
Structured Precision Matrix Modelling

for Speech Recognition

Khe Chai Sim

Churchill College

and

Cambridge University Engineering Department

6th April 2006

Dissertation submitted to the University of Cambridge

for the degree of Doctor of Philosophy

figures/crest_clr.eps


Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of the

work done in collaboration, except where stated. It has not been submitted in whole or part for

a degree at any other university.

The length of this thesis including footnotes and appendices is approximately 53,000 words.

ii



Summary

The most extensively and successfully applied acoustic model for speech recognition is the Hid-

den Markov Model (HMM). In particular, a multivariate Gaussian Mixture Model (GMM) is

typically used to represent the output density function of each HMM state. For reasons of ef-

ficiency, the covariance matrix associated with each Gaussian component is assumed diagonal

and the probability of successive observations is assumed independent given the HMM state

sequence. Consequently, the spectral (intra-frame) and temporal (inter-frame) correlations are

poorly modelled. This thesis investigates ways of improving these aspects by extending the

standard HMM. Parameters for these extended models are estimated discriminatively using the

Minimum Phone Error (MPE) criterion. The performance of these models is investigated and

benchmarked against the state-of-the-art CUHTK evaluation systems.

The first part of this thesis examines various precision matrix approximation schemes to

improve the modelling of spectral correlation. Previous work have found that techniques such

as the semi-tied covariances, extended maximum likelihood linear transform and subspace for

precision and mean, outperform the diagonal covariance matrix model. In this thesis, a unified

framework of basis superposition is formulated to describe these precision matrix models in a

consistent manner. This framework emphasises the importance of finding a well-defined set

of bases to capture the common precision matrix structures in the system, therefore reducing

the redundancies in the system to yield a compact model representation. Furthermore, the

minimum phone error discriminative training technique is also applied to train these precision

matrix models in a large vocabulary continuous speech recognition system.

Another limitation of HMMs is the conditional independence assumption, which makes it a

poor temporal correlation model. This is typically improved by using a trajectory model. In the

second part of this thesis, a semi-parametric trajectory model is introduced where the mean

vectors and precision matrices in the system are modelled as a function of the observation se-

quence. When the mean vector alone is modelled, this model is the same as the fMPE technique,

originally proposed as a discriminative training technique of the features. In addition, a novel

pMPE technique is also proposed to incorporate non-stationarity to the precision matrix struc-

tures. Combining fMPE and pMPE yields a simple form of semi-parametric trajectory model,

with time varying mean vector and diagonal precision matrices. The performance of fMPE and

pMPE and the interaction between these techniques will be examined, primarily based on the

Mandarin conversational telephone speech transcription task.

Keywords: precision matrix modelling, speech recognition, large vocabulary continuous speech

recognition, discriminative training, hidden Markov models, Gaussian mixture models, trajec-

tory model
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Glossary

ASR Automatic Speech Recognition

ATIS Air Travel Information System

BN Broadcast News

BW Baum Welch

CDHMM Continuous Density Hidden Markov Model

CER Character Error Rate

CMLE Conditional Maximum Likelihood Estimation

CMLLR Constrained Maximum Likelihood Linear Regression

CMN Cepstral Mean Normalisation

CN Confusion Network

CNC Confusion Network Combination

CTS Conversational Telephone Speech

CVN Cepstral Variance Normalisation

EBW Extended Baum Welch

EM Expectation Maximisation

EMLLT Extended Maximum Likelihood Linear Transformation

FAHMM Factor Analysed HMM

FD Frame Discrimination

FMLLR Feature Maximum Likelihood Linear Regression

GD Gender Dependent

GI Gender Independent

GMM Gaussian Mixture Model

HDA Heteroscedastic Discriminant Analysis

HMM Hidden Markov Model

HLDA Heteroscedastic Linear Discriminant Analysis

HTK HMM Toolkit

v



LDA Linear Discriminant Analysis

LVCSR Large Vocabulary Continuous Speech Recognition

MAPLR Maximum a Posteriori Linear Regression

MDI Minimum Discrimination Information

MFCC Mel Frequency Cepstral Coefficients

MLE Maximum Likelihood Estimation

MLLT Maximum Likelihood Linear Transform

MLLR Maximum Likelihood Linear Regression

MMI Maximum Mutual Information

MoG Mixture of Gaussians

MCE Minimum Classification Error

MPE Minimum Phone Error

MWE Minimum Word Error

PDF Probability Density Function

PLP Perceptual Linear Prediction

PMM Precision Matrix Model

PoE Product of Experts

PoG Product of Gaussians

QEP Quadratic Eigenvalue Problem

RM Resource Management

ROVER Recogniser Output Voting Error Reduction

SAT Speaker Adaptive Training

SD Speaker Dependent

SI Speaker Independent

SPAM Subspace for Precision and Mean

STC Semi-tied Covariances

STFT Short Time Fourier Transform

SVD Singular Value Decomposition

VTLN Vocal Tract Length Normalisation

WER Word Error Rate

WSJ Wall Street Journal



Notations

The following notations have been used throughout this work:

General Notations:

s a scalar variable is denoted by a lowercase letter with plain face

v a vector is denoted by a lowercase letter with bold face

vj the jth element of vector v

M a matrix is denoted by an uppercase letter with bold face

M i the ith row of matrix M

Mij the (i, j)th element of matrix M

M ′ transpose of matrix M

M−1 inverse of matrix M

Standard HMM Parameters Notations:

ot a d× 1 observation vector at time t

OT
1 a set of observation vectors, o1,o2, . . . ,oT

qt the HMM state at time t

QT
1 a sequence of HMM states, q1, q2, . . . , qT

θ denotes a set of model parameters in general

θam the set of parameters for acoustic model

θlm the set of parameters for language model

µsm a d× 1 mean vector for component m in state s

Σsm a d× d covariance matrix for component m in state s

P sm a d× d precision matrix for component m in state s

µsmj the jth element of the mean vector for component m in state s

σ2
smj the jth diagonal element of the covariance matrix for component m in state s

ψsmj the jth diagonal element of the precision matrix for component m in state s
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Precision Matrix Modelling Parameters Notations:

Sb the bth basis matrix

ab the bth basis row vector

λsmb the bth basis coefficient of component m in state s

Notations used for the MLLR adaptation:

ζt the augmented observation vector used in constrained MLLR adaptation

ξm the augmented mean vector used in MLLR mean adaptation

Br the observation transformation matrix associated with the rth regression class

Ar the mean transformation matrix associated with the rth regression class

br the mean bias vector associated with the rth regression class

Hr the covariance transformation matrix associated with the rth regression class

Xr the augmented transformation matrix (linear transformation and bias) associ-

ated with the rth regression class

Semi-parametric Trajectory Model Parameters Notations:

µsmt a d× 1 mean vector for component m in state s at time t

Σsmt a d× d covariance matrix for component m in state s at time t

P smt a d× d precision matrix for component m in state s at time t

Ct the observation transformation matrix at time t

dt the observation bias vector at time t

At the mean transformation matrix at time t

bt the mean bias vector at time t

Zt the precision matrix transformation at time t

B(i) the observation transformation matrix associated with the ith centroid

A(i) the mean transformation matrix associated with the ith centroid

b(i) the mean bias vector associated with the ith centroid

Z(i) the precision matrix transformation associated with the ith centroid

Notations used for parameters estimations:

R[ml,mpe] ML or MPE objective function

Q[ml,mpe] ML or MPE auxiliary function

L[ml,mpe] ML or MPE log likelihood function

γ
[ml,mpe]
sm (t) ML or MPE posterior of component m in state s at time t

β
[ml,mpe]
sm ML or MPE occupancy counts for component m in state s

x
[ml,mpe]
sm first order ML or MPE statistics for component m in state s

Y
[ml,mpe]
sm second order ML or MPE statistics for component m in state s

W
[ml,mpe]
sm Covariance matrix ML or MPE statistics for component m in state s
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1

Introduction

Automatic Speech Recognition (ASR) is the process of converting speech waveform automati-

cally into sequence of words (texts). It has many real world applications ranging from dictation

software for medical transcription and desktop dictation on personal computers (e.g. IBM’s

ViaVoice1 and Dragon’s NaturallySpeaking)2; automated call centres (e.g. flight information en-

quiry, cinema ticket booking and weather enquiry systems); embedded systems such as voice

dialling on mobile phones. For many of these applications, an ASR system often has to cope

with uncertainties due to speaker and environmental variabilities. A call centre ASR system, for

example, accepts calls from a wide range of customers with different speaking styles, rates and

accents, on telephone lines with different conditions (landlines or mobile phones), and different

background noise. In addition, even speaker specific desktop dictation systems have to handle

intra-speaker variabilities because human beings cannot produce identical waveforms speaking

the same words at different instances. These variabilities can be modelled using a probabilis-

tic model. The most successful and popular ASR systems to date are based on Hidden Markov

Models (HMMs).

Continuous Density HMMs (CDHMMs) are by far the most popular acoustic models used

in speech recognition systems. In CDHMMs, the output Probability Density Function (PDF) is

usually represented by a multivariate Gaussian Mixture Model (GMM) [57]. A multivariate

Gaussian distribution is parameterised in terms of a mean vector and covariance matrix. The

inter-variable correlations are captured by the covariance matrices, which are symmetric and

positive-definite. Complete modelling of the correlations using full covariance matrices poses

two critical issues: the large number of model parameters involved; and the increase in like-

lihood computational cost. These issues are more apparent for systems with a large number

of Gaussian components. A Large Vocabulary Continuous Speech Recognition (LVCSR) [133]

1 www-3.ibm.com/software/speech
2 http://www.dragontalk.com/NATURAL.htm

1

www-3.ibm.com/software/speech
http://www.dragontalk.com/NATURAL.htm


CHAPTER 1. INTRODUCTION 2

system may have more than 100,000 Gaussian components. The conventional approach to cir-

cumvent these problems is to use a diagonal covariance matrix approximation. Hence, the inter-

dimensional correlations are ignored and implicitly modelled. Recently, advanced approxima-

tion schemes were found to yield improved performance, including both covariance matrix and

precision (inverse covariance) matrix approximations. The former is generally less efficient in

terms of likelihood calculation due to the need to perform matrix inversion. For this reason, this

work began by investigating several forms of precision matrix models within a generic frame-

work of basis superposition, including the Semi-Tied Covariance (STC) [32, 34], (also known as

Maximum Likelihood Linear Transform or MLLT [52, 53]), Extended Maximum Likelihood Lin-

ear Transformation (EMLLT) [85, 86] and Subspace for Precision and Mean (SPAM) [7] models.

The major part of the work goes to the investigation of Minimum Phone Error (MPE) [95, 100]

discriminative training of these models for LVCSR systems. Speaker adaptation and adaptive

training of these models will also be investigated to achieve state-of-the-art performance.

In standard HMMs, the statistics within HMM states are piece-wise constant. This assump-

tion does not work well with speech data in general. To overcome this limitation, various exten-

sions to HMMs have been widely investigated by many researchers to model the trajectory of the

feature vectors within the acoustic space. For examples, the trajectory models [43, 47, 48, 128],

trajectory HMMs [118, 119], vector linear predictor [130], buried Markov model [13], seg-

mental HMMs [41, 42], stochastic segment models [88, 89] and switching linear dynamical

systems [104]. A trajectory model can be generalised as a standard HMM with time varying pa-

rameters, in particular the Gaussian mean vectors and covariance matrices. In the second part of

this thesis, a semi-parametric trajectory model will be introduced. In this model, the time vary-

ing mean vectors and covariance matrices are modelled as a semi-parametric function of the

observation sequence. The form of semi-parametric function used in this work, when applied to

the mean vectors, yields the fMPE technique [96, 97]. This technique was reported to yield a

further relative gain of approximately 10% over the MPE alone systems. In this work, a novel

approach which models the time varying precision matrices using the same semi-parametric

function will be introduced. This technique is known as pMPE [112]. In Chapter 7, fMPE and

pMPE will be described in greater details as a unified semi-parametric trajectory model.

1.1 Statistical Speech Recognition

Research to the speech technology began in 1936 at the AT&T’s Bell Labs. In 1939, Bell Labs

demonstrated “Voder”, an electronic speech synthesiser operated by a human in the 1939 World’s

Fair in New York. During the same event, some of the earliest speech recognition attempts were

also publicised. From the 40’s, the U.S. Department of Defense (DoD) began to invest in the

speech recognition technology. In the early 70’s, Lenny Baum of Princeton University, together
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with a team from ARPA (Advanced Research Projects Agency), applied HMM for speech recogni-

tion. This mathematical pattern-matching strategy was eventually adopted by many of the lead-

ing speech recognition companies including IBM [61], Bell System [71], Dragon System [10],

Philips and others. In 1971, DARPA (Defense Advanced Research Projects Agency) established

the Speech Understanding Research (SUR) to develop a continuous speech understanding sys-

tem. Since 1985, the National Institute of Standards and Technology (NIST)3 conducted per-

formance assessments and benchmark testings for speech recognition tasks. Several databases

were collected for these purposes, including the earlier Resource Management (RM) [90, 93],

Air Travel Information System (ATIS) [92] and Wall Street Journal (WSJ) tasks as well as the

more recent Conversational Telephone Speech (CTS) and Broadcast News (BN) data sets. These

databases are widely used by many research institutes to conduct speech recognition experi-

ments. A summary of the history of NIST’s benchmark tests are given in [91]

�����
�����
�����
�����

Recogniser

Acoustic
Models

Vocabulary Language
Model

Front−end
Processing

Post−
processing

Input Speech Output text

Figure 1.1 A Generic Speech Recognition System

Figure 1.1 illustrates a generic speech recognition system. This system accepts input

speech waveforms, which are pre-processed to extract suitable features. These features are

then fed into a recogniser to generate a sequence of word hypotheses. The recogniser consists

of a set of acoustic models, a language model and the vocabulary (lexicon). Each of the blocks

shown in Figure 1.1 will be described briefly in the following.

1.1.1 Front-end Processing

Speech waveforms are usually sampled by hardware devices (e.g. a PC sound card) into digital

signals. Digital signals are represented in binary format (bits stream). So, speech signals are

given by finite samples across time (time discretisation) and each sample is represented by dis-

crete values (value quantisation). Speech samples in digital form are typically characterised by

3http://www.nist.gov

figures/speech_recognition.eps
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the sampling frequency and sample size (e.g. a telephone speech is typically 8kHz and 16bits).

An example speech waveform is shown in Figure 1.2

Figure 1.2 An example speech waveform

Short Time Fourier Transform (STFT) [60] is commonly applied to the speech waveforms

to achieve a more compact representation. To do this, a Discrete Fourier Transform (DFT) [60]

is applied to a window4 of the speech signal to obtain a speech frame. The window is then slid

forward in time to produce a series of speech frames. These are conveniently presented as a

spectogram. This process is illustrated in Figure 1.3. The typical window length is 25 msec
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Figure 1.3 Short Time Fourier Transform on a speech waveform to obtain a spectogram

(milliseconds) and the window shift is 10 msec. Thus, there are 100 frames per second and

4A Hamming window is commonly used as a tapering function to reduce aliasing (the discontinuities at the frame

edges). This process is also known as apodisation.

figures/speech_waveform.eps
figures/speech_waveform.eps
figures/spectral.eps
figures/spectrogram.eps
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successive frames are overlapped by 15 msec to give a smooth transition. Each of these speech

frames is filtered by a series of triangular bandpass filters to form a vector of filter bank coeffi-

cients. Two commonly used features based on the filter bank coefficients are the Mel Frequency

Cepstral Coefficients (MFCC) [18] and Perceptral Linear Prediction (PLP) [55] coefficients. For

MFCC, the bandpass filters are located according to the Mel scale, which is related to the linear

frequency scale as follows:

fmel = 1125 log

(

1 +
fHz
625

)

(1.1)

where fmel is the warped frequency of fHz on the Mel scale. The resulting filter bank coeffi-

cients are further transformed using the Discrete Cosine Transform (DCT) to reduce the spectral

correlation between filter bank coefficients. The DCT transform is given by

omfccti =

√

2

B

B
∑

b=1

log(ofbtb ) cos

(

i(b− 0.5)π

B

)

(1.2)

where ofbtb and omfccti denote the bth filter bank coefficient and the ith Mel frequency cepstral

coefficient respectively. For PLP frontends, the Bark-frequency scale is employed for frequency

warping. This scale is given by

fbark = log





fHz
600

+

√

1 +

(

fHz
600

)2


 (1.3)

Critical band filters are then used to compute the filter bank coefficients. Equal-loudness, pre-

emphasis and intensity loudness power law are also applied. Finally, linear prediction (LP)

coefficients are computed and transformed to the cepstral domain to obtain the PLP coefficients.

Usually, 12 coefficients (MFCC or PLP) are computed, along with the normalised log en-

ergy term or the zeroth order cepstral coefficient to yield a 13 dimensional static feature. Dy-

namic features [28] are often appended to improve the recognition performance. The first order

dynamic features (also known as the delta coefficients) may be computed as follows:

∆ot =

∑D
d=1 d(ot+d − ot−d)

2
∑D

d=1 d
2

(1.4)

where a window of 2D+1 frames are used. The above equation may also be applied to the delta

coefficients to obtain the delta-delta coefficients and so on. These higher order coefficients are

appended to the static coefficients to form the feature vector for speech recognition. Typically,

up to the second (or third order) dynamic coefficients are used which gives a total of 39 (or

52) dimensional feature vectors. This is particularly useful for HMM-based systems due to the

conditional independence assumption (more details will follow in the next chapter).

Furthermore, to avoid having too many model parameters, diagonal covariance matri-

ces are used to model the Gaussian PDFs of the acoustic features. This assumption is often
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accompanied by some kind of projection schemes to achieve both dimension reduction and fea-

ture space decorrelation. For reasons of efficiency, linear projection schemes such as the Linear

Discriminant Analysis (LDA) [105], Heteroscedastic Discriminant Analysis (HDA) [44] and Het-

eroscedastic LDA (HLDA) [68] are the popular choices.

1.1.2 Recogniser

Given a speech utterance, represented by the appropriate front-end (MFCC or PLP), the recog-

niser is required to obtain the most probable word sequence. Most systems are based on the

HMM acoustic models in combination with n-gram language model. Also, a vocabulary along

with the lexicon has to be defined. In other words, a recogniser will only produce words which

are defined in the vocabulary. In a probabilistic framework, a recogniser seeks to uncover the

most likely word sequence, ŴN
1 , given the observations and the underlying model, i.e.

ŴN
1 = arg max

WN
1

P (WN
1 |OT

1 ,θ) (1.5)

where WN
1 and OT

1 denote the N -word sequence and the T -frame observation sequence re-

spectively. θ denotes the underlying model set. By using the Bayes’ theorem and some simple

manipulations, equation (1.5) can be rewritten as

ŴN
1 = arg max

WN
1

P (OT
1 |W

N
1 ,θ

am)P (WN
1 |θlm) (1.6)

where θam and θlm denote the acoustic and language model parameters respectively.

A speech recognition system can operate in two different modes. The first mode is the

isolated word recognition, where the speech samples are presented to the recogniser word by

word (i.e. the word boundaries are known). The recogniser in this case is simple but requires

the users to pause momentarily between words. This is unnatural and not suitable for many real

life applications. Most applications operate in the second mode, continuous speech recognition.

However, a continuous speech recogniser is more complex and requires more computational

power, particularly for a large vocabulary system with a high order n-gram language model.

1. Acoustic Models:

An acoustic model is used to represent a unit of speech represented by its acoustic char-

acteristics. The choice of the speech units to be modelled depends on the applications.

There is a trade-off between the choice of the speech units and the size of the resulting

acoustic model set. For small and medium vocabulary isolated word recognition, a word

or sub-word level representation may be used. However, for a large vocabulary system, a

phone representation is more suitable. Often, context dependent models are also used to

capture the co-articulation effects in speech.
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2. Language Models:

A general form of a stochastic language model may be used to model the sentence proba-

bilities as follows:

P (WN
1 |θlm) = P (w1|θ

lm)
N
∏

i=2

P (wi|W
i−1
1 ,θlm) (1.7)

where wi represents the ith word of the word sequence, WN
1 . The most common language

model is the n-gram due to its simple integration into the HMM-based recogniser. An n-

gram model simply approximate the probability of a word is dependent on the n− 1 most

recent history. Mathematically,

P (wi|W
i−1
1 ,θlm) ≈ P (wi|wi−1,wi−2, . . . ,wi−n+1,θ

lm) (1.8)

Typical forms of n-gram used are the unigram (n = 1), bigram (n = 2) and trigram

(n = 3).

3. Vocabulary/Lexicon:

The vocabulary is the set of possible words from which the recogniser selects the best word

sequence. Therefore, the recogniser only produces words which are included in the vocab-

ulary. Words which are outside the vocabulary set are termed Out-Of-Vocabulary (OOV)

words. OOV word rate is measured against a corpus of text that represents the domain

within which the recogniser will operate. The size of the vocabulary directly impacts the

performance of the recognition system. Increasing the vocabulary size reduces the OOV

rate and hence improves the recognition performance, but at the same time increases the

search space, making the recogniser run slower. Typically, speech recognition tasks are

broadly categorised into three major groups, according to the vocabulary sizes:

• small vocabulary (< 1k words)

• medium vocabulary (1k – 10k words)

• large vocabulary (> 10k words)

A lexicon, on the other hand, defines the mapping between the words and the acoustic unit

representations. For examples, the mapping between the word lexicon and its phoneme

representation is given by

lexicon ⇒ l eh k s ih k aa n

Figure 1.4: Phoneme representation of the word “lexicon”

For word level acoustic models, the mapping is trivial.
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1.1.3 Post-processing

Post-processing is an optional stage. There are many forms of post processing, aiming at produc-

ing outputs which can be used by other tasks (e.g. machine translation, speech understanding

etc) or simply making the outcome more useful to the end users. For examples, certain applica-

tions may decide to convert the text to a more useful format, such as HTML for web browsing

or adding punctuations and capitalisation for report generation and so on. Recently, NIST con-

ducted a series of Rich Transcription evaluations [81] whose goal is to produce transcriptions

which are more readable by humans and more useful for machines. Down stream processing of

the output generated from a speech recogniser can be an independent research topic by itself.

1.2 Organisation of Thesis

The rest of this thesis is organised as follows.

Chapter 2 gives an overview of HMM-based speech recognition systems. The mathemat-

ical formulation of HMMs is provided giving particular emphasis in its use in statistical pattern

classification and speech recognition. Specifically, the evaluation, decoding and training algo-

rithms for HMMs are briefly described. Finally, this chapter also describes the various commonly

employed techniques in state-of-the-art HMM-based LVCSR systems.

Chapter 3 motivates the importance of correlation modelling for multivariate Gaussian

distributions in statistical pattern classification. This chapter also describes several forms of co-

variance and precision approximation schemes. A generic framework of basis superposition for

precision matrix modelling is introduced. This framework subsumes several existing precision

matrix models, including the Semi-tied Covariance (STC) [32, 34], Extended Maximum Likeli-

hood Linear Transform (EMLLT) [85, 86] and Subspace for Precision And Mean (SPAM) [7].

Chapter 4 presents the maximum likelihood parameter estimation for various precision

matrix models. The re-estimation formulae are derived within the Expectation Maximisation

(EM) framework. Implementation issues of these models are also detailed, focusing on optimis-

ing the memory and computational requirements for LVCSR systems.

Chapter 5 discusses parameter estimation in a discriminative training framework. In con-

trast to the previous work on MMI training of EMLLT and SPAM models, this chapter is devoted

to the discussion of Minimum Phone Error (MPE) training of various precision matrix models.

The implementation issues related to the MPE training process are also discussed.

Chapter 6 concerns the adaptation and adaptive training techniques with these more com-
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plex precision matrix models. Linear transformation based techniques such as Maximum Likeli-

hood Linear Regression (MLLR) [40, 70] techniques will be described. Estimation of the MLLR

transformation matrices for precision matrix models does not have a closed-form solution and

numerical optimisation schemes were used in the past. This chapter introduces an efficient it-

erative row-by-row update for the MLLR mean and Constrained MLLR (CMLLR) adaptations.

Implementation issues to improve the memory and computational requirements are discussed.

Chapter 7 investigates a semi-parametric trajectory model. This model is formulated such

that the Gaussian parameters are modelled with temporal shifting of the mean vectors and

temporal scaling of the diagonal precision matrix elements based on the posteriors of a set

of centroids. The former yields the fMPE technique introduced by Povey [97]. The latter is

a novel approach to modelling the temporal aspects of the precision matrix structures, called

pMPE [112].

Chapter 8 and 9 present the experimental results for various techniques introduced in this

thesis. Performance are evaluated on a number of different tasks using different languages.

Specifically, the Conversational Telephone Speech (CTS) English and Mandarin; and Broadcast

News (BN) English transcription tasks are used.



2

Hidden Markov Model Speech Recognition

2.1 Overview

HMMs [102] are the most popular and successful statistical acoustic models for speech recog-

nition. This chapter will describe the mathematical formulation of the HMM and how it can be

used as the acoustic model for speech recognition. The HMM is a finite state transducer compris-

ing a variable number of discrete states. The standard HMM makes the following assumptions:

• Instantaneous first-order transition:

The probability of making a transition to the next state qt+1 is independent of the historical

states, Qt−1
1 = {q1, q2, . . . , qt−1}, given the current state, qt.

• Conditional independence assumption:

The probability of observing ot at time t is independent of the historical observations,

Ot−1
1 , and the states, Qt−1

1 given the current state, qt.

Thus, the generative model of the standard HMM is given by

qt+1 ∼ P (qt+1|qt) (2.1)

ot ∼ p(ot|qt) (2.2)

Figure 2.1: A generative hidden Markov model

where qt and ot are the state and observation vector respectively at time t. The parameters of a

HMM with N discrete states are given by θ(π,A, b) where π = {πi : 1 ≤ i ≤ N} are the initial

probabilities of the states, A = {aij : 1 ≤ i, j ≤ N} are the transition probabilities between two

10
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Observation Sequence

Non−emitting state

Emitting state Observation emission

Allowed state transitions

Figure 2.2 A left-to-right hidden Markov model

states and b = {bj(ot) : 1 ≤ j ≤ N} are the observation probabilities of the states. A typical

left-to-right HMM topology used in a speech recognition system is illustrated in Figure 2.2. Two

special non-emitting states are used to represent the left-to-right topology. By having the non-

emitting start state1, the initial probabilities are simply π1 = 1 and πi = 0 for i 6= 1. The

arrow joining two states indicates the permissible transitions in the given direction. The HMM

in Figure 2.2 assumes that the speech signals being modelled can be logically divided into three

segments, within each, the signals are considered i.i.d (independent and identically distributed)

and piece-wise stationary.

In order to use the HMMs in speech recognition, one needs to be able to:

• evaluate the likelihood of the model given the observations

• decode the most likely state sequence given the observations

• estimate the HMM parameters to maximise the objective function.

These three aspects will be discussed in the following sections.

1Some literatures describe HMMs without the non-emitting start state. Instead, an initial probability is assigned

to each emitting state directly

figures/hmm.eps
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2.1.1 Evaluation

To evaluate an HMM given the observation sequence, OT
1 , we need to be able to compute

p(OT
1 |θ). This is given by

p(OT
1 |θ) =

∑

QT
1

p(OT
1 , Q

T
1 |θ) =

∑

QT
1

T
∏

t=1

P (qt, qt−1|θ)p(ot, qt|θ) (2.3)

For simplicity, the initial state probabilities are denoted as πi = P (q1 = i|q0). Equation (2.3) can

be calculated efficiently using a forward recursion:

αj(t) = p(Ot
1, qt = j|θ)

= p(ot|qt = j,θ)
N
∑

i=1

P (qt = j|qt−1 = i,θ)p(Ot−1
1 , qt−1 = i|θ)

= p(ot|qt = j,θ)
N
∑

i=1

P (qt = j|qt−1 = i,θ)αi(t− 1)

= bj(ot)
N
∑

i=1

aijαi(t− 1) (2.4)

where αi(()t) is the probability of being in state j at time t, after observing the observation

sequence OT
1 1t given the HMM parameters and the initial conditions are given by

αj(0) =

{

1 for j = 1

0 otherwise
(2.5)

since the HMMs have to begin in the start state, (j = 1). Also, since the HMMs have to end in

the exit state, p(OT
1 |θ) = αN (T ).

2.1.2 Viterbi Decoding

To decode an observation sequence using HMM is to find the best state sequence which emitted

those observations, i.e.

Q̂T
1 = arg max

QT
1

P (OT
1 , Q

T
1 |θ) (2.6)

where the optimum state sequence, Q̂T
1 , can be found using the Viterbi algorithm. This algorithm

can be efficiently performed using the following recursion:

vj(t) = p(Ot
1, Q

t−1
1 , qt = j|θ)

= max
1≤i≤N

[P (qt = j|qt−1 = i,θ)vi(t− 1)]P (ot|qt = j,θ)

= max
1≤i≤N

[aijvi(t− 1)] bj(ot) (2.7)
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where vj(t) is the probability of the most likely partial state sequence, Qt−1
1 , which has generated

the partial observation sequence, Ot
1 and ends in state j at time t. The initial conditions are given

by

vj(0) =

{

1 for j = 1

0 otherwise
(2.8)

To obtain the best state sequence, the previous state which has generated the best partial ob-

servation sequence, Ot
1 and ends in state j at time t has to be recorded for all 1 ≤ t ≤ T and

1 ≤ j ≤ N . Let this be denoted by qmax
j (t), where

qmax
j (t) = arg max

1≤i≤N

[P (qt = j|qt−1 = i,θ)vi(t− 1)]

= arg max
1≤i≤N

[aijvi(t− 1)] (2.9)

The best final state is given by q̂T = vN (T ) and the entire best state sequence can be retrieved

by backtracking from q̂T using the following backward recursion:

q̂t = qmax
q̂t+1

(t+ 1) (2.10)

The best sequence is then given by Q̂T
1 = {q̂1, q̂2, . . . , q̂T }.

2.1.3 Maximum Likelihood Parameters Estimation

Estimation of the HMM parameters is the hardest among the three. In this section, Maximum

Likelihood (ML) criterion will be used to estimate the HMM parameters. The optimum parame-

ters are given by maximising the following log likelihood function:

Rml(θ) = log p(OT
1 |θ) (2.11)

Direct optimisation of the ML objective function in equation (2.11) is difficult. However, an

efficient Baum-Welch algorithm2 [11] can be applied to maximise equation (2.11) using an iter-

ative approach. In this method, an auxiliary function (also known as the Q-function), Qml(θ, θ̂),

is defined as

Qml(θ, θ̂) = Eθ

[

log p(OT
1 , Q

T
1 |θ̂)

]

=
∑

QT
1

P (QT
1 |O

T
1 ,θ) log p(OT

1 , Q
T
1 |θ̂)

=
∑

QT
1

P (QT
1 ,O

T
1 |θ)

P (OT
1 |θ)

(

log p(QT
1 , θ̂

trans
) + log p(OT

1 |Q
T
1 , θ̂

obs
)
)

(2.12)

2Baum-Welch algorithm is also known as the Forward-backward algorithm, which is a form of Expectation Max-

imisation (EM) algorithm [19]
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where θ̂
trans

and θ̂
obs

are the model parameters associated with the state transition probabilities

and the observation emission probabilities respectively. Eθ denotes the expectation over QT
1 ,

given the observation sequence, OT
1 , based on the current parameter set, θ. This auxiliary

function satisfies the following inequality

Rml(θ̂) −Rml(θ) ≥ Qml(θ, θ̂) −Qml(θ,θ) (2.13)

which is obtained by applying the Jensen’s inequality [19]. The inequality in equation (2.13)

shows that increasing the auxiliary function guarantees an increase in the objective function

unless a local maximum is reached. Furthermore, equation (2.12) shows that the transition and

observation parameters can be maximised separately based on each of the summation terms in

the equation. Thus, the iterative Baum-Welch algorithm can be summarised as follows:

Initialise θ;

while [increase in Qml(θ, θ̂) > threshold]

do

E-step: Compute Qml(θ, θ̂);

M-step: Estimate θ := arg max ˆθ
Qml(θ, θ̂);

done

Figure 2.3: The Baum-Welch algorithm

The E-step of the algorithm requires the calculation of p(QT
1 ,O

T
1 |θ) for all possible state

transitions and the observation vectors. This can be done efficiently using both the forward and

backward recursion 3. Similar to the forward probabilities defined in equation 2.4, a backward

probability can also be defined in a similar fashion:

βj(t) = p(OT
t+1|qt = j,θ)

=
N
∑

i=1

p(ot+1|qt = i,θ)P (qt = i|qt−1 = j,θ)p(OT
t+2|qt−1 = i,θ)

=
N
∑

i=1

p(ot+1|qt = i,θ)P (qt = i|qt−1 = j,θ)βi(t+ 1)

=
N
∑

i=1

bi(ot+1)ajiβi(t+ 1) (2.14)

The initial conditions are given by

βj(T ) =

{

∑N
i=1 aij for j = N

0 otherwise
(2.15)

3This is why the algorithm is named Forward-backward algorithm.
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since the model must end in the exit state (j = N). This allows us to compute two quantities

which are essential for the estimation of the HMM parameters. These quantities are:

γml
(i,j)(t) =

P (qt−1 = i, qt = j,OT
1 |θ)

p(OT
1 |θ)

=
αi(t− 1)aijbj(ot)βj(t)

αN (T )
(2.16)

γml
j (t) =

p(qt = j,OT
1 |θ)

p(OT
1 |θ)

=
αj(t)βj(t)

αN (T )
(2.17)

γml
(i,j)(t) represents the posterior probability of making a transition from state i at time t − 1 to

state j at time t. Meanwhile, γml
j (t) represents the posterior probability of being in state j at

time t.

Given γml
(i,j)(t) and γml

j (t), the auxiliary function is then maximised to yield the optimum

model parameters. For standard HMMs, the auxiliary function may be optimised efficiently

with a closed form solution. However, when more complex acoustic modelling techniques are

employed, the auxiliary function may not have a closed-form solution or is simply not trivial to

solve. Under these circumstances, a modified algorithm known as the Generalised Expectation

Maximisation (GEM) [19] algorithm may be used, where the parameters are estimated in the

M-step such that the auxiliary function is improved (not necessary to find the maximum). Every

GEM iteration also guarantees an improvement in the objective function (from equation 2.13).

In the following sections, the estimation formulae for the transition probabilities, discrete HMM

output probabilities and the Gaussian Mixture Model (GMM) parameters for Continuous Density

HMMs (CDHMMs) will be derived using the EM approach.

2.1.3.1 Estimation of the transition probabilities

Considering the terms in equation (2.12) which are dependent on the transition parameters, the

auxiliary function can be rewritten as

Qml(θ, θ̂) = Ktrans +
∑

QT
1

p(QT
1 ,O

T
1 |θ)

p(OT
1 |θ)

log p(QT
1 , θ̂

trans
)

= Ktrans +
T
∑

t=1

N
∑

i=1

N
∑

j=1

p(qt−1 = i, qt = j,OT
1 |θ)

p(OT
1 |θ)

log aij (2.18)

where Ktrans denotes terms independent of the transition parameters. Equation (2.18) needs

to be maximised with respect to the transition parameters, {aij : 1 ≤ i, j ≤ N}, subject to the

following constraints:
N
∑

j=1

aij = 1 for 1 ≤ i ≤ N (2.19)

The analytic solution can be found by using the Lagrange multipliers. The update of the transi-

tion parameters is thus given by

âij =

∑T
t=1 γ

ml
(i,j)(t)

∑T
t=1

∑N
k=1 γ

ml
(i,k)(t)

(2.20)
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2.1.3.2 Estimation of the Discrete HMMs parameters

For a discrete HMM, the observation vectors are represented by k discrete symbols, {õk : 1 ≤ k ≤ K},

using a Vector-Quantisation (VQ) table. Thus the probability mass function is thus given by

p(ot = õk|qt = j,θ) = bj(k). These probabilities can be estimated by maximising the following

auxiliary function

Qml(θ, θ̂) = Kobs +
∑

QT
1

p(QT
1 ,O

T
1 |θ)

p(OT
1 |θ)

log p(OT
1 |Q

T
1 , θ̂

obs
)

= Kobs +
N
∑

j=1

K
∑

k=1

∑

t∈ot=õk

p(qt = j,OT
1 |θ)

p(OT
1 |θ)

log bj(k) (2.21)

subject to the following sum-to-one constraint to form a valid probability mass function

K
∑

k=1

bj(k) = 1 for 1 ≤ j ≤ N (2.22)

Kobs subsumes terms independent of the observation probability parameters. Again, using the

Lagrange multipliers, the discrete probabilities are given by

b̂j(k) =

∑

t∈ot=õk
γml

j (t)
∑T

t=1 γ
ml
j (t)

(2.23)

2.1.3.3 Estimation of the Continuous Density HMMs (CDHMMs) parameters

Continuous density HMMs (CDHMMs) are more popular and they have been shown to yield

better performance compared to a discrete HMM system. The probability density function (pdf)

of the state dependent observation distribution is typically represented by a Gaussian Mixture

Model (GMM). Alternative forms of pdf have also been investigated, for examples the Laplacian

distribution or the Gamma distribution. Here, the use of GMMs as the pdf will be described since

all the work in this thesis is based on HMM systems with GMM distributions.

A GMM models the output probability of the observation, ot, given the HMM state, s, as

bs(ot) =
M
∑

m=1

csmN (ot; µsm,Σsm) (2.24)

where N (ot; µsm,Σsm) represents a Gaussian distribution given by

N (ot; µsm,Σsm) =
1

√

(2π)d|Σsm|
exp

{

−
1

2
(ot − µsm)′ Σ−1

sm (ot − µsm)

}

(2.25)

with the component prior, csm, mean vector, µsm, and covariance matrix, Σsm for component m

of state j. The GMM parameters, csm, µsm and Σsm can be estimated by maximising

Qml(θ, θ̂) = Kobs +
N
∑

s=1

T
∑

t=1

p(qt = s,OT
1 |θ)

p(OT
1 |θ)

log bs(ot) (2.26)
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subject to the constraints

M
∑

m=1

csm = 1 and

∫ ∞

−∞
bs(ot)dot = 1 (2.27)

for 1 ≤ s ≤ N . Using constrained maximisation with the Lagrange multipliers, the update

formulae for the GMM parameters are given by

ĉsm =

∑T
t=1 γ

ml
sm(t)

∑T
t=1

∑M
k=1 γ

ml
sk (t)

(2.28)

µ̂sm =

∑T
t=1 γ

ml
sm(t)ot

∑T
t=1 γ

ml
sm(t)

(2.29)

Σ̂sm =

∑T
t=1 γ

ml
sm(t) (ot − µ̂sm) (ot − µ̂sm)′

∑T
t=1 γ

ml
sm(t)

(2.30)

where the probability of being in state s and component m at time t is given by

γml
sm(t) =

p(qt = s, kt = m,OT
1 |θ)

p(OT
1 |θ)

=
N
∑

i=1

αi(t− 1)aijcsmbsm(ot)βs(t)

αN (T )
(2.31)

kt denotes the component at time t. bsm(ot) = N (ot; µsm,Σsm) is the Gaussian distribution of

component m of state s.

