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Summary

Most modern speech recognition systems use either Mel-frequency cepstral coefficients or per-

ceptual linear prediction as acoustic features. Recently, there has been some interest in alter-

native speech parameterisations based on using formant features. Formants are the resonant

frequencies in the vocal tract which form the characteristic shape of the speech spectrum. How-

ever, formants are difficult to reliably and robustly estimate from the speech signal and in some

cases may not be clearly present. Rather than estimating the resonant frequencies, formant-like

features can be used instead. Formant-like features use the characteristics of the spectral peaks

to represent the spectrum.

In this work, novel features are developed based on estimating a Gaussian mixture model

(GMM) from the speech spectrum. This approach has previously been used sucessfully as a

speech codec. The EM algorithm is used to estimate the parameters of the GMM. The extracted

parameters: the means, standard deviations and component weights can be related to the for-

mant locations, bandwidths and magnitudes. As the features directly represent the linear spec-

trum, it is possibly to apply techniques for vocal tract length normalisation and additive noise

compenstation techniques.

Various forms of GMM feature extraction are outlined, including methods to enforce tem-

poral smoothing and a technique to incorporate a prior distribution to constrain the extracted

parameters. In addition, techniques to compensate the GMM parameters in noise corrupted

environments are presented. Two noise compensation methods are described: one during the

front-end extraction stage and the other a model compensation approach.

Experimental results are presented on the Resource Management (RM) and Wall Street Jour-

nal (WSJ) corpora. By augmenting the standard MFCC feature vector with the GMM compo-

nent mean features, reduced error rates on both tasks are achieved. Statistically significant

improvements are obtained on the RM task. Results using the noise compensation techniques

are presented on the RM task corrupted with additive “operations room” noise from the Noi-

sex database. In addition, the performance of the features using maximum-likelihood linear

regression (MLLR) adaptation approaches on the WSJ task is presented.

Keywords

Speech recognition, feature extraction, speech parameters, formants, formant-like features,

expectation maximisation, noise compensation, gravity centroids, vocal tract length normalisa-

tion, speaker adaptation.
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Table of Notation

The following functions are used in this thesis:
������� the probability density function for a continuous variable �
� ����� the discrete probability of event � , the probability mass function	 ��
���

�� the auxiliary function for original and reestimated parameters 
 and 


��� ��� ��� The expected value of � over �

Vectors and matrices are defined:�
a matrix of arbitary dimensions���
the transpose of the matrix

�
� � � the determinant of the matrix

�
�

an arbitary length sequence of vector-valued elements���
a sequence of vectors length �

� an arbitary length vector
��� the  �!#" vector-valued element of a sequence of vectors

�
��$ the % !#" scalar element of a vector, or sequence of scalars, �

The exception to this notation is for:
& � a sequence of HMM states length T')(

the sequence of words of length L

Other symbols commonly used are:
*+�-,.� a general speech observation at time ,
/ � A sequence of T speech observations0 *+�-,1� the first-order (velocity) dynamic parameters at time ,

0�0 *+�-,1� the second-order (acceleration) dynamic parameters at time ,

2 �-,1�436587:9;�-,.�=<><><?7 � �-,.��@ � set of FFT points at time T

 a set of Gaussian mixture model parameter values


BADCFE the set of GMM parameters for the noise model

BADGHE the noise-compensated GMM parameters

�I a set of parameter values for mixture component J
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Acronyms used in this work

ASR Automatic Speech Recognition

RM corpus Resource Management corpus

WSJ corpus Wall Street Journal corpus

HMM Hidden Markov Model

CDHMM Continuous Density Hidden Markov Models

ANN Artificial Neural Net
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MLLR Maximum Likelihood Linear Regression
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LDA Linear Discriminant Analysis

FFT Fast Fourier Transform

CSR Continuous Speech Recognition
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CRSNAB Continuous Speech Recognition North American Broadcast news
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1

Introduction

Automatic speech recognition (ASR) attempts to map from a speech signal to the corresponding

sequence of words it represents. To perform this, a series of acoustic features are extracted

from the speech signal, and then pattern recognition algorithms are used. Thus, the choice of

acoustic features is critical for the system performance. If the feature vectors do not represent

the underlying content of the speech, the system will perform poorly regardless of the algorithms

applied.

This task is not easy and has been the subject of much research over the the past few decades.

