.5, can be interpreted as a form of derivative
kernel. Here the features consist of derivatives of the utterance log-likelihood with respect to
GMM component priors.

When using derivative kernels it is necessary to define the point around which the deriva-
tive kernel feature space will be evaluated. Various points are possible. For example, the
point may be based on the UBM parameters. This is similar to using the Fisher kernel de-
scribed in section 3.2.3. Another possibility is to use speaker-specific parameters associated
with a speaker-dependent model. As a GMM is typically used, iterative approaches are used
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to obtain the speaker-specific parameters. To more clearly specify the iteration at which the
derivative is evaluated, log p(Ov;λ(k)), will be used for the feature space evaluated at the kth

iteration.
The nature of derivative kernels is again determined by the generative model used to

represent a speaker. Derivatives with respect to the means of the GMM can be used [205].
Here elements of the feature space have the form

1

ρm
∇µm log p(Ov;λ)

∣

∣

∣

λ(k)
=

1

ρm

T
∑

t=1

P (θt = m|ovt ;λ(k))Σ−1
m (ovt − µ(k)

m ) (6.34)

Equation 6.33 includes an optional duration-normalisation term ρm. This is important if the
utterances in the dataset vary greatly in duration. ρm may be set to the number of frames
T in Ov. Alternatively, the derivatives may be normalised by the component occupancy,
ρm =

∑T
t=1 P (θt = m|ovt ;λ). This approach is only suitable when Ov is of sufficient duration

to ensure that all components are observed in the data. If ρm = 0 for some component m,
the associated features will be undefined.

Given a generative model and associated subset of model parameters both a parametric
kernel and derivative kernel can be simply defined. This can be used to motivate new kernels
to apply to the SV task. For example, derivative kernels could be defined based around the
parameters of a CAT, MLLR or factor analysis system.

6.3.3 Relationship between parametric and derivative kernels
It is interesting to briefly contrast derivative kernels with parametric kernels. From equa-
tion 6.29, the derivative of the parametric kernel features at the ML-estimate of the model
parameters will be zero for the verification data Ov. In general this will not be the case for the
derivative kernel. Instead the features of the derivative kernel will be zero for the enrollment
data if the ML-estimate is used as the point to specify the derivative.

λ̂e = argmax
λ

{log p(Oe;λ)}, φ∇(Oe; λ̂e) = 0 (6.35)

In addition derivative kernels commonly use a length normalisation term, ρm = T . This is
not necessary for parametric kernels, where there is an implicit normalisation for the lengths,
for example the normalisation term in equation 6.31. A consequence of this is that when
the posterior probability of a component is zero, ML-based parametric kernels are undefined,
whereas derivative kernels tend to zero.

Both parametric and derivative kernels have been used successfully for speaker-verification [28,
204]. The respective feature spaces can express different types of speaker-discriminant infor-
mation and thus may be complementary. It is useful to establish under what conditions the
two forms of kernel are the same, as this yields information as to how to make the features
complementary to one another. The parametric kernel feature space at the kth iteration of
training can be expressed in the form of a gradient ascent update.

φλ(O
v;λ(k+1)) =

[

λ(k) + η∇λ log p(Ov;λ)
∣

∣

∣

λ(k)

]

(6.36)
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where η is the learning rate1. This may then be expressed as a function of a derivative feature
space evaluated at λ(k)

φλ(O
v;λ(k+1)) =

[

λ(k) + ηφ∇(Ov;λ(k))
]

(6.37)

The two classes of dynamic kernel are thus related to each other. Compared to the derivative
kernel feature space, the parametric kernel features includes a term λ(k) which introduces a
translation of the feature space. If a kernel that is invariant to translation is used, such as a sta-
tionary kernel [72], this will have no effect. Note that stationary kernels, such as the Kullback-
Leibler divergence kernel [150], have the general form K(Oi,Oj) = Q (φ(Oi) − φ(Oj)) where
Q(·) is the function that defines the kernel.

Even if a stationary kernel is used, it is not sufficient to ensure that the two sets of
features will be identical. Equation 6.37 contains a learning rate η. Using an appropriate
metric, the kernels will not depend on the learning rate if the learning rate is independent of
the observation sequence since this dependency is removed by the metric (A maximally non-
committal metric has this property but is not stationary). However this is not generally the
case. To illustrate this consider the situation where the parametric kernel is obtained using
an EM-based ML-estimation of the mean. At iteration k + 1 the mean parametric feature
space for component m can be expressed as

µ(k+1)
m = µ(k)

m +

(

ρmΣm
∑T

t=1 P (θt = m|ovt ;λ(k))

)

[

1

ρm
∇µm log p(Ov;λ)

∣

∣

∣

λ(k)

]

(6.38)

EM is thus equivalent to gradient ascent using the derivative features with a learning rate
that depends on the total component occupancy for that observation sequence as well as
the length of the observation sequence (when length normalisation is being used)2. If the
derivative features are normalised by the component occupancy rather than the total duration
then η = Σm, which is independent of the observation sequence3.

It is more common to use MAP adaptation to successively update models. When the
MAP prior µprior equals µ(k), this update is equivalent to gradient ascent with the following
learning rate.

η =

(

ρmΣm
∑T

t=1 P (θt = m|ovt ;λ(k)) + τmap

)

(6.39)

If both parametric and derivative features are to be used, it is important that the features
differ. This can be achieved using a non-stationary kernel, evaluating the derivative terms at
a different point to the parametric features (effectively using a different number of iterations),
or, when ρm = T , simply using either EM updates or MAP adaptation with a low value of
τmap. Combinations of these may make the features more complementary.

1The learning rate in equation 6.36 has the form of a diagonal matrix. This allows the learning rate
associated with each element of the feature vector to be set independently.

2The fact that EM always has a component in the right direction, and hence can be expressed in the form
of a gradient ascent update, is a well known property of the EM algorithm.

3Since Σm is typically diagonal, the associated learning rate η will also be diagonal.
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6.3.4 Combination of generative model structures
For dynamic kernels that incorporate a generative model, such as parametric or derivative
kernels, an appropriate form of model must be selected. If a GMM is used, the number
of Gaussian components must be chosen. This is a trade-off between improving the ability
of the model to approximate the distribution over the acoustic space and ensuring that the
model parameters can be robustly estimated with the available data. A suitable model size is
typically chosen by selecting a value that reduces the error rate on some development dataset.
As the trade-off is data-dependent this strategy may not be optimal.

If a suitable scheme for combining classifiers is available, then other strategies may be
used. Rather than selecting a single form of model, a series of dynamic kernels can instead
be defined, each based on different model structures. The associated classifiers can then be
combined. Although this approach is more computationally expensive it has two advantages.
Firstly, there is no need for prior knowledge about the task in order to select a suitable model
size. Secondly, rather than making a single trade-off, the combined classifier can make use of
features extracted from a range of different model structures, potentially leading to gains.

6.4 Summary
This chapter has examined the combination of multiple dynamic kernels to improve the per-
formance of an SV system. The standard approach for classifier combination is to fuse the
output scores. Here an alternative approach was considered, suitable for SVMs, where clas-
sifiers are combined at the kernel level. In this chapter, a number of modifications were
proposed for a recently developed maximum-margin based scheme for learning a suitable ker-
nel weighting. The scheme has a known tendency towards sparse weightings, which may not
be optimal for speaker verification. A regularisation term was proposed allowing the user to
tune the sparsity by adjusting a single parameter. Tying of kernel weights over all speakers
was also applied to increase the robustness of the parameter estimates.

In order to obtain gains using kernel-combination it is important that the kernels used
are complementary. In this chapter it was shown that many existing dynamic kernels can be
placed into one of these two classes, parametric kernels, where the feature space consists of
parameters from the utterance-dependent model, and derivative kernels, where the derivatives
of the utterance log-likelihood with respect to parameters of a generative model are used. The
two sets of features produced have different properties and may be complementary. However,
under certain conditions, discussed in section 6.3.3, the feature spaces produced can be shown
to be identical. By avoiding these conditions a complementary set of kernels may be obtained.



CHAPTER 7
Static and Dynamic
Kernel Combination

One method of improving the performance of an SVM-based speaker verification sys-
tem is to combine complementary kernels. In chapter 6, new kernels were formed by

combining the features of multiple dynamic kernels. This chapter examines an alternative
approach where dynamic kernels are combined with traditional static kernels designed for
fixed-dimensional data. Two combination schemes are considered in this chapter. In the first
approach, feature-level combination, fixed-dimensional feature vectors are obtained from each
utterance using a dynamic kernel. Then, rather than defining the kernel function using an
inner product, a static kernel function is applied instead. This approach has previously been
found to yield gains, for example in [18].

For the second approach, observation-level combination, instead of calculating dynamic
features in the original observation space, these features are calculated in the space associated
with a static kernel defined between pairs of observations. Verification may then be based on
higher order observation level features while exploiting a dynamic kernel to obtain a fixed set
of features. This combination strategy is implicitly used by the GLDS kernel [24] to combine
static kernels with simple ‘averaging’ dynamic kernels. In this chapter, this approach is
extended to more complex forms of dynamic kernel based on generative models.

In general, it is not possible to explicitly train a generative model in the feature space
associated with a static kernel. However, this chapter shows how such a model can be approxi-
mated allowing generalised versions of both derivative and parametric kernels to be computed.
Static and dynamic kernel combination can potentially yield extremely high-dimensional fea-
ture spaces, which may lead to overtraining. In the final section of this chapter two schemes
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are proposed to handle these conditions. The first scheme involves splitting training utterances
and in the second scheme the classifier parameters are tied over multiple target speakers.

7.1 Static and dynamic kernels
The use of kernel functions to allow linear classifiers to yield non-linear decision bound-
aries was described in chapter 2. Many kernels, including the polynomial and Gaussian
kernels [181], introduced in section 2.2.6, are examples of static kernels. They can only han-
dle data of fixed dimensionality. In contrast, speech utterances are typically parameterised as
variable-length sequences of observation vectors O = {o1, . . . ,oT }. This has led to the use of
dynamic kernels, introduced in chapter 3. These kernels map variable-length sequences into
a fixed dimension feature space in which the inner product can be computed.

As well as mapping variable-length sequences to a fixed-dimensional representation, dy-
namic kernels also share an important requirement with static kernels. The kernel should map
the input into a feature space where the classes may easily be separated. It is therefore of in-
terest to examine whether combining dynamic kernels with static kernels can improve system
performance. In chapter 6, new kernels were defined by combining the features expressed by
multiple dynamic kernels. Since static kernels cannot be applied directly to variable-length
data an alternative approach is used in this chapter. Static and dynamic expansions are ap-
plied alternatively to map each utterance into a fixed, high-dimensional feature space. As in
previous chapters, the notation k(oi,oj) and ψ(o) is used to indicate the kernel function and
score operator associated with a static kernel. K(Oi,Oj) and φ(O) is reserved for dynamic
kernels.

Static and dynamic kernels may be combined in several ways. Since static kernels can
only handle fixed-dimensional data, two natural points to apply a static expansion are at the
level of individual observations, ψ(o), and to the fixed-dimensional set of features obtained
from a dynamic kernel, ψ(φ(O)). These approaches, shown in figure 7.2, are discussed
in the following two sections. While it is also possible to combine these approaches and
perform multiple static expansions within the same kernel, this approach is likely to suffer from
overtraining due to the extremely large feature spaces obtained and hence is not considered
here.

7.2 Feature-level combination
Many forms of dynamic kernel, including the families of derivative and parametric kernels
discussed in chapter 6, are explicitly defined in terms of the associated feature space. A
kernel function between two utterances Oi and Oj is then evaluated by explicitly mapping
each utterance O into the feature space using a dynamic score operator φ(O), and calculating
the inner product between the mapped feature vectors. This approach yields dynamic kernels
of the form.

K(Oi,Oj) = 〈φ(Oi),φ(Oj)〉 (7.1)

Rather than using the inner product, it is possible to instead apply a suitable static kernel
function, k(oi,oj), between the mapped feature vectors φ(O). By applying the kernel oper-
ations introduced in section 2.2.6 this approach can be shown to yield valid kernel functions.
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Figure 7.2: Observation and feature-level combination of dynamic and static kernels

figures/staticdynamic.eps
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Thus a new dynamic kernel may be defined that has the form

K(Oi,Oj) = k(φ(Oi),φ(Oj)) (7.2)

This approach yields more complex feature spaces, which may express useful information for
discriminating between speakers. For example, when a polynomial static kernel is applied to a
parametric or derivative dynamic kernel based on GMMs, the resulting features will combine
information obtained from multiple Gaussian components.

For dynamic kernels it is common to explicitly define a suitable metric, for example one
that is maximally non-committal, between feature vectors. This yields dynamic kernels of
the form.

K(Oi,Oj) = φ(Oi)
TG−1φ(Oj) (7.3)

where G−1 defines the metric. However, for many forms of static kernel, including polynomial
and Gaussian kernels, the nature of the kernel function implicitly defines the metric used.
Thus, when static and dynamic kernels are combined using equation 7.2 it is difficult to
explicitly define a suitable metric in the combined feature space. When an explicit metric is
required, for example to normalise the dynamic features, this may be approximated using a
metric defined in the original dynamic feature space by applying a projection to each feature
vector. Here the combined kernel has the form.

K(Oi,Oj) = k(Pφ(Oi),Pφ(Oj)) (7.4)

where P is a projection defined by G−1 = P TP . Many forms of derivative and parametric
kernel, such as the Fisher [90] or GMM-supervector kernels [28], are typically implemented
using diagonal metrics. In this case equation 7.4 can be calculated efficiently.

Feature-level static and dynamic combination is relatively simple to implement and has
been applied in systems such as [18]. Dynamic kernels may also implicitly include static
approaches. For example, the non-linear GMM-supervector kernel [45], introduced in sec-
tion 3.3.2, is motivated as an exponentiated KL divergence between distributions. However,
the form of kernel obtained is equivalent to applying a Gaussian static kernel to the features
obtained from a standard GMM-supervector kernel.

7.3 Observation-level combination
An alternative combination strategy for static and dynamic kernels is to apply a static kernel
at the frame level. Here, instead of computing an inner product between pairs of frames, a
static kernel function is applied instead. The GLDS kernel [24], introduced in section 3.2.1,
is an example of this approach. Here each observation ot is initially mapped into a static
feature space ψ(ot). A duration-independent, fixed-dimensional vector is then obtained by
taking the mean of the expanded observations φ(O) = 1

T

∑T
t=1ψ(ot). The kernel function is

defined by taking the inner product of the means and is equivalent to

K(Oi,Oj) =
1

TiTj

Ti
∑

t=1

Tj
∑

τ=1

k(oit,ojτ ) (7.5)
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where k(ot,os) = 〈ψ(ot),ψ(oτ )〉. Thus the GLDS kernel may be interpreted as combining a
static kernel at the frame level with a simple dynamic kernel that averages over all frames.
Standard forms of static kernel such as polynomial or Gaussian kernels may be applied. When
k(oi,oj) is linear the GLDS kernel may be simplified to

K(Oi,Oj) = 〈µi,µj〉 (7.6)

where µi is the mean of the observations inOi. Thus, in the linear case the GLDS kernel can be
interpreted as a form of mean-based parametric kernel, using single component GMMs. One
disadvantage to using this form of kernel is that for static kernels that do not have an explicitly
defined feature space, such as the Gaussian kernel, the kernel function must be calculated
between all pairs of observations. For longer utterances this can be computationally expensive.
In the following sections higher order kernels are derived based on derivative and parametric
kernels. Unlike the GLDS kernel these can be efficiently computed for long utterances.