2.2 State-of-the-art LVCSR systems

State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems employ sta-

tistical CDHMMs and n-gram language models. These systems are complex and employ many

advanced techniques to improve the recognition performance and to reduce the run time of the

systems. The total number of distinct states in an LVCSR system is large, ranging from thousands

to tens of thousands. Furthermore, virtually all CDHMM systems use multivariate GMMs of high

dimensionality (typically 39 or 52) as the output probability distribution. Therefore, there may

be in total more than 100,000 Gaussian components in the system. The elements of the feature

vector are assumed to be uncorrelated so that each Gaussian component has a diagonal covari-

ance matrix structure. This not only reduces the total number of free parameters in the system

by a significant amount, the likelihood computation of the Gaussian components is also more

efficient. The former is crucial to ensure robust parameters estimation in order to avoid over-

training (or over-fitting) issues associated with the data-sparseness problems. The latter is also

important to obtain efficient run time for the recogniser. In the following, several commonly

employed state-of-the-art techniques for LVCSR systems will be described briefly.
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2.2.1 Context Dependent Models and Decision Tree State Clustering

Many speech recognition systems use HMMs to model the phones of speech. Due to the co-

articulation4 effects, context-dependent phone models are typically used. A context can be a

single phone to the left or (and) to the right of the current phone. Table 2.1 summarises several

Context-dependent # of contexts

models left right

left biphone 1 0

right biphone 0 1

triphone 1 1

quinphone 2 2

septaphone 3 3

Table 2.1 Different types of context dependent phone models

types of context dependent models used in the speech recognition systems. Among all, triphone

models are the most popular. The lexicon of the word “lexicon”

lexicon ⇒ l+eh l-eh+k eh-k+s k-s+ih s-ih+k ih-k+aa k-aa+nn k- n

Figure 2.4: Triphone representation of the word “lexicon”

Recent development of the state-of-the-art systems reveals that is it possible to build LVCSR sys-

tems with higher context dependencies within a reasonable runtime limits (10xRT and 20xRT).

For examples, the Cambridge University Engineering Department (CUED) recent LVCSR sys-

tems [22, 23, 24, 37, 38, 65, 65, 66, 67] used quinphone models with the HTK (HMM Toolkit)

software [134]. Besides, the IBM RT04 system also uses the septaphone HMMs.

Since the number of triphones in English is large (more than 100,000), there will be many

unseen triphones and triphones with very few examples in the training data. To ensure the

robustness of system trainability, HMM states with similar output distributions may be grouped

together so that each distinct triphone receives a reasonable amount of training data and the

unseen triphones may be clustered to an appropriately trained triphone. State clustering is

commonly achieved using a decision tree [8, 135]. A top-down binary split decision tree is

depicted in Figure 2.5. A decision tree is built for each centre phone. Expert knowledge may be

incorporated by asking some linguistic related questions about its contexts at each node. The

decision tree state clustering algorithm starts by grouping all the context-dependent models with

the same centre phone at the root node of the tree. The best question which results in the largest

decrease in entropy or increase in likelihood is chosen to split the root node. This step is applied

4Co-articulation is the effect where the sound of a phone is influenced by the neighbouring phones in connected

speech.
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Is right context a back−R? Is left context a nassal?

Is right context a vowel?

Non−terminal nodes

Terminal nodes

Is left context a fricative?

YES

YES YES

YES

NO

NONO

NO

Figure 2.5 A top-down binary split decision tree for state clustering.

recursively to the terminal nodes of the tree until the number of examples associated with each

terminal node is below a prescribed threshold.

2.2.2 Discriminative Training

Traditionally, model parameters are estimated based on a maximum likelihood estimator (MLE).

The MLE solution can be formally written as

θ̂
ml

= arg max
θ

L(θ|OT
1 ) (2.32)

where L(θ|OT
1 ) is the likelihood of the model parameter set, θ given the complete set of obser-

vation vectors, OT
1 . Thus, the ML estimator finds a set of parameters such that the model best

fit the observation data. However, it strongly depends on the assumption that the observed data

was in fact generated by the proposed model. In speech recognition, HMMs are commonly em-

ployed with the observation density function represented by a GMM. However, HMMs may not

be the correct model for the speech data. Furthermore, the observation distribution may not be

appropriately modelled using GMM. Moreover, according to the iterative Baum-Welch parame-

ter estimation method using the maximum likelihood criterion as described in Section 2.1.3, the

model parameters associated with each HMM in the system are estimated independent of the

other HMMs once the auxiliary function has been computed. If the underlying model assump-

tion was incorrect, the newly estimated parameters may also increase its likelihood given the

observations generated by other HMMs. Clearly, this does not improve the discrimination power

of the system. To overcome this problem, a new form of training paradigm is required, one

figures/clustering_tree.eps
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which is more closely related to the primary objective of the speech recognition task – to reduce

the recognition error rate. Recall that in speech recognition and other statistical classification

tasks, the aim is to select the best model (or sequence of models) from a large set of competing

models. Thus, the model parameters should be estimated by maximising the ability to discrim-

inate the correct models from the ones that potentially lead to mis-classifications. Parameter

estimation based on this form of training scheme is known as discriminative training.

In the past two decades, several forms of discriminative training criteria have been pro-

posed and were found to outperform the conventional maximum likelihood training scheme.

One of the earliest discriminative training schemes was the Maximum Mutual Information (MMI)

scheme proposed by Bahl et al. , 1986 [9]. MMI estimates the HMM parameters such that the

mutual information between the models and the training data is maximised. This is equiva-

lent to maximising the a posteriori probability that each training utterance was generated by

the corresponding model. Following that, further research on MMI training for speech recog-

nition had been carried out by many other researchers. The early MMI training was applied

to isolated word recognition by Bahl [9] and Brown [14]. Merialdo [78], Normandin [82, 84]

and Kapadia et al. [64] also successfully applied MMI training to small vocabulary continuous

speech recognition. Next, the MMI training was extended to the Large Vocabulary Continuous

Speech Recognition (LVCSR) by Normandin et al. [83] (1994), Valtchev et al. [123] (1996) and

Woodland and Povey [131, 132] (2000). The MMI training paradigm is very closely related to

the Conditional Maximum Likelihood Estimation (CMLE) [79, 80]. As pointed out in [122], the

MMI and CMLE methods are slightly different in that the former includes the language model

probability of the training utterances in the objective function. However, almost all MMI train-

ing experiments were based on a fixed language model which means that the MMI and CMLE

schemes yields the same parameter estimation. In addition to MMI training, many other discrim-

inative training paradigms for speech recognition have been investigated in the past. Examples

of the earlier research on discriminative training include the Minimum Discrimination Informa-

tion (MDI) [20, 21], the H-criterion [49], Minimum Classification Error (MCE) [27, 62, 75] and

the Frame Discrimination (FD) [98, 99] schemes. More recent development of discriminative

training methods include the Minimum Phone Error (MPE) [100] and Minimum Word Error

(MWE) [95] criteria. In particular, MPE has been found to yield consistent gain over MMI for

LVCSR systems [95]. In Chapter 5, discriminative training of precision matrix models using MPE

criterion will be presented.

2.2.3 Speaker Adaptive Training and Adaptation

Adaptation techniques are of great importance to speech recognition systems. These techniques

are used to reduce the mismatch in the systems. There are various kinds of mismatch in speech

recognition systems. For example, the acoustic data used to train the system may be collected
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from a set of speakers which are different from the actual user of the system. Besides, the

environmental conditions may also differ. The mismatch between training and testing conditions

may deteriorate the system performance by a considerable amount. Furthermore, there can also

be mismatch within the training data itself. Such mismatch are due to the non-homogeneity of

the training data. As discussed earlier in Chapter 1, it is often difficult to build many condition-

specific models to cope with the wide range of operating conditions. Thus, a common approach

is to build a general (condition independent) system using training data covering the range of

conditions of interest. As a result, the training data may be highly non-homogeneous. These

non-homogeneity can be reduced by employing the adaptive training schemes.

Speaker adaptation and adaptive training techniques are employed in most speech recog-

nition systems so that a speaker independent (SI) system can be built and adapted to unknown

users during deployment. The most commonly used technique is the Maximum Likelihood Lin-

ear Regression (MLLR) [40, 70] scheme. Maximum a Posteriori Linear Regression (MAPLR)

techniques [16, 17] have also been applied to improve the performance of MLLR in the case

of data sparseness. MLLR is a technique of (linearly) transforming the parameters of a general

model to reflect (adapt to) a specific condition using only a small amount of adaptation data.

To cope with the small amount of adaptation data, linear regression method is used to transform

a group of parameters. Grouping of these parameters into regression classes is often done using

a top-down splitting or a bottom-up clustering (agglomerative) scheme to generate a regression

class tree [29]. Top-down clustering schemes allow expert knowledge to be incorporated into

the tree generation process (e.g. a speech-silence partition). The linear transformation matrices

are then estimated based on the statistics accumulated at the deepest node of the regression class

tree having sufficient data (above a certain threshold). Figure 2.6 depicts an example regression

class tree used for adaptation. In this example, there are 9 regression classes, partitioned into

speech (c1, c2, c3, c4, c5) and silence (c6, c7, c8, c9). These regression classes, together

with the other non-terminal nodes, form a regression tree These nodes are used to determine

the sufficient data available for each regression class. The adaptation data used to estimate

the transformation matrix for each regression class is shown with the transform links (dashed

arrows). So, regression classes, c1, c4 and c8 have sufficient data to estimate their respec-

tive transformation matrices. c2 requires data from both c1 and c2 for transform estimation.

Similarly, c3, c5 and c7 require data from [c1, c2, c3], [c4, c5] and [c6, c7, c8, c9]

respectively. Finally, c9 can only be estimated robustly using data from all regression classes.

The MLLR technique has been successfully applied to the Gaussian parameters (mean and

variance) of the CDHMM systems. These techniques are known as the MLLR mean [70] and

MLLR variance [31] adaptation schemes. Constrained MLLR (CMLLR) [31] adaptation is a spe-

cial form of MLLR adaptation where the mean and variance of the same regression class share

the same linear transformation matrix. This turns out to be equivalent to applying a linear trans-

formation to the feature vectors for each regression class. CMLLR are often employed in Speaker
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c1 c2 c3 c4 c5 c6 c7 c8 c9

speech silence

Non−terminal nodes

Regression classes

Transform link

Child node link

Figure 2.6 An example regression class tree

Adaptive Training (SAT) [2] due to its efficient storage requirement (one linear transform for

each regression class as oppose to two: one for the mean vectors and one for the covariance

matrices). An extension to the CMLLR technique which incorporates dimension reduction to

the feature space, FMLLR, was proposed in [107]. This technique was found to outperform the

CMLLR technique when used in the corresponding projected space.

2.2.4 Decoding Strategies

State-of-the-art systems typically employ advanced decoding strategies to improve the basic

Viterbi decoding. Several common techniques are listed below:

• Pronunciation Probabilities

Lexicon defines the mapping between the words in the vocabulary and the corresponding

subword representation. This is an important aspect for phone-based systems where the

mapping between a word and its lexicon is governed by the pronunciation. Variation in the

pronunciation may occur as a result of several factors. For instance, it may vary depend-

ing on its context in a sentence. Besides, it may also be caused by the different accents

or dialects of the speakers. Pronunciation variations can be accounted for using a proba-

bilistic model where probabilities are assigned to each pronunciation variant of the words.

In some cases, selecting the most probable pronunciation (single pronunciation system)

may yield better performance than a multiple pronunciations system with pronunciation

figures/regression_tree.eps
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probabilities. Typically, adding the pronunciation probability information may improve the

system’s performance by 5%–10% relative.

• Multi-pass Decoding

Typically, more advanced systems have the disadvantage of running slower. Multi-pass

decoding strategy repeatedly refines the search space in multiple stages so that more pow-

erful but slower systems can be incorporated in the later stages. The refined search space

is often a compact representation of multiple hypotheses from the previous stage in the

format of word lattices (network). For example, the use of a 4-gram language model is

prohibitively slow when used in a single-pass full decoding system. In a two-stage decod-

ing setup, a trigram language model is used to generate a lattice of hypotheses. The lattice

is then expanded to include 4-gram context information and rescored with the 4-gram lan-

guage model to obtain better hypotheses. In Chapter 8, several multi-pass decoding setup

will be described to illustrate the use of a discriminatively trained precision matrix model,

SPAM, in a multi-pass and multi-branch framework.

• Confusion Network Decoding

The decoding (recognition) process of a speech recognition system is associated with find-

ing the most likely word sequence given the speech. This is often based on the likelihood

scores. Alternatively, best word sequence can be obtain by considering the confidence mea-

sures [25]. Confidence measure may be calculated by looking at the confusion between

multiple hypotheses typically in the form of a confusion network (CN). CN decoding [25]

has been found to yield improvements in the range of 5–10% relative improvements com-

pared to the standard likelihood-based decoding.

• Systems Combination

Instead of a sequential multi-pass decoding strategy, multiple systems can perform recog-

nition in parallel and the final output from all the systems are combined together to (hope-

fully) give a better performance than the best individual system. The ROVER (Recognizer

Output Voting Error Reduction) [26] technique developed by NIST is a method of com-

bining multiple 1-best transcriptions to reduce the recognition error rate. Alternatively,

Confusion Network Combination (CNC) method [25, 76] can be used to combine multiple

hypotheses from multiple systems to yield better performance. Experimental results on

CNC combination of precision matrix models with other standard HMM systems will be

discussed in Chapter 8.
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2.3 Limitations of HMMs for Speech Recognition

Recall from Sections 2.1.1 to 2.1.3 that the use of HMMs in speech recognition involves the

calculation of the likelihood function, which is of the form

p(OT
1 |θ) =

∑

QT
1

p(OT
1 , Q

T
1 |θ) =

∑

QT
1

p(OT
1 |Q

T
1 ,θ)P (QT

1 |θ) (2.33)

where the summation is defined over all possible state sequence, QT
1 . To allow efficient ma-

nipulation of the above expression, two important assumptions (given at the beginning of this

chapter) are made about the speech waveform, which decompose P (QT
1 |θ) and p(OT

1 |Q
T
1 ,θ) as

follows:

1. Instantaneous first-order transition:

P (QT
1 |θ) =

T
∏

t=1

P (qt|qt−1,θ) (2.34)

where P (q1|q0,θ) = P (q1|θ) is the initial probability of state, q1.

2. Conditional independence assumption:

p(OT
1 |Q

T
1 ,θ) =

T
∏

t=1

p(ot|qt,θ) (2.35)

where the state dependent output distribution, p(ot|qt,θ), is commonly represented by a

Gaussian mixture model. Furthermore, the covariance matrix of each Gaussian component

is often assumed a diagonal structure (ignoring spectral correlations) to further reduce the

computational cost.

In particular, from the “conditional independence assumption”, observations are assumed

to be conditionally independent given the state that generated the observation. Thus, the tem-

poral correlation between successive observations is ignored and the output distribution asso-

ciated with an HMM state is constant. Existing ways to overcome this limitation include the

use of switching linear dynamical systems [104], stochastic segment models [88, 89], polyno-

mial segment models, buried Markov models [13] and trajectory HMM [118, 119], . All these

models have a common aim of relaxing the “conditional independence assumption” by allowing

the state output distribution to vary with time. This time variation is achieved by adding de-

pendency on the observation sequence, OT
1 , either directly or using latent variables. The model

parameters for the state output probability are now time dependent and equation (2.35) may

be rewritten as

p(OT
1 |Q

T
1 ,θt) =

T
∏

t=1

p(ot|θt) (2.36)



CHAPTER 2. HIDDEN MARKOV MODEL SPEECH RECOGNITION 25

The time dependent parameter set, θt, is expressed as a function of the observation sequence,

OT
1 , state sequence, QT

1 , and the time, t, i.e.

θt = fΦ

(

OT
1 , Q

T
1 , t
)

(2.37)

The form of function, fΦ(.), with parameters, Φ, defines the type of model used. In the following

sections, several trajectory and segmental models will be described based on the time varying

parameters formulation given by equations (2.36) and (2.37).

2.3.1 Explicit Temporal Correlation Modelling

One of the earliest work on explicit time correlation modelling was carried out by Wellekens [128].

In this work, correlation between adjacent frames is explicitly modelled by modifying equa-

tion (2.36) as

p(OT
1 |Q

T
1 ,θ) = p(o1|q1,θ)

T
∏

t=2

p(ot|ot−1, qt, qt−1,θ) (2.38)

where the conditional probability distribution of ot is given by

p(ot|ot−1, qt, qt−1,θ) =
p(ot,ot−1|qt, qt−1,θ)

p(ot−1|qt−1,θ)
(2.39)

The joint distribution of ot and ot−1 in the numerator of the r.h.s. of equation (2.39) is given by

p(ot,ot−1|qt = s, qt−1 = u,θ) = N

([

ot−1

ot

]

;

[

µu

µs

]

,

[

Σuu Σus

Σsu Σss

])

(2.40)

and the conditional distribution of ot−1 given qt−1 is given by

p(ot−1|qt−1 = u,θ) = N (ot−1; µu,Σuu) (2.41)

µs and Σss denote the mean and covariance matrix of state s and Σsu is the covariance between

state s and u. Therefore, equation (2.39) is also a Gaussian distribution of the form

p(ot|ot−1, qt = s, qt−1 = u,θ) = N
(

ot; µst|u,Σs|u

)

(2.42)

where the conditional mean vector and covariance matrix may be expressed as

µst|u = µs + ΣsuΣ
−1
uu (ot−1 − µu) (2.43)

Σs|u = Σss − ΣsuΣ
−1
uuΣus (2.44)

Note that, µst|u, the conditional mean of state s given state u is now dependent on the previ-

ous observation vector, ot−1. This is one form of time varying parameters described by equa-

tion (2.37). However, the cross covariance matrix between two states, Σsu, has to be estimated
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for every possible pair of states in the system. This increases the number of model parame-

ters dramatically. To further simplify the above model, the dependency on the previous state in

equation (2.39) may be dropped, such that

µu → µ̃ Σsu → Σ̃s Σuu → Σ̃ (2.45)

This yields

p(ot|ot−1, qt = s,θ) = N (ot; µst,Σs) (2.46)

where the conditional mean vector and covariance matrix are now given by

µst = µs + Σ̃sΣ̃
−1

(ot−1 − µ̃) (2.47)

Σs = Σss − Σ̃sΣ̃
−1

Σ̃
′
s (2.48)

Another form of trajectory model is the vector linear prediction (VLP) model [130], where

the state output probability of ot is conditionally independent of other parameters given the

current state, qt, and observation dependencies, Ht. Therefore, equation (2.39) is altered such

that

p(OT
1 |Q

T
1 ,θ) =

T
∏

t=1

p(ot|Ht, qt,θ) (2.49)

where Ht ⊂ OT
1 . The state distribution is thus re-expressed in terms of the observation history

as

p(ot|Ht, qt = s,θ) = N (ot; µst,Σs) (2.50)

where the state mean vector varies with time according to the form

µst = µ(0)
s +

P
∑

p=1

A(p)
s

(

ot+τp − µ
(τp)
s

)

(2.51)

where P is the number of predictors. The mean vector given the HMM state is dependent on

the observation history, Ht = {ot+τp : 1 ≤ p ≤ P, 1 ≤ t + τp ≤ T}. This form of model is

again a specific form of a time varying parameter formulation given by equation (2.37). Note

that the mean vector of the VLP model given in the above equation is similar to the expression

of the conditional mean for an explicit temporal correlation model given in equation (2.47).

Equation (2.51) is identical to equation (2.47) when only one predictor is used (P = 1) such

that τ1 = −1 and

µ(τ1)
s = µ̃ and A(1)

s = Σ̃sΣ̃
−1

(2.52)

Therefore, increasing the number of linear predictor (P ) enhances the model’s capability of

explicitly modelling the temporal correlations.

A more general form of temporal correlation modelling scheme was introduced by Bilmes [13],

known as the Buried Markov Model (BMM). This model is similar to the above VLP model, ex-

cept that the observation dependencies are specifically selected (discriminatively using a maxi-

mum entropy criterion) from any of the elements of the entire observation sequence. In [13], a
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Gaussian-mixture BMM was described where the state output density function is modelled by a

mixture of Gaussian of the form

p(ot|ht, qt = s,θ) =
M
∑

m=1

V
∑

v=1

P (m|s, v)P (v|ht)N (ot; µsmvt,Σsmv) (2.53)

where ht is a column vector defining the entire collection of dependencies variables any element

of ot might use and v denotes the class of ht. M and V are the number of components and

classes respectively. P (m|s, v), the prior of component m, given the state s and class v, is a

discrete probability table and P (v|ht) is the probability of class v given the continuous vector

ht. This formulation also yields a time varying Gaussian mean vector given by

µsmvt = Asmvht + bsmv (2.54)

where Asmv and bsmv are model parameters that can be estimated efficiently using the EM

approach [13]. This expression is dependent on time via the vector of dependency variables,

ht. Note that if ht contains elements from ot itself, both spectral and temporal correlations are

modelled. Furthermore, equation (2.53) may be rewritten as

p(ot|ht, qt = s,θ) =
M
∑

m=1

V
∑

v=1

csmvtN (ot; µsmvt,Σsmv) (2.55)

where csmvt = p(m|s, v)p(v|ht) denotes the time varying component weights.

2.3.2 Stochastic Segment Models

Segmental models represent another class of model which allows the trajectory within a seg-

ment of speech to be modelled. Here, the Stochastic Segment Model (SSM) [88, 89] will be

described. An SSM models the trajectory within a speech segment via the use of latent variables,

which may be formulated within a state-space framework [104]. Speech segments are assumed

independent and therefore the state posteriors are not propagated across segment boundaries.

The generative model of SSM can be expressed as

qt+1 ∼ P (qt+1|qt)

xt =







∼ N
(

µ
(0)
qt ,Σ

(0)
qt

)

qt 6= qt−1

Aqtxt−1 + wqt qt = qt−1

ot = Cqtxt + vqt

Figure 2.7: A generative Stochastic Segment Model

where vqt and wqt are the noise vectors associated with the observations and latent variables

respectively. The distribution of these noise vectors may be represented by Gaussian Mixture
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Models (GMMs). Therefore, the state output probability distribution for an SSM is a GMM

which depends on the underlying latent variables, xt and xt−1, i.e.

p(ot|qt,θt) = p(ot|qt,xt,xt−1,θ) (2.56)

The posterior probabilities associated with the latent variables, xt, may be obtained from the

E-step of the Kalman filter or smoother techniques.

2.3.3 Switching Linear Dynamical Systems

The Switching Linear Dynamical System (SLDS) [104] is an extension to the above SSM model,

where the trajectory of the speech data is modelled across segments. The generative model of

an SLDS is given by

qt+1 ∼ P (qt+1|qt)

xt = Aqtxt−1 + wqt

ot = Cqtxt + vqt

Figure 2.8: A generative Switching Linear Dynamical System

As before, the state probability distribution can be written as a GMM whose parameters vary

with time according to the underlying latent state evolution.

Various models have been described which attempt to relax the conditional independence

assumption made by the standard HMM formulation. Unfortunately, to date, these models have

had little success in improving the performance of large vocabulary continuous speech recogni-

tion systems. Despite the difference in model formulation (trajectory models, segment models,

switching linear dynamical system etc.), these models can all be expressed as a non-stationary

state output Gaussian mixture model. This non-stationarity may be viewed as a generic function

of the observation sequence, as described in equation (2.37).

In Chapter 7, a discriminative semi-parametric trajectory model will be presented. This

model represents the Gaussian mean vectors and covariance matrices as time varying parame-

ters. This time dependent parameters are modelled as a function of the location of the current

observation (and the neighbouring observations) in the acoustic space, which is represented by a

series of centroids. Model parameters are discriminatively estimated using the Minimum Phone

Error (MPE) criterion [95].

One form of temporally varying mean vector is obtained by applying a time dependent

bias to the static Gaussian mean. This time dependent bias is a weighted contribution from the
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bias vectors associated with each centroid (to be estimated discriminatively). The contribution

weights are calculated as the posteriors of the observation (and neighbouring observations)

given the centroids. The resulting model yields an fMPE model [96, 97]. On the other hand,

the variance of each dimension may also be scaled by a positive time dependent factor to yield a

temporally varying covariance matrix. This model is known as pMPE [112]. Similar to fMPE, the

time dependent scale factor is a weighted contribution from the centroid specific scales where

the weights are given by the posteriors of the observations given the centroids.



3

Covariance and Precision Matrix Modelling

To date, most state-of-the-art speech recognition systems are based on HMMs with multivariate

continuous output density function to model the acoustic units of speech data. One major issue

with using multivariate continuous density HMMs (CDHMMs) is how to accurately and efficiently

model the correlation of the feature vectors. Two forms of correlation exist:

1. inter-frame correlation: temporal correlation between feature vectors from successive

frames.

2. intra-frame correlation: spatial correlation between the feature elements within each

speech frame

In standard systems, both types of correlation are typically ignored so that efficient training

and decoding schemes can be used. Inter-frame correlation is represented only by the underly-

ing state sequence and the observations are assumed conditionally independent given the state

sequence, as described in Chapter 2. This allows the Baum-Welch training algorithm (see Sec-

tion 2.1.3) and the Viterbi decoding scheme (see Section 2.1.2) to be applied efficiently. Many

improvements have been investigated to relax the independence assumption, as described in the

previous chapter. These include the trajectory models [13, 118, 119, 128, 130], segmental mod-

els [41, 42, 88, 89] and the switching linear dynamical systems [104]. Further discussion on

this will be presented in Chapter 7. The remaining of this chapter concentrates on the discussion

of intra-frame correlation.

30
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3.1 Likelihood Calculation

The likelihood calculation is an important aspect of a speech recognition system. In both training

and decoding, the likelihood of a Gaussian component given each observation, ot, for all the

active components at time t needs to be computed. For LVCSR systems with typically more

than 100,000 Gaussian components, it is crucial to formulate the acoustic model such that the

likelihood computation is as efficient as possible.

Modelling all the intra-frame correlations requires full covariance matrices to be used. In

this case, the log-likelihood of Gaussian component m in state s (with mean vector µsm and full

covariance matrix Σsm) given the observation vector, ot at time t may be expressed as

L = log p(ot|µsm,Σsm) = −
1

2

{

d log(2π) + log |Σsm| + (ot − µsm)′ Σ−1
sm (ot − µsm)

}

(3.1)

The computation of the above expression is dominated by the final term in the curly brackets,

which requires O(d(d + 1)) operations1. As the feature dimensionality increases, the likelihood

computational cost increases dramatically. For LVCSR systems with high dimensionality (d has

a typical value of 39) and many Gaussian components (more than 100,000), the likelihood

computation of a full covariance matrix system becomes impractical. This problem is usually

alleviated by ignoring the intra-frame correlation. This is achieved by using diagonal covariance

matrix approximation. This simplifies the log likelihood expression in equation (3.1) as

L = log p(ot|µsm,Σsm) = −
1

2

d
∑

j=1

{

log(2π) + log σ2
smj +

(otj − µsmj)
2

σ2
smj

}

(3.2)

where µsmj and σ2
smj denote the jth element of the mean vector and diagonal covariance ma-

trix respectively. Once again, the cost of calculating the above expression is dominated by the

computation of the final term in the curly brackets2, which requires two operations for each

term and in total O(2d) operations. This is significantly smaller compared to the full covariance

matrix case (78 versus 1560 operations for d = 39). An issue is by how much the system perfor-

mance is degraded by using diagonal covariance matrix approximation? Also, are there ways to

improve the system performance by adopting other approximation schemes while maintaining

the efficiency in terms of likelihood computation? In the following sections, these issues will be

addressed by first motivating the importance of covariance matrix modelling using a simple 2-

class classification problem and then presenting several methods of improving the performance

of a diagonal covariance matrix system. Next, structured approximations of covariance and preci-

sion matrices will be discussed. In general, the latter is more efficient as the likelihood function

can be expressed directly in terms of the precision matrix (see equation 3.1). Covariance matrix

modelling usually incurs an additional cost of matrix inversion in likelihood calculation. Hence,

1 The cost associated of computing the offset between the observation and the mean vectors, ot −µsm, is ignored.
2 The sum of the first two terms may be pre-computed since they are independent of the observation vectors.
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this chapter will concentrate on various forms of precision matrix modelling schemes. In partic-

ular, a unifying framework of basis superposition for efficient precision matrix modelling (PMM)

will be introduced.

3.2 Effect of Covariance Matrix

As mentioned in Chapter 1, there are inherent uncertainties associated with speech data. These

variabilities are captured by the covariance matrix of the random samples. These random sam-

ples are commonly represented by a Gaussian distribution, which may be described by its mean

vector, µ and covariance matrix, Σ, as follows:

N (ot; µ,Σ) =
1

√

(2π)d|Σ|
exp

{

−
1

2
(ot − µ)′Σ−1(ot − µ)

}

(3.3)

where ot is a d× 1 observation vector at time t and

µ = E[ot] (3.4)

Σ = E[(ot − µ)(ot − µ)′] = E[oto
′
t] − µµ′ (3.5)

E[x] =
∫

p(x)xdx denotes the expected value of a random vector x with a distribution function

p(x). Equation (3.5) shows that Σ is a semi-positive-definite symmetric matrix whose leading

diagonal elements are the variances of each dimension and the off-diagonal elements are the

covariances in between dimensions:

Var(otj) = σ2
j (3.6)

Cov(otj , otk) = σjk (3.7)

where the covariance between dimensions j and k, σjk, are related to the correlation coefficients,

ρjk by

ρjk =
σjk

√

σ2
jσ

2
k

and − 1 ≤ ρjk ≤ 1 (3.8)

The leading diagonal elements of a correlation matrix is always one (ρjj = 1) and ρjk = 0

indicates that otj and otk are uncorrelated.

The inverse of a covariance matrix is known as the precision matrix. While the elements

of a covariance matrix capture the variance and correlation information, a precision matrix con-

tains the conditional dependence information. Thus, if the (i, j)th element of a precision matrix

is zero, the ith and jth random variables are conditionally independent. (Refer to Appendix C

for more details).

To illustrate the need for intra-frame correlation, a simple problem is used. Consider a

2-class classification problem, where the samples are represented by a 2-dimensional feature
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vector. The samples from the two classes, A and B, are normally distributed with distributions

N (µA,ΣA) and N (µB,ΣB) respectively. The associated Gaussian parameters are given by

µA =

[

0

−1

]

; µB =

[

0

1

]

; ΣA =

[

1.50 0.00

0.00 1.00

]

; ΣB =

[

1.00 0.60

0.60 1.00

]

(3.9)
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Figure 3.1 2-dimensional sample space of a 2-class classification problem. Samples from each class are

represented by a Gaussian distribution with full covariance matrix (left) and diagonal covariance matrix

(right)

Figure 3.1 shows the sample space of this problem together with the Gaussian model and

the optimal Bayes’ decision boundaries. The left and right figures correspond to the Gaussian

models with full and diagonal covariance matrices respectively. The optimum decision boundary

divides the sample space into two regions, one for each class, such that the misclassification is

minimum. The points on this boundary have equal likelihood given class A or class B, i.e.

N (x; µA,ΣA) = N (x; µB,ΣB) (3.10)

Rearranging this using equation (3.3) yields a quadratic decision boundary given by

x′
(

Σ
−1
A − Σ

−1
B

)

x − 2
(

µ′
AΣ

−1
A − µ′

BΣ
−1
B

)

x =

(

µ′
BΣ

−1
B µB − µ′

AΣ
−1
A µA + 2 log

|ΣB|

|ΣA|

)

(3.11)

Note that when there is a global covariance matrix is used for all the classes (ΣA = ΣB), the

decision boundary becomes a straight line (or a hyperplane in a multivariate case). Further-

more, the decision boundary for the case of using diagonal and full covariance matrices is also

considerably different (see Figure 3.1). In the above example, the classification errors with and

without the correlation information are 14.45% and 16.40% respectively. This illustrates the im-

portance of modelling the inter-dimensional correlations, more so for a high dimensional feature

space.

figures/two_class.eps
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3.3 Implicit Correlation Modelling using GMMs

Diagonal covariance matrix approximation is commonly applied to obtain efficient likelihood

computation. However, this implies that the intra-frame correlations are completely ignored

and may result in degradation of system performance as discussed in the previous section. A

common solution to this problem is to implicitly model the spectral correlations using a Gaus-

sian Mixture Model (GMM). A GMM distribution is given by equation (3.3). Given a sufficiently

large number of Gaussian components, a GMM is able to model almost any distributions. As

described at the beginning of this chapter, a GMM distribution is typically used in a CDHMM-

based speech recognition system to capture the non-Gaussian attributes (multi-modal, skewed,

heavy-tail etc) of the true distribution. Often, a diagonal covariance matrix structure is assumed

for each Gaussian component to retain the simplicity and efficiency of its likelihood computa-

tion. Under such a circumstance, a GMM can also model the intra-frame correlations implicitly

to some extend. To see how this is the case, consider the correlation 2-dimensional space in

Figure 3.2. The left figure shows a single full covariance matrix Gaussian distribution model for
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Figure 3.2 2-dimensional correlated sample space. The samples are represented by a Gaussian distribution

(left) and a 3-component GMM (right).

the correlated samples and the right figure shows a 3-component GMM distribution for the same

samples. Diagonal covariance matrices are used for the three Gaussian components of the GMM

distribution. These Gaussian components are positioned such that they lie along the principal

component of the samples to reflect the inter-dimensional correlations. For high dimensional

data, correlation modelling using GMM with diagonal covariance matrices is generally compu-

tationally more efficient and requires a smaller amount of parameters, depending on the number

of components used.

figures/gmm_correlation.eps
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3.4 Covariance Matrix Approximation

Ideally, it would be useful to incorporate as much correlation information in the covariance

matrices as possible so that the probability distribution can better represent the random data.

Unfortunately, speech recognition systems involve a large number of Gaussian components (typ-

ically greater than 100,000 for LVCSR) and the dimensionality of the feature space is high (typ-

ically d = 39). To model the inter-dimensional correlations completely (using a full covariance

matrix structure), the total number of parameters required is d
2(d + 1) = 780. This is twenty

times larger than a diagonal covariance matrix structure. Due to the large number of Gaus-

sian components, the number of free parameters in the system increases dramatically and more

data is required to obtain reliable estimates for these full covariance matrices. Furthermore, the

complexity of the likelihood computation, according to equation (3.1), is O(d(d + 1)) for a full

covariance matrix system compared to O(2d) when a diagonal covariance matrix structure is

used (see Section 3.1). Hence, the use of full covariance matrix structure is not practical3 due

to the large number of free parameters involved and the prohibitively high computational costs.

This motivates the use of more efficient covariance modelling schemes, which can be defined as

satisfying the following criteria:

• accurate modelling;

• compact model representation;

• efficient likelihood calculation.

It has been empirically found that modelling the covariance matrix structure yields slightly

better performance compared to precision matrix modelling using the same approximation.

However, more importantly, covariance matrix models generally incur a higher likelihood com-

putational cost due to the need to perform matrix inversion. Due to this reason, more powerful

and efficient precision matrix models can be derived which will be discussed later in this chapter.

One simple example is using a diagonal or block-diagonal approximation. Alternatively, more

advanced technique that incorporate factor analysis into the HMM framework (FAHMM) [103]

has also been found to yield improved modelling. These methods will be briefly described here.

3IBM has successfully trained a full covariance matrix LVCSR system in their RT04 system [117]. To ensure

robustness and tractability, diagonal covariance matrix smoothing was used in training and some form of Gaussian

selection scheme was employed. However, the system still requires a large execution memory (up to 2Gb based on

conversation with D. Povey)
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3.4.1 Diagonal/Block-diagonal covariance matrix approximation

Diagonal and block-diagonal covariance matrices are modelled as

Σ
diag
sm =















σ2
sm1 0 · · · 0

0 σ2
sm2

. . .
...

...
. . .

. . . 0

0 · · · 0 σ2
smd















and Σ
block
sm =









Σ
static
sm 0 0

0 Σ
∆
sm 0

0 0 Σ
∆∆
sm









(3.12)

The use of diagonal covariance matrices assumes that the elements of the feature vectors are

uncorrelated. This assumption significantly reduce the number of model parameters and the

likelihood computational cost. When the block-diagonal approximation is used, it is intuitive to

divide the variables into blocks of the static coefficients, first (∆) and second (∆∆) derivatives.

However, such an approximation is based on prior expert knowledge, without making use of

the training data. Is it a reasonable approximation? Many techniques can be used to make the

independence and block-independence assumptions safer. For instance, the feature vectors can

be chosen such that the variables are as uncorrelated as possible. The Mel Frequency Cepstral

Coefficients (MFCC) [18] and the Perceptual Linear Prediction (PLP) [55] coefficients are com-

monly used because these parameters are less correlated compared to the filter bank coefficients

or the Linear Prediction Coefficients (LPC). Further decorrelation can also be achieved using

the feature transformation techniques such as Linear Discriminant Analysis (LDA) [105] and

Heteroscedastic LDA (HLDA) [68].

3.4.2 Factor analysis and factor-analysed HMMs

Factor analysis is a technique where high dimensional data are modelled using a small set of

latent variables. n common underlying independent factors that affect the data are found. Com-

bining with the d independent unique factors associated to the original variables, the data vec-

tors can be expressed as

o = Cx + v (3.13)

where x is a n×1 vector of common factors (latent variable), v is a d×1 vector of unique factors

associated to the original variables and C is a d×nmatrix of factor loadings. x and v are random

vectors with distributions N (µ(x),Σ(x)) and N (µ(o),Σ(o)) respectively. Usually, the mean of o

is modelled directly in the d-dimensional observed space so that µ(x) = 0. Furthermore, the

covariance matrix of the latent variables may be assumed an identity matrix, Σ
(x) = I, since

any covariance matrix can be subsumed by C. Thus, the resulting mean and covariance matrix

of o is expressed as

µ = µ(o) and Σ = CC ′ + Σ
(o) (3.14)
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Σ
(o) should not be set to be a full covariance matrix, otherwise the use of the latent variables be-

comes redundant. Typically, Σ(o) takes the diagonal matrix form and the correlation information

is captured by the factor loading matrix, C. An issue associated with this is how many common

factors to extract? One way is to examine the eigenvalues of the correlation matrix and extract

those whose eigenvalues are greater than a certain threshold as the common factors. The total

number of free parameters for this form of covariance matrix model is d(n+ 1).