The task is complex due to the inherent variability of the speech signal. The speech signal varies

for a given word both between speakers and for multiple utterances by the same speaker. Accent

will differ between speakers. Changes in the physiology of the organs of speech production will

produce variability in the speech waveform. For instance, a difference in height or gender will

have an impact upon the shape of the spectral envelope produced. The speech signal will also

vary considerably according to emphasis or stress on words. Environmental or recording differ-

ences also change the signal. Although humans listeners can cope well with these variations, the

performance of state of the art ASR systems is still below that achieved by humans.

As the performance of ASR systems has advanced, the domains to which they have been

applied has expanded. The first speech recognition systems were based on isolated word or

letter recognition on very limited vocabularies of up to ten symbols and were typically speaker

dependent. The next step was to develop medium vocabulary systems for continuous speech,

such as the Resource Management (RM) task, with a vocabulary of approximately a thousand

words [91]. Next, large vocabulary systems on read or broadcast speech with an unlimited

scope were considered. Recognition systems on these tasks would use large vocabularies of up

to 65,000 words, although it is not possible to guarantee that all observed words will be in the

vocabularly. An example of a full vocabulary task would be the Wall Street Journal task (WSJ)

where passages were read from the Wall Street Journal [87]. Current state of the art systems

have been applied to to recognising conversational or spontaneous speech in noisy and limited

bandwidth domains. An example of such a task would be the SwitchBoard corpus [42].

The most common approach to the problem of classifying speech signals is the use of hidden

1
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Figure 1.1 General speech recognition system

Markov models (HMMs). Originally adapted for the task of speech recognition in the early

1970s by researchers at CMU and IBM [64], HMMs have become the most popular models for

speech recognition. One advantage of using HMMs is that they are a statistical approach to

pattern recognition. This allows a number of techniques for adapting and extending the models.

Furthermore, efficient recognition algorithms have been developed. One of the most popular

alternative approaches to acoustic modelling used in ASR is the combination of an artificial

neural net (ANN) with a HMM to form a hybrid HMM-ANN system [93] [9]. However, this

thesis will only consider the use of HMM based speech recognition systems.

1.1 Speech recognition systems

Statistical pattern recognition is the current paradigm for automatic speech recognition. If a

statistical model is to be used, the goal is to find the most likely word sequence 
' , given a

series of � acoustic vectors,
/ � 3 � *+��� � �><><><:� *+� � � �


' 3������
	��
�� � � ' � / � � (1.1)

Applying Bayes rule to the above equation yields


' 3 �����
	��
�� � � � ' � ��� / � � ' �
��� / � � � (1.2)

3 �����
	��
�� 5 � � ' � ��� / � � ' ��@ (1.3)

where the most likely word sequence is invariant of the likelihood of the acoustic vectors ��� / � � .
The search for the optimal word sequence comprises two distributions: the likelihood of the

acoustic vectors given a word sequence ��� / � � ' � , generated by the acoustic model and the

likelihood of a given string of words
� � ' � given by the language model. An overview of a

speech recognition system is given in figure 1.1.

In most systems, there is insufficient data to estimate statistical models for each word. In-

stead, the acoustic models are formed of sub-word units such as phones. To map from the
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sub-word units to the word sequences, a lexicon is required. The language model represents the

syntactic and semantic content of the speech, and the lexicon and acoustic model handle the

relationship between the words and the feature vectors.

1.2 Speech parameterisation

In order to find the most likely word sequence, equation 1.3 requires a set of acoustic vectors/ � . Recognising speech using a HMM requires that the speech be broken into a sequence of

time-discrete vectors. The assumption is made that the speech is quasi-stationary, that is, it is

reasonably stationary over short (approximately 10ms) segments.

The goal of the feature vector is to represent the underlying phonetic content of the speech.

The features should ideally be compact, distinct and well represented by the acoustic model.

State of the art ASR systems use features based on the short term Fourier transform (SFT) of the

speech waveform. Taking the SFT yields a frequency spectrum for each of the sample periods.

These features model the general shape of the spectral envelope, and attempt to replicate some

of the psycho-acoustic properties of the human auditory system. The two most commonly used

parameterisations of speech are Mel-frequency cepstral coefficients (MFCCs) and perceptual

linear prediction (PLP) features. There have been a number of studies examining useful features

for speech recognition, to replace or augment the standard MFCC features. Such alternative

features include formants [114], phase spectral information [97], pitch information [28], and

features based on the speech articulators [27].