7.3.1 Generalised derivative kernel
The GLDS kernel exploits a static kernel to explicitly map each observation into a more sepa-
rable feature space. However, by taking a direct sum over all observations useful information
may be ‘averaged out’. Also, the resultant features may lack robustness to intermittent noise
or long regions of silence. In contrast, generative kernels, such as the derivative kernel, pro-
vide a well-motivated mapping to a fixed-dimensional set of features. However typically only
a simple inner product is calculated in the dynamic feature space.

The generalised derivative kernel (GDK) combines these two approaches. Here, the fea-
tures are derivatives with respect to the parameters of a model, p(Õ; λ̃), defined in the feature
space associated with a static kernel. Here p(Õ; λ̃) models the likelihood of a sequence of
expanded observations, Õ = {ψ(o1), . . . ,ψ(oT )}. For GMMs, derivatives with respect to
each feature space component mean are defined by

∇µ̃m
log p(Õ; λ̃)

∣

∣

∣

λ̃

=
T
∑

t=1

Σ̃−1
m P (θt = m|ψ(ot); λ̃)(ψ(ot) − µ̃m) (7.7)

where µ̃m and Σ̃ are the mean and covariance matrix respectively associated with component
m of the feature space GMM. P (θt = m|ψ(ot); λ̃) is the posterior probability that ψ(ot)
was emitted by component m of this GMM. When the feature space consists of only mean
derivatives the kernel function K̃∇(Oi,Oj) associated with the generalised derivative kernel
has the form

K̃∇(Oi,Oj) =
M
∑

m=1

1

ρimρjm

Ti
∑

t=1

Tj
∑

τ=1

P (θt = m|ψ(ot); λ̃)P (θτ = m|ψ(oτ ); λ̃)fm(oit,ojτ )(7.8)

fm(oi,oj) = [ψ(oi) − µ̃m]T Σ̃−1
m G̃−1

m Σ̃−1
m [ψ(oj) − µ̃m] (7.9)

where Ti and Tj are respectively the length of utterances Oi and Oj , and G̃m is the mth block
of a block-diagonal metric G̃ defined in the combined feature space. Here ρim is a duration
normalisation term. This may be equal to the number of frames ρim = Ti or the total
component occupancy ρim =

∑Ti

t=1 P (θt = m|ψ(ot); λ̃). When the static kernel function is
linear, the GDK has the form of a standard GMM mean-based derivative kernel. Alternatively,
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when the model is a single-component GMM with zero mean and unit variance, the GDK has
the form of the GLDS kernel in equation 7.5. Thus both the GLDS and derivative kernels
are special cases of the GDK.

Evaluating equation 7.8 requires training a generative model in the static feature space.
In general, this is not possible and approximations must be used. Two key issues are how to
obtain suitable component posteriors and how to estimate fm(oi,oj). These are discussed in
the following subsections.

7.3.1.1 Component posterior estimation

To calculate equation 7.8, a kernel function must be computed between each pair of obser-
vations. This requires O(T 2) static kernel evaluations and may not be feasible when the
utterances are long. A more efficient approach is to perform a Viterbi alignment of each
observation to a component. Here the kernel function is approximated by

K(Oi,Oj) ≈
M
∑

m=1

1

ρimρjm

∑

t∈S̃im

∑

τ∈S̃jm

fm(oit,ojτ ) (7.10)

where

t ∈ S̃im̂ if m̂ = argmax
m

{

P (θt = m|ψ(ot); λ̃)
}

(7.11)

When the number of frames assigned to each component is roughly equal, this requires only
O(T 2/M) static kernel evaluations. The use of a Viterbi alignments can therefore yield
considerable computational savings. Although counter-intuitive, it is also more efficient to
evaluate equation 7.10 for GMMs with a greater number of components.

Doubling the dimension of each observation, e.g. by duplicating each element and model
parameter, results in a squared decrease in the likelihood of it being generated by each GMM
component. Hence, the posterior probability of the most likely component will increase. A
consequence of this is that as the dimensionality of the feature space increases, GMMs tend
towards hard component alignments. Therefore the approximation used in equation 7.10 will
be more robust when the dimensionality of ψ(o) is large. This is related to an approach used
in [142], where a kernel function is only computed between a frame and its ‘closest’ frame in
the other sequence. Here the generative model is used to identify sets of close frames.

An important issue is how to obtain P (θt = m|ψ(ot); λ̃) without training a generative
model in the feature space. One approach is to use the posteriors or Viterbi alignments from
a model p(O;λ) trained in the observation space. Thus

S̃im ≈ Sim where t ∈ Sim̂ if m̂ = argmax
m

{P (θt = m|ot;λ)} (7.12)

This may yield poor estimates when relative distances between observations differ greatly
between the feature and input spaces.
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7.3.1.2 Static kernel estimation

In equation 7.9, fm(oi,oj) is a function of the feature space variance Σ̃m and the metric
G̃m applied to the derivatives associated with component m. Generally a generative model
cannot be trained in the static feature space, nor the feature space ψ(o) explicitly generated.
Thus it is not possible to obtain these parameters directly, as in the linear case. When
ψ(o) does not have an explicit representation one option is to apply an Incomplete Cholesky
Decomposition to obtain a low-rank approximation to the kernel matrix, as in [135]. In
this work an alternative approach is used. Noting that Σ̃−1

m is independent of O and thus
is normalised under a maximally non-committal metric, here Σ̃−1

m G̃−1
m Σ̃−1

m is approximated
by the identity matrix. This allows standard forms of static kernel to be used and avoids
explicitly estimating Σ̃−1

m and G̃m. This approximation is likely to be more robust when
observations are globally whitened. Here fm(oi,oj) is approximated by

fm(oi,oj) ≈ (ψ(oi) − µ̃m)T(ψ(oi) − µ̃m) (7.13)

For the case when µ̃m represents the ML estimate over a set of background observations
OB = {oB1 , . . . ,oB

T B}, equation 7.13 can be expressed in terms of the static kernel function.

fm(oi,oj) ≈ k(oi,oj) − kµ
m(oi) − kµ

m(oj) + kµµ
m (7.14)

where kµ
m(o) and kµµ

m are defined as

kµ
m(o) =

1

CB
m

∑

t∈SB
m

k(o,oBt ) (7.15)

kµµ
m =

1

(CB
m)2

∑

t,τ∈SB
m

k(oBt ,o
B
τ ) (7.16)

where CB
m is the number of frames inOB aligned with component m. Calculating fm(oi,oj) re-

quires evaluating a static kernel function between each observation and the entire background
dataset. When the number of background observations is large, this may not be feasible. In-
stead, the mean normalisation in the feature space, ψ(o) − µ̃m, can be approximated by a
normalisation evaluated in the observation space ψ(o − µm). Again, when distances vary
greatly between the observation and feature space, this approximation may not be robust. In
this thesis, fm(oi,oj) is approximated by

fm(oi,oj) ≈ k([oi − µm], [oj − µm]) (7.17)

7.3.2 Generalised parametric kernel
Derivative and parametric kernels are closely related and under certain conditions, discussed
in chapter 6, the functions obtained can be shown to be identical. A similar approach may
therefore be used to define a generalised parametric kernel (GPK) where the generative model
is defined in the feature space associated with a static kernel.

If the feature space consists of GMM means only, trained using ML-based EM, then for
each utterance Oi the elements of the generalised parametric feature space associated with
component m is defined by

φ̃gpk
m (Oi) =

[

∑T
t=1 P (θt = m|ψ(oit); λ̃i)ψ(ot)
∑T

t=1 P (θt = m|ψ(oit); λ̃i)

]

(7.18)
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where λ̃i are the parameters of a generative model p(ψ(o); λ̃i), trained in the feature space,
associated with utterance Oi.

As in section 7.3.1, hard component alignments can be obtained for each utterance using a
linear model p(O;λi), trained to represent Oi, and a maximally non-committal metric again
approximated using an identity metric. In this case, an approximation to the GPK kernel
function, K̃λ(Oi,Oj), is obtained that has the form

K̃λ(Oi,Oj) ≈
M
∑

m=1

∑

t∈Sim

∑

τ∈Sjm
k(oit,ojτ )

CimCjm
(7.19)

where Cim is number of frames in the set Sim associated with component m of p(O;λi). This
is similar to equation 7.10 when component-occupancy normalisation is used. If the GDK
is computed using the approximation in equation 7.17, all component alignments estimated
using the same model, and k(oi,oj) is stationary, the two forms of kernel will be identical.

In practice, instead of using ML-based features, parametric features are often obtained
by adapting the parameters of a robust background model p(Õ; λ̃UBM) using MAP. Typically
the parameter estimates λ̃UBM are also used to define the prior distribution. Computing the
MAP estimate requires evaluating a kernel function between each background observation
used to train the prior model, which will usually be infeasible. Alternatively, the parameters
λ̃UBM of a prior defined in the static feature space may be approximated by statically mapped
parameters λUBM defined in the observation space. In this case the GPK has the following
form

Kλ(Oi,Oj) ≈
M
∑

m=1

(

k
map
m

)2
+ k

map

im + k
map

jm +
∑

t∈Sim

∑

s∈Sjm
k(oit,ojs)

(Cim + τmap)(Cjm + τmap)
(7.20)

k
map

im = τmap
∑

t∈Sim

k(oit,µ
UBM
m ) (7.21)

kmapm = τmapµUBM
m (7.22)

7.4 Dealing with limited data
Static and dynamic kernel combination may yield gains if the combined feature space allows
more effective discrimination between speakers. However, when static and dynamic feature
spaces are combined, the resultant feature spaces are often extremely high dimensional. For
speaker verification tasks, utterances typically contain tens of thousands of frames. This is
usually sufficient to allow each feature vector to be robustly estimated. However, each enroll-
ment utterance yields only a single example for SVM training. For many speaker verification
tasks, such as the NIST SRE 2002 task used to evaluated these methods in chapter 8, only
one training utterance is available per speaker. Thus, over-training will often become a sig-
nificant issue. For dynamic kernels where the size of the feature vector can be set by the
user, the optimal number of dynamic features may be smaller when combining with complex
static kernels. For generative kernels, including parametric and derivative kernels, this may be
achieved by using models with fewer Gaussian components. Alternatively, various approaches
may be used to increase the number of SVM training examples per classifier. Two strategies
are described in the following subsections.
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7.4.1 Data partitioning
Before the development of dynamic kernels, several alternative strategies were proposed to
handle the dynamic nature of speech. One approach, used in [203], is to treat each speech
frame as a distinct training utterance. An SVM classifier may then be trained, using a static
kernel, to distinguish between frames extracted from the speech associated with target and
imposter speakers. For test utterances, each frame is then classified independently and the
average of the scores obtained.

S(Ov, s) =
1

T

T
∑

t=1

〈

w,ψ(ovt ,λ
(s))
〉

+ b (7.23)

As described in chapter 4, state-of-the-art SVM-based SV systems typically use dynamic
kernels to handle the variable-length-nature of the speech. Here each utterance is mapped into
a single feature vector, located within the feature space defined by the dynamic kernel. This
approach offers a number of advantages over the frame-level method described above. For
example, generative models may be used to extract high-level structure from each utterance.
For SV, the utterance is also a more natural unit to use, since most causes of inter-session
variability will be constant during a single recording session.

When the number of enrollment utterances per speaker is limited, and high dimensional
feature spaces are used, the SVM classifier parameters may not be robust. Thus, it may
be worth considering approaches that combine these schemes. One approach is to extract
multiple feature vectors from each utterance using a sliding window, applied for static kernels
in [57]. Here a simplified scheme is considered, where each utterance Oi is simply divided
into K partitions of equal length. An SVM training example φ(Oik) is then obtained from
each partition using a dynamic kernel. This process is illustrated in figure 7.3.

Figure 7.3: Data partitioning

During training, a distinct SVM parameter αik is associated with each feature vector
φ(Oik) extracted from utterance Oi. Thus the SVM is able to independently weight features
extracted from different regions of the utterance, potentially yielding a more discriminative
classifier. During test, the effect of data partitioning is dependent on the form of dynamic
and static kernels used. For many dynamic kernels, including the linear GLDS kernel and
GMM mean-based derivative kernels using duration normalisation, the mean of the obtained
feature vectors is equal to the feature vector φ(O) associated with the original utterance.

φ(Oi) =
1

K

K
∑

k=1

φ(Oik) (7.24)

figures/uttsegment.eps
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For dynamic kernels where equation 7.24 holds, the mean of the scores obtained from classi-
fying a partitioned test utterance Ov using a linear kernel can be expressed as

S(Ov, s) =
1

K

K
∑

k=1

〈w,φ(Ov
k, s)〉 + b (7.25)

= 〈w,φ(Ov, s)〉 + b (7.26)

Thus, no gain is obtained from applying data partitioning to the test data. Note that this is
not the case when using non-linear static kernels, HMM-based dynamic kernels, or component-
occupancy based dynamic kernels such as parametric kernels.

A disadvantage to data partitioning is that as the number of partitions is increased, less
frames are used to generate each feature-vector, potentially yielding less robust estimates.
Data partitioning is therefore a trade-off between increasing the number of SVM training ex-
amples and ensuring that for each training example the parameters are robust. Note that for
feature-level combination using generative kernels, it is primarily the number of observations
per model component that determines the robustness of the parameter estimates rather than
the dimension of the combined feature-space. Thus data partitioning will be most appropri-
ate when dynamic kernels based on small generative models are to be combined with high
dimensional static kernels.

7.4.2 Cross-speaker tying
The dominant approach for SVM-based speaker verification is to learn a distinct SVM classi-
fier for each target speaker. Each speaker-dependent classifier is then trained using positive
data obtained from the target-speaker and negative data obtained from competing imposter
speakers. One drawback to this approach is that the amount of available enrollment data per
target speaker is typically limited. Thus the available training set is heavily biased in favour
of imposter speakers, potentially causing generalisation issues.