Factor analysis has been successfully implemented in the HMM-based speech recognition

systems. This technique was first applied to speech recognition by Saul et al. [108, 109]. This

method was generalised by Rosti et al. as the Factor-analysed HMM (FAHMM)[103]. FAHMM

is a generative model that belongs to the generalised linear Gaussian model [103]. It can be

described using the following state-space formulation:

xt = ut ut ∼
N
∑

n=1

c(x)
sn N

(

µ(x)
sn ,Σ

(x)
sn

)

(3.15)

ot = Cxt + vt vt ∼
M
∑

m=1

c(o)smN
(

µ(o)
sm,Σ

(o)
sm

)

(3.16)

Figure 3.3: A generative Factor-analysed HMM model

where xt and ot are the state and observation vectors respectively at time t. The state and ob-

servation distributions are represented by Gaussian Mixture Models (GMMs) with parameters
{

c
(x)
sn ,µ

(x)
sn ,Σ

(x)
sn

}

and
{

c
(o)
sm,µ

(o)
sm,Σ

(o)
sm

}

, where s denotes the HMM state. Therefore, these pa-

rameters are dependent on the underlying HMM state sequence, QT
1 . C is the state-observation

matrix (c.f. factor loading matrix in factor analysis), shared by all the Gaussian components.

This yields the following form of FAHMM covariance structure:

Σsmn = CΣ
(x)
sn C ′ + Σ

(o)
sm (3.17)

where s, n and m represent the HMM state, state space component and observation space com-

ponent respectively. Although the FAHMM provides a compact covariance matrix representation,

it is computationally expensive in decoding due to the inversion of the covariance matrix in like-

lihood calculation. On the other hand, modelling the precision (inverse covariance) matrices

alleviates the cost of inversion, resulting in a more efficient modelling technique.

3.5 Precision Matrix Approximations

In recent years, techniques which model the precision (inverse covariance) matrices have be-

come increasingly popular. Methods such as Semi-tied Covariances (STC) [32, 34], Extended
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MLLT (EMLLT) [85], Subspace for Precision and Mean (SPAM) [7] and Mixture of Inverse Co-

variances (MIC) [124, 125] have been successfully implemented in the HMM-based speech

recognition. Furthermore, the HLDA [68] feature projection scheme can also be considered

as a special form of precision matrix modelling technique [110]. In the following, a unifying

framework of basis superposition will be described for the above techniques. The following two

chapters will discuss the Maximum Likelihood (Chapter 4) and Minimum Phone Error (Chapter

5) training of these models on LVCSR systems.

The major issues with using full covariance matrices is the large number of free parameters

which are difficult to estimate reliably and the high likelihood computational cost. Therefore,

a compact model representation is required such that the total number of model parameters is

reduced and the underlying structure of the model can be exploited to yield efficient likelihood

calculation. One way of achieving a compact model is by sharing some of the parameters over

many Gaussian components in the system. The form of parameter sharing can be chosen care-

fully such that part of the likelihood calculation costs can also be shared over these Gaussian

components to yield an efficient model. This can be realised by approximating the precision ma-

trix as a linear basis superposition structure. In the basis superposition formulation, precision

matrices are modelled as a linear superposition of a set of symmetric matrices, {S i; 1 ≤ i ≤ n};

weighted by a corresponding set of coefficients {λsmi; 1 ≤ i ≤ n}. This can be expressed as

P sm =
n
∑

i=1

λsmiSi =
n
∑

i=1

λsmi

(

Ri
∑

r=1

λira
′
irair

)

(3.18)

where P sm denotes the precision matrix for component m in state s, n is the basis order and Ri

is the rank of Si. The right hand side of equation (3.18) indicates that the basis matrix, Si, can

be decomposed into Ri rank-1 matrices, a′
irair, where air is the rth basis row vector for the ith

basis matrix. This basis decomposition forms the fundamental concept of the basis superposition

precision matrix modelling framework. The aim is to extract common basic structures from

a large number of precision matrices and model these using the basis matrices, S i (shared

by Gaussian components). This reduces the number of component specific parameters (λsmi)

required and yields a compact model representation. The basis superposition framework also

provides a flexibility of adjusting the basis order, n, to vary the model complexity.

3.5.1 Compact Model Representation

The primary advantage of a basis superposition formulation is its compact model representation.

From equation (3.18), the parameters, {Si, λsmi}, can be divided into two sets:

• “Global” parameters: a set of basis matrices Si
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• “Component” parameters: a set of basis coefficients λsmi

For some of the precision matrix approximations, the basis matrices are chosen to be rank-1

(R = 1) symmetric for all basis, then Si = a′
iai and

P sm =
n
∑

i=1

λsmia
′
iai = A′

ΛsmA (3.19)

where the basis row vector, ai, is the ith row of A. Λsm is a diagonal matrix with diagonal

elements λsmi. In the case, where there is a large number of precision matrices to be modelled,

the above parameterisation leads to a compact model representation through the sharing of

basis matrices. In other words, the basis matrices form a set common basic symmetric structures

extracted from a large set of precision matrices. A set of coefficients (superposition weights)

are then assigned to each individual component to yield the desired precision matrices. This is

the well-known concept of basis decomposition. The basis superposition technique is applicable

to both covariance and precision matrix approximations. However, it is generally more efficient

to model the precision matrices in terms of the likelihood calculation cost. Efficient likelihood

calculation for precision matrix approximation schemes will be discussed next.

3.5.2 Efficient Likelihood Calculation

One of the attractive attributes of precision matrix modelling is its computational efficiency

during decoding. This is mainly due to the fact that the likelihood expression is directly related

to the precision matrix (c.f. equation (3.1)):

L = log p(ot|µsm,P sm) = K +
1

2

{

log |P sm| − (ot − µsm)′P sm(ot − µsm)
}

(3.20)

where log p(ot|µsm,P sm) is the log likelihood of the model parameters given the observations

at time t, ot. The efficiency is clearly illustrated using the basis superposition framework. Sub-

stituting equation (3.18) into equation (3.20) yields

L = log p(ot|µsm,P sm) = K +
1

2

{

log |P sm| −
n
∑

i=1

λsmi(o−µsm)′Si(o−µsm)

}

= K +
1

2

{

log |P sm| −
n
∑

i=1

λsmio
′
tSiot

− µ′
smP smµsm + 2

n
∑

i=1

λsmiµ
′
smSiot

}

(3.21)

The terms in equation (3.21) can be divided into two parts:

• Model dependent: log |P sm| and µ′
smP smµsm
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• Observation dependent: o′
tSiot and Siot

The model dependent terms can be precomputed and cached once the model parameters have

been estimated. On the other hand, the terms dependent on the observation vectors can be

cached and reused for all the Gaussian components. This yields a significant reduction in com-

putational cost.

Furthermore, when the basis matrices are rank-1 symmetric matrices, likelihood calcula-

tion can be achieved more efficiently. In this case, the likelihood expression in equation (3.20)

can be rewritten as

L = log p(ot|µsm,P sm) = K +
1

2

{

log |P sm| − (ot − µsm)′A′
ΛsmA(ot − µsm)

}

= K +
1

2

{

log |P sm| − (o′
tA

′ − µ′
smA′)Λsm(Aot − Aµsm)

}

= K +
1

2

{

log |P sm| − (õ′
t − µ̃′

sm)Λsm(õt − µ̃sm)
}

(3.22)

where õt = Aot and µ̃sm = Aµsm are the “projected” observation and mean vectors respectively.

The model dependent terms are log |P sm| and µ̃sm and the observation term to be cached is the

transformed observation, õt. Two models that have this form are STC and EMLLT models,

where the matrix A can be viewed as a feature transformation matrix. Once the observation

and mean vectors have been transformed, the likelihood expression simplifies to the form of

diagonal covariance system with the ‘variances’4 given by 1/λsmi. The likelihood computation is

thus linearly proportional to the basis order, n.

3.6 Basis Superposition – A Unifying Framework

In the literature, various forms of precision matrix modelling techniques have been applied to

HMM-based speech recognition systems. In this section, a general basis superposition framework

is introduced to unify various existing precision matrix models. Table 3.1 compares different

Precision Matrix Model Basis Type Basis Order, n

STC rank-1 symmetric d

EMLLT rank-1 symmetric d < n ≤ d
2(d+ 1)

Hybrid-EMLLT rank-R symmetric d ≤ nR ≤ d
2(d+ 1)

SPAM any symmetric d ≤ nd ≤ d
2(d+ 1)

Table 3.1 Precision matrix models as basis decomposition techniques

4As described in Section 3.6.2, this is merely the variance contribution which corresponds to the basis row vector,

ai
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precision matrix models within the basis superposition framework. These models are differen-

tiated by the different basis order and rank. For example, when rank-1 basis matrices are used

(R = 1), equation (3.1) becomes a STC model [34] when n = d and an EMLLT model [85, 86]

when (d < n ≤ d
2(d+1)). Furthermore, the Hybrid-EMLLT [127] model consists of rank-R basis

matrices, where 1 < R < d. Typically, R is chosen to be small (between 2 and 4) so that the

basis vector update for the EMLLT model can be used. Finally, SPAM [7] is the most general

form of precision matrix model among those listed in Table 3.1. The basis matrices of this model

are arbitrary symmetric matrices. Among these models, SPAM is the most powerful model. The

following sections describe the specific attributes of these standard models.

3.6.1 Semi-tied covariance

Semi-tied covariance (STC) [34] (also known as Maximum Likelihood Linear Transform or

MLLT [53]), is an example of a precision matrix model. When a global transformation matrix 5

is used, the precision matrix can be expressed as

P sm = A′
ΛsmA =

d
∑

i=1

λsmia
′
iai (3.23)

where A is a d × d global transformation matrix and Λsm is a diagonal matrix whose leading

diagonal elements, λsmj = 1/σ2
smj , are the inverse variances in the transformed space due to the

matrix A. If Σsm is the covariance matrix in the original space, then the covariance matrix

in the transformed space becomes AΣsmA′; the corresponding precision matrix is given by

A
′−1P smA−1 = Λsm, using equation (3.23).

The total number of free parameters in this model is d(M + d). For LVCSR systems

(M >> d), so the total number of parameters is approximately the same as the case of diagonal

covariance matrix (Md). Here, the number of parameters associated with the transformation

matrix, A, is negligible compared to the total number of model parameters of the system. In

fact, the global STC system can be viewed as a diagonal covariance matrix system with an ad-

ditional global feature transformation. The STC formulation allows the transformation matrix,

A and the transformed variances, σ2
smj to be estimated efficiently using an iterative closed-form

update formulae (see Chapter 4 for more details).

5STC can also operate in a multiple-transform mode. This will be discussed further in Section 3.7
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3.6.2 Extended MLLT

Extended MLLT (EMLLT) [85] is an extension to the STC (MLLT) model where the precision

matrix is given by

P sm = A′
ΛsmA =

n
∑

i=1

λsmia
′
iai (3.24)

where ai is the ith row of the n×d matrix, A, and λsmi is the ith leading diagonal element of the

n× n diagonal matrix Λsm. The precision matrix is also a weighted sum of n rank-1 symmetric

matrices. The number of rank-1 bases is constrained by d ≤ n ≤ d
2(d + 1). The lower bound is

required to obtain at least d independent ai to ensure a positive-definite precision matrices. The

upper bound is the total number of free parameters for a full covariance matrix, beyond which

redundancies will be introduced into the EMLLT model. Thus, n can be viewed as a parameter

that can be adjusted to alter the complexity of the model, from a STC model (n = d) to a full

covariance matrix model (n = d
2(d+ 1)).

It is interesting to note that for EMLLT, some of the basis coefficients are allowed to take

negative values while still resulting in a positive-definite precision matrix. In fact, to ensure

positive-definiteness, there should be at least d positive basis coefficients whose basis vectors are

linearly independent. This implies that there can be up to n−d negative basis coefficients. Since

the basis row vectors, ai, form a transformation matrix, A and the basis coefficients, λsmi, can

be viewed as the variance along the projection given by ai. Since some of these basis coefficients

are negative, does this mean the EMLLT model is capable of modelling negative ‘variances’? The

answer in no.

Variance is by definition a positive quantity. To account for the negative ‘variances’ in an

EMLLT model, let pii be the precision (inverse variance) along the projection given by ai. So,

pii = aiP sma′
i (3.25)

Substituting the EMLLT precision matrix expression in equation (3.24) yields

pii = a′
i

(

A′
ΛsmA

)

a′
i

=
n
∑

j=1

λsmj(a
′
iaj)

2 (3.26)

Clearly, pii = λsmi if and only if

(a′
iaj)

2 =

{

1 i = j

0 otherwise
(3.27)

This condition is satisfied only when A is orthonormal. However, for STC and EMLLT, A is not

constrained to be orthonormal. So, according to equation (3.26), the true projected variance is

actually given by the joint contributions from all the basis vectors. Thus, λsmi can be regarded
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as the contribution from a particular basis and a ‘negative’ λii simply means a negative precision

contribution associated to the basis vectors ai. Note that the overall projected precisions (and

hence variances) have to be positive because the precision matrix, P sm, is positive-definite.

3.6.3 Subspace for precision and mean

Subspace for Precision and Mean (or SPAM) [7] is a model that constrains the mean vector and

the precision matrix to be within a subspace of the space spanned by a symmetric matrix (a

space with d
2(d+ 1) degrees of freedom). A special form of SPAM model, which leaves the mean

vectors unconstrained [7], is simply a precision matrix model. This formulation is similar to the

Mixture of Inverse Covariances (MIC) [124, 125]. In [5], this form of SPAM model is categorised

as a Precision Constrained Gaussian Mixture Model (PCGMM). It is a further generalisation of

the EMLLT model where the rank-1 constraint on the basis matrices is relaxed so that the bases

can be any arbitrary symmetric matrices. Under this formulation, the precision matrix is given

by

P sm =
n
∑

i=1

λsmiSi =
n
∑

i=1

λsmi

(

Ri
∑

r=1

λira
′
irair

)

(3.28)

where Si =
∑Ri

r=1 λira
′
irair is the decomposition of Si into Ri rank-1 matrices. This allows

Si to take any arbitrary symmetric matrix. If λir is constrained to be positive and Ri = d, the

resulting symmetric matrices will be positive-definite. However, this is not a strict requirement.

As indicated by equation (3.28), a SPAM precision matrix model can also be viewed as a nested

sum of N =
∑N

i=1Ri rank-1 matrices, a special form of the EMLLT model. Similar to the EMLLT

model, N is bounded by d ≤ N ≤ d
2(d+1). Thus, the number of rank-1 matrices associated with

each precision matrix should be at least d to ensure positive-definiteness and at most d
2(d + 1)

where the rank-1 matrices span the entire space of a symmetric matrix. Note that when at least

one of the basis matrices, Si, is positive-definite (λir > 0 and Ri = d), n may be reduced to 1,

including only the positive-definite basis matrix, while maintaining the positive-definiteness of

the resulting precision matrices, P sm.

3.6.4 Hybrid EMLLT

Another generalisation of the EMLLT model is known as the Hybrid EMLLT model [127] model.

This model is also very similar to the SPAM model, except that the rank of the basis matrices are

restricted to be R. R can take any integer value between 1 and d. The former yields the EMLLT

model while the latter yields the SPAM model. So, the hybrid EMLLT precision matrix can be
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written as

P sm =
n
∑

i=1

λsmiSi =
n
∑

i=1

λsmi

(

R
∑

r=1

λira
′
irair

)

(3.29)

The only difference between equations (3.28) and (3.29) is the rank of the basis matrices. It

was shown in [127] that the rank of the basis matrices can be reduced to between 2–4 without

significant lost in terms of word error rate (WER) performance compared to a SPAM model.

3.6.5 Heteroscedastic LDA (HLDA)

Linear projection schemes are typically employed to improve the performance of a diagonal co-

variance matrix system, including the Linear Discriminant Analysis (LDA) [105], Heteroscedastic

Discriminant Analysis (HDA) [44] and Heteroscedastic Linear Discriminant Analysis (HLDA) [68].

These methods achieve both dimension reduction and feature decorrelation. LDA computes a

global linear transform such that the ratio of the projected between class variance and the within

class variance is maximised. The within class covariance matrices are assumed to be the same

and is calculated as the average covariance matrix of all the components. HLDA extends LDA by

having component specific within class covariance matrices. An HLDA projection matrix may be

expressed as

A =

[

AH

AN

]

(3.30)

where AH and AN are the n×d HLDA projection and (d−n)×d nuisance projection respectively.

If the mean and covariance matrix of component m in state s in the original feature space

are given by µsm and Σsm respectively, the corresponding mean and covariance matrix in the

transformed space are given by

µ̄sm = Aµsm (3.31)

Σ̄sm = AΣsmA′ (3.32)

The covariance matrix in the transformed space, Σ̄sm, is assumed diagonal. The mean and

covariance matrix in the nuisance space are shared globally by all the Gaussian components in

the system. Therefore,

µ̄sm =

[

AHµsm

µ

]

(3.33)

Σ̄sm =

[

AH
ΣsmAH′

0

0 Σ

]

(3.34)

where µ and Σ are the global mean and covariance matrix of the nuisance space. From equa-

tion (3.32), the precision matrix of component m in state s in the original space is given by
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P sm = A′
ΛsmA =

n
∑

i=1

λsmia
′
iai +

d
∑

i=n+1

λia
′
iai (3.35)

where

Λsm = Σ̄
−1
sm =

(

Λ
H
sm 0

0 Λ
N

)

(3.36)

Note that this equation may be justified using the basis superposition framework. It is very

similar to STC with a global transform where the variances in the projected nuisance space

are shared by all the components in the system. Therefore, the first n basis coefficients are

component specific while the final d−n coefficients are tied over all components. As a result, the

second term in equation (3.35) is independent of the HMM states, s, and the GMM components,

m. The HLDA parameters may be estimated efficiently using the STC’s iterative row-by-row

update scheme [34].

In conventional HLDA, the nuisance dimension mean vector is also global. Hence, only the

useful dimension parameters are retained because the nuisance parameters will only introduce

a constant offset when calculating the likelihood. Instead of viewing this as a linear projection

scheme, HLDA can be used purely as a precision matrix model by allowing the mean in the

nuisance space to be component specific. Therefore, no constraint is applied to the mean vector

and may be modelled in the original feature space. The use of HLDA as precision matrix model

was introduced in [110]. For convenience, this form of model is called HLDA-PMM to distinguish

this from the conventional HLDA model.

3.6.6 Factored Semi-tied Covariance

Factored Semi-tied Covariance (or factored STC) is an extension to the STC model where each

component in the system selects d basis vectors from a larger set of n > d basis vectors. This

is also equivalent to an EMLLT model where n − d basis coefficients for each component are

selectively tied to zero. Therefore, only d basis vectors are superimposed to form the final

precision matrix of each Gaussian component. The expression for a factored STC precision

matrix may be written as

P sm =
∑

i∈Ism

λsmia
′
iai (3.37)

where Ism denotes the set of indices of the selected basis vectors for component m in state s.

Although the basis row vectors, ai, are not component specific, the component dependent selec-

tion indicated by Ism allows the effective basis vectors to vary from component to component.

However, the determination of the selection sets, Ism, is computationally expensive. Note that

if the selection sets are tied within groups of Gaussian components such that

∩G
g=1Ig = ∅ and ∪G

g=1 Ig = {1, 2, . . . , n} (3.38)
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where G is the total number of Gaussian groups and Ig is the selection set for the gth Gaussian

group, the factored STC system degenerates to a multiple-transform STC system.

3.7 Multiple Bases Systems

The formulation of the basis superposition structure to achieve a compact model representa-

tion relies on a key concept of parameter tying. In machine learning, parameter tying is often

employed to reduce the total number of free parameters in a system to reduce the risk of over-

fitting. This is likely to occur when there is insufficient training data. In a speech recognition

system, parameter tying can be applied to different sets of parameters. This is best illustrated

using the hierarchical structure in Figure 3.4. Each node in the hierarchy indicates a possible

Gaussian
Component

HMM
State

Transition
Matrix

Component
Prior

Mean
Vector

Basis
Matrix

Basis
Coefficient

HMM Model

Covariance
Matrix

Possible tying structure

Basis Superposition Structure

Figure 3.4 A hierarchical parameter tying structure for an HMM system.

tying structure. At the top most level, the HMM models can be tied. Moving down the hierarchy,

the HMM states, transition matrices and Gaussian components can also be tied. Furthermore, it

is also possible to tie the Gaussian mean vector and covariance matrices separately. Higher level

parameter tying schemes has been introduced in Section 2.2.1. This section will concentrate on

the discussion the tying of covariance matrices and its underlying structure.

The simplest form of tying is to share covariance matrices within clusters of Gaussian

components so that the number of covariance matrices in the system is reduced. This kind of

system is known as a tied variance system. A tied variance system can be built by clustering

the covariance matrices of a system. Alternatively, if the GMMs in the system is trained using

an iterative mixture-splitting approach, a tied-variance system can be constructed conveniently

figures/parameter_tying.eps
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by not splitting the covariance matrices, i.e. the split Gaussian components share the same

covariance matrix.

In Section 3.5, the basis superposition framework was introduced as a compact precision

matrix representation. A single set of basis matrices is used to capture the underlying basic

structures of all the Gaussian components (a global tying scheme). This form of tying is illus-

trated in Figure 3.5 (left). In this figure, the horizontal black strips represent the basis row

Basis vectors Basis coefficients Basis binding

Figure 3.5 Various multiple bases configurations: global bases (left), multiple bases with hard binding (mid-

dle) and multiple bases with soft binding.

vectors while the coloured circles represent the component specific basis coefficients (different

colour indicates different component). In this simple configuration, there is a complete binding

between the basis vectors and the basis coefficients of all the components, i.e. no tying of basis

coefficients. The global STC, EMLLT and SPAM models fall within this category.

Due to the large number of Gaussian components in an LVCSR system, a higher basis

order is required to obtain a good representation. Unfortunately, increasing the basis order

increases both the memory and computational requirements (see Sections 3.5.2 and 4.3.1).

Alternatively, the components can be partitioned into clusters, as shown in Figure 3.5 (middle).

In this example, the components are grouped into two clusters: the top cluster contains two

components while the bottom cluster contains three. The basis binding is complete within each

cluster but no binding is allowed across clusters. This form of binding is known as hard binding.

Now, each cluster contains a smaller number of Gaussian components. Extracting basis from

each cluster of Gaussian components should yield a more accurate basis information. Recall that

for rank-1 basis matrices, the basis vectors form the rows of the transformation matrix. Thus,

tying the basis matrices at a cluster level leads to a multiple transformation scheme where each

transformation is associated with each cluster of Gaussian components. A good summarisation

of multiple projections schemes is given in [33]. Multiple Linear Transforms (MLT) [45] models

such as multiple STC and EMLLT transforms models are examples of multiple bases systems with

hard binding.

figures/basis_tying.eps
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Another form of basis binding, known as the soft binding is shown in Figure 3.5 (right).

This configuration allows an arbitrary binding between the basis vectors and basis coefficients.

In other words, some of the basis coefficients are tied to zero to remove some of the basis

bindings. Therefore, each component selects an individual subset of the basis vectors to form

the final precision matrix. The factored semi-tied covariances (factored-STC) [35] as described

previously in Section 3.6.6 is an example of the multiple bases systems with soft binding. Instead

of tying some of the basis coefficients to zero, one may also tie these parameters globally to yield

a multiple HLDA projections scheme [73]. This kind of tying has been found to lead to good

recognition performance [73]. In addition, this model can also be used to control the model

complexity by having different number of retained dimensions for each cluster.

Both methods are similar to the STC and EMLLT models with the exception that the num-

ber of basis matrices in the system is larger than the basis coefficients defined for each Gaussian

components. An additional set of parameters is defined to associate each basis coefficient with

a basis matrix. The multiple bases systems described in this work is a restricted version of

factored-STC and MLT in that the association between basis coefficients and basis matrices are

pre-defined by a Gaussian clustering process and each cluster of Gaussian components shares

the same set of basis matrices (hard binding).

To formulate a multiple bases system, let the set of Gaussian components, C, be clustered

into N groups, where C = {c1, c2, . . . , cN}. The basis superposition expression in equation

(3.18) can be rewritten as

P sm =
n
∑

i=1

λsmiS
c(sm)
i (3.39)

where c(sm) ⊆ C denotes the cluster to which component m in state s belongs to. There are

many ways to perform Gaussian clustering. One way is to use a regression class tree [29] and the

terminal nodes of the tree corresponds to the clusters of Gaussian components. This approach is

adopted in this thesis.

Effectively, the precision matrix of each component in the system is still composed of n

bases. So, the required memory to store the projected statistics (as described in Section 4.3.1)

is similar to those using global bases, i,e, proportional to n. However, due to the use of multiple

bases, the required memory to store the observation cache (see Section 3.5.2) will grow linearly

with the number of Gaussian clusters,N , since the terms to be cached are dependent on the basis

matrices. Fortunately, the overhead cost incurred is relatively small compared to the likelihood

calculation for all the Gaussian components in the system.
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3.8 Relationship With Other Frameworks

In Section 3.6.5, HLDA was compared from two distinct perspective: 1) as a global feature

projection scheme (conventional HLDA); 2) as a ‘pure’ precision matrix model (HLDA-PMM). A

clear distinction was made between these where basis coefficients of the nuisance dimensions are

tied for the latter case to yield a compact precision matrix approximation structure, while leaving

the mean vectors unconstrained. In the following, two existing frameworks of modelling both

the mean vectors and precision matrices will be described, namely the Subspace Constrained

GMMs (SCGMM) [5] and the Product of Gaussians (PoG) [36]. The resulting precision matrix

structure from this frameworks is similar to the basis superposition formulation. By applying

suitable constraints to these framework, a pure precision matrix model may be obtained.

3.8.1 Subspace Constrained GMMs

Recent research work, closely related to precision matrix modelling, is the Subspace Constrained

Gaussian Mixture Models (SCGMMs) [5]. SCGMMs extends the basis superposition formulation

to model both the mean vectors and precision matrices. Therefore, many existing precision

matrix models described earlier, including the STC, EMLLT and SPAM, are also special cases of

a SCGMM. This model expresses the Gaussian probability distribution as a generic exponential

family distribution and the parameters associated with this exponential family distribution are

constrained to lie within a subspace. A Gaussian distribution, when expressed as a member of

the exponential family distribution, takes the following form [5]:

N (ot; µsm,Σsm) =
1

√

(2π)d|Σsm|
exp

{

−
1

2
(ot − µsm)′ Σ−1

sm (ot − µsm)

}

= exp
{

g(µsm,P sm)′f(ot) +K(µsm,P sm)
}

(3.40)

where

f(ot) =

[

−1
2 vec(oto

′
t)

ot

]

(3.41)

g(µsm,P sm) =

[

vec(P sm)

µsm

]

(3.42)

K(µsm,P sm) =
1

2

{

log |P sm| − d log(2π) − µ′
smP−1

smµsm

}

(3.43)

vec(.) denotes an operator which vectorises the upper triangular elements of a symmetric matrix

and d is the dimensionality of the feature. One may view f(ot) and g(µsm,Σsm) as the effective

observation sufficient statistics and parameter vectors respectively for the exponential distribu-

tion. Constraints are applied to g(µsm,Σsm) such that it is in an affine subspace of R
d
2
(d+3), i.e.
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g(µsm,Σsm) = g0 +
n
∑

i=1

λsmigi (3.44)

The equation resembles the basis superposition formulation in equation (3.18). g0 may be

chosen such that the precision matrix portion in equation (3.42) yields a positive-definite matrix.

By having appropriate constraints on g(µsm,Σsm), SCGMMs may be used to formulate existing

precision matrix models such as STC, EMLLT and SPAM. See [5] for more details. However,

SCGMM is more than a precision matrix approximation technique as it also defines a subspace

for the mean vector. Gains were reported in [5] using the SCGMM models over SPAM with

unconstrained mean vectors in a small vocabulary task using a grammar based language model.

The gain diminished as the basis order, n, was increased.

3.8.2 Product of Experts Systems

An interesting attribute of the basis superposition framework is its close relation to the Product

of Experts (PoE) framework [56]. The most common form of the PoE framework is the Product

of Gaussians (PoG) framework [1, 36, 129] where the experts are each a Gaussian distribution.

Since the product of Gaussian distributions is itself a Gaussian, the effective distribution rep-

resented by a PoG framework is also a Gaussian distribution. Consider a PoG with S experts:

p(ot|µ,Σ) =
1

K

S
∏

s=1

N (ot; µs,Σs) = N (ot; µ,Σ) (3.45)

where K is the normalisation constant to yield a valid distribution. µs and Σs are the mean and

covariance matrix of the sth Gaussian expert respectively. The effective mean and covariance

matrix are given by

µ = Σ

(

S
∑

s=1

Σ
−1
s µs

)

(3.46)

Σ =

(

S
∑

s=1

Σ
−1
s

)−1

(3.47)

Expressing equation (3.47) in terms of the precision matrices yields

P = Σ
−1 =

S
∑

s=1

Σ
−1
s =

S
∑

s=1

P s (3.48)

Comparing this with equation (3.18), it immediately becomes clear that basis superposition is

in fact an example of a Product of Gaussians system. Each basis matrix corresponds to the

precision structure of an expert. In the formulation of the basis superposition framework, the

basis matrices are not required to be positive definite. Therefore, each expert in the PoG system
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may not be a valid distribution. This is not important provided the resulting precision matrix is

positive definite.

One special form of the PoG framework is the Product of Gaussian Pancake (PoGP) [129].

The precision matrix of each Gaussian expert in a PoGP system takes the follow special ‘pancake’

form

P s = I + a′
sas (3.49)

where the pancake is formed by stretching the spherical structure (I) along the direction denoted

by the row vector as. The resulting precision matrix is therefore given by

P = SI +
S
∑

s=1

a′
sas (3.50)

This expression is very similar to the EMLLT formulation given by equation (3.24) with the

exception that the PoGP framework consists of an additional expert with a full rank spherical

precision matrix. The relationship between EMLLT and PoGP is also detailed in [36].

Another form of PoE described in [36] is the Product of Mixture of Gaussians (PoMoG).

This is generalisation to the PoG framework such that the experts are represented by Mixture of

Gaussians (MoG). Equation (3.45) may be rewritten as (borrowing the notations from [36])

p(ot|µ,Σ) ∝
S
∏

s=1

(

Ms
∑

m=1

csmN (ot; µsm,Σsm)

)

=

M1
∑

m1=1

· · ·

MS
∑

mS=1

S
∏

s=1

csmsN (ot; µsm,Σsm)

=
∑

m

c̄mN (ot; µm,Σm) (3.51)

where m = [m1 m2 . . . mS ] denotes the meta components in the producted space and ms

identifies the component from stream s. It is interesting to note that the PoMoG framework

yields an effective distribution which is also a MoG, with a total of
∏S

s=1Ms meta components.

The effective mean and covariance matrix of each meta component is given by

µm = Σm

(

S
∑

s=1

Σ
−1
sms

µsms

)

(3.52)

Σm =

(

S
∑

s=1

Σ
−1
sms

)−1

(3.53)

Once again, equation (3.53) shows that the precision matrix of each meta component is a sum-

mation of the precision matrices of S components, one from each stream.
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3.9 Summary

This chapter discussed the aspects of covariance and precision matrix modelling schemes for

speech recognition. In general, precision matrix approximation schemes were found to yield

more efficient likelihood computation compared to covariance matrix approximation methods.

In particular, a unifying framework of basis superposition was introduced to describe existing

precision matrix modelling techniques, including the Semi-Tied Covariances (STC), Extended

Maximum Likelihood Linear Transform (EMLLT) and Subspace for Precision and Mean (SPAM)

models. This is followed by the discussion of multiple bases systems which allows more com-

pact model representation to be achieved. Finally, related work on precision matrix modelling

for speech recognition was also discussed. For example, feature transformation and projection

schemes (e.g. LDA, HDA and HLDA), Subspace Constrained GMMs (SCGMMs) and Product of

Gaussians (PoG) may be viewed as precision matrix models. Actually, these techniques are more

than a precision matrix model as they also model the structure of the mean vectors in the system.



4

Maximum Likelihood Estimation of Precision Matrix Model

Parameters

Maximum Likelihood (ML) is the most widely used parametric estimation criterion. ML esti-

mation of the standard HMM parameters using the efficient EM algorithm [19] was discussed

in Section 2.1.3. This chapter will describe the maximum likelihood estimation of various pre-

cision matrix models within the unified framework of basis superposition introduced earlier in

Chapter 3. The parameter estimation formulae are derived within the Expectation Maximisation

(EM) framework. For several models, the resulting auxiliary function does not have a closed

form solution, in which case the Generalised Expectation Maximisation (GEM) algorithm (see

Section 2.1.3) is adopted.

4.1 Maximum Likelihood Estimation Formulae

The maximum likelihood criterion is given by

Rml(θ) = log p(OT
1 |θ) =

∑

QT
1

{

log p(OT
1 |Q

T
1 ,θ) + logP (QT

1 |θ)
}

(4.1)

where
∑

QT
1

sums through all possible state sequence of length T . This criterion can be optimised

efficiently using the Baum Welch algorithm (see Section 2.1.3). This is achieved by iteratively

maximising the auxiliary function in equation (2.26), which can be rewritten in terms of the

Gaussian parameters as follows:

Qml(θ, θ̂) = K −
1

2

S
∑

s=1

M
∑

m=1

T
∑

t=1

γml
sm(t)

{

log |Σsm| − (ot − µsm)′ Σ−1
sm (ot − µsm)

}

(4.2)

where S denotes the number of states in the system, M is the number of Gaussian component

per state and T is the length of the observation sequence. γml
sm(t) denotes the probability of being

in component m of state s at time t. µsm and Σsm represent the mean vector and covariance

53
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matrices respectively of component m in state s. The above auxiliary function is maximised by

setting the Gaussian mean and covariance matrix as

µsm =
xml

sm

βmlsm

and Σsm =
W ml

sm

βmlsm

(4.3)

where the required statistics are given by

xml
sm =

T
∑

t=1

γml
sm(t)ot (4.4)

W ml
sm =

T
∑

t=1

γml
sm(t) (ot − µsm) (ot − µsm)′ (4.5)

βmlsm =
T
∑

t=1

γml
sm(t) (4.6)

For a diagonal covariance matrix system, the optimum parameters are given by the diagonal

elements of Σsm. Thus, the jth element of the diagonal covariance matrix is given by

σ2
smj =

∑T
t=1 γ

ml
sm(t) (otj − µsmj)

2

βmlsm

(4.7)

where otj and µsmj are the jth element of ot and µsm respectively. Therefore, only the diagonal

elements of W ml
sm are required.

When the precision matrices are expressed in terms of a basis superposition formulation,

the estimation of the model parameters is more complicated. The precision matrix expressed in

a basis superposition form is given by (c.f. equation (3.18))

P sm = Σ
−1
sm =

n
∑

i=1

λsmiSi (4.8)

where Si and λsmi are the ith basis matrix and basis coefficient respectively. Substituting this

expression into the auxiliary function in equation (4.2) yields

Qml(θ, θ̂) = K +
1

2

S
∑

s=1

M
∑

m=1

T
∑

t=1

γml
sm(t)

{

log |P sm| − (ot − µsm)′ P sm (ot − µsm)
}

= K +
1

2

S
∑

s=1

M
∑

m=1

{

βmlsm log

∣

∣

∣

∣

∣

n
∑

i=1

λsmiSi

∣

∣

∣

∣

∣

− Tr

[(

n
∑

i=1

λsmiSi

)

W ml
sm

]}

(4.9)

There is no simple closed-form solutions for Si and λsmi which maximise this auxiliary function.

Therefore, the Generalised EM algorithm will be employed with the aim of improving (rather

than maximising) the auxiliary function in equation (4.9) upon each iteration. To simplify the

estimation procedure, the optimisation of Si and λsmi are considered separately, i.e. , when

updating Si, λsmi is held constant and vice versa.
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4.1.1 Estimation of basis matrices

Optimising equation (4.9) with respect to Si is very difficult. The optimal value of Si which

maximises the auxiliary function corresponds to the point where the first derivative of the aux-

iliary function with respect to Si is zero. Differentiating equation (4.9) with respect to Si yields

∂Qml(θ, θ̂)

∂Si
=

1

2

S
∑

s=1

M
∑

m=1

{

βmlsm

∂

∂Si
|
∑n

i=1 λsmiSi|

|
∑n

i=1 λsmiSi|
−
(

λsmiW
ml
sm

)

}

(4.10)

There is no simple closed form solution of Si such that equation (4.10) equals zero. Fur-

thermore, equation (4.10) cannot be evaluated analytically due to the term ∂

∂Si
|
∑n

i=1 λsmiSi|.

Hence, numerical optimisation packages are used to obtain the new estimate of S i [5, 7, 125].

As Si is in general globally shared by all the Gaussian components in the systems, the estimation

process has been found to have a poor convergence property [7]. Moreover, it was reported

in [5] that the gain from estimating Si using ML training is relatively small compared to the

improvement obtained from updating the basis coefficients, λsmi.

Hence, in this work, the basis matrices of SPAM models are initialised once and are not

re-estimated in the subsequent training iterations. However, for STC and EMLLT models where

the basis matrices take a special rank-1 symmetric matrix form, i.e.

Si = a′
iai (4.11)

the estimation of each basis row vector, ai, can be achieved more efficiently using an itera-

tive update approach. The update formulae for STC and EMLLT models will be discussed in

Sections 4.2.1 and 4.2.2 respectively.