When examing spectral features, it is worth considering models of the speech production

mechanism to evaluate the properties of the signal. One such example would be the source-filter

model. In the source-filter model of speech production, the speech signal can be split into two

parts. The source is the excitation signal from the vocal folds in the case of voiced speech, or

noisy turbulence for unvoiced sounds. The filter is the frequency response of the vocal tract or-

gans. By moving the articulators and changing the shape of the vocal tract, different resonances

can be formed. Thus, the shape of the spectral envelope is changed. The resonances in the

frequency response of the filter are known as formants. In English, the form of the excitation is

not considered informative as to the phonetic class of the sound, except to distinguish different

intensities of sounds [15].

The formants or resonances in the vocal tract are also known to be important in human

recognition of speech [61]. This has motivated the belief that formants or formant-like fea-

tures might be useful in ASR systems, especially in situations where the bandwidth is limited

or in noisy environments. In the presence of background noise, it is hoped that the spectral

peaks will sit above the background noise and therefore be less corrupted than standard spectral

parameterisations.

There has been much work in developing schemes to estimate the formant frequencies from

the speech signal. Estimating the formant frequencies is not simple. The formants may be poorly

defined in some types of speech sound or may be completely absent in others. The labelling of
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formants can also be ambiguous, and the distinction between whether to label a peak with a

single wide formant or two seperate formants close together is sometimes not clear. Recently,

some research has been focused on using statistical techniques to model the spectrum in terms

of its peak structure rather than searching for the resonances in the speech signal. For example,

approaches parameterising spectral sub-bands in terms of the first and second order moments,

(also known as gravity centroids) have provided features complementary to MFCCs on small

tasks [84] [16].

This work develops a novel statistical method of speech parameterisation for speech recog-

nition. The feature vector is derived from the parameters of a Gaussian mixture model (GMM)

representation of the smoothed spectral envelope. The parameters extracted from the GMM, the

means, variances and component mixture weights represent the peak-like nature of the speech

spectrum, and can be seen to be analogous to a set of formant-like features [125]. Techniques

for estimating the parameters from the speech are presented, and the performance of the GMM

features is examined. Approaches to combine the GMM features with standard MFCC and PLP

parameterisations are also considered. In addition, the performance of the features in noise

corrupted environments is studied, and techniques for compensating the GMM features are de-

veloped.

1.3 Organisation of thesis

This thesis is structured as follows: the next chapter gives a basic review of the theory of HMMs

and their use as acoustic models. The theory of training and decoding sequences with HMMs

is detailed, as well as how they are extended and utilised in ASR. The fundamental methods of

speaker adaptation and noise compensation are also outlined.

Chapter 3 presents a review of methods for parameterising the speech spectrum. The most

popular speech features, namely PLPs and MFCCs, are described and their relative merits dis-

cussed. Alternative parameterisations are also described, with particular emphasis placed on

formant and spectral-peak features. Possible options of combining different speech parameteri-

sations are also presented.

In chapter 4, the theory of extraction and use of the GMM features is presented. Issues in

extracting the parameters and extensions to the framework are shown. A method previously

proposed for combining formant features with MFCCs using a confidence metric is adapted

for the GMM features, and extended to the case of a medium or large vocabulary task. Two

techniques to compensate the GMM features in the presence of additive noise are described:

one at the front-end level, the other a model-compensation approach.

Experimental results using the GMM features are presented in chapters 5, 6, 7 and 8. Chapter

5 presents results using the GMM features on a medium-vocabulary task. Chapter 6 details work

using the GMM features in combination with an MFCC parameterisation on medium and large

vocabulary tasks. Results using the GMM features in the presence of additive noise are described

in chapter 7, and the performance of the compensation techniques described in chapter 4 are
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presented. Finally, the GMM features are tested using MLLR speaker adaptation approaches on

the large vocabulary Wall Street Journal corpus in chapter 8.

The final chapter summarises the work contained in this thesis and discusses potential future

directions for research.



2

Hidden Markov models for speech recognition

In this chapter the basic theory of using Hidden Markov models for speech recognition will be

outlined. The algorithms for training these models are shown, together with the algorithms

for pattern recognition. In addition, techniques used in state of the art systems to improve

the speech models in noise-corrupted environments are discussed. Finally, methods for speaker

adaptation using maximum likelihood linear regression (MLLR) are covered, along with front-

end feature transforms.