An alternative approach, that has not previously been applied in the literature, is to
train a single speaker-independent classifier, tied over all target speakers, and use a dynamic
kernel, defined by φ(O;λ(s)), to handle changes in the target speaker. Here the SVM objective
function is given by,

min
1

2
〈w,w〉 + C

S
∑

s=1

N(s)
∑

i=1

ξ
(s)
i (7.27)

w.r.t. w, b, ξ

s.t. y
(s)
i

(〈

w,φ(O
(s)
i ;λ(s))

〉

+ b
)

≥ 1 − ξ
(s)
i ∀i ∀s

ξ
(s)
i ≥ 0 ∀i ∀s

where S is the number of target-speakers, N (s) is the number of (positive and negative)

training examples for speaker s and y
(s)
i = 1 if O

(s)
i is from target-speaker s, otherwise

y
(s)
i = −1. To allow a speaker-independent decision boundary to be trained, it is important

that the dynamic features are dependent on the target speaker identity s. Ideally, the kernel
function will map all utterances associated with the current target speaker to one region of the
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feature space and all imposters to a different region, allowing a speaker-independent decision
boundary to be learned. This is not the case for parametric kernels, where each utterance is
mapped to a consistent point in the feature space, irrespective of the target identity. However,
it is possible to obtain suitable features using generative models. A simple example of such a
feature is the LLR between a model representing the current target-speaker and the UBM.

In this thesis, speaker-independent SVM classifiers are applied using derivative kernels.
Given an enrollment utterance O(s) associated with target speaker s, the derivatives of
log p(O(s);λ) evaluated at the ML estimate λ(s) over the enrollment data will be zero.

∇λ log p(O(s);λ)
∣

∣

∣

λ(s)
= 0 (7.28)

Thus, by taking derivatives around a target-speaker dependent model λ(s), the enroll-
ment data associated with the current target speaker will be mapped to a consistent point
(the origin). Note that equation 7.28 is only approximately true for test data, when multiple
enrollment utterances are available per target speaker or when MAP adaptation is used to ob-
tain λ(s). When the feature space consists of (component-occupancy normalised) derivatives
with respect to the mean-parameters of the target-speaker model and diagonal covariances
are used, the features can be expressed as follows

φ(Oi;λ
(s)) =

1
∑T

t=1 P (θt=m|oit;λ(s))

T
∑

t=1

P (θt=m|oit;λ
(s))Σ(s)−1

m (oit−µ(s)
m ) (7.29)

= Σ(s)−1
m

[

µ(i)
m − µ(s)

m

]

(7.30)

where µ
(i)
m is the utterance-dependent mean obtained by updating λ(s) using a single iteration

of EM to maximise the likelihood of Oi.

µ(i)
m =

∑T
t=1 P (θt = m|oit;λ

(s))ot
∑T

t=1 P (θt = m|oit;λ(s))
(7.31)

The utterance-dependent mean µ
(i)
m is an approximation to the speaker-independent fea-

tures associated with a parametric kernel. Thus, derivative features associated with equa-
tion 7.30 can be interpreted as the (scaled) difference between an utterance-dependent term
and a target-speaker dependent term. Hence the effect of using a target speaker-dependent
generative model, is only to perform fixed translations, or positive scalings, of the feature
space.

This presents an issue. When the only speaker-dependent effect of the kernel is to perform
translations and positive scalings, it is not possible to learn a speaker-independent decision
boundary using a linear static kernel. To explain this, consider the simplified case of two
speakers A and B each with a single utterance of enrollment data. This is shown in figure 7.4
for two dimensional features. In the linear case, it is necessary to place a fixed decision
boundary that classifies both utterances correctly when either A is the target speaker (fig-
ure 7.4(a)) or B is the target speaker (figure 7.4(b)). From the diagram it can be seen that
it is not possible to place a decision boundary such that the utterances are separated and
that the target speaker utterance lies on the positive side of the boundary in both cases. For
example, in figure 7.4(b) both training examples are misclassified. Note that this is not an
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(a) Target speaker A (linear boundary) (b) Target speaker B (linear boundary)
Correct classification Incorrect classification

(c) Target speaker A (non-linear boundary) (d) Target speaker B (non-linear boundary)
Correct classification Correct classification

Figure 7.4: Speaker tying using a derivative kernel with a linear static kernel (a)(b) and
non-linear static kernel (c)(d) for two speakers A and B. It is not possible to place a speaker-
independent linear decision boundary that correctly classifies both (a) and (b). In (b) both
examples are misclassified

issue when tying SVM parameters over multiple noise-conditions for ASR, as in [66, 67], since
the label associated with each utterance is fixed irrespective of the noise-dependent kernel
used. By using a non-linear decision boundary, obtained using a complex static kernel, a
speaker-independent boundary can be used for both target speaker A (figure 7.4(c)) and tar-
get speaker B (figure 7.4(d)). This approach is dependent on the speaker-dependent models
being a good representation of the speech of the target-speaker. When this is not the case,
the positive training data will not be sufficiently aligned to allow a robust decision boundary
to be trained.

An alternative approach to enable a linear speaker-independent classifier to be trained, is
to modify the derivative features to introduce speaker-dependent rotations into the feature
space. This may be achieved by using full-covariance matrices, however these are difficult
to train for large models. An option that requires fewer speaker-dependent parameters is
to introduce an explicit binary normalisation. Here each derivative is multiplied by either
1 or -1 dependent on the direction that the corresponding mean parameter of the target
speaker-dependent model was adapted from the UBM.

figures/tying-linear1.eps
figures/tying-linear2.eps
figures/tying-poly1.eps
figures/tying-poly2.eps
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φm(O;λ(s)) = sign
{

µ(s)
m − µUBM

m

}

(

∇µm log p(O(s);λ)
∣

∣

∣

λ(s)

)

(7.32)

The effect of this to reflect all positive training examples into the same corner of the feature
space enabling a linear decision boundary to be trained. An advantage of this approach over
using non-linear static kernels is that, due to the linear decision boundary, it is less dependent
on the speaker-dependent models being a good representation for the true speaker-dependent
distributions. This may be useful, for example when MAP is used to obtain the speaker-
dependent models.

7.5 Summary
In this chapter, the combination of dynamic and static kernels was examined. Since static
kernels can not be applied directly to speech utterances, the combination approaches discussed
in chapter 6 are unsuitable. Instead, alternative combination schemes must be applied. One
such scheme, described in this chapter, is feature-level combination. Here, a fixed-dimensional
feature vector is obtained from each utterance using a dynamic kernel. Then, instead of taking
an inner product, a static kernel function is calculated between pairs of dynamic feature
vectors.

An alternative combination scheme, observation-level combination, was also used in this
chapter. Here a dynamic kernel function is evaluated on observations mapped into the feature
space associated with a static kernel. It is not usually possible to train generative models
in this space. Hence, many standard forms of dynamic kernel, including parametric and
derivative kernels, can not easily be applied. However, by choosing a suitable metric, and
using approximate component posteriors, these forms of dynamic kernel may be calculated.
In this chapter, two forms of kernel were proposed based on observation-level combination.
These respectively generalise derivative and parametric kernels when a linear static kernel is
applied. Also, both generalise the GLDS kernel when a single component Gaussian is used as
the generative model

The combination of static and dynamic kernels can potentially yield extremely high-
dimensional feature spaces. Thus, when the amount of enrollment data available is limited,
the classifiers may fail to generalise. This issue may be handled in several ways. For example,
the dimension of the feature space may be constrained by using smaller generative models
when applying high dimensional static kernels. Two alternative schemes were also presented,
the first based on partitioning the enrollment utterances and the second based on tying the
classifier parameters over multiple target speakers.



CHAPTER 8
Speaker Verification

Experiments

This chapter presents experimental results for a standard speaker verification task. In
chapters 5, 6 and 7 a number of kernel-based schemes were proposed for improving the

performance of an SVM-based speaker verification system. In this chapter, these schemes are
evaluated and results are presented. The chapter is organised as follows: First, the NIST 2002
SRE one-speaker detection task used to evaluated these approaches is described. Next, initial
results are presented comparing the GMM and SVM-based approaches for speaker verification
introduced in chapter 4. For the SVM-based system both parametric and derivative-based
kernels, defined in chapter 6, are evaluated. These include several of the standard dynamic
kernels for SV introduced in chapter 3.

In section 8.3, the variational dynamic kernels proposed in chapter 5 are evaluated. Two
forms of variational kernel are implemented. The first is derived from the variational approx-
imation to the KL divergence and the second is derived from the variational upper bound.
These are evaluated under different training conditions and compared with standard forms of
dynamic kernel derived from the matched-pair bound. Next, in section 8.4 the combination
of multiple dynamic kernels is examined. Here, multiple SVM-based systems are combined at
the kernel level, using the adapted maximum-margin based scheme for SV proposed in chap-
ter 6. This kernel-based approach is then compared with a standard approach for combining
systems, score-fusion, which uses a post-classifier to combine the output scores from multiple
SV systems.

Finally, in section 8.5 two approaches are evaluated for combining dynamic kernels with
traditional static kernels, such as the polynomial or Gaussian kernel. In the first approach,

122
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dynamic feature vectors are obtained as usual. Then, rather than taking an inner product,
a static kernel function is applied to the dynamic features. Data partitioning and speaker-
tying schemes, proposed in chapter 7 to prevent over-training, are also evaluated. The second
approach evaluated here involves applying a static kernel at the observation level. Although
it is typically not possible to train a generative model in the feature space associated with
a static kernel, such a model may be approximated. In chapter 7 this approach was used to
derive two forms of kernel, the generalised derivative and the generalised parametric kernels.
Both are evaluated in section 8.5.2.

8.1 NIST SRE 02 task
System performance is evaluated using the NIST SRE one-speaker detection task [143]. This
task requires classifying utterances of conversational speech recorded over a cellular telephone
channel and is the subject of annual NIST speaker recognition evaluations. The experiments
described in the chapter were evaluated using data compiled for the 2002 evaluation. This
consists of speech data taken from the switchboard-cellular phase 2 corpus. The 2002 dataset
was chosen as it is one of the most recent evaluation datasets to be made generally available
through the LDC. Later datasets are currently only available to SRE participants. The 2002
data has a number of disadvantages compared with more recent datasets. Most importantly,
it only contains a single enrollment utterance per speaker. It is therefore not possible to
apply standard approaches for reducing inter-session variability, such as NAP or WCCN, as
described in chapter 4.

The one speaker detection task is the core condition in the 2002 SRE. Here each utterance
only contains speech from a single speaker. The dataset consists of 330 target speakers (139
male and 191 female) each with a single utterance of enrollment data of around 120 seconds
in duration. There are 3570 test utterances in total, each of known gender. The duration of
the test utterances is more variable than that of the enrollment data. The mean duration of
the test utterances is 32 seconds and 90% of the utterances are between 10 and 50 seconds in
duration. The shortest test utterance is only 0.5 seconds long. Each of these test utterances is
then scored against 11 potential speaker identities of the same gender, one of which is usually
the true speaker. Thus in total the task consists of 39270 trials. Trials may contain speech
uttered by speakers not present in the enrollment set. The correct response for these cases is
to reject the utterance.

Each utterance of speech data provided by NIST consists of a single conversation side and
is preprocessed using a silence detector to remove gaps. The utterances were then param-
eterised using a frame rate of 10ms and a window size of 30ms. A 31 dimensional feature
vector was extracted from each frame using a bandwidth of 0-3.8 KHz. Low frequencies
were retained as preliminary experiments suggested that they contained information useful
for discrimination. The feature vector consisted of 15 static mel-PLP coefficients, 15 delta
coefficients and the delta energy. Static energy or acceleration coefficients were not included
since previous work [12] has shown that they contain little speaker-discriminant information.
To introduce additional robustness to noise, cepstral feature warping [156], a form of short-
term Gaussianisation described in chapter 4, was then applied to each utterance using a three
second sliding window. PCA was also applied to decorrelate the observations.

The experimental results presented in this chapter are not intended to demonstrate a state-
of-the-art SV system but to instead allow comparison between SV systems based on different



CHAPTER 8. SPEAKER VERIFICATION EXPERIMENTS 124

forms of dynamic kernel. For example, no attempt is made to select a suitable operating
threshold. Instead performance figures are quoted using threshold-independent metrics. The
primary performance metrics used in this chapter are equal error rate (EER) and detection
error trade-off (DET) curves. To aid comparison with other work some minDCF scores are
also quoted. These metrics are described in detail in section 4.7. Similarly, normalisation
techniques, such as Z-norm or T-norm, described in section 4.6 were not applied. This was
primarily due to a lack of suitable development data.

Statistical measures of significance are also quoted when comparing two similarly per-
forming systems. These are calculated using McNemars’s test, described in section 4.7.5, and
represent the probability of obtaining a difference in performance at least as extreme as that
observed given that the systems perform equally well. As discussed in section 4.7.5, the value
of the measure associated with a given pair of systems is extremely dependent on the choice
of threshold and will usually not hold for other points on the operating range. It is therefore
necessary to explicitly specify the threshold used for each system. Since the EER is the main
performance metric used to compare systems, all significance measures are quoted using the
associated EER thresholds. These are calculated independently for each system. The nor-
mal approximation was used to calculate any P-values where the number of test examples
misclassified by a single system was greater than 50.

8.2 Results for single dynamic kernels
In chapter 6 it was shown that many commonly used dynamic kernels can be placed into one
of two broad families, derivative and parametric kernels. The exact nature of a parametric
or derivative kernel is dependent on a number of factors including the form of the generative
model, the choice of score space features, and the form of metric used. Initially, various forms
of parametric and derivative kernel were evaluated and the effect of varying each of these
factors examined.

8.2.1 Initial classifiers
An initial set of SVM and GMM-LLR based classifiers were trained as follows: gender-
dependent UBMs were trained with a maximum-likelihood criterion using all SRE 2002
enrollment data of the appropriate gender. Each UBM consisted of a diagonal covariance
GMM with a range of Gaussian components. As noted in chapter 4, GMMs have become the
dominant form of generative model for SV and hence are used throughout these experiments.
For each enrolled speaker, a speaker-dependent GMM was constructed by MAP adapting the
means of the appropriate gender-dependent UBM using two iterations of static-prior MAP.
Performing additional iterations was not found to yield gains in preliminary experiments.
The appropriate UBM was chosen using gender information provided with the corpus. GMM
training and adaptation was implemented using the HTK toolkit [216].

An initial baseline classifier (GMM-LLR) was formed by taking the log-likelihood ratio be-
tween the target speaker model and the UBM of the appropriate gender. The speaker-
dependent models were also used as the generative models for a derivative kernel. Initially,
the score space defined in equation 6.33 was used. This consisted of first order derivatives
with respect to the GMM means only. Derivative kernels using more complex forms of score
space are evaluated in section 8.2.3. This form of score space is equivalent to the standard
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Fisher kernel [90], described in section 3.2.3, using a speaker-dependent model. Initially,
each derivative feature was normalised by the total number of frames in the utterance. As
in [67], standard deviation normalisation, rather than variance normalisation was used keep
the dynamic range of each set of features consistent.