4.1.2 Estimation of basis coefficients

The basis coefficients are estimated such that the auxiliary function in equation (4.9) is max-

imised. This is achieved when the gradient of the auxiliary function with respect to the basis

coefficients equals zero. Differentiating equation (4.9) with respect to λsmi yields

∂Qml(θ, θ̂)

∂λsmi
=

1

2

{

βmlsm + Tr
[

Si

(

Σsm − W ml
sm

)]

}

(4.12)

using the identity in equation (A-6) in the appendix where

∂ log |
∑n

i=1 λsmiSi|

∂λsmi
= Tr



Si

(

n
∑

i=1

λsmiSi

)−1


 = Tr [SiΣsm] (4.13)

Although there is no simple closed form solution of λsmi for which equation 4.12 becomes zero,

the expression of the gradient with respect to λsmi can be computed analytically as given by

equation 4.12. Therefore, a gradient descent scheme may be used.
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Alternatively, the estimation of the basis coefficients can be realised more efficiently using

the Polak-Ribeire conjugate-gradient method [94]. Consider a vector of all the basis coefficients

associated with component m in state s:

λsm = [λsm1 λsm2 . . . λsmn]′ (4.14)

and let dsm be the conjugate gradient for λsm. The new estimate of the basis coefficients is

found by performing a line search along the direction of dsm which yields an optimum auxiliary

function value. Thus, the new estimate of the basis coefficients is given by

λ̂sm = λsm + ∆smdsm (4.15)

where the parameter to be optimised, ∆sm, is a scalar quantity. First, the auxiliary function for

component m in state s is defined as

Qml
sm = Ksm +

1

2
βmlsm

{

log |P sm| − Tr(P smW ml
sm)
}

(4.16)

such that

Qml(θ, θ̂) =
S
∑

s=1

M
∑

m=1

Qml
sm (4.17)

The change in the auxiliary function value for component m in state s due to ∆sm is given by

∆Q(∆sm) = Qml
sm − Q̂ml

sm =
βmlsm

2







d
∑

j=1

log (1 + ∆smwsmj) − ∆sm

n
∑

i=1

dsmi Tr(W ml
smSi)







(4.18)

where Qml
sm and Q̂ml

sm are the component auxiliary functions for the old and new model parame-

ters respectively. wsmj is the jth eigenvalue of P
− 1

2
sm RsmP

− 1
2

sm and dsmi is the ith element of the

direction vector, dsm, for component m and state s. Rsm, the effective basis matrix along the

direction, dsm, is given by

Rsm =

n
∑

i=1

dsmiSi (4.19)

So, the updated basis coefficients are given by

λ̂smi = λsmi + ∆smdsmi (4.20)

Derivations of the conjugate gradient formula and the change in the component auxiliary func-

tion in equation (4.18) are given in greater detail in Appendix F.

Line search is a scalar (one dimensional) optimisation problem, which can be performed

very quickly and efficiently using a simple bisection method. Note that

1 + ∆smwsmj > 0 (4.21)

for equation (4.18) to be valid. Since wsmj can be positive or negative, a valid range of value

for ∆sm can be defined as

∆min
sm ≤ ∆sm ≤ ∆max

sm (4.22)
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where

∆min
sm = min

(

−
1

wmax
sm

, 0

)

and ∆max
sm = max

(

−
1

wmin
sm

, 0

)

(4.23)

wmin
sm and wmax

sm are the minimum and maximum values of wsmj for j = 1, 2, . . . , n. The bisection

algorithm is summarised as follows:

Initialise ∆min
sm and ∆min

sm using equation (4.23)

Compute ∆Q(∆min
sm ) and ∆Q(∆min

sm )

Repeat

Set ∆sm = ∆min
sm+∆max

sm

2 and compute ∆Q(∆sm)

If ∆Q(∆min
sm ) > ∆Q(∆max

sm )

Set ∆max
sm = ∆sm and recompute ∆Q(∆max

sm )

Else

Set ∆min
sm = ∆sm and recompute ∆Q(∆min

sm )

End If

Until
∣

∣∆max
sm − ∆min

sm

∣

∣ < threshold

Figure 4.1: The bisection line search algorithm for basis coefficient estimation

The above algorithm can be repeated many time until a good estimate is obtained.

4.2 Efficient Estimation for Special Cases

In general, the basis matrix and basis coefficient estimation schemes described in Sections 4.1.1

and 4.1.2 respectively may be used to train any precision matrix models which are subsumed by

the basis superposition framework. However, if the basis matrices are rank-1 symmetric matrices,

more efficient estimation methods are available. In the following, the efficient iterative update

schemes for STC and EMLLT models are considered. Derivation of these update formulae can

also be found in the respective literatures [32, 34, 85, 86]. For the completeness of this thesis,

essential derivations are given in Appendix D and E.

4.2.1 Semi-tied Covariance

Semi-tied covariance (STC) [30, 34] can be described as a basis superposition model using d

rank-1 basis matrices. The transformation matrix associated with this model is square and the

basis coefficients are positive. The parameters associated with the STC models can be estimated



CHAPTER 4. MAXIMUM LIKELIHOOD ESTIMATION OF PRECISION MATRIX MODEL PARAMETERS 58

efficiently using the following update formulae

λsmi =
1

aiW
ml
sma′

i

(4.24)

ai = ciG
−1
i

√

β

ciG
−1
i c′i

(4.25)

where ci is the row vector of cofactors of A corresponding to the row ai and

Gi =
S
∑

s=1

M
∑

m=1

βmlsmλsmiW
ml
sm (4.26)

β =
S
∑

s=1

M
∑

m=1

βmlsm (4.27)

The basis vectors and coefficients can be updated iteratively in an alternating fashion using

equations (4.24) and (4.25) respectively.

4.2.2 Extended MLLT

The Extended MLLT (EMLLT) model [85] differs from the STC model only in terms of the basis

order. An EMLLT precision matrix is formed by superimposing n rank-1 basis matrices, where n

is greater than the dimensionality of the feature vectors. As a result, the transformation matrix

associated with an EMLLT model is rectangular. Due to this reason, the term log |A′
ΛsmA|

cannot be easily differentiated with respect to each of the basis vectors, ai. In contrast to the

STC case, it cannot be decomposed into determinants of the individual matrices. No closed

form solution exists for updating the basis vectors. Thus, a generic gradient-based optimisation

algorithm has to be used to update the basis vectors. Newton optimisation method is a popular

example. Given the current estimate of the basis vector, ai, the new estimate, âi, can be written

as

âi = ai + ηf̄ smH̄
−1
i (4.28)

where η denotes the learning rate. The gradient vector and Hessian matrix are given by

f̄ sm =
S
∑

s=1

M
∑

m=1

βmlsmλsmiai

(

Σsm − W ml
sm

)

(4.29)

H̄ i =
S
∑

s=1

M
∑

m=1

βmlsmλsmi

{

Σsm

(

1 − aiΣsma′
i

)

− W ml
sm − λsmiΣsma′

iaiΣsm

}

(4.30)

respectively. The basis coefficients, on the other hand, may be updated using the following

formula

λ̂smi = λsmi +

(

1

aiW
ml
sma′

i

−
1

aiΣsma′
i

)

(4.31)
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Full derivation of equations (4.29), (4.30) and (4.31) is given in Appendix E. The update rule

given in equation (4.31) is known as the additive update [85]. This method yields both positive

and negative coefficients. Alternatively, a multiplicative update [85] may be used, which is given

by

λ̂smi = λsmi

(

aiΣsma′
i

aiW
ml
sma′

i

)

(4.32)

The multiplicative update yields only positive basis coefficients. The resulting model is less

flexible because it does not allow negative variance contributions. Thus, the additive coefficient

update has been found to outperform the multiplicative update [85]. The update formulae for

the EMLLT model can be easily extended to update the hybrid EMLLT model [127].

4.3 Implementation Issues

This section addresses the implementation issues of various precision matrix models, paying

particular attention to building LVCSR systems. Many of these models have been successfully

applied to LVCSR systems [6, 34, 58]. This paper emphasises issues such as memory require-

ment, computational feasibility and training robustness in LVCSR systems. System efficiency

may be adversely affected if these issues are not addressed properly.

4.3.1 Memory Issues

One issue with implementing precision matrix models on LVCSR systems is the large amount of

memory required for the statistics accumulation. Recall that the sufficient statistics for updating

a precision matrix model parameters are given by equations (4.4), (4.5) and (4.6). The memory

requirement is dominated by the full covariance statistics, W ml
sm, one for each component m in

every state s. W ml
sm is a symmetric matrix with d

2(d+ 1) free parameters. For a large vocabulary

system with 9000 states, 36 components per state and 39-dimensional feature vector, the total

amount of memory required to store all the full covariance statistics is just under 1Gb 1.

Given a good set of basis (through good initialisation schemes to be discussed in Section

4.3.2 or a few ML training iterations), the precision matrix models can be refined by simply

updating the basis coefficients alone. This is more efficient in terms of memory requirement

because the sufficient statistics can be reduced to a more compact form known as the projected

statistics, ỹml
sm. ỹml

sm is an n-dimensional vector whose ith element is given by

ỹmlsmi = Tr
(

SiW
ml
sm

)

(4.33)

1Assuming that each parameter requires 4 bytes (32 bits), the total amount of memory required is computed as

4 ×
d
2
(d + 1) × M × S bytes
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for i = 1, 2, . . . , n. ỹmlsmi is a scalar term associated with each basis matrix, Si. Therefore, the

total amount of memory required is proportional to the basis order, n, rather than d
2(d + 1) for

the full covariance statistics, W ml
sm. This dramatically reduces the total memory requirement for

large vocabulary systems.

Hence, equation (4.12) may be rewritten in terms of the projected statistics as

∂Qml(θ, θ̂)

∂λsmi
=

1

2

{

βmlsm + Tr (SiΣsm) − ỹmlsmi

}

(4.34)

and the projected statistics required to update the basis coefficients can be expanded using

equation (4.5) such that

ỹmlsmi = Tr
(

SiW
ml
sm

)

(4.35)

= Tr

(

Si

∑T
t=1 γm(t)(ot − µsm)(ot − µsm)′

βm

)

=

∑T
t=1 γm(t)(ot − µsm)′Si(ot − µsm)

βm

=

∑T
t=1 γm(t)(o′

tSiot − 2µ′
smSiot + µ′

smSiµsm)

βm

Note that the terms o′
tSiot and Siot have already been computed and cached when calculating

the likelihood (see Section 3.5.2). Moreover, the term µ′
smSiµsm) depends only on the model

parameters and can therefore be pre-computed (independent of the amount of training data).

The cost of computing the projected statistics is of the order O(d) for each basis due to the

computation of the scalar product between µsm and Siot. The expression of the change in

the component auxiliary function needed by the line search method in equation (4.18) can be

rewritten as

Qml
sm − Q̂ml

sm =
βml

2







d
∑

j=1

log (1 + ∆smwsmj) − ∆sm

n
∑

i=1

f̄smiỹ
ml
sm







(4.36)

where the terms in the equation hold the same meaning as before. This makes it tractable, in

terms of memory requirement, to build systems with a large number of Gaussian components.

For STC and EMLLT models, where the basis matrices are of rank one, the projected statis-

tics can be further simplified as

ỹmlsmi = Tr(SiW
ml
sm) = aiW

ml
sma′

i (4.37)

Thus the basis coefficient update for STC and EMLLT in equations (4.24) and (4.31) can be

expressed in terms of the projected statistics, ỹmlsmi, as

λ̂smi =
1

ỹmlsmi

(4.38)

λ̂smi = λsmi +

(

1

ỹmlsmi

−
1

aiΣsma′
i

)

(4.39)
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respectively. . Besides, note that

ỹmlsmi = aiW
ml
sma′

i (4.40)

= ai

(

∑T
t=1 γ

ml
sm(t)(ot − µsm)(ot − µsm)′

βml

)

a′
i

=

∑T
t=1 γ

ml
sm(t)(õti − µ̃smi)

2

βml

for i = 1, 2, . . . , n. õti = aiot and µ̃smi = aiµsm are the projected observation and mean vectors

associated with the projection vector, ai. As discussed in Section 3.5.2, the values of õti and

µ̃smi have already been pre-computed and cached for efficient likelihood computation. Thus,

the overall cost of computing the projected statistics of component m in state s for STC and

EMLLT is proportional to n. For STC, n = d and the cost of computing the sufficient statistics is

the same as the diagonal covariance matrix model.

4.3.2 Basis Initialisations

Section 3.5 described several forms of structured precision matrix approximation in terms of ba-

sis superposition. Initialisation is important as a good initial set of basis allows fast convergence

and avoids hitting a poor local maximum during parameters estimation process. This is espe-

cially true for the EMLLT and SPAM models, where the update of basis vectors/matrices is slow.

For STC, a trivial initialisation of setting the transformation matrix as an identity matrix may be

used, which simply leads to a diagonal covariance matrix system. The initialisation schemes for

EMLLT and SPAM will be discussed as follows.

4.3.2.1 Initialisation Schemes for EMLLT

As discussed in Section 4.2.2, there is no closed form solution to update the basis vectors. Stan-

dard optimisation packages such as Newton optimisation must be used to estimate them. In

general, the use of the Newton optimisation method is computationally expensive and has slow

convergence property if the auxiliary function is highly non-quadratic. An initial set of basis vec-

tors is required in order to evaluate the gradient vector and Hessian matrix in equations (4.29)

and (4.30). It is not possible to initialise the basis vectors to be zero vectors as doing so leads

to an invalid stationary point2. The initial set of non-zero basis vectors has to contain at least d

independent vectors to yield positive-definite precision matrices.

Several initialisation schemes based on stacking multiple transforms together will be in-

troduced. The resulting EMLLT transform and the corresponding coefficient matrix can be ex-

2This is not a feasible solution as the resulting precision matrix will be zero
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pressed as

A =

[

A(1)

A(2)

]

and Λsm =

[

Λ
(1)
sm 0

0 Λ
(2)
sm

]

(4.41)

where A(1) and A(2) are n1 × d and n2 × d matrices and the corresponding coefficient matrices,

Λ
(1)
sm and Λ

(2)
sm are n1 ×n1 and n2 ×n2 diagonal matrices respectively. Table 4.1 tabulates several

Initialisation Scheme Descriptions Initial model

Uninformative (UI)

A(1) : identity matrix

DIAGC
A(2) : random (see Appendix B for an example)

Λ
(1)
sm : inverse diagonal covariance matrix

Λ
(2)
sm : zero matrix

STC+EYE

A(1) : global STC transform

STC
A(2) : identity matrix

Λ
(1)
sm : STC basis coefficient matrix

Λ
(2)
sm : zero matrix

STC+HLDA

A(1) : global STC transform

STC
A(2) : HLDA projection matrix

Λ
(1)
sm : STC basis coefficient matrix

Λ
(2)
sm : zero matrix

STC-SS

A(1) : STC transform for speech models

STC (SS)
A(2) : STC transform for silence models

Λ
(1)
sm : STC basis coefficient matrix (speech mod-

els)

Λ
(2)
sm : zero matrix (speech models)

Table 4.1 EMLLT initialisation schemes

initialisation schemes. The second and third columns describe the properties of each initiali-

sation scheme and the equivalent initial model. These initialisation schemes will be described

below:

• UI initialisation:

The UI method initialises the model to be a diagonal covariance matrix model. The first d

basis vectors form an identity matrix with the corresponding coefficients set as the inverse

diagonal variances. The remaining basis vectors may be randomly initialised to any non-

zero vectors with the corresponding coefficients set to zero. This form of initialisation

is less efficient because the set of basis vectors are suboptimal. As a result, the gradient

descent method will eventually converge at a poor local maximum.

• STC+EYE initialisation:

The STC basis vectors provide a better set of initial vectors. For the STC+EYE initialisation,
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an identity matrix is appended to a global STC transform. The corresponding coefficients

are set to be the STC coefficients and zeros for the STC and identity transforms respectively.

This initialisation method yields an STC model.

• STC+HLDA initialisation:

Alternatively, the identity matrix of the STC+EYE method may be replaced by a HLDA

projection matrix, giving the STC+HLDA scheme. There is an added flexibility when ap-

pending HLDA matrix which allows the basis order to be adjusted by using projection

matrix of different sizes. Similar to the STC+EYE method, this method yields an initial

STC model.

• STC+SS initialisation:

Finally, an EMLLT transform can be initialised by stacking multiple STC transforms to-

gether. These STC transforms may be trained with respect to different clusters of Gaussian

components. For example, the STC-SS method uses the speech and silence as the two

clusters of Gaussian components. This results in a multiple transforms STC model as the

initial model.

4.3.2.2 Initialisation Schemes for SPAM

In order to update the basis coefficients for SPAM models, the set of matrices, S i, must be

selected such that the initial precision matrices, P sm, are positive definite. In practice, this

can be achieved by ensuring that at least one of the basis is positive definite. In [7], it was

suggested that one of the basis matrices (the nth basis matrix is used here) is initialised as a

positive definite symmetric matrix such that it is the weighted average precision matrix over all

the Gaussian components.

Sn =

∑S
s=1

∑M
m=1 csmP sm

∑S
s=1

∑M
m=1 csm

(4.42)

Positive-definiteness can now be guaranteed by initialising λsmn = 1 and the rest of the basis co-

efficients set to zero. The remaining basis matrices can be initialised to any arbitrary symmetric

matrix. However, according to [7], it is useful to initialise the set of basis matrices, {Si}, as the

symmetric matrices associated to the top n− 1 singular vectors of the matrix

V =

∑S
s=1

∑M
m=1 csmvmv′

m
∑S

s=1

∑M
m=1 csm

(4.43)

where vm = vec
(

[W ml
sm]−1

)

. On large systems, it was found that the basis matrix initialisation

given by equation (4.43) is not robust because the full covariance statistics for each component

may not be estimated reliably due to data sparseness problem. Instead, the state-level inverse

covariance statistics is used to produce a more reliable set of basis matrices.

V =

∑S
s=1=1 csvsv

′
s

∑S
s=1=1 cs

(4.44)
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where

vs = vec





{

Ms
∑

m=1

csmW ml
sm

}−1


 (4.45)

cs =

Ms
∑

m=1

csm (4.46)

and S is the total number of states in the HMM system and Ms is the number of Gaussian

component for state s. The update of the basis matrices is highly constrained by the positive-

definiteness of the precision matrices. As a result, the convergence is slow and the gain from

updating the basis matrices is small. In practice, the basis matrices are fixed as the initial values

and only the basis coefficients are updated for subsequent training iterations. The exact update

procedure for the basis matrices is described in [127]. Recently, an alternative way of initialising

the bases is also described in [87] for the SCGMMs. As SPAM is a special case of SCGMMs (see

Section 3.8.1), this method may also be used to initialise the SPAM model.

4.3.3 Variance Flooring

In situations of data sparseness, which is common in LVCSR systems, a variance floor required

to prevent over-fitting. It imposes a lower bound to the variances (diagonal elements of the

covariance matrix). The form of the variance floor used in HTK [134] may be expressed as

σ̄2
smj = max

(

σ2
smj , σ

(vf)2
j

)

(4.47)

where σ2
smj and σ̄2

smj are the estimated and floored variances respectively. σ
(vf)2
j denotes the

variance floor. In HTK, the variance floor elements, σ
(vf)2
j , are computed as a proportion of the

weighted average within state variances. Hence,

σ
(vf)2
j =

α
∑S

s=1 βsσ
(s)2
j

∑S
s=1 βs

(4.48)

where σ
(s)2
j and βs are the within state variance and occupancy count respectively. α is a scaling

factor which is typically set as 0.1 (10%). This is the approach adopted in this work.

STC models consists of a set of independent basis vectors. The resulting basis coefficients

have to be positive to ensure valid precision matrix modelling. Recall that the basis coefficients

is indeed the inverse variances in the projected space3. Naturally, variance flooring is readily

applicable to the basis coefficients using the projected variance floor. Hence,

1/λ̂smi = max
(

1/λsmi, σ
(vf)2
j a2

ii

)

(4.49)

3Strictly speaking, the basis coefficients are the inverse variance contributions. Because STC basis vectors are

independent, these inverse variance contributions are also independent
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where σ
(vf)2
j a2

ii is the ith variance floor element in the transformed space and aii is the ith

diagonal element of A.

Application of variance floor for EMLLT models is not so straightforward due to the ex-

istence of negative coefficients. However, instead of applying variance floor to the estimated

parameters, variance floor can be applied to the underlying covariance statistics in the similar

way as would have been done for the variance parameters. In the case where full covariance

statistics, W ml
sm, are accumulated, flooring is done as follows:

ȳmlsm(i, i) = max
(

ỹmlsm(i, i), σ
(vf)2
i

)

(4.50)

where ȳmlsm(i, i) and ỹmlsm(i, i) are the leading diagonal elements of the full covariance statistics,

before and after flooring respectively. In other words, if full covariance statistics are accumu-

lated, variance floor is applied to the leading diagonal elements. On contrary, for updating the

basis coefficients alone, only the transformed statistics, aiW
ml
sma′

i, are accumulated. To apply

flooring onto these transformed statistics, the variance floor elements need to be transformed,

too. Hence, the equation governing variance flooring of transformed statistics is given by

ȳmlsmi = max
(

aiW
ml
smai, σ

(vf)2
i a2

ii

)

(4.51)

where ȳmlsmi is floored projected statistics associated with the projection vector ai.

Unfortunately, the use of full rank basis matrices for SPAM model does not allow trivial

variance flooring when only the projected statistics, Tr
(

W ml
smSi

)

, are accumulated. However,

if one of the basis matrices is initialised to be positive-definite (Sn) [7], the coefficient corre-

sponding to S1 may be increased gradually until the final precision matrices satisfy the variance

floor condition. Instead of having a lower bound (floor) on the leading diagonal elements of

the covariance matrices, an equivalent upper bound may be applied to the leading diagonal

elements of the precision matrices. Let p
(ub)
ii = 1/

(

σ
(vf)2
i a2

ii

)

be the upper bound for the diago-

nal elements of the precision matrices. The following satisfies the equivalent variance flooring

condition:

p̄ii = max
(

pii, p
(ub)
ii

)

(4.52)

where p̄ii and pii are the leading diagonal elements of the precision matrix before and after

‘ceiling’ respectively. Since the precision matrix expression for the SPAM model is given by

P sm =
n−1
∑

i=1

λsmiSi + λsmnSn (4.53)

variance floor condition may be achieved by finding the minimum value of λsmn that satisfies

p̄ii ≥ p
(ub)
ii (4.54)

for all i. However, this approach is computationally inefficient. In practice, the parameters of

the SPAM model for a particular Gaussian component will not be updated if the corresponding

occupancy count, βmlsm, falls below a certain threshold. This threshold helps to ensure that the

resulting parameter estimates are robust.



5

Discriminative Training of Precision Matrix Models

The conventional way of estimating model parameters using the Maximum Likelihood (ML)

criterion relies greatly on the correctness of the model assumptions. Despite the extensive use of

HMMs in speech recognition, a series of assumptions are made about the speech data, many of

which are known to be poor. In Section 2.3, some of these shortcomings have been discussed. To

account for the poor model assumptions, the model parameters are more appropriately learned

by minimising the Bayesian risk. This approach has motivated an alternative training paradigm

known as discriminative training (see Section 2.2.2). This chapter will describe Minimum Phone

Error (MPE) training as a Minimum Bayes Risk (MBR) [63] estimation and employ this training

criterion to estimate the parameters of precision matrix models described in Chapter 3.

5.1 The Minimum Phone Error (MPE) Criterion

From the Bayesian viewpoint, model parameters are considered as random variables. Bayesian

risk is then defined as an expected loss of an estimator,

Rmbr(θ) =
U
∑

u=1

∑

h∈Hu

p(h|OT
1 ,θ)l(h, ĥ) (5.1)

where p(h|OT
1 ,θ) denotes the posterior probability of a hypothesis, h, for sentence s, given the

observation sequence, OT
1 and the model parameters, θ. l(h, ĥ) is the loss function of h given

the reference, ĥ. The summation in equation (5.1) is defined over all possible hypotheses, Hu,

for each of the training sentences, s = 1, 2, . . . , S, where S denotes the total number of training

sentences. Therefore, a MBR estimator (or simply Bayesian estimator) finds the new model

parameters, θ̂
mbr

, such that the Bayesian risk in equation (5.1) is minimised, i.e.

θ̂
mbr

= arg min
θ

Rmbr(θ) (5.2)

66
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Many forms of loss function, l(h, ĥ), may be defined, each one yields a different discrimina-

tive training criterion. In this work, the Minimum Phone Error (MPE) criterion will be described.

The loss function for MPE is measured by the raw phone errors between the hypothesis and the

reference at sentence level, i.e.

l(h, ĥ) = PhoneError(h, ĥ) = N − PhoneAcc(h, ĥ) (5.3)

where PhoneError(h, ĥ) and PhoneAcc(h, ĥ) measure the number of incorrect and correct phones

respectively in h given the reference, ĥ. N denotes the total number of phones in ĥ plus the num-

ber of insertions in h. From the above equation, minimising the expected loss function (phone

error) is equivalent to maximising the expected phone accuracy. Therefore, the MPE objective

function to be maximised may be expressed as

Rmpe(θ) =

U
∑

u=1

∑

h∈Hu

p(h|OT
1 ,θ)PhoneAcc(h, ĥ) (5.4)

where the posterior probability of h given the observation sequence and the model parameters

is given by

p(h|OT
1 ,θ) =

p(OT
1 |h,θ)P (h)

∑

g=Hu
p(OT

1 |g,θ)P (g)
(5.5)

p(OT
1 |h,θ) is the likelihood of h given the observation sequence and the model set and P (h) is

the language model probability of hypothesis h. In practice, the posterior probability, p(h|OT
1 ,θ),

is small for many h. Therefore, Hu, is usually approximated by a smaller set of competing

sentences which may be obtained by performing a recognition on the training utterance using

the current model, θ, and a simple language model1. The resulting hypotheses may be stored as

an N -best list or in a lattice structure. The latter is preferred due to its compact representation.

Ideally, PhoneAcc(hu, ĥu) equals the number of correct phones minus the number insertions2 of

hypothesis hu compared to the reference sentence, ĥu. In the case where competing sentences

are represented in a lattice format, PhoneAcc(hu, ĥu) is calculated as the sum of the phone

accuracies, PhoneAcc(q), over all phone arcs, q in the lattice. The exact calculation of the phone

accuracies requires alignment of the hypothesis and reference phone sequence, and hence is

computationally expensive. An approximation was proposed in [95] such that

PhoneAcc(q) = max
z

{

−1 + 2e(q, z) if z = q

−1 + e(q, z) otherwise

}

(5.6)

where e(q, z) is the proportion of the duration of z overlapped by q. Equation (5.6) has a range

between -1 and 1. With perfect alignment, PhoneAcc(q) gives 1, 0 and -1 for a correct phone,

substitution/deletion and insertion respectively. This approximation is adopted in this work.

1A unigram or bigram language model is typically used to improve generalisation [95]
2Deletions and substitutions are accounted for in the number of correct phones.
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5.2 Optimising the MPE Criterion

The MPE objective function in equation (5.4) is difficult to optimise directly. In the ML case,

an auxiliary function (Q-function) exists as the strict lower bound to the objective function such

that an increase in the auxiliary function guarantees to increase the objective function, or

Rml(θ̂) −Rml(θ) ≥ Q(θ, θ̂) −Q(θ,θ) (5.7)

where θ and θ̂ are the current and updated model parameter set respectively. The above in-

equality is the result of the well-known Baum-Eagon inequality [11]. However, the Baum-Eagon

inequality is not applicable to the discriminative objective functions which are rational func-

tions (a ratio between the numerator and denominator polynomial functions with positive coef-

ficients). Earlier work on MMI discriminative training are based on direct optimisation of the

objective function using hill climbing methods. In 1989, Gopalakrishnan et al. introduced

the Extended Baum-Welch algorithm [50, 51] which extended the Baum-Eagon inequality to

rational functions. This allows discriminative training to be carried out in an efficient iterative

manner similar to the Baum-Welch algorithm for ML training. In [95, 100, 101], Povey et al.

introduced an alternative approach of deriving the MPE update formulae for the Gaussian pa-

rameters of HMMs using the so called weak-sense auxiliary function. A weak-sense auxiliary

function, Qmpe(θ, θ̂), is defined to have the same derivative with respect to the model param-

eters as that of the objective function, when evaluated at the current estimates of the model

parameters, i.e.

∂Qmpe(θ, θ̂)

∂θ̂

∣

∣

∣

∣

∣ˆθ=θ

=
∂Rmpe(θ̂)

∂θ̂

∣

∣

∣

∣

∣ˆθ=θ

(5.8)

The form of auxiliary function suggested in [100] takes the following form

Qmpe(θ, θ̂) = Qn(θ, θ̂) −Qd(θ, θ̂) + Rs(θ, θ̂) (5.9)

where Qn(θ, θ̂) and Qd(θ, θ̂) are the numerator and denominator terms respectively, which take

the same form as the ML auxiliary function in equation (2.26), except that the sufficient statistics

are now derived based on the numerator and denominator ‘counts’ for state s and component

m, γn
sm(t) and γd

sm(t) respectively (cf. equations (4.4) to (4.6)). The next section will describe

how the values of γn
sm(t) and γd

sm(t) are computed. Rs(θ, θ̂) is a smoothing function which, as

suggested in [100], takes the form

Rs(θ, θ̂) = K +
1

2

S
∑

s=1

M
∑

m=1

Dsm

{

log |P sm| − Tr(P smΣsm)
}

(5.10)

where Σsm is the current estimate of the full covariance matrix and Dsm is a component-

dependent constant that controls the amount of Σsm to be smoothed onto the covariance statis-

tics. The smoothing function has a zero differential with respect to the model parameters eval-

uated at the current parameter set so that the condition in equation (5.8) is satisfied.
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The weak-sense auxiliary function in equation (5.9) is not a strict lower bound of the MPE

objective function in equation (5.4). Therefore, maximising the weak-sense auxiliary function

does not guarantee an improvement in the objective function. However, due to the condition

in equation (5.8), optimising equation (5.9) will update the model parameters in the direction

along the gradient of the objective function at the current model parameters. Hence, weak-sense

auxiliary function optimisation may be viewed as a form of gradient-based optimisation scheme.

The learning rate may be controlled by adjusting the smoothing constant, Dsm. A larger Dsm

value yields a lower learning rate. It is shown later in Section 5.3.1 that a lower bound is

applied to Dsm such that the resulting covariance estimate is positive definite and the effective

component occupancy count (βnsm − βdsm +Dsm) is positive.

5.3 Discriminative Training of Precision Matrix Models

Due to the success of discriminative training schemes in speech recognition, several forms of

MMI trained precision matrix models have been published recently. Goel et al. , 2003 [46] pre-

sented the MMI estimation of the SPAM models with a small vocabulary system. MMI estimation

of SCGMMs and EMLLT models was also studied in [4]. McDonough et al. [77] employed MMI

trained STC models in speaker-adapted training (SAT). Tsakalidis et al. [121] introduced Dis-

criminative Likelihood Linear Transform (DLLT), a method that discriminatively train the MLLT

parameters based on the MMI criterion. The consistent improvement of MPE training on large

scale diagonal covariance matrix systems compared to the MMI discriminative criterion [100]

motivates the investigation of MPE training of precision matrix models on LVCSR systems. The

rest of this chapter is devoted to the discussion of MPE training of various precision matrix

models described in Chapter 3 [113].

5.3.1 MPE Estimation of Precision Matrix Model Parameters

This section presents the derivation of the MPE estimation formulae for basis superposition

precision matrix models given by equation 3.18. The estimation formulae will be derived by

maximising the weak-sense auxiliary function given in equation (5.9). Recall from Chapter 4

that the ML auxiliary function to be maximised in ML training is given by (from equation 4.9)

Qml(θ, θ̂) = K +
1

2

S
∑

s=1

M
∑

m=1

{

βmlsm log

∣

∣

∣

∣

∣

n
∑

i=1

λsmiSi

∣

∣

∣

∣

∣

− Tr

[(

n
∑

i=1

λsmiSi

)

W ml
sm

]}

(5.11)
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The sufficient statistics, Θ
ml
sm = {βmlsm,x

ml
sm,Y

ml
sm}, are given by

βmlsm =
T
∑

t=1

γml
sm(t) (5.12)

xml
sm =

T
∑

t=1

γml
sm(t)ot (5.13)

Y ml
sm =

T
∑

t=1

γml
sm(t)oto

′
t (5.14)

and the full covariance statistics can be expressed in terms of the above zeroth, first and second

moment statistics as

W ml
sm =

(

Y ml
sm − xml

smµsm − µsmxml
sm

′
+ βmlsmµsmµ′

sm

)

βmlsm

(5.15)

Given the set of parameters, θ, the above ML auxiliary function can be rewritten in terms of the

ML statistics Θ
ml
sm as

Qml(θ, θ̂) = G(Θml
sm) (5.16)

where

G(Θml
sm) = K +

1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

log |P sm| − Tr
(

P smW ml
sm

)}

(5.17)

In a similar way, the weak-sense auxiliary function in equation (5.9) can also be expressed in

terms of sufficient statistics

Qmpe(θ, θ̂) = G(Θn
sm) − G(Θd

sm) + G(Θs
sm) (5.18)

using the function G(.) defined in equation (5.17). Θ
n and Θ

d denote the sufficient statistics

for numerator ({βnsm,x
n
sm,Y

n
sm}) and denominator

(

{βdsm,x
d
sm,Y

d
sm}

)

respectively. To compute

these sufficient statistics, γn
sm(t) and γd

sm(t) are required. One can think of these quantities as

the posterior of component m in state s at time t for the numerator and denominator statistics

respectively. According to [95], they are calculated from the numerator and denominator phone

lattices3 as

γn
sm(t) =

∑

q:sq≤t≤eq

γqsm(t) max
(

0, γmpe
q (t)

)

(5.19)

γd
sm(t) =

∑

q:sq≤t≤eq

γqsm(t) max
(

0,−γmpe
q (t)

)

(5.20)

where sq and eq are the start and end times of arc q and γqsm(t) are the occupation probabilities

for the Gaussian conditional on arc q which are computed by performing a forward backward

over the arc q. γmpe
q (t) is defined as

γmpe
q (t) =

∂Rmpe

∂ log p(OT
1 |q)

(5.21)

3Each arc in the phone lattice contains the identity of the phone as well as its start and end times
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This is the differential of the objective function with respect to the log likelihood of arc q

(log p(OT
1 |q)).

The set of parameters, Θs
sm, which corresponds to the smoothing function (5.10), Rs(θ, θ̂) =

G(Θs
sm), is given by

βssm = Dsm (5.22)

xs
sm = Dsmµsm (5.23)

Y s
sm = Dsm(Σsm + µsmµ′

sm) (5.24)

Note that the set of parameters associated with the smoothing function, Θs
sm = {βssm,x

s
sm,Y

s
sm},

is only dependent on the current model parameters, θ and is independent of the training data

observations. The final form of equation 5.18 can also be conveniently expressed as a function

G(.)

Qmpe(θ, θ̂) = G(Θn
sm) − G(Θd

sm) + G(Θs
sm) = G(Θmpe

sm ) (5.25)

in terms of the sufficient statistics collectively as Θ
mpe
sm , where

βmpesm = βnsm − βdsm + βssm (5.26)

xmpe
sm = xn

sm − xd
sm + xs

sm (5.27)

Y mpe
sm = Y n

sm − Y d
sm + Y s

sm (5.28)

W mpe
sm = W n

sm − W d
sm + W s

sm (5.29)

Maximising the weak-sense auxiliary function with respect to the mean vector and the full co-

variance matrix parameters yields the MPE update formulae for the standard HMM parameters

as

µ̂mpe
sm =

x
mpe
sm

β
mpe
sm

and Σ̂
mpe

sm =
W mpe

sm

β
mpe
sm

=
Y mpe

sm

β
mpe
sm

− µsmµ′
sm (5.30)

Note the similarities between equations (5.30) and (4.3). In fact, the MPE update formulae

for various precision matrix models are the same as those described in Chapter 4 for ML train-

ing, with the ML sufficient statistics replace by the corresponding MPE statistics given by equa-

tions (5.26) to (5.29). In the following, the MPE update of the basis coefficients for STC, EMLLT

and SPAM will be given.

To obtain the MPE update formula for the STC and EMLLT basis coefficients, the ML statis-

tics (W ml
sm) in equation (4.31) is replaces by the MPE statistics (W mpe

sm ). This yields

λ̂smi = λsmi +

(

1

aiW
mpe
sm a′

i

−
1

aiΣsma′
i

)

(5.31)

where λsmi and Σsm are the current estimates of the basis coefficient and full covariance matrix

respectively.



CHAPTER 5. DISCRIMINATIVE TRAINING OF PRECISION MATRIX MODELS 72

The MPE update for the SPAM basis coefficients may be obtained from equation (4.18) in

a similar way to the STC/EMLLT case above. The resulting auxiliary function to be maximised

becomes

Qsm − Q̂sm =
β
mpe
sm

2







d
∑

j=1

log (1 + ∆smwsmj) − ∆sm

n
∑

i=1

dsmi Tr(W mpe
sm Si)







(5.32)

where ∆sm, wsmj and f̄ sm(sm) have the same definition as those in equation (4.18).

5.3.2 Determination of the Smoothing Constant, Dsm

As previously mentioned, the smoothing constant Dsm may be adjusted to control the learning

rate. However, a more important role of Dsm is to ensure that:

1. the new precision matrix estimate, Σ̂sm, is positive definite;

2. the effective occupancy count, β
mpe
sm , is positive.

To find the minimum value of Dsm required to satisfy the first condition above, the new

estimate covariance matrix estimate is rewritten in terms of Dsm, by combining equations (5.30)

to yield

Σ̂
mpe

sm =
B2D

2
sm + B1Dsm + B0

βcsm +Dsm
(5.33)

where

B2 = Σsm (5.34)

B1 = Y c
sm + βcsm

(

Σsm + µsmµ′
sm

)

−
(

µsmxc
sm

′ + xc
smµ′

sm

)

(5.35)

B0 = βcsmY c
sm − xc

smxc
sm

′ (5.36)

and the combined statistics of the numerator and denominator statistics are given by

βcsm = βnsm − βdsm (5.37)

xc
sm = xn

sm − xd
sm (5.38)

Y c
sm = Y n

sm − Y d
sm (5.39)

The smallest Dsm value required to yield a positive-definite Σ̂
mpe

sm is given by the largest positive

eigenvalues of the Quadratic Eigenvalue Problem (QEP) of equation (5.33) [46]. Let this be de-

noted by D
qep
sm . Furthermore, another lower bound, Eβdsm, is applied to the smoothing constant

to ensure that β
mpe
sm is positive. Therefore, the actual smoothing constant value, Dm, is calculated

as

Dsm = max
(

2Dqep
sm , Eβdsm

)

(5.40)
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E = 2 was empirically found to lead to good test-set performance [100].

If one is interested only in updating the basis coefficients, solving the above QEP is un-

necessary. Imposing the positivity constraint on the projected statistics, aiW
mpe
sm a′

i, is sufficient

to yield positive-definite precision matrices for STC and EMLLT models provided that the initial

precision matrices are positive-definite. This is clearly evident given that equation (4.31) only

depends on the projected statistics. Furthermore, a proof for this is also given in [85] for EMLLT

models. The projected statistics can be expressed in terms of βcsm, xc
sm and W c

sm in the following

quadratic form

aiW
mpe
sm a′

i =
b
(i)
2 D2

sm + b
(i)
1 Dsm + b

(i)
0

βcsm +Dsm
(5.41)

where

b
(i)
2 = aiΣsma′

i (5.42)

b
(i)
1 = ai(W

c
sm + βcsmΣsm)a′

i + βcsm (aiµsm)2 − 2 (aiµsm) (aix
c
sm) (5.43)

b
(i)
0 = βcsmaiW

c
sma′

i − (aix
c
sm)2 (5.44)

Thus, the value of Dsm can be determined by finding the largest positive root of the quadratic

equation (5.41) rather than solving a QEP of equation (5.33).