2.1 Framework of hidden Markov models

Hidden Markov models are generative models based on stochastic finite state networks. They

are currently the most popular and successful acoustic models for automatic speech recognition.

Hidden Markov models are used as the acoustic model in speech recognition as mentioned in

section 1.1. The acoustic model provides the likelihood of a set of acoustic vectors given a word

sequence. Alternative forms of an acoustic model or extensions to the HMM framework are an

active research topic [100] [95], but are not considered in this work.

Markov models are stochastic state machines with a finite set of N states. Given a pointer to

the active state at time , the selection of the next state has a constant probability distribution.

Thus the sequence of states is a stationary stochastic process. An �4!#" order Markov assumption

is that the likelihood of entering a given state depends on the occupancy in the previous � states.

In speech recognition a ��� ! order Markov assumption is usually used. The probability of the state

sequence & � 3 ���;9;�><><><�� � � is given by:

� � & � � 3 � ��� 9 �
��

!��
	
� ���

!
� � 9 �><><>< ���

!
�
9 �

and using the first-order Markov assumption this is approximated by:

� � & � ��� � ���;9 �
��

!��
	
� ���

!
� �
!
�
9 � (2.1)

6
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The observation sequence is given as a series of points in vector space
/ � 3 � * ��� � �><><>< � * � � � �

or alternatively as a series of discrete symbols. Markov processes are generative models and each

state has associated with it a probability distribution for the points in the observation space. The

extension to “hidden” Markov models is that the state sequence is hidden, and becomes an

underlying unobservable stochastic process. The state sequence can only be observed through

the stochastic processes of the vectors emitted by the state output probability distributions. Thus

the probability of an observation sequence can be described by:

��� / � �43�� ��� ��� / � & � � � � & � � (2.2)

where the sum � ���
is over all possible state sequences & � through the model and the proba-

bility of a set of observed vectors, ��� / � � & � , can be defined by:

��� / � � & � �43
��

!��
9
���-* �-,.� � �

!
� (2.3)

Using a HMM to model a signal makes several assumptions about the nature of the signal.

One is that the likelihood of an observed symbol is independent of preceding symbols (the

independence assumption) and depends only on the current state �
! . Another assumption is

that the signal can be split into stationary regions, with instantaneous transitions in the signal

between these regions. Neither assumption is true for speech signals, and extensions have been

proposed to the HMM framework to account for these [124] [82], but are not considered in this

thesis.

��������������������	�		�		�		�	State 1 2 3 4 5

Transition

Emitting
state

Non−emitting
state

PSfrag replacements
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�
	�
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�
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� ���
� ���

���������������

Figure 2.1 3 state HMM having a left-to-right topology with beginning and end non-emitting states

Figure 2.1 shows the topology of a typical HMM used in speech recognition. Transitions may

only be made to the current state or the next state, in a left-to right fashion. In common with

the standard HMM toolkit (HTK) terminology conventions, the topology includes non-emitting

states for the first and last states. These non-emitting states are used to make the concatenation

of basic units simpler.

The form of HMMs can be described by the set of parameters which defines them:
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� States HMMs consist of N states in a model; the pointer ��� !
3  � indicates being in state  

at time , .
� Transitions The transition matrix

�
gives the probabilities of traversing from one state to

another over a time step

���8$ 3 � ���
! �
9 3 % � � !

3  � (2.4)

The form of the matrix can be constrained such that certain state transitions are not per-

missible, as shown in figure 2.1. Additionally, the transition matrix has the constraint

that ��
$
�
9
��� $ 3 � (2.5)

and

� � $�� � (2.6)

� State Emissions Each emitting state has associated with it a probability density function� $ �-*+�-,.� � ; the probability of emitting a given feature vector if in state % at time , :
� $ �-*+�-,1� ��3 ���-*+�-,.� � �

!
3 % � � � (2.7)

An initial state distribution is also required. In common with the standard HTK conventions, the

state sequence is constrained to begin and end in the first and last states, with the models begin

concatentated together by the non-emitting states.

2.1.1 Output probability distributions

The output distributions used for the state probability functions (state emissions PDFs) may as-

sume a number of forms. Neural nets may be used to provide the output probabilities in the

approach used by hybrid/connectionist systems [9]. If the input data is discrete, or the data has

been vector quantised, then discrete output distributions are used. However, in speech recogni-

tion systems continuous features are most commonly used, and are modelled with continuous

density output probability functions.