System Description

GMM-LLRM GMM-based log-likelihood ratio classifier
∇M SVM classifier using derivative kernel
λM SVM classifier using parametric kernel

M indicates #components of associated generative model (when present)

Table 8.1: Summary of initial classifiers.

To construct the parametric kernels, utterance-dependent GMMs were obtained by adapt-
ing the appropriate UBM means using two iterations of static-prior MAP. The task does not
permit cross-gender trials so the gender of the utterance was known in all cases. Finally, for
each utterance a parametric feature vector was constructed by concatenating the GMM means
to give the score space defined in equation 6.32. This implementation of a parametric kernel
is equivalent, under a maximally non-committal metric, to the standard GMM-supervector
kernel [28] described in section 3.3.1.

SVM classifiers based on derivative (∇) and parametric (λ) kernels were trained using
SVMlight [94]. The SVM regularisation term C was left at the SVMlight default, described in
section 2.2.3. For each target speaker, an SVM classifier was trained using imposter examples
obtained from the enrollment data associated with all other speakers of the same gender1. To
reduce classifier bias each true utterance was duplicated until the two training sets were equal.
For each kernel, a diagonal approximation to the maximally non-committal distance metric
shown in equation 2.107 was implemented by normalising the global variance of each feature
calculated using the training data for all target speakers. Spherical normalisation [205],
described in section 2.2.6, was not applied since it was not found to yield performance gains
during preliminary experiments. This differs from results previously reported in [205]. This
difference may be related to the value of C used here. At the SVMlight default value, a (linear)
SVM classifier is invariant to global scalings of the feature vectors. As described in section 8.1,
the 2002 SRE task contains only a single enrollment session per speaker. Thus it was not
possible to implement techniques such as NAP or WCCN to compensate for inter-session
variability.

8.2.2 Effect of the generative model
Initially, the effect of varying the value of τmap used during model adaptation was evaluated.
Table 8.2 shows the performance of the GMM-LLR and derivative systems when 1024 com-
ponent generative models were used. For all values of τmap the SVM classifier outperformed
the baseline GMM-LLR classifier. These results were statistically significant at a level of
99%. However, as the value of τmap increased the performance gain of the SVM classifier over

1The setup used did not conform to the NIST SRE protocol, since enrollment data was used for both UBM
training and imposter modelling. This was necessary due to a lack of suitable development data. Typically
imposter data is obtained from an auxiliary dataset, recorded under similar conditions.
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the baseline gradually increased (note the performance of the GMM-LRR classifier initially
improved and then got worse). This can be explained as the SVM decision boundary is esti-
mated in the score space defined by the MAP-adapted generative model. If the distribution
associated with the model is too “close” to the training example, a “biased” score space, and
scores, compared to the test data will be obtained. This bias is present for both the GMM-
LLR and derivative systems, but it affects the performance more in the SVM case because of
the large dimension of the score space. Thus the best value of τmap is expected to be smaller
for the GMM-LLR system than the derivative system, as seen in table 8.2. When τmap = 0
the parameter estimates for the speaker models are based only on the maximum-likelihood
estimate given the adaptation data, this is similar to the approach used in [205].

τmap
GMM-LLR1024 ∇1024

EER(%) minDCF EER(%) minDCF

0 11.67 0.4664 9.42 0.4236
10 10.13 0.4289 7.88 0.3600
25 10.86 0.4514 7.60 0.3398
50 11.83 0.4947 7.65 0.3311

∞ - - 7.98 0.3433

Table 8.2: Performance for 1024-component log-likelihood ratio (GMM-LLR1024) and derivative
kernel (∇1024) systems using target speaker models adapted with varying τmap.

τmap
λ128 λ1024

EER(%) minDCF EER(%) minDCF

0 8.54 0.3561 8.00 0.3413
1 8.32 0.3455 8.47 0.3488
5 8.58 0.3545 9.42 0.3976
10 9.05 0.3755 10.11 0.4597

Table 8.3: Performance of parametric kernel systems using 128 (λ128) and 1024 (λ1024) com-
ponent GMMs for different values of τmap.

Results for the parametric SVM-classifier are detailed in table 8.3. Initially, classifiers
based on 128 and 1024-component models were evaluated. The best performance was 8.00%
EER, achieved using 1024-components when τmap = 0. When τmap was set to 1 or greater, the
128-component system performed best. Additionally, for all model sizes evaluated, the opti-
mal value of τmap was lower than for the derivative kernel and the log-likelihood ratio classifier.
This is because for the parametric kernel, when τmap is large (or the number of observations
per component is low) the parameters will not be adapted far from the UBM. Hence the
dynamic features will be similar for all utterances. When a maximally non-committal met-
ric is used, the resultant features will not be robust since small differences caused by the
numerical accuracy will be magnified by the metric. This is not the case for the derivative
kernel. Here as τmap approaches infinity the features tend to resemble derivatives with respect
to the parameters of the UBM. This is why, unlike the GMM-LLR or parametric systems,
it is possible to evaluate a derivative kernel-based system at the point τmap = ∞. For the
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parametric kernel, best performance at 1024 components was achieved with τmap = 0, equiva-
lent to estimating the parameters of the utterance-dependent models using an ML criterion.
However, as discussed in section 6.3.1, when large models are used there will generally not be
enough observations per component to robustly estimate the parameters. Thus, unless indi-
cated otherwise, for the remainder of the experiments the adaptation constant was fixed at 1
for parametric kernels. This avoided the issue of undefined feature values when components
were unobserved in the adaptation data.

# Components
GMM-LLR Derivative (∇) Parametric (λ)

τmap EER(%) minDCF EER(%) minDCF EER(%) minDCF

128 25 12.04 0.4911 8.62 0.3775 8.32 0.3455
256 10 10.87 0.4503 8.08 0.3457 8.18 0.3302
512 10 10.23 0.4345 7.92 0.3375 8.17 0.3256
1024 10 10.13 0.4290 7.60 0.3398 8.47 0.3488

Table 8.4: Comparison of log-likelihood ratio, derivative and parametric system performance
at various model sizes. For the log-likelihood ratio system, the optimal τmap used is indicated.
For derivative and parametric kernel systems optimal τmap for all model sizes was 25 and 1
respectively.

Table 8.4 compares the performance of the baseline GMM-LLR classifier with the deriva-
tive and parametric SVM-based systems over a range of model sizes. The value of τmap was
fixed independently for each system to minimise the equal error rate. For parametric systems,
only values of τmap > 0 were considered to ensure the features were robust. The two SVM-
based systems showed large gains over the baseline GMM-LLR system for all sizes of model.
This is consistent with previous work such as [28] and [205]. The performance of the GMM-
LLR system only improved marginally as the number of components was increased from 256
up to 1024. Similarly, the performance of the parametric system did not improve significantly
for larger model sizes. However the derivative kernel continued to show gains as the number
of components increased. At 1024 components, the derivative kernel even outperformed the
best parametric kernel obtained by setting τmap = 0. This result was statistically signifi-
cant at a level of %. This discrepancy is a consequence of the mismatch between train and
test utterance duration present in the 2002 SRE data. As described in section 6.3, only the
parametric kernel requires adapting the UBMs using test data. Thus the parametric kernel is
more sensitive to the shorter duration of the test utterances. Although the results in Table 8.4
suggest for the derivative system, the use of model sizes greater than 1024 might yield further
gains, this was not evaluated due to the computational cost of evaluating this system for large
numbers of components. The optimal number of components for the parametric system was
512. This was significantly less than reported for equivalent GMM-supervector kernels, for
example in [27], which typically use up to 2000 Gaussian components. This difference is likely
to be related to the limited amount of data used for UBM training.

Figure 8.1 compares the overall performance of the best GMM-LLR system with the
best parametric and derivative kernel-based SVM systems obtained by varying the generative
model structure and parameter estimation schemes. Both SVM systems significantly outper-
formed the GMM-LLR over the entire operating range. Overall, the best performing system
was the 1024 component derivative system which gave an EER of 7.60%. It can be seem
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Figure 8.1: Comparison of best performing LLR (GMM-LLR), derivative (∇1024) and paramet-
ric (λ512) SVM systems.
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from figure 8.1 that this kernel outperformed the 512-component parametric kernel over the
majority of the operating range. However at the limits, the parametric kernel performed best.

8.2.3 Effect of the score space
The score space associated with a derivative kernel may contain more complex features. Ta-
ble 8.5 shows the effect of including in the score space derivatives with respect to the means
(µ), variances (Σ) and mixture weights (c) of the target speaker model and of the UBM.
128 and 1024 component GMMs were used and in each case the speaker model was trained
by adapting the means only with τmap = 25. The final score space was obtained by concate-
nating the set of derivatives. This approach is closely related to the equal weight dynamic
kernel combination described in chapter 6. Note that although the target speaker model and
UBM variances and mixture weights were identical, the derivative features associated with
each differ due to the varying component occupancies caused by the adaptation of the mean
parameters.

# Components Score space #Features EER(%) minDCF

128 µ 3968 8.62 0.3775
128 µ+ Σ 7936 8.94 0.3544
128 µ+ Σ + c 8064 9.04 0.3547

128 µubm 3968 9.46 0.3894
128 µubm + Σubm 7936 9.53 0.3972
128 µubm + Σubm + cubm 8064 9.48 0.3980

128 µ+ µubm 7936 8.65 0.3749
128 µ+ µubm + Σ + Σubm 15872 8.86 0.3688
128 µ+ µubm + Σ + Σubm + c+ cubm 16128 8.94 0.3704

1024 µ 31744 7.60 0.3398
1024 µ+ Σ 63488 8.40 0.3444
1024 µ+ Σ + c 64512 8.38 0.3429

1024 µubm 31744 7.98 0.3433
1024 µubm + Σubm 63488 8.48 0.3782
1024 µubm + Σubm + cubm 64512 8.51 0.3747

1024 µ+ µubm 63488 7.75 0.3325
1024 µ+ µubm + Σ + Σubm 126976 8.38 0.3559
1024 µ+ µubm + Σ + Σubm + c+ cubm 131072 8.35 0.3569

Table 8.5: Performance for 128 and 1024 component derivative kernels using different score
space features. Features include derivatives with respect to target speaker model means
(µ), variances (Σ) and component priors (c) and UBM means (µubm), variances (Σubm) and
component priors (cubm).

The inclusion of either mixture weight or variance features was found to degrade perfor-
mance. This was also the case when 128-component models were used, indicating that this
degradation was not simply due to the increased complexity of the feature space. Derivatives
with respect to the UBM means (µubm), variances (Σubm) and mixture weights (cubm) were also
used. For both 128 and 1024 component models performance was not significantly worse than
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derivatives with respect to the target speaker model for all combinations of parameters, indi-
cating that derivatives with respect to the UBM still contained useful speaker-discriminative
information. When derivatives with respect to the target speaker model and the UBM were
combined, gains were only observed when combining derivatives with respect to variances
and mixture-weights. In chapter 7, it was shown that the generative model induces an ap-
proximately linear translation of the mean derivatives. Since (linear) SVMs are invariant
to translations of the feature space, this may explain why combination of mean derivatives
(associated with the same model structure) did not yield gains.

Parametric kernels with different score spaces were also evaluated. The inclusion of vari-
ance features in the score space has previously been shown to lead to gains on tasks such as
language identification [26]. Unlike derivative kernels, for parametric kernels it is necessary
to adapt all parameters to be included in the score space. For 512-component models, in-
cluding both means and variance parameters in the parametric score space lead to an EER
of 10.60%. This represented an absolute reduction in performance of 2.43% compared to the
mean-only score space. This performance loss is likely to due to the limited amount of data
available for variance adaptation in the 2002 SRE task, especially for the test set. Parametric
kernels based on component-prior features were not evaluated. This was because there was
insufficient adaptation data to robustly re-estimate the priors and maintain the sum-to-one
constraint.

Normalisation
# Components

128 1024
EER (%) minDCF EER (%) minDCF

Total frames 8.62 0.3775 7.60 0.3398
Component occupancy 8.35 0.3704 7.81 0.3297

Table 8.6: Duration normalisation for 128 and 1024-component derivative kernels. Deriva-
tives were normalised by either the total utterance duration or the associated component
occupancy.

For derivative kernels it is important that the dynamic features include some form of
duration normalisation, particularly when the dataset consists of utterances that vary greatly
in duration. This is not necessary for parametric kernels since each feature is implicitly
normalised by the component occupancy. In table 8.6 results are given for 128 and 1024-
component derivative kernels using different forms of duration normalisation. All models
were adapted with τmap = 25 and derivatives were taken with respect to the speaker-means
only.

For 128 components best performance was achieved using component occupancy normali-
sation. This was due to the more accurate duration normalisation yielding a more consistent
set of features. However, this was not the case when 1024-components were used. Here, the
large number of components meant that many components were rarely observed in the data.
Thus when component occupancy normalisation was used the resultant dynamic features were
not robust. For both evaluated model sizes test performance was poor (> 30% EER) using
unnormalised features. This was due to both the variation in the duration of the test utter-
ances and the disparity in duration between the training and test sets in the NIST 2002 task.
Test utterances are on average only a quarter the average length of the training utterances.
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For consistency, in the remainder of this chapter derivative kernels are primarily normalised
by the number of frames. The exception is in section 8.5, in which 16 and 128-component
derivative kernels are combined with static kernels. Due to the smaller generative models
used, there component occupancy normalisation is used instead.

8.2.4 Effect of the metric
The decision function associated with an SVM classifier is not invariant to scaling of the input
features. Thus the selection of a suitable metric is important when using dynamic kernels. In
table 8.7 results are presented for derivative and parametric kernels using a variety of metrics.
For both parametric and derivative kernels, the score space consisted of only features based
on the means. For the derivative kernels, these features were normalised by the standard
deviation rather than the variance.

System Metric EER(%) minDCF

∇1024 Identity 8.23 0.3927
Speaker-dependent 7.88 0.4061
Speaker-independent 7.60 0.3398

λ512 Identity 8.22 0.3264
Speaker-dependent 8.23 0.3241
Speaker-independent 8.17 0.3256
GMM-supervector 8.33 0.3280

Table 8.7: Derivative and parametric system performance using (a) an identity metric, (b)
a diagonal approximation to a maximally non-committal metric estimated independently for
each speaker and (c) the same metric estimated globally over all speakers. Parametric kernel
performance using a GMM-supervector equivalent metric is also included.

The performance of the derivative and parametric kernels was similar when an identity
metric was used Applying a speaker-dependent maximally non-committal metric lead to an
0.35% reduction in EER for the derivative kernel. However, for the parametric kernel no gains
were observed. This difference may be related to the fact that, for the derivative kernel, the
maximally non-committal metric normalises each feature by the Fisher information associated
with the parameter. This is not the case for parametric features.