Unlike STC and EMLLT models where the basis matrices are rank-1, the ‘projected’ statis-

tics, Tr(W mpe
sm Si), associated with the basis matrices, Si of the SPAM model can not be used to

infer the positive-definiteness of the resulting precision matrices. Instead of obtaining the exact

smoothing constant value by solving the QEP for equation (5.33), this value can be approxi-

mated by using a pseudo transformation matrix, A∗. The transformed space is assumed to have

negligible correlation such that the QEP is once again simplified to n independent quadratic

equations as for the STC and EMLLT models. Thus, two sets of statistics are required: one for

determining the smoothing constant, Dsm

(

a∗
i W

mpe
sm a∗′

i

)

and the other one for estimating the

model parameters, Tr(W mpe
sm Si). To obtain a good approximation for the smoothing constant,

A∗ should be chosen such that the transformed space is as uncorrelated as possible. It is rea-

sonable to select the STC transform as the pseudo transformation matrix. In the case where

STC transform is unavailable, an identity matrix may be used. This was found to be a good

approximation [111] and is used in this work.

5.4 I-smoothing and Maximum a Posteriori (MAP)

I-smoothing is an interpolation technique proposed by Povey et al. [100] that incorporates prior

information over the Gaussian parameters to control the convergence of the MPE training pro-

cess. Incorporation of I-smoothing is achieved by augmenting the weak-sense auxiliary function
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in equation (5.9) with an I-smoothing function as follows:

Qmpe(θ, θ̂) = Qn(θ, θ̂) −Qd(θ, θ̂) + Rs(θ, θ̂) + log (p(θ)) (5.45)

where the I-smoothing function is given by

log (p(θ)) = K +
τ
prior

I

2

S
∑

s=1

M
∑

m=1

{

log |P sm| − Tr
(

P smΣ
prior
sm

)}

(5.46)

where µ
prior
sm and Σ

prior
sm denote the prior mean vector and covariance matrix respectively and

τ
prior

I is the I-smoothing constant. The second order statistics associated with the prior is given

by

Y prior
sm = Σ

prior
sm + µprior

sm µsm + µsmµprior
sm

′
− µsmµ′

sm (5.47)

The smoothing function has the same differential as the objective function at the current model

parameters so equation (5.45) remains as a weak-sense auxiliary function. The prior can be

regarded as the log likelihood of τ
prior

I data points with the mean, µ
prior
sm , and covariance ma-

trix, Σ
prior
sm , of the prior. Incorporating I-smoothing is easy by rewriting the MPE statistics in

equations (5.26) to (5.29) as

xmpe
sm = xn

sm − xd
sm + xs

sm + τ
prior

I µprior
sm (5.48)

Y mpe
sm = Y n

sm − Y d
sm + Y s

sm + τ
prior

I Y prior
sm (5.49)

βmpesm = βnsm − βdsm + βssm + τ
prior

I (5.50)

It is simple to see that as the I-smoothing constant, τ
prior

I , tends to infinity, the resulting estima-

tion formulae tend to those of the prior estimates. The prior information used for I-smoothing

may be dynamic or static. In the following, two forms of dynamic priors will be presented,

namely the dynamic ML and dynamic MMI prior. A static prior, which yields a MAP update, is

also given.

A dynamic ML prior is based on the ML statistics. The prior mean and covariance matrix

are given by the dynamic ML estimates respectively, which can be expressed in terms of the ML

sufficient statistics as follows:

µprior
sm = µ̂ml

sm =
xml

sm

βmlsm

and Σ
prior
sm = Σ̂

ml

sm =
W ml

sm

βmlsm

(5.51)

Hence, in addition to the numerator and denominator statistics, the ML statistics are also re-

quired when a dynamic ML prior is used for I-smoothing.

Alternatively, a dynamic MMI prior may also be used for I-smoothing. This is achieved by

setting the prior mean and covariance matrix as the corresponding the MMI estimates. The MMI

update formulae for mean and covariance matrix take similar forms to the MPE update formulae

in equations (5.30) [95], which is given by

µ̂mmi
sm =

xmmi
sm +Dsmµsm

βmmism +Dsm
(5.52)

Σ̂
mmi

sm =
Y mmi

sm +Dsm(Σsm + µsmµ′
sm)

βmmism +Dsm
− µsmµ′

sm (5.53)



CHAPTER 5. DISCRIMINATIVE TRAINING OF PRECISION MATRIX MODELS 75

where βmmism , xmmi
sm and Y mmi

sm are the corresponding MMI statistics. Thus, the dynamic MMI prior

is given by

µprior
sm = µ̂mmi

sm and Σ
prior
sm = Σ̂

mmi

sm (5.54)

A dynamic ML prior I-smoothing may also be employed to the MMI estimates of the mean and

covariance matrix in equations (5.52) and (5.53) respectively. Hence, it is possible to the smooth

the MPE estimates with a dynamic MMI prior which is in turn smoothed by a dynamic ML prior.

The effect is similar to smoothing the MPE estimates with both dynamic ML and MMI priors. The

use of dynamic MMI prior has been found experimentally to yield slightly improved performance

compared to using a dynamic ML prior [106].

In some cases, dynamic priors may not be obtained robustly. This may be the case when

building a gender dependent MPE model. A Maximum a Posteriori (MAP) estimation scheme is

usually employed to improve robustness when building gender dependent (GD) models. Incor-

porating MAP estimation for MPE training can be achieved by using the I-smoothing technique

with static priors [101]. A suitable static prior for GD MAP would be the corresponding mean

vectors and covariance matrices from the gender independent model. A static prior is used by

setting

µprior
sm = µstatic

sm and Σ
prior
sm = Σ

static
sm (5.55)

where µstatic
sm and Σ

static
sm are the prior mean and covariance matrix respectively. The corre-

sponding second order ‘statistics’ is given by

Y prior
sm = Σ

static
sm + µstatic

sm µstatic
sm

′
(5.56)



6

Adaptation of Precision Matrix Models

In Section 2.2.3, the importance of adaptation and adaptive training techniques has been briefly

discussed. This chapter will focus on the discussion of the MLLR framework and its application to

various structured precision matrix models described earlier in Chapter 3. In MLLR, the linear

transformation matrices, Ar for the mean vectors, and Hr for the covariance matrices, are

defined, one for each regression class, r = 1, 2, . . . , R, where R is the total number of regression

classes. The adapted mean vector and covariance matrix can be written as

µ̃sm = Arµsm + br = Xrξsm (6.1)

Σ̃sm = Hr
ΣsmHr′ (6.2)

where the augmented mean vector, ξsm, and the augmented transformation matrix for regres-

sion class r, Xr, are given by

ξsm =

[

µsm

1

]

(6.3)

Xr =
[

Ar br
]

(6.4)

An alternative covariance matrix transformation is also given in [33] as

Σ̃sm = LsmHrL′
sm (6.5)

where Lsm is the Choleski factor of the original covariance matrix, Σsm (Σsm = LsmL′
sm).

Although the estimation of Hr is simple, the computational cost associated with recognition is

high [40]. Thus, equation (6.2) is more commonly used to transform the covariance matrix.

The transformation parameters can be estimated by maximising the ML auxiliary function

in equation (2.26), replacing the mean vector and covariance matrices with those given in equa-

tions (6.1) and (6.2) respectively. The resulting auxiliary function for a given regression class,

76



CHAPTER 6. ADAPTATION OF PRECISION MATRIX MODELS 77

r, omitting the ml superscript, is given by

Qr(θ, θ̂) = Kr +
∑

(s,m)∈Cr

{

βsm log |Zr| −
1

2
Tr(ZrP smZr′W r

sm)

}

(6.6)

where Kr subsume terms independent of the adaptation parameters of regression class r, Cr

denotes the set of components in regression class r, Zr = (Hr)−1 is the linear transformation

of the precision matrices and

W r
sm =

T
∑

t=1

γsm(t)(ot − Xrξsm)(ot − Xrξsm)′ (6.7)

βsm =
T
∑

t=1

γsm(t) (6.8)

The adaptation parameters, Xr and Zr can be estimated by maximising equation (6.6). The

estimation formulae of these parameters are derived in [31, 70] for both diagonal and full co-

variance matrix systems. The update formulae for MLLR mean, variance and constrained MLLR

adaptation methods will be discussed further in Sections 6.1, 6.2 and 6.3 respectively. The MLLR

techniques is particularly attractive for diagonal covariance matrix systems due to the indepen-

dence assumption between feature elements. As a result, the linear transformation matrices can

be estimated row-by-row efficiently and independently. Unfortunately, for the case of full covari-

ance matrix systems, the transformation matrices cannot be updated row-by-row independently.

The closed-form solution for updating the entire transformation matrix is computationally ex-

pensive and may not be robust as the numerical precision required by the calculations may

exceed the limit of the machines as the feature dimensionality increases. In previous work on

SAT training of EMLLT [58] and SPAM [6] models, the numerical stability issue was overcome

by using numerical optimisation techniques. In the following, efficient adaptation methods for

the full covariance matrix models as well as various structured precision matrix models will be

described. In particular, an efficient row-by-row iterative update approach for MLLR mean and

CMLLR adaptation is presented. The update formulae are derived within the standard Expecta-

tion Maximisation (EM) framework.

6.1 MLLR Mean Adaptation

In MLLR mean adaptation, the adapted mean is given by a linear transformation of the original

mean followed by a translation (linear offset), as given by equation (6.1). The transformation

matrix, Ar, and the translation vector, br, are updated by maximising the auxiliary function

in equation (6.6). The parameters can be expressed in a more compact form of augmented

transformation matrix, Xr, as given by equation (6.4). This auxiliary function, expressed in
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terms of Xr, becomes,

Qr(θ, θ̂) = Kr −
1

2

∑

(s,m)∈Cr

T
∑

t=1

γsm(t) (ot − Xrξsm)′ P sm (ot − Xrξsm) (6.9)

where ξsm is the corresponding augmented mean vector. Differentiating this with respect to Xr

and equating to zero yields [40]

vec(Xr) = (Gr)−1 vec(Kr) (6.10)

where

Gr =
∑

(s,m)∈Cr

V r
sm ⊗ Dr

sm (6.11)

Kr =
T
∑

t=1

∑

(s,m)∈Cr

γsm(t)P smotξ
′
sm (6.12)

and

V r
sm =

T
∑

t=1

γsm(t)P sm (6.13)

Dr
sm = ξsmξ′sm (6.14)

vec(.) is a vectorisation operator that converts a matrix to a vector ordered in terms of the rows

and ⊗ is the Kronecker product. In the case of diagonal covariance matrix systems (P sm is a

diagonal matrix), V r
sm is diagonal and the matrix Gr has a block diagonal structure as a result

of the Kronecker product,

Gr =















Gr(1)
0 · · · 0

0 Gr(2) . . .
...

...
. . .

. . . 0

0 · · · 0 Gr(d)















and Kr =















kr(1)

kr(2)

...

kr(d)















(6.15)

where the sufficient statistics are given by

Gr(j) =
∑

(s,m)∈Cr

ψsmjβsmξsmξ′sm (6.16)

kr(j) =
∑

(s,m)∈Cr

ψsmj

(

T
∑

t=1

γsm(t)otj

)

ξ′sm (6.17)

βsm =
T
∑

t=1

γsm(t) (6.18)

The block-diagonal structure of Gr simplifies equation (6.10) to row-wise independent update

xr
j = (Gr(j))−1kr(j) (6.19)

where xr
j is the jth row of Xr.
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6.1.1 Iterative Row-by-row Update

Clearly, any form of correlation modelling schemes will result in a non-block-diagonal structure

for Gr, which is a symmetric matrix of size d2 × d2. Standard inversion routine requires O(d6)

operations which is computationally expensive for practical applications. Inversion of such a

huge matrix may also be numerically unstable. To overcome is problem, the transformation

matrices are updated in an iterative row-by-row fashion. Each row is updated by keeping the

remaining rows constant. So, maximising equation (6.9) with respect to xr
j and equating to zero

yields

xr
j = (Gr(j,j))−1kr(j) (6.20)

where

Gr(j,k) =
∑

(s,m)∈Cr

ψsm(j, k)βsmξsmξ′sm (6.21)

kr(j) =
∑

(s,m)∈Cr

psm(j)

(

T
∑

t=1

γsm(t)ot

)

ξ′sm −
d
∑

k=1,k 6=j

xr
kG

r(j,k) (6.22)

ψsm(j, k) and psm(j) denote the (j, k) element and the jth row of P sm respectively. Not surpris-

ing, equations (6.19) and (6.20) are similar since both methods are row-by-row updates. The

main difference between these equations is due to the non-zero correlations in the latter. As a

result, the update of the rows is no longer independent. The dependencies are clearly shown by

the last term on the right hand side of equation (6.22). In fact, when P sm is diagonal, equations

(6.21) and (6.22) simplifies as equations (6.16) and (6.17) respectively, as expected.

Since the update of the rows of the transformation matrix depends on other rows, an initial

estimate of W r is required and an iterative approach is adopted. In the next section, various

initialisation schemes are given.

6.1.2 Approximation Schemes

Although W r can be initialised as an identity matrix, a better starting value may be found by

using some kind of diagonal approximation of the precision matrix, P sm such that ψsm(j, k) = 0

for j 6= k. Hence, the system simplifies to a diagonal covariance system and the update formula

in equation (6.19) may be used. There are three different ways of approximating the precision

matrix, P sm, as a diagonal matrix. They are:

• Least Squares Approximation: P sm = I

• Diagonal Covariance Matrix Approximation: P sm = (diag(Σsm))−1
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• Diagonal Precision Matrix Approximation: P sm = diag(P sm)

Among the three, diagonal precision approximation yields the best initialisation since

equations (6.21) and (6.22) are directly expressed in terms of P sm. Interestingly, if the number

of subsequent row-by-row iterations is reduced to zero, the initialisation methods become an

approximation scheme for the transform estimation. In fact, the results presented later in Chap-

ter 8 indicates that subsequent row-by-row iterations yield very little gain in terms of likelihood

and the diagonal precision matrix approximation itself gives good estimates.

6.2 MLLR Variance Adaptation

Variance transformation is achieved using equation (6.2). In the case where the original covari-

ance matrices are diagonal, an efficient iterative row-by-row solution exists [33]. The update

for the jth row of the transformation matrix of the precision matrix, Zr is given by

zr
j = cr

jG
r(j)

√

β

cr
jG

r(j)−1cr′

j

(6.23)

where cr
j is the row of cofactors corresponding to the jth row of zr

j and

β =
∑

(s,m)∈Cr

βsm (6.24)

Unfortunately, when the covariance matrices are not diagonal, there is no efficient closed-

form solution for the update of Zr and numerical approaches have to be sought. The compu-

tational cost of these approaches are typically high which prohibits its use in practical speech

recognition systems. However, for basis superposition precision matrix models, the superposi-

tion structures may be exploited to yield a variance adaptation method which is computation-

ally more tractable. Recall from Chapter 3 that a basis superposition precision matrix can be

expressed as

P sm =
n
∑

i=1

λsmiSi (6.25)

Hence, one way of adapting P sm is to adapt the basis matrices, Si. Since Si is globally shared by

all Gaussian components, the estimation of Si requires only a small amount of adaptation data.

Hence, the same basis update formulae given in Chapter 4 can be used. This form of variance

adaptation is particularly interesting when the basis matrices are of rank one (STC and EMLLT),

where the precision matrices are given by

P sm = AΛsmA (6.26)
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Comparing this with equation (6.2), the variance adaptation of a diagonal covariance matrix

system is in fact estimating a new set of bases that reflects the target condition. Therefore,

the update formulae for the STC bases and the variance transformation matrices are similar.

However, for more complicated precision matrix model such as SPAM, the update of the basis

matrices relies on numerical schemes which is computationally expensive. In the following sec-

tion, an efficient CMLLR adaptation scheme for structured precision matrices will be described.

This method constrains the transformation matrices for the mean and covariance matrix to be

the same. This, to some extend, achieves variance adaptation implicitly.

6.3 Constrained MLLR (CMLLR) Adaptation

A special case of adaptation scheme is when both the mean and variance adaptations share

the same transformation matrix, i.e. Ar = Hr. In this case, it is equivalent to transforming

the observation vector with the transformation matrix, Br = (Hr)−1. Thus, CMLLR can also

be viewed as a feature-based speaker normalisation [33] technique where speaker-dependent

feature transforms are estimated. For the same reason, CMLLR is also known as feature MLLR

(FMLLR). So, an adapted observation vector can be expressed as

õt = Brot + br = Xrζt (6.27)

where the augmented transformation matrix Xr takes the same form as equation (6.4) and

ζt =

[

ot

1

]

(6.28)

The auxiliary function in equation (6.4), can be rewritten, using equation (6.27), as

Qr(θ, θ̂) = Kr +
∑

(s,m)∈Cr

[

βsm log |Zr|

−
1

2

∑

(s,m)∈Cr

T
∑

t=1

γsm(t) (õt − µsm)′ P sm (õt − µsm)
]

(6.29)

The new parameters is found by maximising equation (6.29). This occurs when its gradient with

respect to Xr equals to zero. There is no simple closed-form solution to Xr which maximises

equation (6.29) directly. When P sm is a diagonal matrix, an iterative row-by-row update is

derived in [33]. For other form of precision matrix models, numerical optimisation schemes

were adopted to adapt EMLLT [58] and SPAM [6] models. However, the actual computational

costs involved were not discussed. In the following, an iterative scheme, similar to the one

for diagonal covariance matrix systems, described in [33] will be detailed for a full covariance

matrix system. The update formula is derived within the EM framework and is guaranteed to

improve the objective function. This update is also applicable to any form of covariance and

precision matrix models by performing adaptation on the resulting covariance matrices.
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6.3.1 Iterative Row-by-row Update

To maximise equation (6.29) in a row-by-row fashion, the partial differential with respect to

each row of Xr is computed, keeping the rest of the rows constant. Equating this differential to

zero yields the row-by-row update formula as

xr
j =

(

αc̃j + kr(j)
)

Gr(j,j)−1 (6.30)

where c̃j = [cj 0] is the augmented vector of cofactors and

Gr(j,k) =
∑

(s,m)∈Cr

ψsm(j, k)
T
∑

t=1

γsm(t)ζtζ
′
t (6.31)

kr(j) =
∑

(s,m)∈Cr

psm(j)µsm

(

T
∑

t=1

γsm(t)ζ ′
t

)

−
d
∑

k=1,k 6=j

xr
kG

r(j,k) (6.32)

Again, observing that Gr(j,k) = 0 when ψsm(j, k) = 0 for j 6= k, equation (6.32) simplifies to the

update for the diagonal covariance matrix case [33]. In addition to the term c̃j , the update of

one row is also dependent on the other rows through the second term on the right hand side of

equation (6.32).

6.3.2 Approximation using a Diagonal Covariance Matrix System

Unlike the case of MLLR mean, the diagonal precision matrix approximation does not work for

constrained MLLR because the estimated transforms operates on both the mean vectors and the

precision matrices. However, the CMLLR transforms estimation process for any other form of

precision matrix models can be approximated using a diagonal covariance matrix model. For a

good approximation, this model should be the initial model used to train the precision matrix

models.

6.4 Sufficient Statistics for Structured Precision Matrix Models

So far, a computationally efficient row-by-row update approach has been introduced for both

MLLR mean and CMLLR adaptations. This row-by-row update scheme is very similar to the

approach used in the diagonal covariance matrix system. However, the memory required for the

sufficient statistics is considerably higher for a general full covariance matrix model. Recall that

the sufficient statistics are given by

• Gr(j,k) – a d× d symmetric matrix for 1 ≤ j ≤ d and 1 ≤ k ≤ j
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• kr(j) – a d-dimensional vector for 1 ≤ j ≤ d

• βr – a scalar quantity

for each regression class, r. These statistics are given by equations (6.21) and (6.22) for MLLR

mean and equations (6.31) and (6.32) for CMLLR. Among these statistics, Gr(j,k), which is a

symmetric matrix, dominates the required memory. The total number of the Gr(j,k) matrices to

be stored is d
2(d + 1) and each matrix contains d

2(d + 1) terms. So, the total required memory

will be of the order of O(d4). Note, from equations (6.21) and (6.31), that the only term which

depends on j and k is ψsm(j, k), the (j, k)th element of the precision matrix, P sm. Hence, the the

precision matrix is modelled by some form of structured approximation, this underlying model

structure can be exploited to reduce the memory requirement. Consider the generic form of

basis superposition:

ψsm(j, k) =
n
∑

i=1

λsmisi(j, k) (6.33)

So, instead on accumulating the statistics in the original symmetric matrix space, one can simply

accumulate statistics within the subspace spanned by the basis matrices, in much the same way

as the use of projected statistics for the model parameters update described in Chapter 4. Define

the statistics associated with each basis matrix as Gr(i) such that

Gr(j,k) =
n
∑

i=1

si(j, k)G
r(i) and Gr(i) =

∑

(s,m)∈Cr

λsmiGsm

where Gsm are given by

Gmllr
sm = βsmξsmξ′sm (6.34)

Gcmllr
sm =

T
∑

t=1

γsm(t)ζtζ
′
t (6.35)

for MLLR mean and CMLLR respectively. si(j, k) denotes the (j, k)th element of the ith basis

matrix, Si and 1 ≤ i ≤ n. So, instead of storing d
2(d + 1) terms of Gr(j,k), only n terms of Gr(i)

are needed. Thus, the required memory is reduced from the order O(d4) to O(nd2).

6.5 Discussions

This chapter has described the adaptation techniques for precision matrix models within the

MLLR framework. Adaptation can be applied to the mean vectors (MLLR mean), covariance

matrices (MLLR variance) and the feature vectors (CMLLR or FMLLR). Usually, the models to

be adapted have diagonal covariance matrices, in which case, the adaptation process can be

carried out efficiently using a row-by-row update fashion. This is the result of the independence
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assumption to avoid the “curse of dimensionality”. However, in one way or another, a covari-

ance or precision matrix model attempts to model the inter-dimensional correlations explicitly.

Consequently, the rows of the transforms cannot be updated independently. Previous work on

adapting the EMLLT and SPAM models has relied on numerical optimisation schemes to esti-

mate the adaptation transforms. This chapter has shown that an iterative row-by-row update

approach similar to the case of diagonal covariance matrix systems can also be applied to full

covariance matrix systems. This approach is almost as efficient as the diagonal covariance ma-

trix system computationally. Because the update of the rows depends on other rows, iterative

estimation scheme are adopted. When there is complete dependency between all the dimensions

(as in the case of full covariance matrix), the required memory is considerably larger. However,

for structured precision matrix approximation schemes, correlations are modelled only within

a subspace spanned by the basis matrices of the model. Hence, the sufficient statistics can be

accumulated in a more compact form. In other words, adaptation of structured precision matrix

models can be achieved efficiently both in terms of computational and memory requirements.

This is particularly important for LVCSR systems where these requirements are the major factors

that affects the system performance.



7

Temporally Varying Precision Matrix Models

7.1 Introduction

In Chapter 3, various forms of precision matrix modelling techniques have been described within

a basis superposition framework. This chapter will extend the basis superposition formulation to

allow the model parameters to vary with time. Such formulation is motivated from a trajectory

model viewpoint, as briefly described in Section 2.3. Recall, from the conditional independence

assumption, that the observation probability at time t is conditionally independent of all variables

given the current state, qt, i.e.

p(ot|O
t−1
1 , Qt

1, qt = s,θ) ≈ p(ot|qt = s,θ) (7.1)

where OT
1 and QT

1 denote the observation and state sequences. ot and qt are the observation

and state at time t. Typically, this probability distribution is modelled using a Gaussian Mixture

Model (GMM):

p(ot|qt = s,θ) =
M
∑

m=1

csmN (ot,µsm,Σsm) (7.2)

where csm, µsm and Σsm denote the weight, mean and covariance matrix respectively for com-

ponent m in state s. The above distribution is stationary (does not vary with time) given the

HMM state. In Section 2.3, several ways of overcoming this limitation have been described, such

as the trajectory models [13, 118, 119, 130], segmental models [41, 42, 88, 89] and switching

linear dynamical systems [104]. These models can be conveniently described as having time

varying state output probability distribution, where the time variation is model specific. For

a GMM state output distribution, the time varying Gaussian parameters may be expressed as

a general function of the observation sequence, OT
1 , state sequence, QT

1 , and the time, t, as

85
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follows:

µsmt = fθµ

(

OT
1 , Q

T
1 , t
)

(7.3)

Σsmt = fθΣ

(

OT
1 , Q

T
1 , t
)

(7.4)

csmt = fθc

(

OT
1 , Q

T
1 , t
)

(7.5)

where fθµ
, fθΣ

and fθc
are the functions which describe the time variation of the mean, covari-

ance matrix and component weights respectively. Therefore, equations (7.1) and (7.2) become

p(ot|O
t−1
1 , Qt

1, qt = s,θ) = p(ot|θt) =
M
∑

m=1

csmN (ot,µsmt,Σsmt) (7.6)

In the next section, a discriminative semi-parametric trajectory model will be described, where

the form of fθµ
and fθΣ

will be introduced for modelling the time varying mean and covariance

matrix respectively. This is followed by the derivation of the parameter estimation formulae in

Section 7.3.

7.2 Semi-parametric Trajectory Model

A semi-parametric trajectory model can be formulated by expressing equations (7.3) and (7.4)

as follows:

µsmt = Atµsm + bt (7.7)

P smt = ZtP smZt
′ (7.8)

where At and Zt are the time dependent linear transformations for the mean vector and pre-

cision matrix respectively. bt denotes a time dependent bias vector for the mean. When the

linear transformations are set as identity matrices (At = Zt = I) and the bias vector is set

as a zero vector (bt = 0), the above expressions degenerate to the mean and precision matrix

of a standard HMM system. Therefore, the above form of trajectory model can be viewed as

applying a time varying affine transformation to the component mean vectors and precision ma-

trices in the system. The form of time varying transformation parameters will be represented in

semi-parametric way as described in the next section.

7.2.1 A Semi-parametric Representation

Modelling of the time variation is an important aspect for trajectory models. In this work,

a semi-parametric representation will be considered. First, a series of centroids is defined to

represent the regions of interest in the acoustic feature space. Associated with the ith centroid,

the following parameters are defined:
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• A(i): a linear transformation matrix for the mean vector

• Z(i): a linear transformation matrix for the precision matrix

• b(i): a bias vector for the mean vector

The corresponding time varying affine transformations discussed above will be modelled as a

weighted contribution from all the centroids:

At = I +

n
∑

i=1

hi(t)A
(i) (7.9)

bt =
n
∑

i=1

hi(t)b
(i) (7.10)

Zt = I +
n
∑

i=1

hi(t)Z
(i) (7.11)

where hi(t) denotes the contribution weights from the i centroid at time t and n is the total

number of centroids.

Each centroid is modelled using a Gaussian component where the Gaussian mean and

covariance matrix denote the location and the uncertainty of the centroid in the acoustic space.

Let gi represent the ith centroid represented by the Gaussian component N (ot,µi,Σi) such that

the likelihood of gi given an observation, ot, is given by

p(ot|gi) =
1

√

(2π)d|Σi|
exp

{

−
1

2
(ot − µi)

′
Σ

−1
i (ot − µi)

}

(7.12)

The weights, hi(t) is then computed as the posterior probability of gi given ot,

hi(t) = P (gi|ot) =
p(ot|gi)P (gi)

∑n
j=1 p(ot|gj)P (gj)

(7.13)

where P (gi), the prior probability of gi, is assumed to be uniformly distributed in this work.

Consider a two-dimensional example in Figure 7.1. The centroids may be considered as the

Vector-Quantisation (VQ) codebook representing the acoustic space. The posterior probabilities,

P (gi|ot), would then be the probabilistic quantisation of ot. Thus, the interpolation formulae

given in equations (7.9), (7.10) and (7.11) can be interpreted as the weighted contribution from

the transformations associated with each centroid given the position of the observation in the

acoustic space. This formulation is analogous to the way the output probabilities are computed

for semi-continuous HMMs, which leads to the interpretation of the above trajectory model as a

semi-parametric model.

Figure 7.2 depicts the visualisation of the semi-parametric trajectory model using a two-

dimensional example. The interpolation weights are computed as a probabilistic VQ feature at
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Figure 7.1 Obtaining interpolation weights from the posterior of a set of centroids given the observation

sequence

t=1 t=2 t=3 t=T

PSfrag replacements

(µsm1,Σsm1) (µsm2,Σsm2) (µsm3,Σsm3) (µsm4,Σsm4)
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each time t (see Figure 7.1) which tracks the observation as a smoothed trajectory. Interpola-

tion using these time-dependent weights yields a trajectory of the Gaussian parameters, µsmt

and P smt, conditioned upon the observation sequence, as given by equations (7.7) and (7.8)

respectively.

7.2.2 Time Varying Feature Transformation

Instead of applying time varying transforms to the Gaussian parameters, one may also apply a

time varying transform to the feature vectors as follows:

ôt = Ctot + dt (7.14)

where ot and ôt are the original and transformed observation vectors respectively. This is equiv-

alent to setting the case where the linear transformation matrices for the mean vector and co-

variance matrices are the same. The feature transforms (C t and dt) are related to the mean and

covariance matrix transforms (At, Zt and bt) as follows:

Ct = Zt = A−1
t and dt = −Ctbt (7.15)

It is interesting to note that equation (7.14) relates directly to the fMPE model [97] when Ct =

At = I. This is true when A(i) = 0 for all i. Thus, the effective mean vector at each time t

is simply given by the component mean, µsm, shifted by a time-dependent bias, bt. In [97],

fMPE was presented by Povey et al. as a way of discriminative training features by adding a time

dependent bias to the original feature. This time dependent bias was obtained by projecting

a high dimensional vector of posteriors ht (a vector whose elements are given by hi(t)) to the

original feature space. This method then learns the projection matrix (whose columns are given

by the negative1 of the mean biases b(i) in this case) by maximising the Minimum Phone Error

(MPE) criterion. Following the introduction of fMPE technique, further refinements were made

by Povey in [96]. One of the improvements made to the originally proposed fMPE technique

was augmenting the high dimensional feature vector of posteriors such that

ht =















h̄1t

h̄2t

...

h̄nt















(7.16)

where h̄it is a (d+ 1)-dimensional vector given by

h̄it =

[

1

(ot − µi)

]

hi(t) (7.17)

1The negative sign is due to the fact that adding a bias to the mean vector is equivalent to subtracting it from the

observation vector
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Using the notation in [97] where M denotes the fMPE projection matrix, the feature transfor-

mation with the new posterior feature, ht, in equation (7.16) is given by

ôt = ot + Mht (7.18)

= ot +
[

M1 M2 · · · Mn

]















h̄1t

h̄2t

...

h̄nt















(7.19)

= ot +
n
∑

i=1

M ih̄it (7.20)

= ot +
n
∑

i=1

M i

[

1

(ot − µi)

]

hi(t) (7.21)

(7.22)

The above expression may be rewritten in terms of C t and dt such that

ôt = ot +
n
∑

i=1

M i

[

1

(ot − µi)

]

hi(t) (7.23)

= ot +

n
∑

i=1

hi(t)
(

C(i)ot + d(i)
)

(7.24)

= Ctot + dt (7.25)

where

Ct =
n
∑

i=1

hi(t)
(

I + C(i)
)

(7.26)

dt =
n
∑

i=1

hi(t)d
(i) (7.27)

M i =
[ (

I + C(i)
)

d(i) C(i)
]

(7.28)

Hence, the modified posterior feature given by equation (7.16) is equivalent to applying a time

dependent full linear transform, C t to the observation vector, in addition to the time varying

bias vector, dt.

Moreover, it is worth pointing out that using a full transformation matrices for equations

(7.7) and (7.8) is not practical as this incurs a high computational cost in applying the transfor-

mation at each time to each Gaussian component in the system (typical LVCSR systems comprises

more than 100,000 Gaussian components). This problem may be alleviated by using diagonal

transforms. In other words, transformations are applied per dimension independently. Then,

equations (7.7) and (7.8) may be expressed as scaling and shifting of the mean and diagonal

precision matrix elements for each dimension:

µsmtj = atjjµsmj + btj (7.29)

ψsmtj = z2tjjψsmj (7.30)



CHAPTER 7. TEMPORALLY VARYING PRECISION MATRIX MODELS 91

where µsmtj and btj are the jth element of µsmt and bt respectively. ψsmtj , atjj and ztjj denote

the jth diagonal element of P smt, At and Zt respectively. µsmj and ψsmj denote the jth element

of the time independent mean and precision matrix respectively for component m in state s.

Temporally varying precision scaling is known as pMPE2 [112]. In the following, the semi-

parametric trajectory model parameters estimation will be presented based on the use of an

identity matrix for the mean transformation, At and a diagonal transform for the precision

matrix, Zt. The latter transformation will be referred to as the pMPE model.

7.3 Parameters Estimation

The parameterisation of the semi-parametric trajectory model can be broadly divided into those

associated with the standard HMMs (θh) and those associated with the centroids (θc). In the

remaining of this discussion, θh and θc will be referred to as the static and dynamic parame-

ters respectively to emphasise the latter as the parameters that capture the temporally varying

attributes of the trajectory model. This section derives the estimation formulae for these pa-

rameters using the MPE criterion described earlier in Chapter 5. Recall that the MPE objective

function given in equation (5.4) is a measure of the expected phone accuracy of recognising the

training data given the HMM model. For convenience, this objective function will be repeated

here:

Rmpe(θ) =
U
∑

u=1

∑

h∈Hu

p(h|OT
1 ,θ)PhoneAcc(h, ĥ) (7.31)

where θ now encompasses both θh and θc. As previously mentioned in Chapter 5, it is diffi-

cult to optimisation this objective function directly. Again, the weak-sense auxiliary function

will be used. Recall from Section 5.2 that the weak-sense auxiliary function is given by equa-

tion (5.9). Here, the weak-sense auxiliary function will be used without the smoothing function

term (Rs(θ, θ̂)) and it will be rewritten, for the purpose of making the subsequent derivations

simpler, as

Qmpe(θ, θ̂) =
T
∑

t=1

S
∑

s=1

M
∑

m=1

γmpe
sm (t) log p(ot|θ) (7.32)

where the log likelihood of component m in state s is given by,

log p(ot|θ) = Ksm +
1

2

d
∑

j=1

{

logψsmtj − ψsmtj (otj − µsmtj)
2
}

(7.33)

Ksm subsumes terms independent of the model parameters. T is the total number of training

speech frames, M is the total number of Gaussian components per state and S is the total

number of states in the system. γmpe
sm (t) may be regarded as the ‘MPE posterior’ for component

m in state s at time t, which is calculated for standard MPE training [95]. Maximising the above

2In this work, only diagonal covariance matrix systems are considered for pMPE
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weak-sense auxiliary function with respect to all the model parameters (θh and θc) is not trivial.

Hence, these two sets of model parameters will be updated separately, each time keeping the

other parameter set constant.

7.3.1 Static Parameters Estimation

First, consider the update of the static parameters given that the dynamic parameters are held

constant. The weak-sense auxiliary function to be optimised in equation (5.9) is rewritten in

terms of the trajectory model parameters as

Qmpe(θ, θ̂) = K +
1

2

S
∑

s=1

M
∑

m=1

T
∑

t=1

d
∑

j=1

γmpe
sm (t)

{

log |ψsmtj | − ψsmtj (otj − µsmtj)
2
}

(7.34)

The new parameters are found such that the differential of the auxiliary function with respect

to the parameters at the new estimates equals to zero. Thus,

∂Qmpe(θ, θ̂)

∂µsmj
=

T
∑

t=1

(

∂Qmpe(θ, θ̂)

∂µsmtj

∂µsmtj

∂µsmj

)

=

T
∑

t=1

γmpe
sm (t)ψsmtj (otj − µsmtj) (7.35)

∂Qmpe(θ, θ̂)

∂ψsmj
=

T
∑

t=1

(

∂Qmpe(θ, θ̂)

∂ψsmtj

∂ψsmtj

∂ψsmj

)

=
1

2

T
∑

t=1

γmpe
sm (t)

{

1

ψsmtj
− (otj − µsmtj)

2

}

z2tjj (7.36)

Equating these to zero yields the update formulae for the jth element of the mean and variance

as

µsmj =
x
mpe

smj

β̃
mpe

smj

and σ2
smj =

1

ψsmj
=
w
mpe

smj

β
mpe
sm

(7.37)

where the sufficient statistics are given by

βmpesm =

T
∑

t=1

γmpe
sm (t) (7.38)

β̃
mpe

smj =
T
∑

t=1

γmpe
sm (t)z2tjj (7.39)

x
mpe

smj =
T
∑

t=1

γmpe
sm (t)z2tjj

(

otj − btj
)

(7.40)

w
mpe

smj =
T
∑

t=1

γmpe
sm (t)z2tjj

(

otj − btj − µsmj

)2
(7.41)
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Note that β
mpe
sm is the already accumulated in the standard HMM parameters update. x

mpe

smj and

w
mpe

smj are the jth element of the mean and covariance matrix statistics given by equations (5.27)

and (5.29) respectively, with the exception that the component posterior is scaled by z2tjj and

the observation is shifted by btj for each dimension j. The additional statistics required is the

d-dimensional β̃
mpe

smj .

7.3.2 Dynamic Parameters Estimation

Having estimated the static parameters, the dynamic parameters may be estimated by keeping

the static parameters constant. Here, the update of the centroid specific bias, b
(i)
j , and scaling

factor, z
(i)
j , for the jth element of the mean vector and precision matrix will be described. Due

to the large number of posteriors (ranging from thousands to hundreds of thousands), it is not

feasible to accumulate the full second order statistics. Thus, a simple gradient optimisation

approach proposed in [97] will be used. An important quantity to be calculated is the gradient

of the weak-sense auxiliary function with respect to the dynamic parameters, b
(i)
j and z

(i)
j for all

i. These gradients are given by

dQmpe

db
(i)
j

=
T
∑

t=1

S
∑

s=1

M
∑

m=1

dQmpe
smt

db
(i)
j

and
dQmpe

dz
(i)
j

=
T
∑

t=1

S
∑

s=1

M
∑

m=1

dQmpe
smt

dz
(i)
j

(7.42)

where Qmpe
smt = β

mpe
sm Lsm(ot) and

dQmpe
smt

db
(i)
j

=
∂Qmpe

smt

∂b
(i)
j

+
∂Qmpe

smt

∂µsmj

∂µsmj

∂b
(i)
j

+
∂Qmpe

smt

∂σ2
smj

∂σ2
smj

∂b
(i)
j

(7.43)

dQmpe
smt

dz
(i)
j

=
∂Qmpe

smt

∂z
(i)
j

+
∂Qmpe

smt

∂µsmj

∂µsmj

∂z
(i)
j

+
∂Qmpe

smt

∂σ2
smj

∂σ2
smj

∂z
(i)
j

(7.44)

Equations (7.43) and (7.44) represent the complete differential of Qmpe
smt with respect to b

(i)
j and

z
(i)
j respectively. In addition to finding the direction that maximises Qmpe

smt , the last two terms

in the right hand side of equations (7.43) (referred to as the indirect differentials in [97]) and

(7.44) also take into account the fact that the global shifting and scaling of the mean should be

reflected by updating the static parameters. The partial differentials in the above equations are

given by

∂Qmpe
smt

∂b
(i)
j

=
hi(t)γ

mpe
sm (t)(ot − µsmtj)

σ2
smj

(7.45)

∂Qmpe
smt

∂z
(i)
j

=
hi(t)γ

mpe
sm (t)(1 − ψsmtj(otj − µsmtj)

2)

ψsmtj
(7.46)

∂Qmpe
smt

∂µsmj
=

(

xnsmj − xdsmj

)

σ2
smj

(7.47)

∂Qmpe
smt

∂σ2
smj

=
(wn

smj − wd
smj)/σ

2
smj − β

mpe
sm

2σ2
smj

(7.48)
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where xnsmj and wn
smj are the jth element of the MPE sufficient numerator statistics xn

sm and

W n
sm respectively and similarly for the denominator statistics xdsmj and wd

smj (see Section 5.3.1).