If the output distributions are continuous density probability functions in the case of con-

tinuous density HMMs (CDHMMs), then they are typically described by a mixture of Gaussians

function [76]. If a mixture of Gaussians is used, the emission probability of the feature vector
*+�-,1� in state % is given by

� $�� * �-,.��� 3 	�
I
�
9
� ��
 $ I �
� � *+�-,1����� $ I ��� $ I�� (2.8)
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where the number of components in the mixture model is � , and the means, covariance matri-

ces and mixture weights of each component are � $ I , � $ I and
� ��
 $ I � respectively. The mixture

of Gaussians has several useful properties as a distribution model: training schemes exist for it

in the HMM framework and the use of multiple mixture components allows for the modelling of

more abstract distributions.

The covariance matrices for the Gaussian components can also take a number of different

forms, using identity, diagonal, block diagonal or full covariance forms. The more complex the

form of covariance modelled, the larger the number parameters to estimate for each component.

If the features are correlated, rather than estimating full covariance matrices a larger num-

ber of mixture components can be used in the model. As well as being able to approximately

model correlations in the data set distributions, using multiple components can also approximate

multimodal or arbitrary distributions.

Other work has studied the use of alternative distributions, such as the Richter or Laplace

distributions in the emission probability functions [37] [2]. Rather than using a sum of mixture

components, the use of a product of Gaussians has also been investigated [1]. Another approach

is to use semi-continuous HMMs where the set of mixture components has been tied over the set

of all states, but the component weights are state-specific [60]. However, in this work, GMMs

are used to model the output PDFs in the HMMs.

2.1.2 Recognition using hidden Markov models

The requirement of an acoustic model in a speech recognition system is to find the probability

of the observed data
/ � given a hypothesised set of word models or units

'
. The word string

is mapped to the relevant set of HMM models � and thus the search is over ��� / � � � � . As

the emission probabilities are given by continuous probability density functions, the goal of the

search is to maximise the likelihood of the data given the model set.

The probability for a given state sequence & � 3 � ���:�������B��� � � and observations
/ � is given

by the product of the transition and output probabilities:

��� / � � & � ��3 ���	��
 �
�
��

!��
	
� ��� �-*+�-,1� � ��� ��� ����� (2.9)

The total likelihood is given by the sum of all possible state sequences (or paths) in the given

model that end at the appropriate state. Hence the likelihood of the observation sequence ending

in the final state � is given by:

��� / � � � � 3 �
�����

� ��� ���
��

!��
	
��� ��� ����� � ���1�-*+�-,.� � (2.10)

where � is the set of all possible state sequences, � is the model set and �
! the state occupied

at time , in path & � .
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2.1.3 Forward-backward algorithm

The forward-backward algorithm is a technique for efficiently calculating the likelihood of gener-

ating an observation sequence given a set of models. As mentioned previously, the independence

assumption states that the probability of a given observation depends only on the current state

and not on any of the previous state sequence. Two probabilities are introduced: the forward

probability and the backward probability. The forward probability is the probability of a given

model producing an observation sequence
/
!
3 � * ��� � ��������� * �-,.� � and being in state % at time , :� $ �-,1� 3 ���-*+��� � � * ����� ������� � *+�-,1� ���

!
3 % � � �

3
� ��
�
�
9
�B�H�-,�� � � ���8$�� � $ �-*+�-,.� �15 for ���	� ,
� � � and ����� % � � � � ��@ (2.11)

The initial conditions for the forward probability for a HMM are given by:��9;� � � 3 � (2.12)� $F� � � 3 � if %
�3 � (2.13)

and the termination is given by:

� � � � � 3
�
�
9�

�
�
	

�B� � � � � � � (2.14)

The backward probability is defined by:

� �H�-,1� 3 ���-*+�-,���� � � *+�-,������ ��������� *+� � � � � ! 3�� � � �

3
�
�
9�

$
�
9
� �8$ � $ �-*

! �
9 � � $ �-,���� � (2.15)

with initial and terminating conditions:

� $ � � � 3 � $ � for �	� % � � (2.16)

� � �-,1� 3 � (2.17)

Thus, the likelihood of a given observation sequence can be given by:

��� / � � � �43�� � � � ��3 � 9 � � � 3
��
$
�
9
� $ �-,1� � $ �-,1� (2.18)

Additionally, it is possible to calculate the probability of being in state  at time , by:� � �-,.�43 ��� �-,1� � � �-,.���� / � � � � (2.19)

Hence, the forward-backward algorithm yields an efficient method for calculating the frame/state

alignments required for the training of HMM model parameters using the EM algorithm.
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2.1.4 Parameter estimation

The HMM model sets have been characterised by two sets of model parameters: the transition

probabilites � � $ and the emission probabilities
� $F�-*+�-,1� � . If Gaussian mixture models are to be

used for the distributions then the second set of parameters comprises the state and mixture

means � $ I , covariances � $ I and mixture weights
� ��
�$ I � .