Since the complete dataset is unknown, an approximation to a maximally non-committal
metric must be estimated from the training data, as described in chapter 3. This may be
estimated either globally or independently for each target speaker. For both parametric and
derivative kernels best performance was obtained using a global metric, due to the more
robust parameter estimates. It is possible to incorporate a-priori knowledge through the use
of a suitable metric, this is the case for the GMM-supervector kernel. In contrast to results
described in [103], here the use of a GMM-supervector metric was not found to provide gains.

GMM mean-based derivative features are typically normalised by the component variance.
As discussed in section 3.2.3, standard deviation normalisation may instead be used to yield
a more consistent dynamic range for each dimension of the feature-space. When a maximally
non-committal metric is used, the form of variance normalisation chosen does not affect the
decision since the effects are removed by the metric. However, for other forms of metric this
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Normalisation EER(%) minDCF

Variance 10.56 0.4341
Standard deviation 8.23 0.3927

Maximally non-committal 7.60 0.3398

Table 8.8: Variance normalisation for 1024-component mean-based derivative features us-
ing an identity metric. Derivatives were normalised using either the component variance or
standard deviation. System performance using a maximally non-committal metric is also
shown.

is not the case. Table 8.8 compares the performance of derivative kernels using variance and
standard deviation normalised features. Both forms of kernel were defined using an identity
metric and 1024-component GMMs were used. For the standard deviation normalised fea-
tures, the variance of the training feature vectors was generally consistent in each dimension.
Greater variation was observed when using variance normalised features. This was reflected
in the performance of the kernels. Here standard deviation-based normalisation yielded an
absolute improvement of 2.33% EER compared to variance-based normalisation. However,
best overall performance was obtained when a maximally non-committal metric was used.

8.3 Results for variational kernels
An alternative to parametric and derivative kernels are the variational dynamic kernels pro-
posed in chapter 5. Many standard forms of dynamic kernel, such as the linear and non-
linear GMM-supervector kernels introduced in chapter 3, are derived using a matched-pair
bound to the KL-divergence between two distributions. For variational kernels, a variational
approximation is used instead. This has a number of advantages. First, a variational approx-
imation will typically be closer to the true KL-divergence. Thus the kernel function obtained
will more accurately reflect the underlying KL-divergence between distributions, potentially
yielding gains. A further disadvantage to using parametric and derivative kernels is that they
require that model components are coordinated in order to obtain a consistent feature space.
This places restrictions on the parameter estimation schemes that may be used. For example,
to apply the GMM-supervector kernel all utterance-dependent models must be adapted from
a single background model. When speakers cluster, for example within gender, this may not
be optimal.

Variational kernels do not suffer from this restriction. Moreover, the distributions are
not even restricted to have the same form. For example the number of mixture components
may be varied depending on the utterance duration. Variational kernels do have a number
of disadvantages. Unlike many parametric and derivative kernels, the kernel function does
not have an explicit feature space. Thus it is not possible to compact the speaker models
to improve test efficiency. Additionally, in the worst case evaluating a variational kernel
function between two M -component GMM distributions requires O(M2) operations compared
to O(M) for the parametric and derivative kernels evaluated in the previous section.
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8.3.1 KL divergence approximations
Initially the different KL divergence approximations were compared. For each training and
test speech utterance, a GMM distribution was adapted from a 512-component gender-
dependent UBM. Two iterations of static-prior mean-only MAP were applied with τmap = 1.
Thus, the utterance-dependent distributions were identical to those used in 8.2 for the 512-
component parametric kernel. Figure 8.2 shows the distribution of the log-relative deviation
between various approximation schemes and a reference estimate of the true KL divergence.
This estimate was obtained using the Monte-Carlo approach described in [87] using 10,000
samples1. The log-relative divergence is defined by

R(fi, fj) = log
|KL(fi||fj) − KLmonte−carlo(fi||fj)|

KLmonte−carlo(fi||fj)
(8.1)

The distribution of R was estimated by calculating the divergence between all 108,570 pairwise
combinations of models estimated from the enrollment utterances, including cross-gender
pairs. Figure 8.2 does not include divergences of the form R(fi, fi). For both the variational
approximations and the matched-pair bound, the true KL-divergence (0) is obtained in these
cases.
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Figure 8.2: Log-relative deviation between KL-approximations and ’true’ divergence over all
pairs of enrollment utterances for matched-pair bound (MP),variational upper bound (UP) and
variational approximation (VAR).

It is important to establish whether an estimate of the KL-divergence obtained using
Monte-Carlo sampling with 10,000 samples is sufficiently accurate to be considered a true
representation of the underlying KL-divergence. Figure 8.3 shows the log-relative deviation

1An alternative sampling approach that can be used to estimate the true KL divergence is the unscented
transform [96]. This was not used here since previous work [87] has indicated that, for a given number of
samples, Monte-Carlo sampling can yield a more accurate estimate of the true divergence.
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Figure 8.3: Log-relative deviation between Monte-Carlo estimate of divergence using 1,000
samples (MC 1k) and ’true’ KL divergence (10,000 samples) compared with matched-pair
bound (MP).
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of a Monte-Carlo estimate using 1,000 samples (MC 1k) from the ’true’ (10,000 samples) di-
vergence. When 1000 samples are used, each component of fi(o) will only be sampled twice
on average. Despite this, the divergence between the two sampling approaches was small,
particularly compared to the matched-pair bound. Since the samples were drawn indepen-
dently in each case, this suggests that 10,000 samples is sufficient to provide an extremely
close estimate of the true KL-divergence.

The accuracy of the matched-pair bound (MP), variational approximation (VAR), and vari-
ational upper bound (UP) is shown in figure 8.2. Each approximation was calculated as
described in chapter 5. For the variational upper bound, all variational parameters were
initialised to the product of the respective component priors, qm|n = vn|m = cncm. 15 itera-
tions of re-estimation were then applied, which was sufficient for the variational parameters
to converge.

The true KL-divergence associated with cross-gender comparisons was approximately
twice that of within-gender comparisons. This is because each utterance was adapted from
a gender-dependent UBM, which in turn were trained independently. For within-gender ut-
terances this lead to a strong coordination between pairs of Gaussian components. For the
variational upper bound the optimal variational parameters were sparse and consistently ap-
proached the matched-pair solution. This was true to a lesser extent for the variational
approximation which generally provided a closer approximation to the true KL-divergence.

For cross-gender utterances there was greater variation in the accuracy of the approxima-
tions. This difference is reflected in figure 8.2. The distribution of R(fi, fj) using the matched-
pair bound and the two variational approximations is clearly bimodal. The matched-pair
bound was worst, typically exceeding the true KL-divergence by an order of magnitude. In
contrast, for the two variational approximations the accuracies of the cross-gender-and within-
gender comparisons were more similar. This indicates that the two variational approximations
were able to learn the structure of any coordination between components more effectively than
the matched-pair bound. The remaining discrepancy between cross and within-gender accu-
racy is likely to be due to the error in the variational parameter estimates. This is smaller
for the within-gender case since most of the variational parameters lie on the boundary of
the ≥ 0 constraint. Hence the ‘true’ value of the parameter cannot be less than the estimate.
This is not an issue for the Monte-Carlo estimate since this approach does not require the
estimation of any distribution parameters.

8.3.2 Variational kernels using a single background model
Next, the variational kernels were evaluated. For each pair of utterances, Oi and Oj , with
corresponding GMM-distributions, fi and fj , the variational kernel functions defined in equa-
tions 5.28 and 5.29 were applied. The constant α was fixed at α = 1 for all kernels. During pre-
liminary experiments this was found to optimise performance when the matched-pair bound
was used. Kernels were evaluated based on the matched-pair bound (MP), variational (VAR)
and variational upper bound (UP) approximations. For the variational upper bound, evaluat-
ing the kernel function requires independently optimising four sets of variational parameters.
The same initialisation and re-estimation schemes were used to obtain the variational pa-
rameters as in figure 8.2. For comparison, a 512-component mean-based parametric system
(λ512) was also evaluated, trained as described in section 8.2. Since the variational kernels
do not have explicit feature spaces, it is not possible to combine them with a maximally
non-committal metric. To determine whether differences in performance were due to the lack
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of a maximally non-committal metric, a final parametric kernel (GMM-SV) was also evaluated,
based on the GMM-supervector metric described in chapter 3. As shown in chapter 5, this
kernel only differs from (MP) by the method used to derive the kernel from the matched-pair
bound, polarisation for GMM-SV and exponentiation for MP. Performance figures for these ker-
nels are presented in table 8.9. The corresponding DET curves are shown in figure 8.4. As
in section 8.2 SVM imposter examples were obtained from all enrollment utterances of the
same gender as the target speaker. Since the 2002 SRE task contains no cross-gender trials
this experimental setup does not require cross-gender kernel evaluations.

Kernel EER(%) minDCF

λ512 8.17 0.3256
GMM-SV 8.35 0.3286

MP 9.91 0.3989
UP 9.89 0.3984
VAR 9.68 0.3849

Table 8.9: Performance of variational kernels against reference GMM-supervector (GMM-SV)
and parametric system (λ512). All systems were gender-dependent and used 512 component
GMMs.

The performance of the parametric kernel was significantly better than that for the expo-
nential kernels, despite using the same GMM models in all systems. From figure 8.4 it can
be seen that this gain extended over the entire operating range. This difference was not sim-
ply due to the use of a maximally non-committal metric, since the GMM-supervector kernel
also yielded substantially better performance than the exponential kernels. This agrees with
results reported in [48]. There, gains were achieved by normalising the matched-pair esti-
mate of the divergence between the background model and each GMM, a process described
in section 3.3.2. However, this is non-trivial for the variational kernels.

Overall the three kernels based on exponential KL approximations performed at a roughly
similar level. The best performing kernel was based on the variational approximation with
an EER of 9.68%. The improvement in performance of this kernel relative to the matched-
pair kernel was statistically significant at a level of 99%. Since the experimental setup did
not require cross-gender kernel evaluations, these results are in line with the accuracies in
figure 8.2.

8.3.3 Variational kernels using multiple background models
One advantage of using variational kernels is that they do not require all distributions to
be adapted from the same background model. In section 8.2 it was shown that the opti-
mal τmap for the parametric kernel is extremely small, indicating that it is more important
that the distributions closely reflect the underlying speech than that the parameter estimates
are particularly robust. Similarly, if an utterance-dependent distribution is adapted from a
background model that lies ‘closer’ to the true distribution of speech, the resultant distribu-
tions is also likely to provide a more accurate representation of the underlying speech. Thus,
learning clusters of ‘close’ speakers, and adapting a cluster-dependent background model may
potentially leading to gains. Here a simplified version of this approach is evaluated, where
utterances are adapted from one of two background models dependent on speaker gender.
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Figure 8.4: DET performance for the kernels in table 8.9. All systems were gender-dependent
and used 512 component GMMs.
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Unlike the results in section 8.3.2, during training both cross and within-gender enrollment
utterances are used as SVM imposter examples.

System
Background SVM Equal Error Rate (%)

Model Imposters λ512 MP VAR UP

GD
Gender-dependent

Gender-dependent 8.17 9.91 9.68 9.89
GD-UBM All 8.17 10.29 9.59 9.69

GI Single All 8.99 10.11 9.91 10.05

Table 8.10: Kernel performance using gender-dependent UBMs and imposter data (GD),
gender-dependent UBMs and gender-independent imposter data (GD-UBM) and gender-
independent UBM and imposter data (GI).

Results for this experimental setup, (GD-UBM), are shown in table 8.10 for various forms
of kernel function. Results for the strictly gender-dependent setup (GD) used in table 8.10
are also provided. For all systems minDCF results were in line with reported EERs. For the
matched-pair kernel, including cross-speaker imposter data degraded performance by 0.42%
EER, indicating that the inclusion of additional imposter data simply introduces noise into the
training set. The fact that this loss is relatively small, and the performance of the parametric
kernel did not degrade, is due to the ability of the SVM to select appropriate support vectors.
For the matched-pair kernel, only 7% of imposter support vectors came from cross-gender
speakers. Similarly, for the parametric kernel only 3% of imposter support vectors were from
cross-gender speakers. In both cases, the cross-gender support vectors were generally among
the lowest weighted.

For both variational kernels, small performance gains were observed. To establish whether
this gain was simply due to the additional imposter data, a third experimental setup (GI)
was also evaluated. Here all distributions were adapted from a single gender-independent
background model. Again, imposter data from both genders was used for each target speaker.
For all kernels evaluated this system performed worst. This degradation was primarily because
the utterance-dependent distributions were less well adapted to the speech. Unfortunately, the
lack of cross-gender trials in the 2002 NIST SRE meant that the gains that may be obtained by
including cross-gender imposter data are limited. The use of a larger number of background
models, for example trained via speaker clustering, may potentially yield additional gains
over those reported here.

Figure 8.5 compares the best performances obtained for each form of kernel. Best overall
performance was 8.17% EER using a parametric kernel with either GD or GD-UBM setups. This
gain extended over most of the operating range. Although the performance of the exponential
kernels was comparatively poor, the variational kernels generally outperformed the matched-
pair kernel, particularly as the operating threshold is decreased.

8.4 Results for dynamic kernel combination
There has been a recent trend towards combining multiple classifiers to improve overall sys-
tem performance. This is typically implemented by scoring each utterance using a range of
classifiers and then combining the output scores. For SVM classifiers, an alternative approach,
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Figure 8.5: Comparison of best performing kernels. Parametric (λ512) and matched-pair
bound kernels used gender-dependent imposters. The variational (VAR) and variational upper
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described in chapter 6, is to combine at the kernel level. Here this approach is evaluated and
compared with a traditional score-fusion approach.

The primary forms of kernel combined in this section are derivative and parametric kernels.
Due to their relatively poor performance and less efficient training schemes, combinations of
variational kernels are not considered here. As in section 8.2, GMM-based models were used
based on a range of model sizes. Each derivative kernel consisted of derivatives with respect
to the mean parameters of a speaker-dependent model. This model was adapted from a
gender-dependent background model with τmap set at 25. For parametric kernels, utterance-
dependent distributions were also adapted from gender-dependent background models with
τmap fixed at 1. Like the derivative kernels, the parametric feature-space consisted of mean
parameters only, since, in section 8.2, the inclusion of additional parameters was not found
to yield gains. For all kernels, a maximally non-committal metric was applied, estimated
globally over all target speakers. The form of derivative and parametric kernels used in this
section were chosen both due to their performance in section 8.2 and to avoid conditions
where the features-spaces will be identical. For consistency, all derivatives were normalised
by the total number of frames in the utterance. Table 8.11 summarises the performance of
SVM-classifiers using these kernels for a range of model sizes.

# Components
Derivative (∇) Parametric (λ)

EER (%) minDCF EER (%) minDCF

128 8.62 0.3775 8.32 0.3455
256 8.08 0.3457 8.18 0.3302
512 7.92 0.3375 8.17 0.3256
1024 7.60 0.3398 8.47 0.3488

Table 8.11: Summary of individual kernel performance.