The actual forms of the remaining differentials
∂µsmj

∂b
(i)
j

,
∂σ2

smj

∂b
(i)
j

,
∂µsmj

∂z
(i)
j

and
∂σ2

smj

∂z
(i)
j

depend on the

update methods for the static parameters, µsmj and σ2
smj . Ideally, MPE update of the static

parameters is preferred. Unfortunately, the use of the D-smoothing and the I-smoothing with

dynamic ML (or dynamic MMI) priors in standard MPE training [100] as described in Chapter 5

complicates the calculation of the indirect differentials. In the following, two simpler forms of

update are described.

7.3.2.1 Interleaved Dynamic-Static Parameters Estimation

Simultaneous update of the static and dynamic parameters does not yield a closed form so-

lution. Instead, a more efficient way of updating these parameters is to adopt an interleaved

update where the static and dynamic parameters are updated as described in Sections 7.3.1 and

7.3.2 in an alternating fashion. As previously mentioned in Section 7.3.2, the dynamic param-

eters are updated using a gradient optimisation approach where the complete differential of the

auxiliary function with respect to the dynamic parameters needs to be calculated. This requires

the differentials
∂µsmj

∂b
(i)
j

,
∂σ2

smj

∂b
(i)
j

,
∂µsmj

∂z
(i)
j

and
∂σ2

smj

∂z
(i)
j

to be defined according to the update formulae

for µsmj and σ2
smj . Using the MPE update formulae complicates the calculation of the complete

differential. Therefore, the ML update formulae are used, as proposed by Povey et al. in [97].

This approach takes a Maximum Likelihood (ML) trained model and applies the dynamic

parameter update (Section 7.3.2) to estimate the b
(i)
j and z

(i)
j . Next, the standard HMM pa-

rameters are ML estimated using the updated dynamic parameters. Repeating these two steps

yields an interleaving update for the dynamic and static parameters. The interleaved parameter

estimation procedure is summarised as follows:

1. Start from an ML trained model

2. Estimate dynamic parameters using MPE criterion

3. Estimate static parameters using ML criterion

4. If converged or sufficient iterations performed, go to step 6

5. Go to step 2

6. Estimate static parameters using MPE criterion

Figure 7.3: The interleaved dynamic static parameter estimation procedure

The static parameters are updated using the ML criterion by keeping the dynamic parameters

constant, as described in Section 7.3.1. The dynamic model parameters are then estimated using

the gradient in equations (7.43) and (7.44). Because the static parameters are to be updated

using the ML criterion in the subsequent training iteration, the partial differential of the mean
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and variance with respect to the dynamic parameters are evaluated using equations in (7.37) as

∂µsmj

∂b
(i)
j

= −
hi(t)γ

ml
sm(t)

β̃mlsmj

(7.49)

∂σ2
smj

∂b
(i)
j

= −
2hi(t)ztjjγ

ml
sm(t)(otj − µsmtj)

βmlsm

(7.50)

∂µsmj

∂z
(i)
j

=
2ztjjγ

ml
sm(t)(otj − µsmtj)

β̃mlsmj

(

hi(t) −
z2tjjγ

ml
sm(t)

β̃mlsmj

)

(7.51)

∂σ2
smj

∂z
(i)
j

=
2hi(t)ztjjγ

ml
sm(t)(otj − µsmtj)

2

βmlsm

(7.52)

When ztjj = 1, the equations (7.49) and (7.50) become those of the standard fMPE presented

in [97]. Once the gradient information is computed, the dynamic parameters are updated as

follows:

b̂
(i)
j = b

(i)
j + η

(i)
j

dQmpe

db
(i)
j

and ẑ
(i)
j = z

(i)
j + ν

(i)
j

dQmpe

dz
(i)
j

(7.53)

where b̂
(i)
j and ẑ

(i)
j denote the updated parameters for b

(i)
j and z

(i)
j respectively. η

(i)
j and ν

(i)
j are

the element specific learning rate for b
(i)
j and z

(i)
j and are defined as

η
(i)
j =

ασ̄j

φ
(b)
ij + ρ

(b)
ij

and ν
(i)
j =

α

φ
(z)
ij + ρ

(z)
ij

(7.54)

where α is a scalar parameter for adjusting the learning rate and σ̄j is the average standard

deviation of the Gaussian components in the system. φ
(b)
ij and ρ

(b)
ij are the sum of the positive and

negative contributions to the gradient of Qmpe
smt with respect to b

(i)
j at each time, t, as presented

in [97]. Similar calculation is used for φ
(z)
ij and ρ

(z)
ij . Hence,

φ
(b)
ij =

T
∑

t=1

max

{

S
∑

s=1

M
∑

m=1

dQmpe

db
(i)
j

, 0

}

and ρ
(b)
ij =

T
∑

t=1

max

{

−
S
∑

s=1

M
∑

m=1

dQmpe

db
(i)
j

, 0

}

φ
(z)
ij =

T
∑

t=1

max

{

S
∑

s=1

M
∑

m=1

dQmpe

dz
(i)
j

, 0

}

and ρ
(z)
ij =

T
∑

t=1

max

{

−
S
∑

s=1

M
∑

m=1

dQmpe

dz
(i)
j

, 0

}

Usually, standard MPE training of the static parameters are performed to complete the discrim-

inative training of all the parameters. This is achieved using the modified update equations in

(7.37), replacing the ML statistics with the corresponding MPE statistics. Further MPE train-

ing on top of fMPE and pMPE is this way will be referred to as fMPE+MPE and pMPE+MPE

respectively.

7.3.2.2 Direct Dynamic Parameters Estimation

The estimation method described in 7.3.2.1 requires the complete differential to take into ac-

count of the change in the model parameters in the subsequent ML training. If only the partial
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differential is considered, the gain from fMPE and pMPE disappears as soon as the static model

parameters are updated [97]. This is expected because the interleaved estimation alternates be-

tween the use of two different objective functions. When the dynamic parameters are updated

using the MPE criterion without taking into account of the complete differentials, the estimation

process tends to drive the dynamic parameters such that the effective mean vectors and preci-

sion matrices are closer to the MPE estimates. This tendency is due to the fact that the initial

model parameters are ML trained and a large gain may be obtained by adjusting the dynamic

parameters to model static aspect of the system. So, the subsequent ML training of the static

parameters will virtually unlearn the discriminative power from the dynamic parameters. There-

fore, to ensure that the dynamic parameters are in fact modelling the temporal aspects of the

system, it is essential to consider the complete differentials. However, computing the complete

differential requires two passes over the training data. The first pass accumulates the normal

MPE statistics
(

xnsmj , xdsmj , w
n
smj , w

d
smj , β

n
sm and βdsm

)

required by equations (7.47) and (7.48).

The second pass then computes the gradients in equations (7.43) and (7.44).

The training time can be reduced if the starting HMM is a well trained MPE model. In

this case, the differentials in equations (7.47) and (7.48) will have values small enough that can

be safely approximated as zero. This conveniently eliminates the need to accumulate the nor-

mal MPE statistics. Moreover, no subsequent reestimation of the static parameters is required.

Hence, fMPE and pMPE can be estimated with only a single pass over the training data. These

systems are referred to as MPE+fMPE and MPE+pMPE respectively.

1. Start from an ML trained model

2. Estimate static parameters using MPE criterion

3. Estimate dynamic parameters using MPE criterion

Figure 7.4: The direct dynamic parameter estimation procedure

Experimental results in Chapter 8 shows that similar gains may be achieved using this quicker

training scheme. However, when context expansions (context expansions will be described in

greater detail in Section 7.4) are considered, the direct dynamic parameter update approach

gave a much smaller gain compared to the interleaved update described earlier. One explanation

to this is that the use of context expansion may have altered the system dynamics considerably

and the static parameters are drifted further from their optimum values. Consequently, the zero

gradient assumptions for equations (7.47) and (7.48) no longer hold.

7.4 Context Expansion for Semi-parametric Trajectory Model

The original formulation of fMPE also allows the features to be modified depending on the

posterior vectors from surrounding time frames. This approach is termed context expansion
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in [101]. In the semi-parametric trajectory model formulation, context expansion can be viewed

as increasing the modelling power of the trajectory. Recall from the earlier discussion on for-

mulating a trajectory model, one could model the output probability distribution such that it is

conditional upon the entire observation sequence (see equation (7.6)). So, there is a question

of how many observation vectors to be considered at any given time t? All the discussions so far

have been considering only the observation vector at the current time, t. It is possible to extend

the dependency to a window of observations around t to allow for context expansion. Equations

(7.9), (7.10) and (7.11) may be expressed in a more generic form as follows:

At = I +
C
∑

τ=−C

w(τ)
n
∑

i=1

hi(t+ τ)A(i)
τ (7.55)

bt =
C
∑

τ=−C

w(τ)
n
∑

i=1

hi(t+ τ)b(i)
τ (7.56)

Zt = I +
C
∑

τ=−C

w(τ)
n
∑

i=1

hi(t+ τ)Z(i)
τ (7.57)

where w(τ) is the window function of length 2C + 1, i.e. considering C frames on either side of

the current frame. C can be viewed as the context of the trajectory. The window function used

in this work follows is the same as that introduced in [97], where

w(τ) =















































1 τ = 0
1
2 τ = ±1,±2
1
3 τ = ±3,±4,±5
1
4 τ = ±6,±7,±8,±9
...

1
N

τ = ±N(N−1)
2 ,±

(

N(N−1)
2 + 1

)

, . . . ,±
(

N(N−1)
2 +N − 1

)

(7.58)

and

C =

(

N(N − 1)

2
+N − 1

)

(7.59)

Consequently, when N = 4, C = 9 and the number of dynamic parameters will be 19 times more

than those without context expansion. To avoid over-training, the dynamic parameters are tied

across frames [1,2], [3,4,5] and [6,7,8,9] to the left and right of the current frame, according

to the partitions shown in equation (7.58). This is equivalent to taking the average posteriors

within the partitions so that the true expansion in terms of the dynamic parameters is only ±3 (7

times more than that without context expansion). In Povey’s later work on fMPE [96], a layered

transform configuration was investigated where the window function was considered an inter-

mediate transform layer whose parameters were also learned to maximise the MPE criterion.

This approach was reported to yield slight performance gain.

One interesting question arises from context expansion is that when no context expansion

is used, is the resulting model still a trajectory model? The answer is yes. The key point lies
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in the fact that the trajectory is modelled in a semi-parametric way by tracking the position

of the acoustic vector at each time using a set of centroids representing the acoustic space.

Context expansion merely extends the modelling power of the trajectory model at the expense

of increased model parameters.

7.5 Jacobian Compensation

The above mentioned semi-parametric trajectory model, fMPE in particular, involves modifica-

tion to the features to maximise the MPE objective function. When modelling a feature trans-

formation process, a crucial aspect to be considered is the determinant of the Jacobian matrix,

which is given by

J =
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where otj and ôtj are the jth elements of the original and modified observation vectors respec-

tively. The quantity J is often referred to as simply the Jacobian. Roughly speaking, the Jacobian

represents the relative change in the new features with respect to the original features. This has

to be compensated in the likelihood expression so that the likelihood is computed consistent

with respect to the original features. Jacobian compensation may be ignored for the MPE ob-

jective function because it is a rational function of two likelihood expressions (numerator and

denominator). Since the Jacobian compensation terms of the numerator and denominator are

identical, the effect of the Jacobian cancels out. This is not true, however, when ML training is to

be used. In [126], fMPE was adopted as an speaker adaptation technique, where the parameters,

for reasons of efficiency, are estimated using the ML criterion with Jacobian compensation.

7.6 Relationship with Linear Adaptation

Equations (7.7) and (7.8) resemble the linear adaptation equations given in equations (6.1) and

(6.2) respectively. Therefore, the above semi-parametric trajectory model may also be viewed

as performing a time-dependent linear adaptation to the model parameters. Associated with

each centroids are the adaptation transforms (A(i), Z(i) and b(i)). The transformation matrices

at each time being constructed from superimposing a set of bases weighted by time-dependent

coefficients. If the bases associated with each centroid are speaker dependent, the model may

be viewed as an attempt to perform a two-fold adaptation, over both speakers and time. Similar

to the constrained MLLR (CMLLR) formulation presented in Chapter 6, the time dependent
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transformations for the mean vectors and covariance matrices may also be constrained to be the

same. This yields the time varying feature transformation (or fMPE) as described in the previous

section.

7.7 Implementation Issues

The implementation issues for fMPE have already been described in [97]. This section will

concentrate on the issues relating to the pMPE implementation. First of all, the likelihood com-

putation of fMPE and pMPE models will be examined. Since fMPE is a feature transformation

technique, there is no additional cost for the likelihood calculation of fMPE model compared to

the standard HMM system. For pMPE there is a slight increase in this cost. The likelihood of the

model parameters, θm given the observation vector, ot, is given by

L = log p(ot|µsm,P sm) = K +
1

2

d
∑

j=1

{

log ztjj − log σ2
smj −

ztjj(otj − µsmj)
2

σ2
smj

}

(7.61)

This requires an extra d multiplications and 1 addition compared to the standard model. It also

requires ztjj and
∑d

j=1 log ztjj to be cached for each frame, t.

Unlike fMPE, pMPE parameter estimation is less reliable and is more likely to be over-

trained, particularly when a higher learning rate is used (α > 1.0). In such a case, the resulting

temporally varying scale, z2tjj may tend to a value close to zero. To prevent this, a minimum

value is applied to ztjj , similar to the concept of variance flooring:

z̃tjj = max{ztjj , zmin} (7.62)

where z̃tjj is the floored scale factor and zmin is the scale floor. In this work, zmin has been set to

0.1.

As mentioned in [97] and previously discussed, the update of the dynamic parameters

should not result in a global shift or scale in the acoustic space. This provides convenient checks

against any implementation errors [97]. Similar checks can also be carried out for pMPE imple-

mentation by ensuring that the gradient in equation (7.44) equals to zero when there is a global

precision scaling. In other words, when there is only one centroid in the system (not modelling

the trajectory), the differentials should equal zero and no dynamic parameters update should be

performed. So, h1(t) = 1 and
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Equations (7.63) and (7.64) ensure that the dynamic parameters update will not result in a

global scaling of the precision matrices. A proof of equations (7.63) and (7.64) is supplied in

Appendix G.

7.8 Summary

This chapter has introduced a discriminative semi-parametric trajectory model. In this model,

the state output probability density function is represented by a Gaussian Mixture Model (GMM)

where the Gaussian mean vector and the diagonal covariance matrix varies with time. The

time dependency is modelled as a smoothed function of the observation sequence using a basis

superposition formulation. Each basis is associated with a centroid representing a position in

the acoustic space. The corresponding basis coefficients are derived from the posterior of its

centroid given the observation at time t and the surrounding observations. Hence, the basis

coefficients are time dependent which results in a temporally varying model parameters. In

this chapter, it was also shown this semi-parametric trajectory model is the same as the fMPE

technique if only the mean vectors are being modelled. In addition, a novel approach of pMPE

was also introduced where the precision matrix elements are modelled as temporally varying

parameters. In chapter 9, the experimental results of the semi-parametric trajectory models will

be presented.



8

Experimental Results of Precision Matrix Models

This chapter presents the experimental results of various precision matrix modelling techniques

described in Chapters 3 to 7. First, the experimental setups will be described for the Conversa-

tional Telephone Speech (CTS) English (CTS-E), Broadcast News (BN) English (BN-E) and CTS

Mandarin (CTS-M) tasks. This includes a brief description of these tasks, the training and test

corpora used to develop the models, the system configurations used in the experiments as well

as the evaluation setups. Next, the experimental results will be presented in two major sections.

The first section corresponds to the investigation of various structured precision matrix approx-

imation schemes as detailed in Chapters 3 to 6. In particular, the experimental results for ML

and MPE trained STC, EMLLT and SPAM systems will be compared. The second section of the

results are based on the semi-parametric trajectory model described in Chapter 7.

8.1 Experimental Setups

Two major transcription tasks were considered in this work, namely, the conservation telephone

speech (CTS) and broadcast news (BN). Both CTS and BN speech and text corpora are provided

by the LDC. The CTS speech corpora consist of telephone conversations recorded at a sampling

frequency of 8 kHz and sample size of 16 bits. The speech data were collected in two different

ways. The earlier data collection, known as the switchboard data, are based on daily telephone

conversations between relatives and friends. A new data collection method called fisher was

employed several years ago. For each conversation, two random subjects were invited to talk

on a specific topic. In general, the fisher style data was found to be easier to transcribe. The

BN speech data, on the other hand, are collected from several American radio and television

shows broadcasting news. These data may originate from two different channel bandwidths:

wide band data (∼16 kHz) or narrow band data (∼8 kHz). This work concentrates on building

101
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acoustic models based on the wide band data only. A baseline acoustic model was used to

transcribe the narrow band data for all the BN experiments. This work also considered two

different languages for the transcription tasks, English and Mandarin. Therefore, three different

transcription tasks were used in the experiments described in the rest of this chapter. They were

the CTS-E, BN-E and CTS-M tasks.

8.1.1 Training and Test Corpora

Here, a brief summary of various speech corpora used in the acoustic model building will be

provided. Tables 8.1 shows the training corpora used in various transcription tasks. Four

Task Corpus Data source Transcription Quality Data size (hours)

CTS-E

h5etrain03sub switchboard 76

h5etrain03 switchboard Carefully 298

fsh2004sub fisher annotated 400

fsh2004h5etrain03b switchboard+fisher 2180

BN-E
bnac broadcast news Carefully annotated 143

tdt4 broadcast news Lightly supervised 231

CTS-M
swm03 switchboard Carefully 32

ldc04 fisher annotated 40

Table 8.1 Summary of various speech training corpora for CTS-E, BN-E and CTS-M

sets of training corpora were used for the CTS-E task. h5etrain03sub is a 76-hour subset of

h5etrain03, both are switchboard style data. fsh2004sub comprises 400 hours of fisher type

data. The largest training corpus used in this work was the combination of fisher (1820 hours

of fsh2004) and switchboard (360 hours of h5etrain03b) data, which yielded approximately

2180 hours of training data in total. The two training sets used for the BN-E task were the 143

hours of carefully annotated bnac data and 231 hours of lightly supervised tdt4 data. Finally,

the 32 hours swm03 and the 40 hours ldc04 were used in the CTS-M task. It is worth noting that

these two corpora were considerably different in terms of their sources and data collection envi-

ronment. swm03 consists of switchboard style telephone conversation within the North America

calling their families in the Mainland China (CallHome) and friends within North America itself

(CallFriend). On the other hand, ldc04 was a newer set of data collected by the Hong Kong

University of Science and Technology (HKUST). Data collection was done in common with the

Fisher English data and random subjects were recruited in several cities across mainland China.

To encourage more meaningful conversation, predefined topics similar to those in Fisher English

were designed to initiate conversations.

The testing data were the development and evaluation data sets provided by the LDC for
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Task Corpus Data source Epoch Data size (hours)

CTS-E

dev01sub switchboard

—

3

eval03 switchboard+fisher 6

dev04 fisher 3

BN-E

dev03 broadcast news Jan, 2001 3

eval03 broadcast news Feb, 2001 3

dev04 broadcast news Jan, 2001 3

dev04f broadcast news Nov & Dec, 2003 3

CTS-M

eval03 switchboard

—

1

dev04 fisher 2

eval04 fisher 1

Table 8.2 Summary of various speech testing corpora for CTS-E, BN-E and CTS-M

DARPA evaluation programmes between 2001 and 2004. A summary of the testing corpora

used in this work is given in Table 8.2. Three test sets were used in the CTS-E experiments.

dev01sub, a 3 hours subset of dev01, comprises switchboard style data. eval03 consists of

both switchboard and fisher styles data, 3 hours each. dev04 was a 3 hours fisher data. Four

different test sets were used in the BN-E task: dev03, eval03, dev04 and dev04f, three hours

each. Part of the dev04f test set contains data from different sources and epoch compared to

the other three sets and the training corpora. Hence, the performance evaluated on this test set

is poorer and adaptively trained systems were found to yield larger gains on this particular test

set (see later for more results). Finally, in CTS-M task, the eval03 and dev04 test sets were used.

The nature of these two test sets correspond to the swm03 and ldc04 training sets respectively.

8.1.2 System configurations

The experiments conducted for this work were based primarily on the design and configura-

tions of the recent CU-HTK evaluation systems for CTS-E [22, 23, 24, 54], BN-E [65, 66, 67]

and CTS-M [37, 38]. The aim was to investigate the performance of various precision matrix

model systems on LVCSR systems and compare that with state-of-the-art CU-HTK systems. All

the acoustic model training and evaluation were performed using the Hidden Markov Model

Toolkit (HTK) [134]. The toolkit has been modified and extended to support various forms of

structured precision matrix modelling schemes. In the following, various aspects of the system

configurations will be described.



CHAPTER 8. EXPERIMENTAL RESULTS OF PRECISION MATRIX MODELS 104

8.1.2.1 System Frontends

All acoustic models in the experiments of this work used the Perceptual Linear Prediction (PLP)

coefficients [55] with 12 static coefficients plus the C0 energy. First and second derivatives

were also appended to the features to yield a 39 dimensional feature vector. This is the basic

feature used to build the initial model set and perform decision tree state-clustered context-

dependent models. Almost all the acoustic models used in this work were based on the 39

dimensional HLDA projection features. This is obtained by training a (39 × 52) HLDA [68]

projection matrix using the ML criterion within a 52 dimensional space (including the third

derivative coefficients). For the CTS tasks, conversations may be easily partitioned according

to the speaker turns (also known as speaker sides). Cepstral Mean Normalisation (CMN) [3],

Cepstral Variance Normalisation (CVN) and Vocal Tract Length Normalisation (VTLN) [69, 115]

were applied to the each side. In contrast to CTS, speaker turns may not be identified reliably

for the BN tasks. System diarisation (this includes advertisement and music removal, clustering

speech segments according to speakers and performing gender detection) [114, 120]. Thus,

only segment based CMN was employed.

The frontend used in the CTS Mandarin task is slightly different. Unlike English, Man-

darin is a tonal language. To improve the recognition performance, pitch information and its

derivatives were appended to the feature vector. Thus, for the original 52 dimensional PLP

feature (including the first three derivatives), adding pitch information yielded 56 dimensional

features. Since the dynamics of the pitch may be different from those of the PLP coefficients,

HLDA was only performed on the 52-dimensional PLP coefficients. Pitch information (together

with its first and second derivatives) were appended to the HLDA feature to give the final 42

dimensional features for the tonal HLDA systems. Moreover, since the training data size for the

CTS-M task is relatively small (see Table 8.1), Gaussianisation technique was also employed to

improve the normalisation of the frontend.

8.1.2.2 Acoustic Models (HMMs)

In this work, hidden Markov models (HMMs) were used to model the basic speech units –

phonemes. Triphone context-dependent models were used with decision tree state clustering [8,

135]. An iterative mixture splitting approach [134] was used to train a Gaussian Mixture Model

distribution for each distinct state in the system. Most systems had a variable number of Gaus-

sian mixture components per state. The number of Gaussian components for each state is made

proportional to the state occupancy count raised to a power, in this work 0.2. These systems,

known as VarMix, was found to yield slight performance gain compared to systems with the

same number of Gaussians but using the same number of Gaussian components for all HMM

states. In general ML training was performed in four Baum-Welch iterations while MPE training

was performed in eight iterations.
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8.1.2.3 Language Models

In all the experiments, standard N -gram language models were used. Table 8.3 summarises

the set of language models used in various experiments. All the language models were built by

Transcription Language Training data Vocabulary # of N -grams

Task Model Size (words) Size (words) 2 3 4

CTS-E
swe03.58k 1044M 58k 6.0M 9.4M 5.9M

swe04.58k 489M 58k 9.1M 15.5M 7.8M

BN-E bne59k 1018M 59k 8.8M 12.7M 6.6M

CTS-M
swm03.11k 151.2M 11k 3.9M 6.5M —

ldc04.16k 150.8M 16k 6.4M 9.8M —

Table 8.3 Summary of language models used in various tasks

interpolating various components, each was trained from different data sources. For each type

of language model, a bigram, trigram or 4-gram language model may be used depending on

the evaluation configurations (described later in this section). Two types of language models

were used in the CTS-E task. The swe03.58k language models were used for evaluation on the

dev01sub test sets while swe04.58k language models were used for evaluation on the eval03

and dev04 test sets. The swe03.58k and swe04.58k language models both had a vocabulary size

of 58k words and were used in the DARPA Rich Transcription 2003 (RT03)and 2004 (RT04)

evaluations respectively [22, 24]. Multiple pronunciations were used for the CTS-E experiments.

For the BN-E task, only one type of language model (bne59k) with 59k vocabulary size was

used. The experiments for the CTS-M task also employed two different language models. Both

language models were trained on similar data sources with the exception that the ldc04 acoustic

training transcription data was excluded from the swm03.11k language model training. These

language models also employed different vocabularies. The 11k vocabulary covers all the words

that occurred in the swm03 training data. This was used in the RT03 CU-HTK Mandarin system.

For the RT04 CU-HTK system [37, 38], a 16k-word vocabulary was used. This was generated

by extending the 11k vocabulary to cover the words occurring in the ldc04 training set as well

as approximately 5,000 single character words. The swm03.11k language models was used

to evaluate the eval03 test set while the ldc04.16k language model was used for dev04 and

eval04.

Most of the evaluations were conducted in a single-pass bigram full decoding using the

HTK LVCSR decoder, HDecode, to generate lattices of multiple hypotheses. These lattices were

rescored with a trigram language model to yield the final performance. For simplicity, this

method is referred to as an unadapted single-pass decoding.
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8.2 Initial Experiments

Initial experiments were carried out to determine the training configurations for various pre-

cision matrix models. A series of investigations were carried out for the EMLLT training con-

figurations. These include initialisation schemes (Section 8.2.1), number of training iterations

(Section 8.2.2) and the comparison between additive and multiplicative basis coefficient update

schemes (Section 8.2.3). This is followed by the results of the smoothing constant approxi-

mation scheme for the SPAM models in Section 8.2.4. Finally, the effectiveness of structured

approximation schemes as a compact precision matrix model representation is also investigated

in Section 8.2.5, using a smaller training set, h5etrain03sub.

8.2.1 Initialisation Schemes for EMLLT models

As discussed in Section 4.3.2.1, initialisation is important to ensure good starting point that

leads to faster convergence. Here, several forms of initialisation schemes introduced earlier

were compared for EMLLT. Table 8.4 shows the comparison of these initialisation schemes using

ML training. The first 5 rows of the table are based on experiments using 39-dimensional feature

vectors (comprising the static parameters, log energy, first and second derivatives) and the final

two rows are based on those using 52-dimensional feature vectors (with the additional third

derivatives). Four initialisation schemes described in Section 4.3.2.1 were investigated. UI, the

Initialisation
Basis Matrix

WER (%)
Dimensions

UI (78 × 39) 34.0

STC+HLDA

(

39 × 39

13 × 39

)

33.4

STC+HLDA

(

39 × 39

26 × 39

)

33.2

STC+EYE

(

39 × 39

39 × 39

)

33.1

STC(SS)

(

39 × 39

39 × 39

)

33.2

STC+HLDA

(

52 × 52

26 × 52

)

32.6

STC+EYE

(

52 × 52

26 × 52

)

33.0

Table 8.4 Average log likelihood and WER (%) performance on dev01sub for various EMLLT initialisation

schemes using ML-trained 16-component EMLLT systems
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uninformative initialisation, is clearly the worst scheme. This method randomly chooses a set

of vectors that span the space of a symmetric matrix to form the required basis vectors (see

Appendix B). This shows that the system performance is rather sensitive to the initialisation

schemes. STC+EYE, STC(SS) and STC+HLDA are better initialisation schemes. For the 39

dimensional feature vectors, the STC+EYE method gave the lowest WER of 33.1% on dev01sub.

However, the STC+EYE and STC(SS) methods require the total number of bases to be multiple

of the feature vector dimension. Otherwise, the bases need to be truncated to give the required

basis order. Alternatively, the STC+HLDA allows the initialisation of an arbitrary number of

basis vectors. The last two rows of Table 8.4 reveal that the STC+HLDA initialisation scheme is

superior to simply truncating the identity matrix (STC-EYE) when the number of basis vectors is

not multiple of the feature dimension.

8.2.2 Iteration Numbers for EMLLT models

When the number of basis is greater than the feature dimensionality, there is no closed form so-

lution for the basis updates. Hence, an iterative gradient descent optimisation method has to be

used. The effect of the number of iterations on the recognition performance is thus investigated.

Figure 8.1 shows the change in the auxiliary function values against each basis vector update
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Figure 8.1 Auxiliary function values vs number of rows updated for 3 basis vector iterations training on

h5etrain03 using a 16-component EMLLT system

for three basis iterations. The basis vectors were initialised using the STC(SS) method where

the top and bottom 39 basis vectors where obtained from the STC transform for the speech and

silence models respectively. The basis vectors were updated in the reversed order. The increase

in auxiliary function value on the first iteration is relatively large and rapidly converges on sub-

sequent iterations. Notice the larger increase in the auxiliary function value when updating the

figures/hbs_ite_aux_func.eps
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first 13 basis vectors as well as the 40th to 52th basis vectors. Table 8.5 shows the average log

Meta Basis Average WER (%)

Iterations Iterations Log Likelihood

1 1 -63.47 33.2

2 1 -63.45 33.3

3 1 -63.43 33.2

1 0 -63.52 33.1

1 2 -63.47 33.3

1 3 -63.46 33.3

Table 8.5 Average log likelihood and WER (%) on dev01sub for different number of update iterations using

16-component ML-trained EMLLT systems

likelihood values and WER for different number of iterations. The meta iteration refers to the

outer loop that alternates between the basis vector update and basis coefficient update. The

improvement gained from doing multiple iterations is insignificant. This suggest the use of just

one meta iteration and one basis iteration for the remaining experiments.

8.2.3 Additive vs. Multiplicative Update for EMLLT models

One powerful feature of the EMLLT model is that it allows the basis coefficients to be negative. To

investigate the benefit of having negative basis coefficients, two variants of the basis coefficient

update methods were used. The additive update rule allows the coefficients to take any real

values while the multiplicative update rule restricts the coefficients take only positive values.

Table 8.6 compares the average log likelihood and the WER for these two updates. Clearly, the

Update Method Average WER (%)

Log likelihood

Additive -63.47 33.2

Multiplicative -63.71 33.6

Table 8.6 Average log likelihood and WER (%) on dev01sub for additive and multiplicative basis coefficient

updates using 16-component ML-trained EMLLT systems

additive update gave a larger increase in log likelihood value as well as 0.4% absolute reduction

in WER compared to the multiplicative update. Thus, the EMLLT models used in subsequent

experiments are trained using the additive update.
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8.2.4 Smoothing Constant Approximation for SPAM models

In Section 5.3.2, an approximation was used to calculate the D-smoothing constant for MPE

training of SPAM models to avoid the need to accumulate the full covariance matrix statistics.

To investigate the effect of this approximation, two different SPAM models were trained on

h5etrain03sub with 4 MPE iterations, using the exact and approximated smoothing constant.

The exact method of finding the smoothing constant, Dsm, is achieved by starting with a small

smoothing constant and gradually increasing its value until the resulting full covariance matrix

statistics is positive-definite. On the other hand, the approximated smoothing constant is found

by solving the independent quadratic equations correspond to an identity pseudo projection

matrix. Results from Table 8.7 reveal that the approximation of smoothing constant using the

System
Smoothing WER (%)

Constants 0 1 2 3 4

SPAM
Exact 33.3 32.4 31.9 31.9 31.7

Approximate 33.3 32.3 32.0 31.9 31.7

Table 8.7 WER (%) performance on dev01sub of 12-component SPAM systems trained on h5etrain03sub

using exact and approximated smoothing constant

pseudo projection matrix yields almost similar WER performance compared to exact calculation.

In theory, using a STC pseudo projection matrix should yield better approximation, but the above

results suggest that the use of identity matrix was a sufficient approximation.

8.2.5 Model Training on Small Data Set

To investigate the robustness of the precision matrix models, a smaller training set is used to

train the models. Table 8.8 compares the WER performance of 16-component HLDA, EMLLT and

System
Dimension WER (%)

µ Σ ML MPE(4) MPE(8)

HLDA 39 39 34.2 32.4 32.2

EMLLT 52 78 33.6 31.9 31.9

SPAM 52 39 33.3 31.7 31.4

Table 8.8 Comparison of performance for models trained on h5etrain03sub

SPAM models trained on h5etrain03sub. The WER of the baseline HLDA ML model is 34.2%.

After 4 and 8 MPE training iterations, the WER reduced to 32.4% and 32.2% respectively. The

EMLLT and SPAM ML models gave 0.6% and 0.9% absolute WER reduction compared to the

baseline. After 4 MPE iterations, the EMLLT model converged at 31.9% while the SPAM model
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continued to yield a further 0.3% absolute improvement, giving 31.7% and 31.4% WER after 4

and 8 MPE iterations. Once again, the SPAM model, with more compact model representation,

was found to give a more robust performance under the condition of data sparseness.

8.3 Unadapted Experimental Results

This section presents the unadapted experimental results for various precision matrix models.

Most of the initial development experiments were based on the CTS-E task. Experimental re-

sults on the BN-E task will also be presented to generalise the performance analysis to multiple

transcription tasks.

8.3.1 Unadapted Experimental Results on CTS English

For the initial experiments on CTS-E, HMM systems were trained using the h5etrain03 data and

evaluated using the dev01sub test set. First, comparison of various precision matrix models will

be presented in Section 8.3.1.1. Next, performance of precision matrix models with multiple

bases are discussed in Section 8.3.1.2.

8.3.1.1 Comparison of Precision Matrix Models

This section compares various forms of precision matrix models, including the STC, EMLLT,

SPAM and HLDA-PMM models. A 16-component HLDA system was chosen as the baseline. The

HLDA projection matrix was estimated once and fixed for subsequent training iterations. The

EMLLT system consists of 78 basis vectors, initialised using the STC-HLDA method as described

in Section 4.3.2.1. Similar to HLDA models, basis matrices for SPAM models were initialised as

described in Section 4.3.2.2 and kept constant for subsequent training iterations. In MPE train-

ing, only the basis coefficients were updated. All systems were trained using the h5etrain03

training set and evaluated on dev01sub. The word error rate (WER) performance of various

precision matrix models is summarised in Table 8.9. The dimension of the mean vectors and

basis coefficients as well as the average number of parameters per state are also given in the

same table. The baseline HLDA 16-component ML model gave a WER of 33.5% on dev01sub. If

the nuisance dimensions are retained, the STC model yields a further 0.2% absolute reduction in

WER. By tying the 13 basis coefficients corresponding to the nuisance dimensions, a STC model

is transformed into the HLDA-PMM model with effectively 39 basis coefficients per Gaussian

component. This model gives another 0.1% absolute improvement over the STC model. The

EMLLT model, with 78 basis coefficients (approximately 67% additional number of parameters

compared to the HLDA system), reduced the WER to 32.6%. The SPAM model, using only half



CHAPTER 8. EXPERIMENTAL RESULTS OF PRECISION MATRIX MODELS 111

System
Average # of Dimensions WER (%)

parameters per state µ Σ ML MPE

HLDA 1248 39 39 33.5 29.8

STC 1664 52 52 33.3 29.7

HLDA-PMM 1456 52 39+(13) 33.2 29.4

EMLLT 2080 52 78 32.6 29.2

SPAM 1456 52 39 32.8 29.2

HLDA+SPAM 1248 39 39 32.0 28.5

Table 8.9 Comparison of number of parameters and WER (%) performance of ML and MPE trained 16-

component precision matrix models

the number of basis coefficients compared to the EMLLT model, gave similar performance (only

0.2% degradation). Finally, the most compact representation is achieved by combining HLDA

and SPAM (HLDA+SPAM) gave the lowest WER of 32.0%, which is 1.5% absolute performance

improvement but using the same number of parameters compared to the baseline.

Table 8.9 also shows the MPE performance of various systems. In general, there is an abso-

lute 3.4–3.8% WER reduction from ML to MPE. This shows that the gains from MPE training and

precision matrix modelling are additive. After MPE training, both the EMLLT and SPAM models

yielded the same performance of 29.2%. However, the SPAM model constitutes a more powerful

set of basis matrices and hence requires a smaller number of basis matrices for accurate approx-

imation. The best performance was given by the HLDA+SPAM model, which is 1.3% absolute

better than the baseline in terms of WER performance. This clearly shows the importance of

compact model representation.

To obtain a more complete overview of these models, 28-component HLDA, SPAM and

HLDA+SPAM models were trained on the h5etrain03 data set and evaluated on both dev01sub

and eval03 test sets. The results are tabulated in Table 8.10. The SPAM and HLDA+SPAM

System
Effective dev01sub eval03

params per state ML MPE ML MPE

HLDA 2184 32.3 29.1 31.7 28.4

SPAM 2548 31.5 28.3 30.8 27.6

HLDA+SPAM 2184 31.1 27.9 30.4 27.3

Table 8.10 WER performance of 28-component precision matrix models on dev01sub and eval03 for CTS

English task

systems consistently outperform the baseline HLDA system on both test sets. The gain from mpe

training was consistent, approximately 3.1–3.3% absolute WER reduction. The MPE trained

SPAM model gave an absolute gain of 0.8% over the baseline on both test sets. As before,
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the HLDA+SPAM system gave the best performance of 27.9% and 27.3% on dev01sub and

eval03. These translate to absolute improvements of 1.2% and 1.1% respectively. Two impor-

tant observations can be made by comparing Tables 8.10 and 8.9. Firstly, as the number of

components increases from 16 to 28, the gain from MPE training reduces. This is generally

the case when system complexity increases. This is due to the fact that increasing system com-

plexity most certainly improves the model correctness, and hence discrimination power of the

system. Consequently, subsequent MPE training will result in a smaller gain. Secondly, and

more importantly, increasing the number of Gaussian components from 16 to 28 improved the

MPE HLDA system performance from 29.8% to 29.1%. However, this is still 0.6% worse than

the 16-component HLDA+SPAM system. Thus, approximating the precision matrix structures

using SPAM is superior to implicitly modelling the correlations using a Gaussian Mixture Model

(GMM), as described in Section 3.3.

8.3.1.2 Multiple Bases Models

Multiple transformations models, as discussed in Section 3.7, provide a simple and powerful

way of improving modelling accuracies without severely increasing the total number of model

parameters. Such technique also fits naturally within the basis superposition framework where

the basis extraction process is carried out for each cluster of Gaussian components. In this exper-

iment, Gaussian clustering is performed in two different ways. For HLDA and STC models, a re-

gression class tree is used to cluster the Gaussian components with an initial speech-silence split.

Splitting criterion is based on the Euclidean distance between Gaussian components. This yields

the 65-bases (64 speech, 1 silence) HLDA and STC models1. Gaussian clustering for EMLLT

model is also achieved using a regression class tree. However, there is no initial speech-silence

split and the splitting is based on the Euclidean distance of the vectors of basis coefficients.

This results in 64 clusters of Gaussian components. Table 8.11 summarises the WER results for

System
# of WER (%)

transforms ML MPE(4) MPE(8)

HLDA
1 33.5 30.8 29.8

65 32.7 29.7 –

STC
1 33.3 30.3 29.7

65 32.3 29.7 –

EMLLT
1 32.6 29.8 29.2

64 32.0 29.0 28.3

Table 8.11 Comparing WER (%) performance of 16-component precision matrix models with multiple bases

on dev01sub

1 The multiple bases HLDA and STC models were obtained from X. Liu. These models have been trained and

decoded using the same setup as described earlier.



CHAPTER 8. EXPERIMENTAL RESULTS OF PRECISION MATRIX MODELS 113

multiple bases HLDA, STC and EMLLT models on dev01sub. Compared to single basis models,

multiple bases HLDA, STC and EMLLT models gave 0.8%, 1.0% and 0.6% absolute WER reduc-

tion respectively. After 4 MPE training iterations, the 65-basis HLDA and STC models gave the

same performance of 29.7% WER. On the other hand, the WER performance of the 64-basis

EMLLT model was 29.0%. The absolute improvements for these models were observed to be

1.1%, 0.6% and 0.8% respectively compared to their corresponding single-transform models.

In general, promising improvements were obtained by using multiple bases, without dramati-

cally increasing the number of model parameters and computational costs. The 64-basis EMLLT

system yielded a further 0.7% absolute WER reduction with four additional MPE training. In

short, the 64-transform EMLLT model yields absolute improvements of 1.5% and 1.3% for ML

and MPE training respectively compared to the baseline single-transform HLDA model. This

MPE performance is similar to the 28-component SPAM system as indicated in Table 8.10. How-

ever, this exceptionally good performance for the 64-basis EMLLT system did not generalise to

eval03, where the performance was found to be 28.1% (0.5% worse than the 28-component

SPAM system).

8.3.1.3 Performance of State-of-the-art Systems

Finally, the performance of state-of-the-art 36-component HLDA, HLDA+SPAM and 9k-basis

HLDA+STC(9k)2 systems was evaluated. These state-of-the-art systems were trained using the

fsh2004h5etrain03b training data (2180 hours). The system performance was evaluated on

eval03 and dev04. Table 8.12 shows the ML, MPE and GD performance of these systems. The

System
eval03

dev04
s25 fsh Avg

ML 31.4 23.3 27.5 23.8

HLDA MPE 26.5 18.8 22.8 19.1

GD 26.0 18.4 22.3 18.7

ML 30.3 22.3 26.5 22.5

HLDA+STC (9k) MPE 25.9 18.1 22.1 18.6

GD 25.4 17.9 21.8 18.3

ML 30.5 22.7 26.7 23.1

HLDA+SPAM MPE 25.7 18.1 22.0 18.3

GD 25.3 17.7 21.6 18.1

Table 8.12 WER performance of unadapted single-pass decoding for 36-component HLDA, HLDA+STC(9k)

and HLDA+SPAM systems on CTS-E task

2The 9k bases were chosen such that the Gaussian components in each HMM state share the same basis. The

system comprised approximately 9000 distinct states.



CHAPTER 8. EXPERIMENTAL RESULTS OF PRECISION MATRIX MODELS 114

baseline MPE trained GD HLDA system gave 22.1% and 23.2% WERs on eval03 and dev04

respectively. The gains from MPE and GD training were 4.7% and 0.4–0.5% respectively. The

MPE gains for the HDA+STC(9k) system were smaller, only 4.4% and 3.9% on the two test sets.

GD training gave a further 0.3% absolute gain on both test sets to yield the final performance

of 21.8% and 18.3% on eval03 and dev04 respectively. Thus, the final improvement of the

HLDA+STC(9k) system was 0.5% and 0.4% absolute on these test sets. The MPE and GD gains

for the HLDA+SPAM system were similar to those obtained for the baseline. The final MPE train

GD system was 0.2% better than the HLDA+STC(9k) system. It is interesting to note that the

total number of model parameters for the HLDA+STC(9k) system in approximately 60% more

than the HLDA and HLDA+SPAM system. With the large amount of training data, it was possi-

ble to learn a different set of bases for each state in the system. This system was able to reduce

the WERs by about half a percent absolute compared to the baseline at the expense of having

a larger number of model parameters. However, these parameters were used sub-optimally to

model the redundant precision matrix structures in the system. This can be justified clearly from

the slightly better performance of the HLDA+SPAM system, using only a set of global bases.

These bases (which are full-rank) allow the precision matrix structures to be modelled more

compactly and avoid any redundancy in modelling the precision matrix structures.

The combination of these systems were also investigated to explore further gains that

can be obtained and to examine the differences between the systems using different precision

matrix modelling approaches. Confusion network decoding was performed using the lattices

produced by the single-pass decoding in Table 8.12. Confusion networks were also generated for

subsequent 2-way confusion network combinations (CNCs). The CN decoding and CNC results

are summarised in Table 8.13. In general, there was an additional 0.8–0.9% absolute gain from

System
eval03

dev04
s25 fsh Avg

S1 HLDA 24.9 17.8 21.5 17.9

S2 HLDA+STC(9k) 24.5 17.1 20.9 17.5

S3 HLDA+SPAM 24.2 17.0 20.7 17.3

S1+S2 24.2 17.1 20.8 17.4

S1+S3 24.1 17.1 20.7 17.3

S2+S3 23.8 16.8 20.4 17.1

Table 8.13 WER performance of unadapted CN decoding and CNC for 36-component HLDA, HLDA+STC(9k)

and HLDA+SPAM systems on CTS-E task

CN decoding for all the systems. The best individual system was HLDA+SPAM, with 20.7%

and 17.3% WERs on eval03 and dev04 respectively. Combining HLDA and HLDA+STC(9k)

gave a consistent gain of 0.1% over the corresponding individual systems. However, combining

HLDA and HLDA+SPAM did not yield further improvement. This is primarily due to the large
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performance gap between these systems. Finally, combining HLDA+STC(9k) and HLDA+SPAM

yielded a further 0.2–0.3% absolute WER reduction. This suggests that the two systems are

relatively different, even though the individual system performance was similar.

8.3.2 Unadapted Experimental Results on BN English

To examine the performance of MPE trained precision matrix models on the BN-E task, a 16-

component HLDA+SPAM model was also built to compare with the unadapted HLDA system

trained on the bnac+TDT4 (375 hours) data set. These systems were evaluated on the dev03 and

eval03 test sets, each consisting of 3 hours data. The results are tabulated in Table 8.14. The ML

System
dev03 eval03

ML MPE GD ML MPE GD

HLDA 16.3 13.6 13.5 14.6 12.5 12.3

HLDA+SPAM 15.7 13.5 13.2 14.3 12.0 12.0

Table 8.14 WER performance of 16-component precision matrix models on dev03 and eval03 for BN-E task

baseline WERs are 16.3% (dev03) and 14.6% (eval03). After MPE training, the WERs reduced

to 13.6% and 12.5% respectively. An absolute gain of 0.6% was observed from HLDA+SPAM

ML model on dev01sub. The corresponding gain on eval03 was only 0.3%. After MPE train-

ing, the gain from HLDA+SPAM was reduced to 0.1% on dev03 but was increased to 0.5% on

eval03. Similar to the RT03 setup, gender dependent (GD) models were also built. Starting

from the gender-independent (GI) MPE model, GD models were built with 3 MPE+MAP[101]

iterations, using the corresponding GI MPE models as the prior. The baseline system gave a

further 0.1% and 0.2% WER reductions on dev03 and eval03 respectively. Meanwhile, the

HLDA+SPAM model yielded 0.3% improvement on dev03 but no further improvement was ob-

tained on eval03. The final absolute gains of 0.3% on both test sets were found to be statistically

significant.

8.3.3 Unadapted Experimental Results on CTS Mandarin

The final set of unadapted evaluation was conducted on the CTS-M task. In contrast to the

CTS-E and BN-E tasks, the Gaussianisation technique [15, 116] was employed to normalise the

distribution of the features as a normal distribution for each conversation side. This was applied

on top of the HLDA projected features. Hence, system using the Gaussianisation frontend will

be prefixed by GAUSS instead of HLDA. As before, the best system (GAUSS+SPAM) was selected.

The Character Error Rate (CER) performance of GAUSS and GAUSS+SPAM is summarised in

Table 8.15. The ML performance of the GAUSS+SPAM model are 1.3% and 1.0% absolute better
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System dev04 eval04

ML MPE ML MPE

GAUSS 40.2 36.0 38.2 33.9

GAUSS+SPAM 38.9 35.7 37.2 34.1

Table 8.15 CER performance of 16-component GAUSS and GAUSS+SPAM models on dev04 and eval04 for

CTS-M task

compared to the baseline GAUSS system. Unlike the results presented so far, the gain from

MPE training is much smaller for the GAUSS+SPAM model on the CTS-M task. The baseline

GAUSS system gained 4.2–4.3% absolute from MPE training. However, the MPE gain for the

GAUSS+SPAM system was only 3.1–3.2%. Thus, the GAUSS+SPAM system gave only 0.3% on

dev04 and a degradation of 0.2% on eval04. The poor MPE gain for the GAUSS+SPAM model

may be due to the limited amount of training data which has caused an over-training issue.

8.4 Adaptation Experiments of Precision Matrix Models

Adaptation experiments were conducted based on two LVCSR English tasks: BN-E and CTS-E.

CMLLR transforms were used for building SAT models. Instead of speaker adaptively train the

HLDA+SPAM system to produce a HLDA+SPAM+SAT system, the training approach described

in [6] was adopted, where a speaker adaptively trained HLDA baseline system, with diago-

nal covariance matrices, (HLDA+SAT) was used as an initial model build a HLDA+SAT+SPAM

system. In other words, the SPAM precision matrix modelling was performed within the SAT fea-

ture space. In testing, MLLR mean transforms for the SPAM models were estimated using two

row-by-row iterations as described in Section 6.1.1 (mllr) or simply approximated using the

diagonal precision matrix assumption (mllr approx) (see Section 6.1.2). Similarly, the CMLLR

transforms were estimated either using the exact method (cmllr) as described in Section 6.3.1

or approximated using a SAT+DIAGC system (cmllr approx) (see Section 6.3.2).

Figure 8.2 illustrates the change in the average log likelihood of one speaker with increas-

ing number of iterations for both MLLR mean and CMLLR adaptations. On each iteration, the

component alignment was recomputed based on the transforms estimated in the previous iter-

ation. The average log likelihood was found to increase upon every iteration. In Figure 8.2(a),

there is very little difference between the mllr and mllr approx methods for MLLR mean trans-

form estimation. For CMLLR, the log likelihood gain from using the cmllr method is about

twice that of the approximated method, cmllr approx, as depicted in Figure 8.2(b). In spite

of this, the WER performance between these two approaches was similar (see the following for

experimental results on CTS-E and BN-E tasks).
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Figure 8.2 Change in average log likelihood of one speaker on CTS with increasing number of MLLR iterations

for (a) MLLR mean and (b) CMLLR, for 28-component SPAM model

8.4.1 Adaptation Experiments on CTS English Task

First, WER performance was evaluated on the CTS-E task. 28-component models were trained

using the 400 hours of Fisher data (fsh2004sub) and evaluated on two test sets, eval03 and

dev04 Table 8.16 summarises the results of various adaptation configurations on CTS-E. The

System
Adapt eval03 dev04

Config s25 fsh Avg Avg

HLDA mllr 26.1 18.1 22.3 18.4

HLDA+SPAM
mllr approx 25.5 17.9 21.9 17.9

mllr 25.5 18.0 21.9 18.0

HLDA+SAT cmllr 25.8 17.8 21.9 17.9

HLDA+SAT+SPAM
cmllr approx 25.0 17.6 21.4 17.6

cmllr 24.9 17.5 21.3 17.5

Table 8.16 Comparisons of MLLR mean and CMLLR adaptations for 28-component HLDA and HLDA+SPAM

models, with and without SAT, on CTS-E task

WERs of the baseline HLDA system after MLLR adaptation were 22.3% and 18.4% on eval03

and dev04 respectively. HLDA+SPAM model with diagonal precision matrix approximated MLLR

adaptation (mllr approx) gave 0.4–0.5% gains, although a large proportion of the gain on

eval03 came from s25 (0.6%). Performing two additional row-by-row iterations, although im-

proved the likelihood, degraded the WER performance by 0.1% on the fsh part of eval03 and

dev04. For the SAT systems, HLDA+SAT is about 0.3%–0.5% absolute better than the non-

SAT baseline on both test sets. Using this model to estimate the CMLLR transforms for the

figures/avllcolor.eps
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HLDA+SAT+SPAM system (cmllr approx) improved the WERs by 0.5% and 0.3% absolute on

eval03 and dev04 respectively. Again, the gain on s25 dominated for the gain on the eval03

test set. Exact implementation using the cmllr method gave a consistent improvement of 0.1%

on all test sets.

Finally, CMLLR adaptation was performed on the state-of-art systems. The cmllr approx

approximation scheme was used for the HLDA+SPAM system. In addition, the performance

of the speaker adaptively train HLDA+SAT and HLDA+SAT+SPAM systems was also evalu-

ated. The summary of the results is shown in Table 8.17. After the CMLLR adaptation, the

System
eval03

dev04
s25 fsh Avg

ML 29.0 21.4 25.3 21.6

HLDA MPE 24.8 17.4 21.3 17.8

GD 24.4 17.1 20.8 17.4

ML 28.2 20.7 24.6 20.8

HLDA+STC (9k) MPE 24.2 17.1 20.7 17.4

GD 23.9 16.7 20.5 17.1

ML 28.2 20.7 24.6 21.1

HLDA+SPAM MPE 24.1 16.8 20.5 17.1

GD 23.7 16.4 20.2 17.1

HLDA+SAT
ML 28.9 21.1 25.1 21.5

MPE 24.8 17.3 21.2 17.8

HLDA+SAT+SPAM
ML 28.1 20.5 24.5 21.0

MPE 24.1 16.8 20.5 17.1

Table 8.17 WER performance of CMLLR adapted single-pass decoding results for state-of-the-art systems on

eval03 and dev04 for CTS-E task

performance gaps between the MPE trained GD precision matrix models and the baseline were

marginally smaller. The adapted HLDA+STC(9k) system was 0.3% better than the adapted

baseline, compared with 0.4–0.5% on the unadapted configuration. The improvement of the

adapted HLDA+SPAM system over its baseline was also reduced by 0.1%. Thus, the adapted

HLDA+SPAM system gave an overall improvement of 0.6% and 0.5% on eval03 and dev04 over

the baseline. On the other hand, the HLDA+SAT system gave a baseline performance of 21.2%

and 17.8% on the two test sets. The HLDA+SAT+SPAM system improved the baseline perfor-

mance by 0.7% on both test sets. On this particular configuration, SAT did not seem to yield any

performance gain compared to the non-SAT MPE systems. In fact, the GD systems outperformed

the SAT systems by 0.3–0.4%. However, when more advanced adaptation configurations were

used, the SAT systems gave superior performance, as shown later in Section 8.5.1
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8.4.2 Adaptation Experiments on BN English Task

Similar comparisons were made for the adapted systems on the BN-E task. 16-component models

were trained using 374 hours of bnetrain04sub training data. This consists of 143 hours of

carefully annotated data (bnac) and 231 hours of lightly supervised data (tdt4). Adaptation

experiments were conducted based on three 3-hour test sets: eval03, dev04 and dev04f. 4-

gram rescoring lattices were generated using an adapted HLDA system3. Rescoring results are

summarised in Table 8.18. For MLLR mean adaptation, a gender dependent (GD) HLDA system

System
Adapt Test Set WER (%)

Config eval03 dev04 dev04f

HLDA mllr 10.7 13.2 20.0

HLDA+SPAM
mllr approx 10.6 13.1 19.5

mllr 10.6 13.1 19.5

HLDA+SAT cmllr 10.6 13.1 19.5

HLDA+SAT+SPAM
cmllr approx 10.2 12.7 18.6

cmllr 10.2 12.8 18.8

Table 8.18 Comparisons of MLLR mean and CMLLR adaptations for 16-component HLDA and HLDA+SPAM

models with and without SAT on eval03, dev04 and dev04f for BN-E task

was chosen as the baseline. This system gave WERs of 10.7%, 13.2% and 20.0% on the three

test sets. The exceptionally poor performance on dev04f is due to the large mismatch between

the training and the test data. Both mllr approx and mllr configurations yielded the same

performance, which is 0.1% absolute better than the baseline on eval03 and dev04. The gain

on dev04f is larger, 0.5% absolute. This shows that MLLR mean adaptation can be efficiently

approximated with the diagonal precision matrix assumption for the HLDA+SPAM models and

other forms of precision matrix models such as EMLLT.

Also, two forms of CMLLR adaptation for HLDA+SAT+SPAM models were compared us-

ing the HLDA+SAT system as the baseline. This system has the same WER performance as the

MLLR mean adapted SPAM system. The cmllr approx configurations gained 0.4% absolute

on the first two test sets and 0.9% on dev04f. Again, there is a large gain from the adapted

HLDA+SPAM models due to the mismatch between the training and test sets. Similar perfor-

mance was obtained on eval03 using the exact cmllr configuration. Surprisingly, 0.1% and

0.2% degradations were observed on dev04 and dev04f although the likelihood of the test data

given these transforms was higher than those approximated using cmllr approx. Apart from

the gains from the mllr approx and mllr HLDA+SPAM models on eval03 and dev04, all the

gains shown in Table 8.18 were found to be statistically significant4.

3Similar to the P2 stage of the CU-HTK evaluation system [65, 67]
4Significance tests were carried out using the NIST Scoring Toolkit.
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8.5 Evaluations on Multi-pass and Multi-branch Framework

Previously, the performance of various precision matrix models was compared. In particular, the

HLDA+SPAM and HLDA+SAT+SPAM systems were found to be the best individual systems. In

this section, the performance of the HLDA+SPAM and HLDA+SAT+SPAM systems will be eval-

uated based on a multi-pass multi-branch framework similar to the CU-HTK 10xRT Broadcast

News transcription system [65, 67]. This evaluation framework incorporates complex adapta-

tion configurations and allows possible improvements from systems combination to be explored.

The basic structure of the framework is illustrated in Figure 8.3 Initially, audio data were au-

P1: Initial Transcription

Adapt

P3x

Lattices

Adapt

P3b

P2: Lattice Generation

Segmentation

1−best

CN

Lattice
Alignment

CNC

Figure 8.3 A multi-pass multi-branch evaluation framework

tomatically segmented to extract only the speech segments. These segments of speech data

were recognised using an unadapted non-VTLN model and a trigram language model to pro-

vide an initial transcription. This initial transcription was used as a supervision for adaptation

in the P2 stage. The adapted model was then used to generate lattices for lattice-based MLLR

adaptation and rescoring by subsequent stages. These lattices were generated using a trigram

language model, expanded and pruned using a 4-gram category-based language model. Mul-

tiple P3 stages may be used in parallel to construct a multi-branch framework. Each of these

P3 stages involved complex adaptation configurations as follows. This was performed using an

improved supervision generated from P2 to perform a one-best MLLR adaptation followed by a

lattice-based MLLR. The final adapted model will then be used to rescore the P2 lattices to yield

figures/bnm_10x.eps
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the single branch performance. Furthermore, system combination may be performed by gener-

ating and combining the confusion networks from each P3 branch using the Confusion Network

Combination (CNC) method [25, 76]. The actual forms of adaptation (MLLR mean, variance or

constrained MLLR) used in the P3 stages may differ in each individual experiments. As with the

other experiments, the CTS-E, BN-E and CTS-M tasks were considered.

8.5.1 Evaluation on CTS English Task

Initially, the development setup was used. 28-component systems were trained using the 400-

hour fsh2004sub Fisher conversations, released by the LDC, with a balanced gender and line

condition [24]. Quick transcriptions which correspond to these speech were provided by BBN,

LDC and another commercial transcription service. The eval03 and dev04 test sets were used

for systems evaluation. All system have approximately 6000 physical states after decision tree

based tying.

System
eval03

dev04
s25 fsh Avg

P2 HLDA 26.6 18.4 22.6 18.7

P3a SPron 24.7 17.6 21.3 17.6

P3b HLDA 24.8 17.7 21.4 17.5

P3c HLDA+SPAM 23.8 16.5 20.4 16.8

P3d HLDA+SAT 24.5 17.1 20.9 17.3

P3e HLDA+SAT+SPAM 23.6 16.4 20.1 16.6

P3a+P3d
CNC

23.9 16.8 20.5 16.9

P3a+P3e 23.6 16.4 20.1 16.6

Table 8.19 WER performance of various development systems evaluated on eval03 and dev04 in a multi-pass

multi-branch framework for CTS-E task

Table 8.19 shows the performance of various systems evaluated within a multi-pass multi-

branch framework. The P2 stage used an adapted HLDA system to generate lattices for subse-

quent stages. This system gave 22.6% and 18.7% WER performance on eval03 and dev04 re-

spectively. Four P3 branch were used: HLDA, HLDA+SAT, HLDA+SAT+SPAM and SPron. SPron

is an HLDA system using only single pronunciation in the lexicon. The best individual system was

HLDA+SAT+SPAM with WERs of 20.1% and 16.6% on eval03 and dev04. This gave an absolute

improvement of 0.7–0.8% over the HLDA+SAT system. The HLDA+SPAM also gave similar im-

provements over the HLDA system. The 2-way combination between the SAT and SPron systems

was the standard configuration used in the CUHTK CTS-E evaluation system [22, 24]. Signifi-

cant error rate reduction over individual branches was achieved after system combination. The

final error rates were 20.5% on eval03 and 16.9% on dev04. However, this performance is still
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about 0.3–0.4% worse than the HLDA+SAT+SPAM single branch performance. Moreover, the

single branch HLDA+SAT+SPAM system performance was far better than any other individual

system that no possible 2-way combination can yield further improvement.

A second set of evaluation was carried out using the state-of-the-art CTS-E systems trained

on 2180 hours of fsh2004h5etrain03b data. The results are tabulated in Table 8.20 For the sys-

System eval03
dev04

s25 fsh Avg

P3a HLDA 21.7 14.7 18.3 15.1

P3b HLDA+SPAM 21.1 14.6 18.0 14.9

P3c HLDA+STC(9k) 21.6 14.8 18.3 15.3

P3d HLDA+SAT(QUIN) 21.5 14.8 18.2 15.0

P3e HLDA+SAT+SPAM 21.0 14.6 17.9 14.7

P3a+P3d

CNC

20.9 14.1 17.6 14.3

P3b+P3d 20.2 13.9 17.2 14.2

P3c+P3d 20.6 14.1 17.4 14.4

P3e+P3d 20.4 14.0 17.3 14.1

Table 8.20 WER performance of various state-of-the-art systems evaluated on eval03 and dev04 in a multi-

pass multi-branch framework for CTS-E task

tems which were not speaker adaptively trained, gender dependent models were trained. The

HLDA, HLDA+SAT(QUIN) and HLDA+SAT+SPAM were the models used in the CUHTK system

submitted for the RT04 DARPA evaluation [23, 24]. It is worth noting that the HLDA+SAT(QUIN)

system is quite different from the other systems as quinphone context-dependent models were

used. The other systems were all triphone models. HLDA+SAT+SPAM is still the best indi-

vidual system with WERs of 17.9% and 14.7% on eval03 and dev04 respectively. However, in

this case, it is only marginally better than the HLDA+SPAM system (0.1–0.2%). Performance

of 2-way combinations was examined, too. In general, a better combination performance was

obtained by combining a triphone system with a quinphone system. Considering the P3a+P3d

combination, which yielded 0.6–0.7% absolute gain over the P3d system, as the baseline. On av-

erage, combining the quinphone system with HLDA+SPAM or HLDA+SAT+SPAM gave similar

performance. The lowest WER on eval03 was given by the P3b+P3d combination while that on

dev04 was given by the P3e+P3d combination.



CHAPTER 8. EXPERIMENTAL RESULTS OF PRECISION MATRIX MODELS 123

8.5.2 Evaluation on BN English Task

Similar evaluation was performed for the BN-E task. The BN-E systems were trained on 370

hours of training data. This consists of two parts [66], 140 hours of accurately transcribed

broadcast news acoustic training data released by the LDC in 1996 and 1997 and 230 hours of

data selected from the tdt4 audio corpora with close-captions based on quick transcriptions. All

systems have approximately 6000 physical states after decision tree based tying. The number of

components per state was 16 on average. Three BN-E test sets were used, each of them contains

six 30 minutes broadcast news shows. These were the eval03, dev04 and dev04f.

System eval03 dev04 dev04f

P2 HLDA 10.8 13.4 20.1

P3a SPron 10.2 13.0 19.0

P3b HLDA 10.5 13.1 19.5

P3c HLDA+SPAM 9.9 12.5 18.5

P3d HLDA+SAT 10.3 12.9 18.7

P3e HLDA+SAT+SPAM 10.0 12.4 18.4

P2+P3a+P3d
CNC

10.1 12.6 18.6

P2+P3a+P3e 10.0 12.4 18.4

Table 8.21 WER performance of various systems evaluated on eval03, dev04 and dev04f in a multi-pass

multi-branch framework for BN-E task

Table 8.21 shows the performance of various systems evaluated within the multi-pass

multi-branch framework. A performance pattern similar to the CTS-E results was observed.

The best single-branch system was HLDA+SAT+SPAM with WER performance of 10.0%, 12.4%

and 18.4% on eval03, dev04 and dev04f respectively. The gains from HLDA+SPAM were 0.6%

on eval03 and dev04. A larger gain of 1.0% was obtained on dev04f. This shows that the

SPAM precision matrix modelling technique, to some extends, is able to compensate the mis-

match between the training and test data. The HLDA+SAT+SPAM, on the other hand, yielded

a smaller improvement of 0.3–0.5% over the baseline HLDA+SAT system. In contrast to the

CTS-E system, a 3-way combination between the P2, P3a (SAT) and P3c (SPron) branches was

the standard configuration used in CUHTK BN-E evaluation system. The final numbers for each

of the tasks were 10.1%, 12.6% and 18.6%, with gains of 0.1–0.3% being obtained from system

combination. However, this is still about 0.1–0.2% behind the single-branch HLDA+SAT+SPAM

system. As with the CTS-E system, no further gain was obtained from any 3-way combination

over the individual HLDA+SAT+SPAM performance on all test sets.
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8.5.3 Evaluation on CTS Mandarin Task

The final set of multi-pass multi-branch evaluation was conducted on the CTS-M task. The STC,

EMLLT and SPAM precision matrix models were considered, using the Gaussianisation frontend.

In addition, speaker adaptively trained diagonal covariance matrix and SPAM systems were also

evaluated. The CER performance of these systems is given in Table 8.22. The baseline Gaus-

System
CER (%)

dev04 eval03 eval04

P3a GAUSS 34.6 43.3 32.3

P3b GAUSS+STC 34.4 43.0 31.8

P3c GAUSS+EMLLT 34.1 42.8 31.4

P3d GAUSS+SPAM 33.5 42.4 31.0

P3e GAUSS+SAT 33.7 42.7 31.7

P3f GAUSS+SAT+SPAM 33.2 41.8 30.5

P3a+P3d
CNC

33.3 42.3 30.9

P3e+P3f 32.8 41.4 30.2

Table 8.22 CER performance of various systems evaluated on dev04 and eval03 in a multi-pass multi-branch

framework for CTS-M task

sianisation system gave 34.6% and 43.3% CERs on dev04 and eval03 respectively. Modelling

the precision matrices using STC improved the baseline performance by 0.2–0.3%. Using an

EMLLT model with 84 basis order further improved the performance by 0.2–0.3%. Finally, the

performance of SPAM precision matrix modelling gave another 0.4–0.6% absolute CER reduc-

tion, yielding a total reduction of 1.1% and 0.9% over the GAUSS system. Speaker adaptively

trained systems were also examined. The GAUSS+SAT system is 0.9% and 0.6% absolute better

than the GAUSS system. The GAUSS+SAT+SPAM further improved the performance by 0.5%

and 0.9% on dev04 and eval03 respectively. The gain from SPAM modelling in the SAT feature

space compared to that in the GAUSS feature space was similar on eval03, but almost halved on

dev04. The smaller gain of GAUSS+SAT+SPAM on dev04 is due to the larger gain obtained by

the GAUSS+SAT system. The overall gain of the GAUSS+SAT+SPAM system over the GAUSS

system was similar on both test sets, 1.4–1.5% absolute CER reduction. Combining the GAUSS

and GAUSS+SPAM systems using CNC only marginally improved the performance by 0.1–0.2%

absolute. On the other hand, combining the speaker adaptively trained systems (GAUSS+SAT

and GAUSS+SAT+SPAM) gave a larger absolute improvement of 0.4% on both test sets.



9

Experimental Results of Semi-parametric Trajectory Models

This chapter presents the experimental results of the semi-parametric trajectory models de-

scribed in Chapter 7. Specifically, the performance of the fMPE and pMPE systems will be

studied. The first part of the results were preliminary experimental results based on the CTS-E

task. Later, a more thorough investigation of the fMPE and pMPE techniques and the effect of

combining them will be discussed based on the CTS-M task.

9.1 Preliminary Experiments on CTS English

This section presents the preliminary experimental results of the semi-parametric trajectory

model on the CTS-E task. Systems were trained using the 296 hours switchboard data (h5etrain03)

and evaluated on a 3-hour test set (dev01sub). The baseline was a speaker independent HLDA

system with about 6000 states and 16 Gaussian components per state (∼ 99k Gaussians in total).

The posterior probabilities, hi(t), as described in Chapter 7, were calculated based 99k centroids.

These centroids were obtained from the Gaussian components in the system. These centroids

were grouped into 1024 clusters. The posterior probabilities were calculated by evaluating only

the centroids in the 5 most likely clusters. Moreover, posterior probabilities below 0.1 were set

to zero to yield an average of approximately 2 non-zero posteriors at each time. No context ex-

pansion [97] was used. First, the fMPE and pMPE models were built using 4 interleaved updates

(Section 7.3.2.1) with the learning rate, α = 1.0. 8 MPE iterations were then performed on top

of them to give the fMPE+MPE and pMPE+MPE models. The MPE+fMPE and MPE+pMPE

systems were also built using the direct estimation (Section 7.3.2.2) with α = 0.5.

Figure 9.1 shows the change in the MPE criteria with increasing training iterations for

various systems. The MPE criterion of the ML baseline was 0.74. This was improved by about

0.11 after 12 MPE iterations. The criterion gains for fMPE and pMPE were smaller compared to

125
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Figure 9.1 MPE criterion against training iteration

MPE training. Further MPE training increased the criteria of fMPE+MPE and pMPE+MPE to be

similar to the MPE system, with the latter marginally better. The larger criterion gain for pMPE

did not generalise to recognition performance (see later). This suggests that pMPE is less robust

to overtraining, unlike fMPE [97]. Further criterion gain were obtained with the MPE+fMPE

and MPE+pMPE systems.

System Initial Model Iter 0 Iter 4 Iter 8

MPE ML 33.5 30.7 30.2

fMPE+MPE fMPE 31.9 29.9 29.4

pMPE+MPE pMPE 32.5 30.4 30.0

Table 9.1 WER performance on dev01sub for 16-component models using interleaved parameters estimation

The Word Error Rate (WER) performance on dev01sub for fMPE+MPE and pMPE+MPE

systems are shown in Table 9.1. The ML baseline performance was 33.5%. MPE alone reduced

the WER by 3.2% absolute. fMPE and pMPE gave 1.6% and 1.0% absolute WER reduction

respectively. The WER performance of the pMPE system converged much quicker (after two

iterations). MPE training on top of these systems each gained a further 2.5% absolute, which

are respectively 0.8% and 0.2% absolute better than the MPE system alone. The performance

difference between MPE and pMPE+MPE gradually diminished as the number of MPE training

increases. Similar performance was obtained when using the exact pMPE update. However, a

slower learning rate (α = 0.5) is required to prevent over training. The gains from fMPE and

pMPE are not additive. Initial experiment of pMPE training on top of the fMPE system (fpMPE)

showed 0.5% absolute improvement over the fMPE system. Unfortunately, this gain decreases

with increasing MPE training iterations. More investigation is required to study the interaction

between the fMPE and pMPE training.

figures/crit.eps
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System Iter 0 Iter 2 Iter 4

MPE 30.2 30.2 30.2

MPE+fMPE 30.2 29.6 29.4

MPE+pMPE 30.2 30.0 29.8

Table 9.2 WER performance on dev01sub for 16-component systems using direct parameters estimation

Table 9.2 compares the WER performance of MPE+fMPE and MPE+pMPE using the direct

estimation scheme. The initial model used by all systems was the MPE system trained with 8 iter-

ations. Four additional standard MPE iterations gave no further improvement. The MPE+fMPE

system gave similar performance to the fMPE+MPE system, but the training time for the former

is more efficient. Also, four additional direct pMPE training is 0.2% better than the pMPE+MPE

system. All the gains over standard MPE presented were statistically significant1, except the

0.2% gain from the pMPE+MPE system.

9.2 Experimental Results on CTS Mandarin

A more detailed investigation of the fMPE and pMPE models was performed on the CTS-M task.

The acoustic models were trained on 72 hours of ldc04 and swm03 data. The systems used in

this experiment consist of 4000 distinct states. Gaussianisation frontend was used on top of the

HLDA projected feature space. A variety of aspects of the systems were examined as follows.

9.2.1 Choice of the Centroids

This section will investigate two ways of determining the centroids used in the semi-parametric

trajectory model. The centroids are typically chosen from the Gaussian components in the sys-

tem. Typically, the Gaussian components in the systems are clustered into the desired number

of groups. The centre of each group is chosen as one of the centroids. In this work, two special

cases were considered. The first case simply uses each Gaussian component in the system as the

centroids. This yields in a number of centroids which is equivalent to the number of Gaussian

components in the system. This approach is feasible is the HMM system is of moderate size.

The second approach performs a state-level clustering of the Gaussian components such that

the centroids are chosen as the centre of the Gaussian components for each HMM state. Thus,

the resulting number of centroids is the same as the number of physical states in the system.

Here, the fMPE+MPE systems with 16 component per state will be considered. Hence, there

were 64,000 Gaussian components in the system. Therefore, the two methods of selecting the

1Significance tests were carried out using the NIST Scoring Toolkit
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centroids gave a total of 64k and 4k centroids respectively.

System
Context dev04 eval04

Expansion 4k 64k 4k 64k

MPE – 36.0 33.9

fMPE+MPE
0 35.6 35.1 33.7 33.1

±3 34.4 34.8 32.5 33.4

Table 9.3 CER performance of fMPE+MPE with different number of centroids on dev04 and eval04 for

CTS-M task

Table 9.3 compares the CER performance of the fMPE+MPE systems with different num-

ber of centroids. For the systems without context expansion, the use of 64k centroids gave supe-

rior performance compared to the 4k centroids system (0.5–0.6% better). In contrast, the 64k

centroids system with ±3 context expansion was 0.4% and 0.9% worse than the corresponding

4k centroids system. Clearly, the use of 64k centroids with context expansion has dramatically

increased the number of model parameters in the system, which has caused the system to be

over-trained. From Table 9.3, the 4k centroids with ±3 context expansion is evidently the pre-

ferred configuration. Subsequent experiments will employ the 4k centroids configuration.

9.2.2 The Effect of Context Expansion

From the previous results, the use of context expansion for the fMPE systems gave significant

improvements compared to those without context expansion. Table 9.4 summarises the effect

System
dev04 eval04

0 ±3 0 ±3

MPE 36.0 33.9

fMPE+MPE 35.6 34.4 33.7 32.5

pMPE+MPE 35.9 35.4 33.7 33.8

fMPE+pMPE+MPE 35.3 34.7 33.5 33.1

Table 9.4 CER performance of 4k centroids 16-component fMPE and pMPE systems with 0 and ±3 context

expansion on dev04 and eval04 for CTS-M task

of context expansion for the 4k centroids fMPE+MPE, pMPE+MPE and fMPE+pMPE+MPE sys-

tems. The fMPE+MPE systems gave an absolute CER reduction of 0.2–0.4% and 1.4–1.6% using

0 and ±3 context expansion respectively. Without context expansion, the pMPE+MPE system

gave 0.1–0.2% improvements over the MPE alone baseline. However, the ±3 context expan-

sion did not yield a consistent gain for the pMPE+MPE system. There was a 0.5% gain on
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dev04, but a 0.1% degradation in performance on eval04 compared to that without context

expansion. When the fMPE and pMPE techniques were combined, there were additional gains

of 0.6% and 0.2% on dev04 and eval04 respectively. Unfortunately, with ±3 expansion, the

fMPE+pMPE+MPE system performance was degraded by 0.3% and 0.6% on these test sets.

These results indicate that the pMPE technique is highly sensitive to over-fitting issues and does

not work very well with complex systems.