8.4.1 Effect of kernel combination
Initially, pairwise kernel combination of a 1024-component derivative kernel and a 512-
component parametric kernel was examined. From table 8.11 it can be seen that these were
the best performing derivative and parametric kernels respectively. When equal weights were
used the error associated with this classifier was 7.40% EER, representing a small 0.20%
gain compared to the 1024-component derivative kernel1. Experiments were then performed
to identify whether individually weighting each kernel could yield gains compared to equal
weight combination. Initially, combination using a minEER criterion was evaluated. A line-
search was performed and the kernel weights selected that gave the lowest EER. Although this
approach is not practical for larger number of kernels, this criterion forms an upper bound on
the gains obtainable by combining kernels. The minimum error rate obtained in this manner
was 7.31% using kernel weights of 0.53 and 0.47 for the derivative and parametric kernels
respectively. This suggests that the equal weight combination scheme is not optimal.

1The results presented here differ from those previously reported in [130] and [131]. Since publica-
tion of these papers a flaw was discovered in the evaluation methodology that caused the reported gains
from kernel combination to be severely optimistic. Updated versions of these papers are available from
mi.eng.cam.ac.uk/∼cl336
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log ζ
Kernel Weights

EER (%) minDCF∇1024 λ512

−∞ 1.00 0.00 7.60 0.3397

-7 1.00 0.00 7.60 0.3397
-6 0.73 0.27 7.41 0.3187
-5 0.59 0.41 7.38 0.3105
-4 0.53 0.47 7.31 0.3068
-3 0.51 0.49 7.38 0.3060
-2 0.50 0.50 7.38 0.3047

∞ 0.50 0.50 7.40 0.3053

minEER 0.53 0.47 7.31 0.3068

Table 8.12: Performance of maxMargin MKL combination as ζ varies compared to optimal
minEER weighting.
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Next system combination was performed using the adapted maxMargin criterion for mul-
tiple kernel learning proposed in chapter 6 for SV. Here the kernel weights β were tied over
all speakers to obtain more robust parameter estimates. In preliminary experiments where
weights were trained independently for each speaker, a large variation in the weightings were
observed for different speakers. However the effect on system performance was about the
same. Table 8.12 shows the performances obtained using maxMargin with a range of values
of the constant ζ associated with the sparsity regularisation term proposed in section 6.2.1.1.
The optimal minEER is also shown for comparison. The case when log ζ = ∞ is equivalent
to an equal-weighted combination. When ζ = 0 (log ζ = −∞) a sparse weighting is obtained
that performs poorly compared to the baseline. This indicates that the standard level of
sparsity associated with the originally proposed MKL scheme [168] is not appropriate for this
task. By increasing ζ small gains are observed until the minEER solution is reached.

The maxMargin MKL scheme was then applied to other combinations of kernels where
minEER is not always possible. Combinations of derivative and parametric kernels based on
different generative model structures were examined, using GMMs ranging from 128 to 1024
components. As discussed in section 6.3.4, using features extracted from a range of model
structures may improve performance. Combining kernels based on different generative models
also allows the user to avoid explicitly choosing an appropriate model structure. Figure 8.6
shows how the EER varies with log ζ for a selection of these systems. The minimum EER
obtained in each case is also indicated. For most systems the optimal values of log ζ did
not correspond to either the equal weight or the sparse solutions indicating that the adapted
maxMargin MKL scheme can lead to improved results over both equal weight combination
and the non-regularised maxMargin scheme for more general combinations of kernels.

If a value for ζ is selected that minimises the EER, MKL is guaranteed to not perform
worse than equal-weight combination. Unlike using the minEER criterion, this is feasible for
large numbers of kernels as in all cases only a single parameter must be optimised. For
the modified maxMargin MKL objective function defined by equation 6.22, the value of the
objective function increases monotonically with ζ. This means that an appropriate regulari-
sation factor cannot be automatically selected by maximising the objective function. In the
remainder of this section, the results quoted for maxMargin MKL were obtained by adjusting
ζ a-posteriori to reduce the EER. Selecting a value for ζ that optimises EER on the test set,
rather than development data, can introduce bias. However as only a single parameter is
tuned this bias is expected to be small. In preliminary experiments ζ was optimised indepen-
dently over different subsets of speakers. The optimal ζ was found to be independent of the
subset chosen and, as shown in figure 8.6, the minimal EER is typically achieved over a wide
range of log ζ.

Table 8.13 shows the results of combining various forms of derivative and parametric
kernels. For each combination the maxMargin scheme is compared against equal weight com-
bination (Equal) and, for pairwise combinations, the minEER result. The performance of
the best individual kernel is also indicated (Single). Although minDCF results are not
stated, these were in line with the EER results. For parametric kernels, equal weight com-
bination of 128 and 256 component models yielded small gains compared to the individual
kernels. By comparison, the performance of a 512-component system was 8.17% indicating
that these gains were not simply due to the increased complexity of the combined classifier.
For combination of larger models, the gains were smaller and when 512 and 1024 component
models were combined the performance of the equal-weight combination was worse than the
512-component parametric kernel alone. Out of the pairwise combinations examined, this
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Table 8.13: Kernel-level classifier combination. Systems were combined using both equal
kernel weights (equal) and kernel weights trained using MKL using either a minimum EER
(minEER) or a maximum-margin (maxMargin) criterion. Performance of the best individual
kernel (single) is also quoted for comparison.

System
EER (%)

Single Equal minEER maxMargin

λ128+λ256 8.18 8.08 8.08 8.08
λ256+λ512 8.17 8.14 8.01 8.01

λ128+λ256 +λ512 8.17 8.09 - 8.07
λ512+λ1024 8.17 8.48 8.16 8.42

λ256+λ512+λ1024 8.17 8.15 - 8.15
λ128+λ256 +λ512 +λ1024 8.17 7.98 - 7.95

∇128+∇256 8.08 8.26 8.08 8.08
∇256+∇512 7.92 7.92 7.89 7.89
∇512+∇1024 7.60 7.81 7.59 7.59

∇256+∇512+∇1024 7.60 7.81 - 7.60
∇128+∇256 +∇512 +∇1024 7.60 7.88 - 7.60

λ128+∇128 8.32 8.18 8.11 8.11
λ256+∇256 8.08 7.61 7.57 7.57
λ512+∇512 7.92 7.64 7.59 7.59

λ512+∇1024 7.60 7.40 7.31 7.31
λ256+λ512+∇1024 7.60 7.40 - 7.31

λ128+λ256+λ512+∇1024 7.60 7.71 - 7.38
λ1024+∇1024 7.60 7.45 7.38 7.38

λ512+λ1024+∇1024 7.60 7.68 - 7.39
λ256+λ512+λ1024+∇1024 7.60 7.51 - 7.38
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combination was unique in that no weighted combination was found to yield significant gains
over the 512-component parametric kernel alone. This is reflected in the minEER result for
this combination. For maxMargin MKL, in most cases gains were observed over the equal-
weight combination, however these were usually small. By contrast, for derivative kernels all
maxMargin combinations performed worse than the best individual kernel. The comparatively
high minEER results associated with the pairwise combinations suggest that this was due to
the features not being complementary, rather than a poor choice of kernel weights.

Finally combinations of derivative and parametric kernels were examined. Due to the poor
performance obtained when combining multiple derivative kernels, only a single derivative
kernel was included in each combination. A maximum of four kernels were combined in
any one system. This was due to the memory requirements of the MKL scheme, which
scale linearly with the number of kernels. For all combinations except λ512 + λ1024 + ∇1024

equal weight combination yielded gains over the best single kernel. When the maxMargin

scheme was applied, further gains were achieved in all cases. The best overall performance
was 7.31% EER (0.3068 minDCF) obtained from pairwise combination of the 512-component
parametric kernel and 1024-component derivative kernel using the maxMargin scheme. This
was a reduction in EER of 0.09% compared to equal weight combination and a reduction of
0.29% over the best performing single kernel. Both results were statistically significant at a
level of 99%.

8.4.2 Comparison with score-fusion
Finally, the maximum-margin kernel combination scheme was compared with standard score-
fusion approaches. Combined scores were initially obtained by either equally weighting scores
(Equal) or by selecting the score a-posteriori that resulted in the lowest EER (minEER). Logis-
tic regression, described in chapter 6, was also used. In the absence of a suitable development
dataset two logistic regression schemes were applied. In LR-trn, weights were obtained using
the scores obtained by classifying the training set. In LR-tst, logistic regression was applied
directly to the test scores using the correct label information. Like the minEER criterion, this
breaks experimental protocol, however it does provide an upper bound on the gains that can
be achieved using logistic regression. An alternative SVM fusion scheme was also applied. Here
an SVM post-classifier was trained using training scores as input features.

Results for these experiments are given in table 8.14. Overall, the performance obtained
using score-fusion was similar to that obtained using kernel-combination. When the scores
from parametric systems were combined, almost all combination schemes showed gains. Only
pairwise combination using 512 and 1024 component showed a loss, similar to kernel combina-
tion. Similarly, the combination of scores from derivative systems did not yield gains. When
the scores of parametric and derivative systems were combined almost all equal-weight com-
bination schemes yielded gains, aside from λ512 +λ1024 +∇1024 and λ128 +λ256 +λ256 +∇1024.
The relative performance of SVM and the logistic regression schemes varied depending on the
type of system combined. Neither scheme gave consistently better performance. Despite
the potential for overtraining, the LR-trn scheme generally gave similar performance to the
‘optimal’ LR-tst scheme and in several cases performed better. The best overall perfor-
mance achieved using score-fusion was 7.38% (0.3126 minDCF) obtained when combining the
1024-component parametric and derivative kernels using the SVM scheme.
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Table 8.14: Score-level classifier combination. Individual classifier scores were combined
using either equal weights (Equal), weights trained using an SVM classifier (SVM) or weights
trained using logistic-regression optimised on either the training set (LR-trn) or test set (LR).
Performance of optimal minimum EER pairwise weighting (minEER) and the best individual
classifier (Single) is provided for comparison.

System
EER (%)

Single Equal minEER SVM LR-trn LR-tst

λ128+λ256 8.18 8.08 8.08 8.08 8.11 8.12
λ256+λ512 8.17 8.15 8.01 8.11 8.12 8.15

λ128+λ256 +λ512 8.17 8.10 - 8.08 8.12 8.15
λ512+λ1024 8.17 8.52 8.15 8.52 8.52 8.25

λ256+λ512+λ1024 8.17 8.05 - 8.06 8.08 8.08
λ128+λ256 +λ512 +λ1024 8.17 8.05 - 8.01 8.01 8.14

∇128+∇256 8.08 8.25 8.08 8.25 8.25 8.17
∇256+∇512 7.92 7.93 7.88 7.91 7.91 7.86
∇512+∇1024 7.60 7.80 7.60 7.78 7.79 7.80

∇256+∇512+∇1024 7.60 7.85 - 7.85 7.81 7.79
∇128+∇256 +∇512 +∇1024 7.60 7.92 - 7.93 7.95 7.75

λ128+∇128 8.32 8.21 8.14 8.24 8.23 8.15
λ256+∇256 8.08 7.73 7.68 7.73 7.72 7.73
λ512+∇512 7.92 7.65 7.65 7.75 7.67 7.70

λ512+∇1024 7.60 7.51 7.38 7.42 7.52 7.59
λ256+λ512+∇1024 7.60 7.61 - 7.51 7.60 7.44

λ128+λ256+λ512+∇1024 7.60 7.81 - 7.76 7.84 7.41
λ1024+∇1024 7.60 7.44 7.35 7.38 7.44 7.65

λ512+λ1024+∇1024 7.60 7.66 - 7.68 7.74 7.58
λ256+λ512+λ1024+∇1024 7.60 7.58 - 7.58 7.58 7.44
λ512+λ1024+∇512+∇1024 7.60 7.54 - 7.55 7.55 7.58

Combination Criterion
EER (%)

∇1024 + λ512 ∇1024 + λ1024
∇1024 + λ256+ ∇1024 + λ128

+λ512 +λ256 + λ512

Score Equal 7.51 7.44 7.61 7.81
minEER 7.38 7.35 - -
SVM 7.41 7.38 7.51 7.76

LR-trn 7.52 7.44 7.60 7.84
LR-tst 7.59 7.65 7.44 7.41

Kernel Equal 7.40 7.45 7.40 7.71
minEER 7.31 7.38 - -

maxMargin 7.31 7.38 7.31 7.38

Table 8.15: Comparison of kernel-level and score-level approaches for classifier combination
for best performing combinations.
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In table 8.15, kernel-combination and score-fusion schemes are compared over four different
sets of systems. These are the two combinations that yielded the best performance for kernel-
combination and the two that performed best under score-fusion. For three of the four
systems compared, equal weight kernel combination yielded at least a 0.10% improvement
over equal-weight score-fusion indicating that this combination strategy is able to generalise
more effectively. This may be related to the more relaxed margin constraint associated with
kernel combination. For the fourth system the performance of equal weight combination was
roughly equal under both combination schemes. Unlike LR-tst and minEER score-fusion,
where a weight for each classifier was trained using the test data, for maxMargin MKL only
ζ, a single parameter, was optimised on the test set. Despite this, the best performance
was obtained using the maxMargin MKL scheme for all system combinations. Best overall
performance was obtained using the maxMargin MKL scheme to combine a 1024 component
derivative kernel with a 512-component parametric kernel. From figure 8.7 it can be seen that
this system outperformed the best score-fusion system over most of the operating range.
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8.5 Results for static and dynamic kernel
combination

In the previous section, an MKL scheme was applied to improve the performance of an SV
system by combining multiple dynamic kernels. An alternative approach is to combine dy-
namic kernels with static kernels, which operate on fixed-dimensional data. In chapter 7
two general approaches were identified for combining static and dynamic kernels. These
are feature-level combination and observation-level combination. Both of these approaches
are evaluated in the following subsections. For both feature and observation-level combina-
tion, static and dynamic kernel combination can yield extremely large feature spaces. Thus,
to avoid overtraining it is necessary to use generative models containing comparatively few
Gaussian components. Alternatively, the data partitioning or speaker-tying schemes proposed
in chapter 7 may be applied. In the following section these approaches are evaluated for a
feature-level combination scheme.

8.5.1 Feature-level static kernels
Feature-level combination of static and dynamic kernels was introduced in chapter 7. Here,
each utterance is initially mapped into the feature space associated with a dynamic kernel.
Then, instead of taking the inner product, a static kernel function is calculated. Thus, this
approach is only suitable for dynamic kernels that have an explicit associated feature space.