9.2.3 Experiments on Single Component Systems

The previous set of experiments suggests that the pMPE technique is easily over-trained, par-

ticularly when used with complex systems. In this section, the modelling power of the pMPE

technique is illustrated by considering simple systems with only one Gaussian components per

state. Table 9.5 compares the performance of the 4k centroids single component fMPE+MPE,

System
dev04 eval04

0 ±3 0 ±3

MPE 44.4 42.2

fMPE+MPE 42.1 40.1 39.4 37.3

pMPE+MPE 43.3 41.3 40.4 38.6

fMPE+pMPE+MPE 41.6 38.9 39.2 36.6

Table 9.5 CER performance of 4k centroids 1-component fMPE and pMPE systems with 0 and ±3 context

expansion on dev04 and eval04 for CTS-M task

pMPE+MPE and fMPE+pMPE+MPE systems. The baseline single component MPE alone sys-

tem gave 44.4% and 42.2% CER on dev04 and eval04 respectively. The fMPE+MPE system

improved the baseline by 2.3–2.8% and 4.3–4.9% absolute using 0 and ±3 context expansions

respectively. The pMPE+MPE system, on the other hand, gave absolute improvements of 1.1–

1.8% and 3.1–3.6% with and without context expansions. Combining these techniques yielded

further gains of 0.2–0.5% without context expansion and 0.7–1.2% with ±3 context expansion.

Several important conjectures can be made based on these results. Firstly, when a simple acous-

tic model was used, the gains obtained from the fMPE and pMPE techniques became significantly

larger. The loss in the modelling power of the static parameters has been compensated by the

dynamic parameters. Moreover, the pMPE+MPE system combined well with context expansion.

This provides a clear indication that the pMPE+MPE with ±3 context expansion sufferred from

an over-fitting problem. In addition, promising gains were also obtained by combining the fMPE

and pMPE techniques to yield the fMPE+pMPE+MPE system.

As previously mentioned in Chapter 7, the fMPE and pMPE techniques may be viewed as a
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semi-parametric trajectory model. From this perspective, the single component fMPE and pMPE

systems also provided an interesting account for the trajectory modelling aspects of the system.

Because the systems under consideration have only one Gaussian component per state, the ob-

servations associated with each HMM state in a standard HMM formulation is thus independent

and identically distributed (i.i.d.) with a normal distribution. Thus, the trajectory within each

HMM state is piece-wise constant. By incorporating the fMPE and pMPE techniques to the single

component systems, promising improvements as shown in Table 9.5 were obtained.

9.2.4 Experiments on Multiple Components Systems

From the above results, it is believed that there is a trade off between the system complexity and

the gains from fMPE and pMPE modelling. The Gaussian components in a state may be viewed

as a pseudo states. Throughout the duration of staying in a particular state, the observation

may be associated with one of the pseudo states. Therefore, a non-constant trajectory may, to

some extend, be defined implicitly. This section investigates the effect of increasing the number

of Gaussian components per state in the system. The results are given in Table 9.6. In general,

No. of
System

dev04 eval04

components Viterbi CN Viterbi CN

1

S1 MPE 44.4 43.2 42.2 41.2

S2 fMPE+MPE 40.1 39.3 37.3 36.4

S3 fMPE+pMPE+MPE 38.9 38.2 36.6 35.6

S1+S2
CNC

— 39.6 — 37.1

S2+S3 — 38.4 — 35.7

8

S4 MPE 36.6 35.7 34.7 33.8

S5 fMPE+MPE 34.6 34.2 32.7 32.3

S6 fMPE+pMPE+MPE 34.5 33.9 33.0 32.5

S4+S5
CNC

— 34.4 — 32.7

S5+S6 — 33.8 — 32.3

16

S7 MPE 36.0 35.0 33.9 33.4

S8 fMPE+MPE 34.4 33.9 32.5 32.2

S9 fMPE+pMPE+MPE 34.7 34.0 33.1 32.6

S7+S8
CNC

— 34.1 — 32.2

S8+S9 — 33.3 — 31.6

Table 9.6 Viterbi and CN decoding CER performance of 4k centroids fMPE and pMPE systems with ±3 context

expansion for different number of components per state on dev04 and eval04 for CTS-M task

the improvements from CN decoding decreases as the number of components in the system
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increases. For the single component systems, CN decoding gave 0.8–1.2% absolute gain. As

the number of components per state was increased to 8 and 16, the gains from CN decoding

decreased to 0.4–0.9% and 0.3–1.0% respectively. Furthermore, the fMPE and pMPE gains also

decreased as the number of components per state was increased. In fact, for the 16-component

system, the CN-decoding performance of the fMPE+pMPE+MPE system gave a loss of 0.1%

and 0.4% on dev04 and eval04 respectively compared to the fMPE+MPE system. Moreover,

it is also worth pointing out that there is only a marginal performance difference between the

8-component and 16-component systems for fMPE+MPE and fMPE+pMPE+MPE (0.1–0.2%).

The corresponding performance difference for the MPE models were 0.7% and 0.4% on dev04

and eval04 respectively. This suggests that the 16-component system is probably too complex

for the fMPE and pMPE techniques.

Table 9.6 also shows the CNC performance of combining MPE and fMPE+MPE as well

as fMPE+MPE and fMPE+pMPE+MPE. Due to the large performance gap between the MPE

and fMPE+MPE models, the combination performance was at most the same as the best in-

dividual system. The same applied to the single component and 8-component fMPE+pMPE

and fMPE+pMPE+MPE (S2+S3 and S5+S6) combinations. However, despite the poorer per-

formance of S9 compared to S8, a further 0.6% was obtained when these two systems are

combined. This indicates that the errors made by the two system are considerably different.

9.2.5 Mixing-up the fMPE and pMPE systems

The final experiments on fMPE and pMPE investigates the effects of mixing up (increasing

the number of Gaussian components per state) the fMPE+MPE and fMPE+pMPE+MPE sys-

tems. The 1-component and 8-component fMPE and fMPE+pMPE systems were mixed up to

16 components per state using an iterative mixture splitting procedure described in [134]. The

heaviest components were split in each iteration. Subsequent MPE training was performed on

these mixed-up systems. These systems were then compared with the original 16-component

fMPE+MPE and fMPE+pMPE+MPE. Table 9.7 compares the effects of mixing up the fMPE and

fMPE+pMPE systems from 1-component and 8-component systems. CER performance was ob-

tained using both Viterbi and CN decoding. The purpose of this experiments was to examine the

level of system complexity on which the fMPE and pMPE parameters may be learned to yield

a better performance. According to the Viterbi decoding results, the gain from mixing up the

8-component fMPE+MPE system to 16-component was minimal. The resulting system is slightly

inferior compared to the original 16-component fMPE+MPE system. A performance difference

of 0.1–0.3% was observed. However, the CN decoding gave a larger gain on the mixed-up

system (0.8–0.9%) compared to the baseline (0.3–0.5%). Consequently, the CN decoding per-

formance of the mixed up system gave a slight improvement of 0.1–0.2%. The trend for the

fMPE+pMPE+MPE system was slightly different. Mixing-up the 8-component system seems to
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Mix-up
System

dev04 eval04

from Viterbi CN Viterbi CN

—

S1 MPE 36.0 35.0 33.9 33.4

S2 fMPE+MPE 34.4 33.9 32.5 32.2

S3 fMPE+pMPE+MPE 34.7 34.0 33.1 32.6

S1+S2
CNC

— 34.1 — 32.2

S2+S3 — 33.3 — 31.6

8

S4 fMPE+MPE 34.5 33.7 32.8 32.1

S5 fMPE+pMPE+MPE 34.6 34.1 32.7 32.1

S1+S4
CNC

— 33.6 — 31.5

S4+S5 — 33.3 — 31.6

1

S6 fMPE+MPE 35.5 34.7 33.0 31.9

S7 fMPE+pMPE+MPE 35.6 34.8 32.8 31.8

S1+S6
CNC

— 33.8 — 31.6

S6+S7 — 34.3 — 31.3

Table 9.7 Viterbi and CN decoding CER performance of 4k centroids 16-component fMPE and pMPE systems

with ±3 context expansion for mix-up from different number of components per state on dev04 and eval04

for CTS-M task

yield a more robust system compared to learning the pMPE parameters on the 16-component

system. Both Viterbi and CN decoding results indicate small improvements of 0.1–0.5% on both

test sets, although the difference is larger on eval04. On the other hand, the performance gains

from mixing up the 1-component system is rather inconsistent. There was a huge degradation in

CER performance on dev04 (approximately 1.0% absolute). The results on eval04 is more con-

sistent with previous discussion. Larger improvements from CN decoding were observed on the

mixed-up systems. These were between 1.0–1.1% absolute gains. It is not obvious, from these

results, which is the preferred system. In general, learning the fMPE and pMPE parameters on

systems which are too complex suppresses the potential improvements from the trajectory mod-

elling perspective. In contrast, starting from systems which are too simple does not allow the

interaction between the dynamic and static parameters to be captured in the estimation process.

Therefore, mixing up the fMPE and pMPE systems of medium complexity is probably a better

option.

Table 9.7 also shows the CNC system combination results between the MPE and fMPE

systems as well as fMPE+MPE and fMPE+pMPE+MPE systems. It is interesting to note that

the combination of MPE and fMPE+MPE systems mixed up from 8 components (S1+S4) and

1 component (S1+S6) yielded despite the large performance gap between the individual sys-

tems. For example, the S1+S4 system gave an additional absolute 0.6% improvement over S4

even though S1 is 1.3% absolute worse than S4. Furthermore, on dev04, the combination of
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S1 (35.0%) and S6 (34.7%) resulted in a remarkable improvement of 0.9% absolute. These

results suggest that the iterative mixture splitting process is greatly influenced by the dynamic

parameters. This is not surprising as the GMM is capable of modelling trajectory to some extend.

Therefore, incorporating explicit trajectory modelling may change the resulting GMM parameter

estimate. When combining fMPE+MPE and fMPE+pMPE+MPE systems, the performance gain

is not very much affected by the different mixing up configurations. The performance gains were

found to be between 0.4–0.6%.

9.3 Multi-pass Multi-branch Evaluation on CTS Mandarin Task

Finally, Table 9.8 compares the performance of SAT and SAT+SPAM systems using several dif-

ferent frontends in a multi-pass multi-branch evaluation framework described in Section 8.5.

The basic frontend was the 39-dimensional HLDA projected features plus 3-dimensional pitch

features. Side-based Gaussianisation was performed on top of that to yield the GAUSS frontend.

Finally, fMPE was used to discriminatively train the GAUSS features to obtain the fMPE frontend.

From Table 9.8, the use of Gaussianisation improved the performance by 1.0–1.3% on dev04 and

System
CER (%)

dev04 eval03 eval04

P3a HLDA 35.8 45.0 33.0

P3b HLDA+SAT 35.0 44.2 32.4

P3s HLDA+SAT+SPAM 34.2 43.7 32.1

P3d GAUSS 34.6 43.3 32.3

P3e GAUSS+SAT 33.7 42.7 31.7

P3t GAUSS+SAT+SPAM 33.2 41.8 30.5

P3f fMPE 33.5 42.0 30.4

P3g fMPE+SAT 33.0 41.3 30.2

P3u fMPE+SAT+SPAM 32.7 41.3 29.7

P3b+P3s

CNC

33.4 42.9 31.4

P3e+P3t 32.8 41.4 30.2

P3g+P3u 32.3 40.8 29.3

Table 9.8 CER performance of various systems evaluated on dev04 and eval03 in a multi-pass multi-branch

framework for CTS-M task

1.5% and 1.9% on eval03. This phenomenon is contrary to the results presented in [39, 74],

where Gaussianisation only yielded marginal improvements on both CTS-E and BN-E tasks. fMPE

gave a further improvement of 1.1% and 1.3% on dev04 and eval03 respectively. In general,

the performance gains obtained from SAT and SAT+SPAM on both HLDA and GAUSS frontends
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were similar. SAT improved the CER performance by 0.6–0.9% absolute. SAT+SPAM further

reduced the CER by 0.5–0.9%. The improvement from fMPE+SAT and fMPE+SAT+SPAM sys-

tems was smaller. The fMPE+SAT system is 0.5–0.7% better than the fMPE system while the

fMPE+SAT+SPAM system is only 0.3% better than fMPE+SAT on dev04 but no gains on eval03.

Table 9.8 also shows the 2-way combination results between SAT and SAT+SPAM systems with

different frontends. With the HLDA frontend, combining SAT and SAT+SPAM gave a further

0.8% improvement compared to the best individual system. However, the combination gains for

the GAUSS and fMPE systems were smaller, only 0.3–0.5% absolute CER reduction. The over-

all combined system performance was improved by 1.0–1.5% when Gaussianised frontend was

used. A further improvement of 0.5–0.6% was obtained using the fMPE frontend.



10

Conclusions and Future Work

This thesis has investigated several forms of precision matrix models for continuous density hid-

den Markov models (CDHMMs) with application to continuous speech recognition. Two major

contributions are summarised in Sections 10.1 and 10.2 respectively. The first looks at im-

proved spatial correlation modelling using structured precision matrix approximation schemes

to achieve a compact model representation. The second contribution involves the investigation

of the time varying precision matrices as a semi-parametric trajectory model. Suggestions for

possible future research are also given in Section 10.3.

10.1 Structured Precision Matrix Approximations

Most CDHMM-based speech recognition systems employ multivariate Gaussian mixture models

to represent the output probability density functions. A standard problem when modelling mul-

tivariate continuous distributions is how to accurately model the correlations between feature

elements. Various forms of covariance and precision matrix approximation schemes were re-

viewed in Chapter 3. In general, approximating the precision matrix structures results in models

which are computationally more efficient because the likelihood function is directly expressed

in terms of the precision matrices. Approximating the covariance matrix on the other hand re-

quires matrix inversion in likelihood calculation. Specifically, the Semi-Tied Covariances (STC),

Extended Maximum Likelihood Linear Transform (EMLLT) and Subspace for Precision and Mean

(SPAM) models have been successfully applied to speech recognition tasks with promising im-

provements over the diagonal covariance matrix approximation approach. Chapter 3 also in-

troduced a generic framework of basis superposition which unifies these precision matrix ap-

proximation schemes within a consistent formulation. The goal is to extract the fundamental

structures that co-exist within the precision matrices in the system. According to this frame-

135



CHAPTER 10. CONCLUSIONS AND FUTURE WORK 136

work, the precision matrices are modelled by superimposing a set of symmetric matrix bases

(global parameters), weighted by a corresponding set of basis coefficients which are Gaussian

component specific. By compressing as much correlation information as possible into a small

set of bases, the effective number of basis coefficients in the system is greatly reduced, thereby

yielding a compact model representation. The experimental results presented in Chapter 8 re-

vealed the importance of compact model representation to ensure robust parameters estimation.

In particular, the SPAM model, with the most compact precision matrix approximation, gave the

best recognition performance.

Previous literatures have presented the STC, EMLLT and SPAM models which are trained

using the Maximum Likelihood (LM) criterion. The ML estimation formulae for these models are

briefly discussed in Chapter 4. In the same chapter, various implementation issues were studied.

These include the computational and memory requirements, initialisation schemes, variance

flooring and alternative parameters tying schemes. These aspects were carefully addressed to

ensure efficient application of these models in Large Vocabulary Continuous Speech Recognition

(LVCSR). Chapter 5 employed the Minimum Phone Error (MPE) training criterion to discrimina-

tively train the precision matrix models. Adaptation and adaptive training of various precision

matrix models using the Maximum Likelihood Linear Regression (MLLR) techniques were also

discussed in Chapter 6 to produce state-of-the-art performance. As shown in Chapter 8, the gains

from precision matrix modelling were almost retained after MPE training and MLLR adaptation.

In general, various precision matrix models were found to yield consistent improvements

over several speech transcription tasks, namely the conversational telephone speech English and

Mandarin tasks as well as the broadcast news English task. These models have been successfully

applied with other techniques such as Heteroscedastic Linear Discriminant Analysis (HLDA),

Gaussianisation and Speaker Adaptive Training (SAT). Chapter 8 presented a range of exper-

imental results various precision matrix models evaluated in a number of evaluation setups,

including an advanced multi-pass multi-branch evaluation framework. In particular, the speaker

adaptively trained SPAM models were shown to improve the standard CUHTK evaluation sys-

tems on various transcription tasks.

10.2 Semi-parametric Trajectory Model

The second part of this thesis proposed an alternative form of precision matrix model. Instead

of modelling the feature correlations in the acoustic space, a novel approach, called pMPE, at-

tempts to capture the temporally varying attributes in the precision matrix structures. The pMPE

model may also be described in the basis superposition framework. In contrast to the previous

formulation, the bases now describe the common precision matrix structures over time (spa-
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tial versus temporal superposition). The time dependent basis coefficients are derived based on

the posterior probabilities of a set of centroids, motivated by the formulation of the fMPE tech-

nique, which has been found to yield improvements over the standard MPE trained systems. The

fMPE and pMPE techniques were presented collectively as a semi-parametric trajectory model

in Chapter 7. Two parameter estimation procedures and some implementation issues were also

discussed. In this work, a trade off between the HMM system complexity and the improvements

obtained from fMPE and pMPE was observed. Specifically, the gains from pMPE quickly satu-

rates as the system complexity increases. Nevertheless, the pMPE technique was found to yield

small gains over the MPE alone systems. Marginal gains were also obtained when combining

the fMPE and pMPE systems using confusion network combination.

10.3 Future Work

There are several possible further research which is beyond the scope of this work, either in

terms of improvements to current work or applications in other domains. Several suggestions of

these are listed below.

• Most of the research on covariance and precision matrix modelling techniques concern the

application of these techniques to HMM-based speech recognition tasks. In general, the

basis superposition precision matrix modelling framework may be applied to efficiently

approximate a large number of full precision matrices. One of the on-going research along

this line being pursued is its application in the area of speaker verification and identifica-

tion [12, 136].

• This work has emphasised and shown the importance of compact model representation

to allow for robust estimation and improved performance. The key element is to find a

powerful set of bases which capture as much common structures as possible. This is usu-

ally realised at the expanse of increased difficulty in learning these bases and complexity

in likelihood computation. This is clearly evident when increasing the modelling power

from STC to EMLLT to SPAM. More complicated approximation structures such as the hi-

erarchical correlation compensation (HCC) model [72] has also been reported to yield

promising gains. As the model compactness increases, the trainability and its convergence

rate reduces dramatically. The performance of these models may be improved by seeking

for better initialisation and training schemes [87].

• The semi-parametric trajectory model presented in Chapter 7 of this thesis is a relatively

new concept. There are plenty of room for improvements. The research on fMPE technique

by itself is actively pursued [59, 96, 126]. The small gains from pMPE may have been due

to the simple diagonal basis structure assumed in this work. More general basis structure
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may be explored to exploit the full potential of pMPE. A major issue with such generali-

sation is the dramatical increase in the computational cost in computing the effective full

precision matrix, and hence the likelihood at each time. An efficient likelihood compu-

tation which takes advantage of the basis superposition structure is required. Finally, to

completely model the semi-parametric trajectory, the time varying attributes of the com-

ponent weights associated with each Gaussian component in a GMM may be modelled.

The time dependent weights may be formulated using a basis superposition framework

with the superposition weights derived from the centroid posterior probabilities, similar to

fMPE and pMPE.



Appendix

A Useful Matrix Algebra

This section provides some useful matrix algebra used in the derivation of the update formu-

lae for various precision matrix models. This includes the matrix inversion and determinant

identities as well as some vector and matrix differentiation formulae.

Matrix Inversion and Determinant Identities

This is useful when inverting a matrix of the form A + BDC. Its inverse is given by:

(A + BDC)−1 = A−1 − A−1B(D−1 + CA−1B)−1CA−1 (A-1)

Figure A-1: Matrix Inversion Lemma

where A is n× n, B is n×m, C is m× n and D is m×m. In the case where m = 1 (D = d),

equation (A-1) becomes

(A + dbc′)−1 = A−1 −
dA−1bc′A−1

(1 + dc′A−1b)
(A-2)

Figure A-2: Matrix Inversion Lemma with (D = d)

and its determinant can be found using

|A + dbc′| = (1 + dbA−1c′)|A| (A-3)

Figure A-3: Matrix Determinant Lemma

139
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Vector and Matrix Differentiation Formulae

First, let us define A and b as d × d square matrix and d × 1 column vector respectively. x is a

scalar variable. The following are commonly used identities:

∂(Ab)

∂b
= A′ (A-4)

∂(b′Ab)

∂b
= (A + A′)b (A-5)

∂ log |A|

∂x
= Tr

(

∂A

∂x
A−1

)

(A-6)

Figure A-4: Matrix differentiation

B Initialisation for EMLLT transform

This form of initialisation assumes no information about the statistics of the data. A k×n EMLLT

transform can be initialised by condensing a set of n
2 (n + 1) vectors that spans the symmetric

matrix space into the transform. First let V, I and J be sets of n dimensional vectors such that

vectors in V span the symmetric matrix space, vectors in I form an identity matrix, V = I ∪ J

and I ∩ J = O. So, the EMLLT transform

A =

[

A(1)

A(2)

]

(B-1)

is initialised with A(1) set to In and A(2) is constructed by condensing the vectors in J into it.

There are many ways of defining V and condensing its vectors into A(2). In the following, I will

describe one possible implementation using a simple case where k = 5 and n = 3. I and J can

be defined as

I =























1

0

0









,









0

1

0









,









0

0

1























(B-2)

J =























1

1

0









,









0

1

1









,









1

0

1























(B-3)

A(2) is filled up row by row with the vectors in J . After the final row of A(2) is filled, the next

vector in J is added to the first row and so on until all the vectors in J are consumed. This

gives

A(2) =

[

2 1 1

0 1 1

]

(B-4)
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C Precision Matrices and Conditional Independence

Consider d random variables, {x1, x2, . . . , xd} such that xi is conditionally dependent only on xj

where j < i. Thus, these random variables can be written as

xi =
i−1
∑

j=1

cijxj + wi (C-1)

where cij indicates the conditional dependency between xi and xj , wi ∼ N (µi,σ
2
i ) are d inde-

pendent random sources. This can be rewritten as

x = Cx + w

= (I − C)−1w

= L−1w (C-2)

where C and L are a lower triangular matrices given by

C =















0 0 · · · 0

c21 0
. . .

...
...

. . .
. . . 0

cd1 · · · cd(d−1) 0















L =















1 0 · · · 0

−c21 1
. . .

...
...

. . .
. . . 0

−cd1 · · · −cd(d−1) 1















(C-3)

The random variables are arranged such that if cij = 0, then ckj = 0 for k > i. Hence, the

precision matrix can then be expressed as

P = L′
ΛL (C-4)

where Λ is a diagonal matrix whose ith diagonal element is given by λii = 1/σ2
i . Thus, pij is

given by

pij =
d
∑

k=i

λkkckickj (C-5)

If xi and xj are conditionally independent, cij = 0. Thus, pij = 0. In other words, a zero

off-diagonal precision matrix element indicates conditional independence between the variables

corresponding to the row and column indexes.
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D STC Parameters Update Formula

The precision matrix expression for a STC model is given by equation (3.23). Substituting this

into equation (4.9) yields the following auxiliary function:

Q(θ, θ̂) = K +
1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

2 log |A| + log |Λsm| −
n
∑

i=1

λsmiaiW
ml
sma′

i

}

= K +
1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

2 log |A| +
n
∑

i=1

log(λsmi) − λsmiaiW
ml
sma′

i

}

= K +
1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

2 log(aici) +

n
∑

i=1

log(λsmi) − λsmiaiW
ml
sma′

i

}

(D-1)

where ci is a column vector of cofactors that correspond to the ith row of A. The basis vectors

and coefficients can be updated in an alternating fashion, each time keeping the other parame-

ters constant. Thus, an iterative update can be formulated as described in the following.

To update the basis coefficients, simply differentiate equation (D-1) w.r.t. λsmi and equate

to zero:
∂Q

∂λsmi
=
βmlsm

2

{

1

λsmi
− aiW

ml
sma′

i

}

= 0 (D-2)

This yields the ML update formula for λsmi as

λsmi =
1

aiW
ml
sma′

i

=
1

diag(AW ml
smA′)

(D-3)

Thus, the basis coefficients given by the ML estimator is simple the inverse variance of the

projected covariance statistics.

Similarly, the basis vectors can be updated by differentiating equation (D-1) w.r.t. ai and

equate to zero:

∂Q

∂ai
=

S
∑

s=1

M
∑

m=1

βmlsm

{

c′i
aici

− λsmiaiW
ml
sm

}

=
βc′i
aici

− aiGi

=
Gi(βc′iG

−1
i − ai)

aici
= 0 (D-4)

where the required statistics are given by

Gi =
S
∑

s=1

M
∑

m=1

βmlsmλsmiW
ml
sm (D-5)

β =
S
∑

s=1

M
∑

m=1

βmlsm (D-6)
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It is clear that equation (D-4) is true if and only if c′iG
−1
i is parallel to ai. So,

ai = αc′iG
−1
i (D-7)

where α is a scalar. Substituting this back into equation (D-4) yields

α =

√

β

c′iG
−1
i ci

(D-8)

and hence,

ai = c′iG
−1
i

√

β

c′iG
−1
i ci

(D-9)

E EMLLT Parameters Update Formula

Since EMLLT is an extension to STC, similar iterative update formulation is applicable when up-

dating the EMLLT parameters, alternating between the basis vectors and coefficients. However,

the rectangular EMLLT transformation matrix A does not allow simplification of the determi-

nant term in equation (4.9). Consequently, a standard optimisation routine is used to optimise

the basis vectors. On the other hand, the basis coefficients can be updated using an efficient

closed-form solution. In the following, the closed form update formula for λsmi will be derived.

Then, the optimisation of basis vectors based on the gradient descent method will be described.

There are two forms of basis coefficient update, namely the additive and multiplicative

updates. The former results in both positive and negative coefficients while the latter restricts

the coefficients to be strictly positive. The additive update has been found to yield better results.

Hence, only discuss the additive update will be discussed.

Firstly, let the new estimate of λsmi be written as

λ̂smi = λsmi + ∆smi (E-1)

Thus, the auxiliary function in equation (4.9) can be rewritten as

Q∆(θ, θ̂) = Q∆(θ̂, θ̂) +
1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

log

∣

∣

∣

∣

P sm + ∆smia
′
iai

P sm

∣

∣

∣

∣

− ∆smiaiW
ml
sma′

i

}

= Q∆(θ̂, θ̂) +
1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

log(1 + ∆smiaiΣsma′
i) − ∆smiaiW

ml
sma′

i

}

(E-2)

Differentiating this w.r.t. ∆smi yields

∂Q

∂∆smi
=

aiΣsma′
i

1 + ∆smiaiΣsma′
i

− aiW
ml
sma′

i = 0 (E-3)
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and equating to zero gives the ML solution of ∆smi as

∆smi =
1

aiW
ml
sma′

i

−
1

aiΣsma′
i

(E-4)

It is important to update the covariance matrix after the update of λsmi to ensure that the

subsequent updates are correct. This can be done easily using the Matrix Inversion Lemma:

Σsm =
(

Σ
−1
sm + ∆smia

′
iai

)−1
= Σsm −

∆smiΣsma′
iaiΣsm

1 + ∆smiaiΣsma′
i

(E-5)

As previously mentioned, the update of basis vectors does not have a closed form solu-

tion. In this report, the update of the basis vectors will be described using the gradient descent

method. To do this, the gradient vector as well as the Hessian matrix have to be computed. The

new basis vector ai can be expressed in terms of the old one as:

âi = ai + ∆i (E-6)

So, the resulting precision matrices can be written as

P̂ sm = P sm + λsmi(â
′
iâi − a′

iai) (E-7)

Using the Sherman-Morrison-Woodbury formula, the determinant of the new precision matrix is

given by

G(âi) =
|P̂ sm|

|P sm|
= (1 − λsmiaiΣsma′

i)(1 + λsmiâiΣsmâ′
i) +

(

λsmi(âiΣsma′
i)
)2

(E-8)

Thus, the auxiliary function in equation (4.9) can be expressed in terms of âi and ai as

Q
(i)
A (θ, θ̂) = Q

(i)
A (θ,θ) +

1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

log
|P̂ sm|

|P sm|
− λsmi(âiW

ml
smâ′

i − aiW
ml
sma′

i)

}

(E-9)

To perform gradient descent optimisation, the gradient vector and Hessian matrix of the auxil-

iary function are needed:

f i =
∂Q

∂âi
=

1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

G′(âi)

G(âi)
− 2λsmiâiW

ml
sm

}

(E-10)

H i =
∂2Q

∂â′
i∂âi

=
1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

G(âi)G′′(âi) − [G′(âi)]
′[G′(âi)]

G(âi)2
− 2λsmiW

ml
sm

}

(E-11)

where

G′(âi) = 2
{

λsmiâiΣsm + λ2
smi

(

aiΣsma′
iaiΣsm − aiΣsma′

iaiΣsm

)}

(E-12)

G′′(âi) = 2
{

λsmiΣsm + λ2
smi

(

Σsma′
iaiΣsm − aiΣsma′

iΣsm

)}

(E-13)

Given the current estimate of the basis vector, âi

G(ai) = 1 (E-14)

G′(ai) = 2λsmiaiΣsm (E-15)

G′′(ai) = 2λsmiΣsm

(

1 − aiΣsma′
i + λsmia

′
iaiΣsm

)

(E-16)
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Hence, the gradient vector and Hessian matrix at the current estimate is given by

f̄ i = f i

∣

∣

∣

âi=ai

=
S
∑

s=1

M
∑

m=1

βmlsmλsmiai

(

Σsm − W ml
sm

)

(E-17)

H̄ i = H i

∣

∣

∣

âi=ai

=

S
∑

s=1

M
∑

m=1

βmlsmλsmi

{

Σsm

(

1 − aiΣsma′
i

)

− W ml
sm − λsmiΣsma′

iaiΣsm

}

(E-18)

and the new estimate of the basis vector is given by

âi = ai + ηf̄ iH̄
−1
i (E-19)

where η is a scalar that determines the step size of each iteration. This is usually initialised

as unity and gradually decreasing its value until the new estimate of the basis vector yields an

increase in the auxiliary function.

F SPAM Parameters Update Formula

SPAM model[7] is a generalisation to EMLLT models where the rank one constraint on the basis

matrices is removed. Thus, the precision matrix of a SPAM model can be written as

P sm =
n
∑

i=1

λsmiSi (F-1)

where Si, is an arbitrary symmetric matrix provided the final precision matrix is positive definite.

Substitute the expression of precision matrix into equation (4.9) leads to the following modified

auxiliary function

Q(θ, θ̂) = K +
1

2

S
∑

s=1

M
∑

m=1

βmlsm

{

log (|P sm|) −
n
∑

i=1

λsmi Tr(W ml
smSi)

}

(F-2)

There is no closed form solution to optimise equation (F-2) w.r.t. the model parame-

ters. However, the basis coefficients, λsmi can be updated using an efficient conjugate gradient

algorithm[7]. The following describes the coefficient update using the Polak-Ribeire conjugate-

gradient method[94]. First, let

P̂ sm = P sm + ∆smiSi (F-3)

where P sm and P̂ sm denote the current and new estimate of the precision matrix. Thus, the

auxiliary function with respect to the mth component, sth state and ith basis matrix can be

expressed as

Qsm(θ, θ̂) = K +
βmlsm

2

{

log (|P sm + ∆smiSi|) − Tr(W ml
smP sm) − ∆smi Tr(W ml

smSi)
}

(F-4)
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Differentiate w.r.t. ∆smi about the point ∆smi = 0 gives

f̄smi =
∂Q(i)

∂∆smi

∣

∣

∣

∆smi=0
=

βmlsm

2

{

Tr(P−1
smSi) − Tr(W ml

smSi)
}

(F-5)

=
βmlsm

2

{

Tr
(

(P−1
sm − W ml

sm)Si

)

}

(F-6)

This gives gradient of the auxiliary function w.r.t., λsmi. Given the gradient vector, f̄
(k)
sm, at the

kth iteration, the conjugate gradient direction vector, d
(k)
sm, is then given by

d(k)
sm = f̄

(k)
sm + ηkd

(k−1)
sm (F-7)

where

ηk =
f̄

(k)′

sm

(

f̄
(k)
sm − f̄

(k−1)
sm

)

f̄
(k−1)′

sm f̄
(k−1)
sm

(F-8)

and d
(0)
sm = 0. Once the direction vector is found, the optimisation simplifies to a one dimensional

line search problem where

P̂ sm = P sm + ∆smRm (F-9)

Rm =
n
∑

i=1

dsmiSi (F-10)

and dsmi is the ith element of the direction vector, dsm, given by equation (F-7). Thus, the

change in the auxiliary function for component m in state s can be written as

Qsm − Q̂s =
βmlsm

2

{

log

(∣

∣

∣

∣

P sm + ∆smRm

P sm

∣

∣

∣

∣

)

− ∆sm Tr(W ml
smRm)

}

(F-11)

=
βmlsm

2

{

log

(∣

∣

∣

∣

I + ∆smP
− 1

2
sm RmP

− 1
2

sm

∣

∣

∣

∣

)

− ∆sm Tr(W ml
smRm)

}

(F-12)

=
βmlsm

2







d
∑

j=1

log (1 + ∆smwsmj) − ∆sm Tr(W ml
smRm)







(F-13)

where wsmj is the jth eigenvalue of P
− 1

2
sm RmP

− 1
2

sm . The line search can be further constrained

to ensure that 1 + ∆smwsmj > 0. Hence, the line search is confined to be within the range

−1/w
(max)
sm < ∆sm < −1/w

(min)
sm , where w

(max)
sm and w

(min)
sm are the largest positive and negative

eigenvalues. If w
(max)
sm (w

(min)
sm ) does not exist, the range of ∆sm is then unbounded from below

(above).

G Checks for fMPE and pMPE Differentials

A crucial aspect of training the fMPE and pMPE models is the determination of the differentials

used in the gradient-based optimisation (see Chapter 7). It is important to ensure that the
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fMPE and pMPE parameters are used to model the dynamic (temporally varying) aspects of the

system. For the interleaved update presented in Section 7.3.2.1, this is achieved by using the

complete differentials so that the static aspects are accounted for by the static parameters in the

subsequent ML training iteration. In the following, the fMPE and pMPE differentials will be

shown to learn only the temporally varying attributes of the system. This is realised by showing

that the differentials are zero when only one centroid is used for fMPE and pMPE, because more

than one centroid is required to yield a trajectory model. This also provides convenient checks

for the fMPE and pMPE implementations. The derivation will proceed as follows. By setting the

number of centroids, n = 1, the corresponding posterior probability will always be h1(t) = 1.

Checks for fMPE Differentials

The checks for fMPE differentials are given by [97]:

0 =
S
∑

s=1

M
∑

m=1

T
∑

t=1





∂Qmpe
smt

∂b
(i)
j

∣

∣

∣

∣

∣

h1(t)=1

+
∂Qmpe

smt

∂µsmj

∂µsmj

∂b
(i)
j

∣

∣

∣

∣

∣

h1(t)=1



 (G-1)

0 =
S
∑

s=1

M
∑

m=1

T
∑

t=1

∂Qmpe
smt

∂σ2
smj

∂σ2
smj

∂b
(i)
j

∣

∣

∣

∣

∣

h1(t)=1

(G-2)

The complete fMPE differential is given by the sum of the RHS of equations (G-1) and (G-2).

Hence, by proofing these equation shows that the differential becomes zero when there is only

one centroid in the system. By using equations (7.45), (7.47) and (7.49), the RHS of equation

(G-1) may be expressed as

S
∑

s=1

M
∑

m=1

T
∑

t=1





∂Qmpe
smt

∂b
(i)
j

∣

∣

∣

∣

∣

h1(t)=1

+
∂Qmpe

smt

∂µsmj

∂µsmj

∂b
(i)
j

∣

∣

∣

∣

∣

h1(t)=1





=
S
∑

s=1

M
∑

m=1

T
∑

t=1





γmpe
sm (t)(ot − µsmtj)

σ2
smj

−
γml

sm(t)

β̃mlsmj

(

xnsmj − xdsmj

)

σ2
smj





=
S
∑

s=1

M
∑

m=1





(

xnsmj − xdsmj

)

σ2
smj

−

(

xnsmj − xdsmj

)

σ2
smj



 = 0 (G-3)

using the fact that

S
∑

s=1

M
∑

m=1

T
∑

t=1

γmpe
sm (t) =

S
∑

s=1

M
∑

m=1

βmpesm = 0 (G-4)

T
∑

t=1

γmpe
sm (t)ot =

(

xnsmj − xdsmj

)

(G-5)

T
∑

t=1

γml
sm(t) = β̃mlsmj (G-6)
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Similarly, by using equations (7.48) and (7.50), the RHS of equation (G-2) may be expressed as

S
∑

s=1

M
∑

m=1

T
∑

t=1

∂Qmpe
smt

∂σ2
smj

∂σ2
smj

∂b
(i)
j

∣

∣

∣

∣

∣

h1(t)=1

= −
S
∑

s=1

M
∑

m=1

T
∑

t=1

ztjjγ
ml
sm(t)(otj − µsmtj)

βmlsm

(

(wn
smj − wd

smj)/σ
2
smj − β

mpe
sm

σ2
smj

)

= 0 ×
S
∑

s=1

M
∑

m=1

(

(wn
smj − wd

smj)/σ
2
smj − β

mpe
sm

σ2
smj

)

= 0 (G-7)

with the help of the update formula for the static mean

µsmj =

∑T
t=1 ztjjγ

ml
sm(t)otj

∑T
t=1 ztjjγ

ml
sm(t)

(G-8)

Checks for pMPE Differentials

The checks for pMPE differentials are given by [112]:

0 =
S
∑

s=1

M
∑

m=1

T
∑

t=1





∂Qmpe
smt

∂z
(i)
j

∣

∣

∣

∣

∣

h1(t)=1

+
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smt

∂σ2
smj

∂σ2
smj

∂z
(i)
j

∣

∣

∣

∣

∣

h1(t)=1



 (G-9)
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S
∑

s=1

M
∑

m=1

T
∑

t=1

∂Qmpe
smt

∂µsmj

∂µsmj

∂z
(i)
j

∣

∣

∣

∣

∣

h1(t)=1

(G-10)

The complete pMPE differential is given by the sum of the RHS of equations (G-9) and (G-10).

By using equations (7.46), (7.48) and (7.52), the RHS of equation (G-9) may be expressed as

S
∑

s=1

M
∑

m=1

T
∑

t=1





∂Qmpe
smt

∂z
(i)
j

∣

∣

∣

∣

∣

h1(t)=1

+
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smt
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smj

∂σ2
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(i)
j

∣

∣

∣

∣

∣
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
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2
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sm
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smj

×
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smj
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smj

− βmpesm

)

= 0 (G-11)

by making use of equations (G-4), (G-5) and (G-6) and the definition of the static variance of

the jth dimension

σ2
smj =

∑T
t=1 ztjjγ

ml
sm(t)(otj − µsmtj)

2

βmlsm

(G-12)

(G-13)
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