Feature-level combination was evaluated using derivative and parametric dynamic kernels
of various sizes. Each kernel was trained as described in section 8.2. However, unlike the
previous experiments, here derivatives were normalised by the component occupancy instead
of the total number of frames. This was because the results in section 8.2 indicated that
component occupancy normalisation was more effective for the smaller generative models
used in these experiments. This resulted in a gain of 0.20% EER for 16-component models
and 0.27% EER for 128-component models. The dynamic kernels were then combined with a
range of static kernels, including linear, inhomogeneous polynomial kernels of various orders
and a Gaussian kernel. The functional form for each of these kernels is given in section 2.2.6.
For linear and polynomial kernels, the dimension of the resulting feature space is determined
by the kernel parameters. For the linear kernel, this was equal to 31M , where M is the
number of model components. For the polynomial kernels, the number of features was equal
to (31M + p)!/(31M)!p!, where p is the order of the kernel.

In these experiments, a dynamic feature-level, maximally non-committal metric was ap-
plied using a projection as described in section 7.2. Thus for each dynamic kernel, the metric
had the same form irrespective of the static kernel used. To allow a consistent parameterisa-
tion to be used for each static kernel, the dynamic range of each feature vector was initially
normalised before applying a static kernel. This was implemented by dividing each feature
by the square root of the feature vector dimension, since when a maximally non-committal
metric is used, the expected value of the kernel is equal to the dimension of the feature vec-
tor. This approach was found to perform slightly better than spherical normalisation. For
the Gaussian kernel, the variance was then fixed at σ2 = 1. In preliminary experiments,
further adjustments of σ2 were not found to improve performance. Note that normalising the
dynamic range does not affect the performance when linear static kernels are used and C is
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kept fixed at the SVMlight default. In this case, the decision boundary is invariant to fixed
scalings of the kernel function.

Dynamic kernel Static kernel
16 128

Features EER (%) Features EER (%)

Derivative (∇) Linear 496 12.14 3968 8.35
Polynomial (order 2) 123,753 11.94 7,878,465 8.28
Polynomial (order 3) 20,584,249 12.07 31,285,384,515 8.68
Gaussian - 15.73 - 14.97

Parametric (λ) Linear 496 12.54 3968 8.32
Polynomial (order 2) 123,753 12.74 7,878,465 8.52
Polynomial (order 3) 20,584,249 12.61 31,285,384,515 8.68
Gaussian - 16.43 - 13.85

Table 8.16: Feature level combination of static kernels with parametric and derivative dynamic
kernels.

The initial results obtained for feature-level combination of static and dynamic kernels are
shown in table 8.16. Here 16 and 128 component GMMs were used. For parametric kernels,
applying complex static kernels did not yield gains over the linear case. However, for derivative
kernels small gains were obtained from using second order polynomial kernels. The reason that
the use of more complex static kernels did not yield gains for all systems was primarily due
to the extremely large feature spaces generated. Even the simplest combination considered,
16-component models combined with a second order polynomial kernel, yields a feature space
that is larger than that obtained when using a linear kernel with 3,000 component models. For
the non-linear kernels almost all training examples lay within or near the margin, indicating
that, due to the large feature spaces, the classifiers were overfitting the training data.

Several strategies for handling conditions of limited data were discussed in chapter 7. Since
each training utterance in the 2002 NIST SRE typically contains in the order of ten thousand
frames, one approach is to partition each utterance into multiple sections, and treat each
as a distinct training example. This partitioning was applied to both negative and positive
enrollment utterances. The duration of the training utterances is fairly consistent in the
2002 NIST SRE dataset therefore all partitions contained approximately the same number of
frames.

The results of applying data partitioning to 16 and 128 component derivative kernels are
shown in table 8.17. These were combined with both linear and second order polynomial
kernels. Each utterance was split into up to 6 sections, resulting in a minimum duration of
approximately 20 seconds per utterance. For both linear and polynomial kernels using 16
components, gains were observed when the enrollment utterances were split. This indicated
that the typical approach of extracting a single SVM training example per utterance is not
optimal for all experimental configurations. However, for 128-component models the per-
formance of both kernels degraded as the number of training utterances increased. This is
expected since, due to the shorter duration of each utterance, there are fewer observations
per component and the parameter estimates for the feature vectors will be less robust.

In chapter 7, speaker-tying was proposed as an alternative approach to handle the lack
of enrollment data per speaker. This was implemented by training a single SVM classifier
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#Partitions Duration (s)
EER(%)

16 128
Linear Polynomial Linear Polynomial

1 120 12.14 11.94 8.35 8.28
2 60 11.80 11.44 8.38 8.43
3 40 11.29 11.24 8.35 8.45
4 30 11.28 11.14 8.45 8.38
5 24 11.12 11.00 8.58 8.46
6 20 11.10 10.79 8.62 8.58

Table 8.17: Feature-level combination using 16 and 128 component derivative kernels and
varying numbers of training utterance partitions. Multiple training utterances were created
by partitioning 120s training utterances into equal duration sequences.

per gender. A speaker-dependent derivative kernel was then applied to map each utterance
into a speaker-independent feature space. As in the previous sections, the features of the
kernel were derivatives with respect to the mean parameters of a speaker-dependent GMM.
This was adapted from a gender-dependent UBM using two iterations of static-prior MAP.
Kernels based on 16 and 128 component models was evaluated. Tied systems (Tied) were
trained using both linear and second order inhomogeneous polynomial kernels. Additional
systems (Tied + normalised) were also trained for both forms of static kernel. For these
systems an explicit feature space normalisation was applied, as described in chapter 7.

System
EER(%)

16 128
Linear Polynomial Linear Polynomial

Untied 12.14 11.94 8.35 8.28
Tied 35.14 23.41 30.74 22.93
Tied + normalised 18.09 17.64 11.73 11.58

Table 8.18: Cross-speaker SVM parameter tying. 16 and 128 component derivative ker-
nels were combined with linear and polynomial static kernels using (a) speaker-dependent
SVM parameters (Untied) (b) gender-dependent SVM parameters (Tied) or (c) gender-
dependent SVM parameters with additional speaker-dependent feature normalisation (Tied
+ normalised).

The performance of each of these systems is shown in table 8.18. For comparison, the
performance obtained using speaker-dependent SVM classifiers (Untied) is also shown. For
both model sizes evaluated, the performance of the tied systems was extremely poor. This was
also the case when polynomial static kernels were applied, suggesting that this performance
degradation was not simply due to the inability of the linear classifier to model a speaker-
independent decision boundary, as discussed in section 7.4.2. In the tied system, the majority
of the dynamic features associated with positive training data were not centered around the
origin. Thus, the speaker-dependent models were not sufficiently representative of the true
speech distributions to provide an effective normalisation. When an explicit normalisation
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was performed all tied systems yielded gains. However, in no instances did the resultant
system outperform the untied systems.

The relatively poor performance of classifier-tying is in contrast to results reported in [66,
67] for ASR. There, the parameters of the SVM classifier were tied over a range of noise
conditions. Noise condition-dependent dynamic kernels were then used for each utterance,
adapted using either VTS compensation or single pass retraining. The difference in the
performance of classifier-tying for these two tasks is likely to be due to several factors. First,
in the SV case the classifier was tied over a much larger number of classes. Thus it may
not be possible to find a single decision boundary that is appropriate for all target speakers.
Second, the different adaptation scheme used for the ASR task may yield more accurate class-
dependent models. In this case the dynamic kernels will provide a more effective normalisation
of the feature space. Finally, in the ASR task classifiers were trained to distinguish between
confusable pairs of words. For this task the positive and negative examples will typically
occupy roughly equal areas of the feature-space. In contrast, for SV the positive examples
associated with each target speaker will typically occupy a much smaller region of the feature
space than the negative examples, which contain data from many speakers. Thus, the tied-
classifier for SV will be more sensitive to conditions where the positive data associated with
each target-speaker/noise-condition is misaligned.

8.5.2 Observation-level static kernels
In chapter 7 an alternative method of combining static and dynamic kernels was described.
Here static kernels are applied at the observation level. In general, it is not possible to train a
generative model in the feature space associated with a static kernel. However, as described
in chapter 7, such a model can be approximated. Two forms of combined dynamic kernel were
then proposed, the generalised derivative and generalised parametric kernels. When linear
static kernels are used, these respectively generalise the standard derivative and parametric
kernels evaluated in section 8.2. Also, when a single component generative model is used,
both kernels can be shown to generalise the GLDS kernel [24], described in section 3.2.1.

Initially SVM classifiers were evaluated using the GLDS kernel. For this experiment,
spectral-based normalisation techniques were not used since they typically normalise each
utterance mean to zero. A maximally non-committal metric was also not used since over long
utterances the mean of the ∆PLP coefficients tends to zero. Using a linear static kernel, the
Equal Error Rate (EER) of the GLDS kernel was 23.74%. This poor performance is expected
since, as shown in chapter 7, the linear GLDS kernel has the form of a parametric kernel
defined by a single-component GMM. When a second order polynomial kernel was used the
performance was 22.40%. This small gain is partly due to the fact that the SVM is able to
use information from the delta coefficients.

Next, the generalised derivative kernel (GDK) was evaluated. For certain forms of static
kernel, such as linear or low order polynomial kernels, it is possible to evaluate the GDK
kernel by explicitly training a generative model in the static feature space. As in section 8.2,
cepstral feature warping was initially applied to all utterances to reduce the effects of noise.
Each speech observation was then explicitly mapped into the corresponding feature space. For
each form of static kernel, two gender-dependent UBMs were then trained in the static feature
space using all enrollment utterances of the appropriate gender. Finally speaker-dependent
GMMs, defined in the static feature space, were obtained by adapting the mean parameters
of the appropriate gender-dependent UBM. A generalised derivative kernel (Explicit) was
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then applied by taking derivatives with respect to the means of the speaker-dependent models.
As in the previous section, due to the use of smaller generative models the derivatives were
normalised using the component occupancies rather than the total number of frames. A
diagonal approximation to a maximally non-committal metric was also used. Unlike feature-
level combination, where the metric was defined in the dynamic feature space only, here the
metric was applied in the feature space associated with the combined static and dynamic
features.

System
EER(%)

Linear Polynomial
16 128 16 128

GMM-LLR 17.40 12.04 16.40 14.52

Explicit 12.14 8.38 10.32 10.94
Viterbi 12.30 9.15 10.38 11.11
Approx 12.21 10.20 9.25 10.29

Table 8.19: Performance of GDK systems based on explicit models (Explicit), explicit
models using Viterbi alignments (Viterbi) and using approximated models (Approx).

Table 8.19 shows the performance for linear and second order inhomogeneous polynomial
kernels, using an GDK-based SVM classifier for 16 and 128-component models. Baseline
results, using a GMM-LLR classifier with the same models, are also presented. In all cases,
the SVM results outperformed the GMM-LLR classifier. In the linear case, GMM-LLR and
SVM performance improved for larger model sizes. By contrast, for the polynomial SVM
classifier best performance was obtained using 16-component models. This difference is due
to the significantly larger feature space associated with the polynomial kernel, 527 versus
31 features per component. Although the best polynomial system did not outperform the
128-component linear system, further small gains were achieved when these two systems were
combined. Applying the maximum-margin based kernel combination scheme evaluated in
section 8.4 gave a performance of 8.08%.

To examine the effect on performance of using Viterbi component alignments, GDK sys-
tems (Viterbi) were trained as defined in equation 7.10. Using hard alignments degraded
the performance of all systems. The effect was less severe for the polynomial kernels, since for
GMMs trained in a high-dimensional space, the component posteriors already tend towards
hard alignments. Lastly, GDK systems (Approx) using approximated models were trained
for these two forms of kernel. Here the component posteriors were obtained using the linear
models and the static kernel function between observation was approximated as described
in section 7.3.1.2. For the linear kernels, performance was worse for this system, due to the
approximation used for the metric. However, when polynomial static kernels were used the
approximated models actually outperformed the Explicit system. This gain suggests that
the component-posteriors associated with the linear models were more robust than those of
the explicitly trained polynomial models.

Finally, the generalised derivative kernel was evaluated using other forms of static kernel.
A third order inhomogeneous polynomial kernel and a Gaussian kernel were used. For the
Gaussian kernel σ2 was set to 31, the dimension of the observations. For 128-components, no
gains were observed using non-linear kernels due to the limited amount of available training
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Static kernel
EER(%)
16 128

Linear 12.21 10.20
Polynomial (order 2) 9.25 10.29
Polynomial (order 3) 9.96 13.17
Gaussian 14.29 12.94

Table 8.20: Combination of derivative kernel with various static kernels. Viterbi statistics
were used and component posteriors were obtained from GMMs trained using the original
observations.

data. When 16-component models were used both polynomial kernels gave gains over the
linear case and also outperformed the 128-component linear system. For the model sizes
evaluated, the best performance was obtained using a second order polynomial kernel with a
16-component model. However, as shown in section 8.2, the use of linear static kernels with
larger generative models yields better overall performance.

The generalised parametric kernel (GPK), proposed in chapter 7, was also evaluated.
For these experiments, approximated models were used with a range of static kernels. The
training scheme used for the GPK was based on the training scheme used for the standard
parametric kernels evaluated in section 8.2. Component-occupancies were obtained using
linear utterance-dependent models, adapted using a single iteration of MAP adaptation. The
utterance-dependent models associated with the GPK were then approximated as described
in section 7.3.2 resulting in two MAP iterations in total, one in the linear space, and one in
the space associated with a static kernel. The adaptation constant was fixed at τmap = 1 for
all systems. Preliminary experiments using a range of values of τmap and alternative MAP
adaptation schemes did not yield gains over the results described here.

Static kernel
EER(%)
16 128

Linear 13.31 9.29
Polynomial (order 2) 11.10 9.18
Polynomial (order 3) 11.12 9.64
Gaussian 14.16 11.24

Table 8.21: Combination of parametric kernel with various static kernels. Viterbi statistics
were used and component posteriors were obtained from linear GMM-Models

Results obtained using the generalised parametric kernel are given in table 8.21. As
with the generalised derivative kernel, the use of Viterbi statistics and an approximated
metric was found to degrade the performance of the linear systems, relative to the standard
parametric kernels evaluated in section 8.2. For the 128-component system this resulted in an
absolute performance degradation of 0.97% EER. However, for both 16 and 128 component
models, small gains were then obtained when second order polynomial kernels were applied.
The performance of the standard parametric kernel was 12.54% for 16-component models,
compared with 11.10% for the GPK using a second order polynomial kernel. However for
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128-component models, the GPK did not yield gains over the standard parametric kernel
for any of the static kernels evaluated. For third order polynomial kernels, gains were only
obtained with 16-components. When larger models were used the classifiers failed to generalise
due to the high feature space dimension. Gaussian static kernels were also evaluated with
σ2 = 31, however at both model sizes, these kernels failed to yield gains over the linear case.

8.6 Summary
In this chapter, three kernel-based schemes, proposed in this thesis to improve SV systems,
were evaluated using the 2002 NIST SRE task. Initially, variational dynamic kernels, proposed
in chapter 5, were evaluated. Unlike many standard forms of dynamic kernel, which are
derived from a matched-pair bound to the KL divergence, these kernels are derived from
more accurate variational approximations to the divergence. However, the two variational
kernels evaluated were found to only yield small gains over the related non-linear GMM-
supervector kernel and performed worse than the GMM-supervector kernel, both derived
from the matched-pair bound. Unlike standard derivative or parametric kernels, variational
kernels do not require that model component indices are coordinated. This allows the use of a
more flexible modelling framework. For example, a range of model structures or background
models may be used. Results were then obtained using a more complex framework, where the
imposter training set contained examples that were adapted from two independently trained
background models. In this setup, the variational kernels yielded further small gains relative
to the non-linear GMM-supervector kernel.

One strategy to improve the performance of an SV system is to combine multiple SVM
classifiers. This combination may be applied either at the score level or at the level of the
dynamic kernels. In section 8.4 a maximum-margin based kernel combination scheme, adapted
for SV in chapter 6, was evaluated on combinations of parametric and derivative kernels. For
this scheme, the use of regularisation to control sparsity was found to be important. When
the regularisation term was fixed at zero, a sparse weighting was obtained that performed
poorly compared to equal-weight combination. Combinations of parametric kernels based on
different model structures was found to yield gains, but this was not the case when combining
derivative kernels. Classifier combination using score-fusion was also evaluated using either
a logistic-regression scheme or an SVM post-classifier. In general, the systems that yielded
gains when combined were similar for kernel combination and score-fusion. The best overall
performance achieved was 7.31% EER when 1024-component derivative and 512-component
parametric kernels were combined. This represented a small absolute gain of 0.09% compared
to equal weight combination. In comparison, the best score-fusion result was 7.38%, obtained
by combining 1024-component parametric and derivative kernels using an SVM post-classifier.

The combination of dynamic kernels with traditional static kernels may also yield gains.
Two combination strategies, feature-level and observation-level combination, were described
in chapter 7. Both of these approaches were evaluated in section 8.5. For feature-level
combination, gains were obtained when derivative kernels were combined with second order
polynomial kernels. However, the use of more complex static kernels or combination of static
and parametric kernels did not yield gains. This was due to a combination of the large feature
spaces obtained, and the limited amount of enrollment utterances available per target-speaker.
When a data partitioning scheme was applied, further gains were observed from using non-
linear static kernels with small generative models. Cross-speaker tying of SVM classifiers was
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also evaluated, however this was found to significantly degrade overall performance. This was
due to the sensitivity of the tied system to the accuracy of the target-speaker models. Finally
observation-level combination was evaluated. For both derivative and parametric dynamic
kernels, the use of Viterbi statistics and an approximated metric degraded performance rela-
tive to standard derivative and parametric systems. However, for both kernels, combination
with simple non-linear static kernels was found to yield small gains. Neither generalised ker-
nel outperformed the best results obtained using standard derivative and parametric kernels
with larger models.



CHAPTER 9
Conclusions

This thesis has investigated statistical approaches for classifying utterances of speech, with
particular emphasis placed on applying kernel-based discriminative classifiers to the task

of speaker verification. This thesis contains three main contributions, described in chap-
ters 5, 6 and 7 and summarised in the following sections. The first contribution of this thesis,
summarised in section 9.1, was to propose alternative forms of dynamic kernel, derived from
variational approximations to the KL divergence. Unlike many standard forms of dynamic
kernel, these can be combined with generative models that vary in model structure, and that
are adapted from a range of background models. The second contribution of this thesis, sum-
marised in section 9.2, was to adapt a maximum-margin based kernel combination scheme
for the SV task, and to propose a general framework in which many forms of dynamic kernel
are placed into one of two general categories, parametric and derivative kernels. This frame-
work can be used to motivate new forms of dynamic kernel as well as establish the conditions
under which dynamic kernels will be complementary when combined. The final contribution
of this thesis, summarised in section 9.3, was to propose a scheme for combining dynamic
kernels with static kernels, defined between pairs of observations, to potentially yield more
discriminative features. Based on this scheme, higher order versions of standard derivative
and parametric kernels were proposed. Finally, in section 9.4 several directions for future
work are discussed.

9.1 Variational dynamic kernels
The first contribution of this thesis was to derive alternative forms of dynamic kernel, based
on variational approximations to the KL divergence. Many dynamic kernels used for SV
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are examples of distributional kernels. For these kernels, described in chapter 3, a distinct
GMM is trained to represent each utterance in the dataset. A dynamic kernel function
between two utterances is then defined based on a divergence measure between the associated
distributions. Two commonly used types of distributional kernel are the linear and non-linear
GMM-supervector kernels, both derived from the Kullback-Leibler divergence between two
GMMs. Since it is not possible to calculate this in closed form, a standard approach is to
use a matched-pair bound on the divergence instead. However, the use of this bound requires
that all GMMs must contain the same number of components, and components with the same
index must be coordinated. In practice this requires that all distributions are adapted from
a single background model. These restrictions may limit the performance of an SV system.

In chapter 5, two recently proposed alternative KL approximations were described. These
are the variational approximation and the variational upper bound, both derived by introduc-
ing additional variational distributions between Gaussian components. The two variational
approximations are generally more accurate than the matched-pair bound, however they both
yield the matched-pair solution in the worst case. Unlike the matched-pair bound, these two
variational approximations do not place restrictions of the forms of GMM that can be used.
Two variational dynamic kernels were then proposed based on these approximations, derived
in a similar manner to the non-linear GMM-supervector kernel. However, unlike the linear
and non-linear GMM-supervector kernels these variational kernels do not restrict all GMMs
to have the same structure. This allows more complex training schemes. For example, GMMs
may be adapted from a range of gender or noise condition-dependent background models. Ad-
ditionally, the use of a kernel that more accurately reflects the true KL divergence between
GMMs may lead to gains.

In chapter 8, the variational kernels were evaluated on the 2002 NIST SRE task. Ini-
tially, utterance-dependent generative models were obtained by MAP adapting an appropriate
gender-dependent background model using the provided gender information. When the var-
ious approximations to the KL divergence were compared, both variational approximations
were found to be more accurate than the matched-pair bound. For cross-gender compar-
isons, where there was no strong coordination between components, the matched-pair bound
typically exceeded the variational approximations by an order of magnitude. However when
the kernels were compared, the performance of the variational dynamic kernels was found
to yield only small gains over the non-linear GMM-supervector kernel and perform worse
than the standard GMM-supervector kernel. This was due to the lack of cross-gender kernel
evaluations in the experimental setup. Including cross-gender SVM imposters gave a small
improvement relative to the non-linear GMM-supervector kernel. This was not observed in
a gender-independent system indicating that this was not simply due to the larger amount
of training data used. Best performance was 9.59% EER using a kernel based on the varia-
tional approximation and 9.69% for the variational upper bound, compared to 8.35% for the
GMM-supervector kernel.

9.2 Dynamic kernel combination
The second contribution of this thesis was to investigate the combination of multiple classifiers
to improve the performance of a speaker verification system. In many recent systems, classifier
combination is performed by fusing the output scores. This may be achieved using either an
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SVM post-classifier or a scheme such as logistic regression to train a suitable weighting for
each score. For SVM-based systems, an alternative approach is to combine at the kernel
level. This requires choosing a suitable weighting for each kernel. One approach is to select
the weighting that minimises the cross-validation error by performing a grid search over all
possible weightings. Unfortunately this is only feasible when the number of kernels is small
and is generally unsuitable for anything other than pairwise combination.

A recently proposed alternative scheme was described in chapter 6. Here the kernel
weights are trained in conjunction with the SVM parameters to optimise a maximum-margin
criterion. This scheme can be efficiently implemented using standard SVM implementations.
A number of modifications were proposed to allow this scheme to be applied for SV. The
standard scheme has a known tendency towards sparse weightings, which may not be optimal
for speaker verification. A regularisation term was introduced allowing the user to tune the
sparsity by adjusting a single parameter. Unlike grid-search based schemes, this parameter
may be efficiently optimised using development data even when a large number of kernels are
combined. The kernel weights were also tied over all target-speaker classifiers to increase the
robustness of the parameter estimates.

Kernel combination will only yield gains when the features associated with the kernels
are complementary. In this thesis it was shown that many existing dynamic kernels can be
placed into one of these two classes, parametric kernels, where the feature space consists of
parameters from the utterance-dependent model, and derivative kernels, where the derivatives
of the utterance log-likelihood with respect to parameters of a generative model are used. The
two sets of features produced have different properties and may be complementary. However,
under certain conditions, described in chapter 6, the feature spaces produced may be shown
to be identical. By avoiding these conditions a complementary set of kernels may be obtained.

Various combinations of derivative and parametric kernels were evaluated using the NIST
evaluation data. Initially, the best individually performing derivative and parametric kernels
were combined. When the regularisation term was fixed at zero, a sparse weighting was ob-
tained that performed poorly compared to the optimal weight obtained through grid search.
By adjusting the regularisation term, the optimal weighting was obtained using the maximum-
margin scheme. When combining multiple parametric kernels based on different model struc-
tures further gains were observed. However, this was not the case for derivative kernels. The
best overall performance was 7.31% EER achieved by combining 1024-component derivative
and 512-component parametric kernels using the maximum-margin scheme. In comparison,
the best score-fusion result was 7.38%, obtained by combining the same kernels using an SVM
post-classifier.

9.3 Static and dynamic kernel combination
The final contribution of this thesis was to investigate the combination of dynamic kernels with
traditional static kernels. This will potentially yield higher order features that are more useful
for discriminating between speakers. Two general combination schemes were considered. In
the first approach, feature-level combination, fixed dimensional feature vectors are obtained
from each utterance as usual. Then instead of taking the inner product, a static kernel
is evaluated. For the second approach, observation-level combination, instead of calculating
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dynamic features in the original observation space, these features are calculated in the feature
space associated with a static kernel defined between pairs of observations.

In chapter 7, two new forms of dynamic kernel were proposed, based on combining an
observation-level static kernel with the derivative and parametric dynamic kernels defined in
chapter 6. In general, it is not possible to explicitly train a generative model in the feature
space associated with a static kernel. However, such a model can be approximated. In this
thesis, a kernel metric was selected that normalises the variance term from the features,
avoiding explicit calculation of these parameters. The component posteriors in the feature
space were then approximated by posteriors derived in the original observation space.

Combining static and dynamic kernels can yield extremely high-dimensional feature spaces.
For speaker verification, typically only limited numbers of enrollment utterances are avail-
able. Hence, the classifier may fail to generalise. Two approaches were proposed for handling
these conditions. In the first approach, each enrollment utterance is partitioned into multiple
sections. These are then used as distinct examples during SVM training. By varying the
number of training examples extracted from each utterance, a trade-off can be made between
robustly estimating the dynamic features and obtaining a robust decision boundary. An alter-
native scheme, proposed here, is cross-speaker parameter tying. Instead of training a distinct
classifier for each target speaker, a single speaker-independent classifier is trained. A speaker-
dependent kernel function is then applied, determined by the target identity. In chapter 7
it was shown that this approach requires the use of either a non-linear SVM classifier or a
suitable speaker-dependent normalisation scheme.

In chapter 8, static and dynamic kernel combination schemes were evaluated. Initially
feature-level combination was examined. For derivative kernels, combination with second
order polynomial kernels yielded gains. However this was not the case for higher order static
kernels or when parametric kernels were combined. This was due to the large feature spaces
obtained and the limited amount of enrollment data per speaker. When the data partitioning
scheme was applied, gains were obtained using both linear and polynomial static kernels when
combined with a derivative kernel using small generative models. However, for larger models
there were not enough observations per utterance to robustly estimate the feature vectors and
the scheme was found to degrade performance. Cross-speaker tying of SVM classifiers was
also evaluated using derivative and second order polynomial kernels. However, this was also
found to degrade performance due to the sensitivity of the tied system to the accuracy of the
speaker models. Finally, observation-level combination was evaluated. For both derivative
and parametric dynamic kernels, combination with non-linear static kernels was found to
yield gains, but typically only for small generative models and low order polynomial kernels.
Better overall performance was obtained using larger generative models in combination with
linear static kernels.

9.4 Future work
A number of the refinements proposed in this thesis may benefit from further investigation,
either in terms of modifications to the approaches described, evaluation within a state-of-the-
art system or by application to different tasks. Some suggestions for future work are given
below:
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• As discussed in chapter 5, variational dynamic kernels may be applied with more com-
plex training schemes. For example, GMM structure may be allowed to vary, or clusters
of speakers could be adapted from a wider range of background models. These schemes
are likely to yield improvements on datasets where there is large variation in utterance
duration, or where utterances are strongly clustered, for example by gender, accent, or
environmental conditions.

• In this thesis, only variational dynamic kernels derived through exponentiation were
evaluated. Similar kernels derived using the polarisation identity, such as the GMM-
supervector kernel, have been found to perform more effectively, perhaps due to the lack
of non-linearities in the distance induced between utterances [48]. Future work might
examine the derivation of variational kernels from the polarisation identity, and com-
pare the resulting features with the kernels used in this work. Alternatively, applying
KL divergence based model normalisation, as used in [45], may improve performance
of the variational dynamic kernels. For each utterance, the KL divergence between the
associated generative model and the UBM is normalised, where the divergence is ap-
proximated using a matched-pair bound. Development of a related scheme based on a
variational approximation to the divergence may yield further gains.

• The maximum-margin MKL scheme, described in chapter 6, was used to effectively com-
bine multiple dynamic kernels. This thesis primarily examined combination of mean-
based parametric and derivative kernels. Combination of more general forms of kernel,
such as MLLR or CAT kernels, or kernels based on different speech parameterisations
such as SNERF N-gram, or term-frequency LLR, kernels, may improve SV performance.
The implementation of the scheme used in this thesis required a parameter to be set
to control the level of sparsity. Although a suitable value for this parameter can be
efficiently selected using a development dataset, further research on factors that affect
the sparsity of the kernel weights may allow a suitable value to be selected without the
need for development data.

• In chapter 6, the categorisation of dynamic kernels into derivative and parametric ker-
nels, suggested new forms of dynamic kernel that have not previously been applied.
These included kernels where the dynamic feature space is defined by derivatives with
respect to MLLR transform parameters or to CAT cluster weights. Future work might
examine the performance of SVM-based systems using these kernels on the SV task.

• Although the combination of static and dynamic kernels was not found to lead to sig-
nificant performance gains, this was primarily due to the lack of available training data
combined with the extremely high-dimensional feature spaces obtained. Recent NIST
evaluations [144] have included an extended data task where up to eight minutes of
enrollment data is available per speaker. Under these conditions, the static and and
dynamic kernel combination approaches proposed in chapter 7 are more likely to yield
gains.

• The refinements described in this thesis may be applied to any speech processing task
where dynamic kernel-based algorithms can be applied. Possible avenues for future work
include applying these techniques to tasks such as language recognition [183], speaker
clustering [82], or to confusable pair discrimination for large vocabulary continuous
speech recognition [199].
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