The objective of training the HMMs is to estimate a set of parameters which matches the

training data well, according to a training criterion. The most commonly used optimisation

criterion is the Maximum Likelihood (ML) function [4]. This is the training criterion used for the

HMMs throughout this work.

Other criteria have also been successfully implemented to train HMMs for use in speech

recognition algorithms. Maximum Mutual Information (MMI) training not only maximises the

likelihood of the correct model, but also minimises the likelihood of “wrong” sequences with an

optimisation function [3] [90]. Schemes which take the competing classes into account whilst

training a class are known as discriminative schemes. Another alternative is a Bayesian tech-

nique, Maximum a-posteriori estimation [41]. The MAP approach assumes that the estimated

parameters are themselves random variables with an associated prior distribution. The param-

eter vector is selected by the maximum of the posterior distribution. If the prior is uniform

over all parameters the MAP solution is identical to the ML solution. The main issue with MAP

training is the problem of obtaining meaningful priors.

The ML estimator is often chosen in preference to these schemes due to its relative simplicity,

low computational complexity and wide range of algorithmic solutions and techiques. The aim

of maximum likelihood training schemes is to maximise the likelihood of the training data given

the model, i.e. maximise the function � I���� :

� I���� � � ��3 ��� / � � � � (2.20)

Unfortunately, there exists no closed form solution for the optimisation of the function above

for HMMs. There does exists a general iterative training scheme, the Baum-Welch algorithm.

The Baum-Welch algorithm is an iterative approach to estimating the HMM parameters which is

guaranteed not to decrease the objective function � I���� at each step [5]:

� I���� � 
� � � � I���� � � � (2.21)

where 
� is the new estimate of the model parameters. The Baum-Welch training scheme max-

imises the auxiliary function,
	 � � � 
� � of the current model set � and re-estimated set 
� at

each step:

	 � � � 
� �43 �
� ���

� ��� / � � & � � � ���
	 � � ��� / � � & � � 
� � � (2.22)

Unlike the ML function, there is a closed form solution to optimise the auxiliary function with

respect to the model parameters. The increase in the auxiliary function can be shown to be a

lower bound on the increase in log-likelihood of the training data [5]. The algorithm estimates
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the complete set of data
� *+��� � �><><><:� *+� � � ��� ��� � �><><>< ��� � � � � , where � ��� � is the matrix of frame/state

alignment probabilities
� $ I ��� � . The probability

� $ I ��� � is defined as the probability of being in

state % and mixture J at time � .

Once the complete dataset has been estimated, it is simple to obtain the new model parame-

ters 
� which maximise the auxiliary function. The estimation of the alignments and maximisa-

tion of the auxiliary function can then be iteratively repeated. Each iteration is guaranteed not

to decrease the objective function.

The frame/state alignment and frame/state component alignments are given by:� $ I ��� � 3 � ���.$ I ��� � � / � � � � (2.23)

3 �
��� / � �.
�� � � � $ ��� � � ��
 $ I � � $ I �-*+��� � � � $���� � (2.24)� $F��� � 3 � ����� 3 % � � / � � � � (2.25)

where �.$ I ��� � indicates being in state , and component J at time � and

� $ ��� �43 � � 9-$ if ��3 �
� �

�
9�

�
	
�B�H����� � � � � $F� (otherwise)

(2.26)

Using the auxiliary function, the estimates of the updated means, variances and mixture

weights are given by:


� $ I 3 � � �
�
9 � $ I ��� ��*+��� �

� � �
�
9 � $ I ��� � (2.27)


� $ I 3 � � �
�
9 � $ I ��� �.�-*+��� ��� 
� $ I �.�-*+��� ��� 
� $ I � �

� � �
�
9 � $ I ��� � (2.28)


� $ I 3 � � �
�
9 � $ I ��� �

� � �
�
9 � $ ��� � (2.29)

The transition probabilities for ���
	  � � � and ����	 % � � � are given by:


� � $ 3 � � �
9�

�
9 �B� ��� � ��� $ � $ �-* ��� ��� � � � $���� ��� �

� � �
9�

�
9 � � ��� � � � ��� � (2.30)

and probability of the exits to and from the non-emitting states are given by:


� 9-$ 3 �
��� / � � � � � $ ��� � � $ ��� � (2.31)


��� � 3 ��� � � � � � � � �� � �
�
9 �B� ��� � � � ��� � (2.32)

The Baum-Welch algorithm thus provides a method for iteratively updating the model param-

eters of a HMM. The HMM must still have a set of initial parameters prior to performing the

Baum-Welch training. This issue will be dealt with for HMMs based on speech in section 2.2.3.

The next section presents a technique for estimating the frame/state alignment,
� $ �-,1� .
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2.2 HMMs as acoustic models

As mentioned previously, there are several fundamental assumptions in the use of HMMs for

speech recognition which are not valid for speech signals. One assumption is that the speech in-

put can be broken up into a series of stationary segments or states, with instantaneous transitions

between states. This is not true due to the smooth transitions between speech sounds caused by

the movement of the speech articulators. Another is the independence assumption, which states

that the emission probabilities are dependent only on the current feature vector, and not on any

previous features. Neither assumption is correct for speech signals, and a number of extensions

to the speech recognition framework have been proposed to correct these. Variable frame rate

analysis can be used to compensate for the non-stationary behaviour of speech, in particular

the effects of different speaking rates on the signal. [124]. The independence assumption has

been addressed by the application of segment models which partially deal with the correlations

between successive symbols [82]. However, even though the assumptions made in the model

may not be valid, HMMs still form the basis for the most successful current speech recognition

systems.

2.2.1 Speech input for HMM systems

Implementing a HMM for speech recognition makes the assumption that the features can be

broken up into a series of quasi-stationary discrete segments. The segments are treated inde-

pendently and in isolation. The frame rate must be sufficiently large such that the speech is

roughly stationary over any given frame. Speech features are usually based upon the short-term

Fourier transform of the input speech. For full bandwidth data, such as that of the RM or WSJ

tasks, the speech will have been sampled at a rate of 16kHz. This gives the speech spectrum a

bandwidth of 0-8kHz. For applications such as a telephone-based systems, the speech is sampled

at a rate of 8kHz, giving a bandwidth of 0-4kHz. However, the bandwidth of the speech will

have been limited to an effective range of 125-3800Hz by the telephony system.

Figure 2.2 shows the process of extracting overlapping windows of speech segments in order

to form the feature vectors. Usually, the frames are extracted at a uniform time step. Some work

has investigated the use of variable-frame rate analysis [124]. Most systems, however, use a

fixed frame rate. A typical system would take frames of speech 25ms long every 10ms [122].

The process of extracting features from the speech frames is discussed in more detail in chapter

3.

The independance assumption that HMMs use is not applicable for speech since observation

frames are dependent to some degree on the preceding observations due to the fixed trajectories

of the articulators generating the signal [58]. Hence, it is desirable to incorporate some measure

of the trajectories of the signal or of the correlations between frames. The simplest method to

do this without changing the structure of the HMMs is to include dynamic coefficients into

the feature vector [115] [29]. The dynamic coefficients, or delta parameters
0 *+��� � can be
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Figure 2.2 Extraction of input vector frames by use of overlapping window functions on speech signal
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calculated as:

0 *+�-,1��3 ���� � � ���-* �-, � � ��� *+�-, � � � �� � �� � � � 	 (2.33)

Linear regression delta parameters are calculated if d=1. If the start and end frames distances

are equal, i.e. d=D, simple difference parameters are calculated as the regression is taken

over only a single time-step. By taking the dynamic coefficients again over the resulting delta

coefficients, acceleration, or
0
	 parameters are obtained.

2.2.2 Recognition units

For very small vocabulary recognition tasks, it would be possible to build a HMM model for each

word. However, this presents problems of identifying adequate HMM topologies and establishing

the optimal number of states for each word. In addition, with a medium or large vocabulary

there will be insufficient data to robustly estimate parameters for each whole word model. The

most commonly used approach is to split words up into smaller subword units, such as syllables

or phones [121] [122]. A pronunciation dictionary or lexicon is used to map from the words

to a sequence of sub-word units. Word-based HMM models are formed by concatentating the

subword models together. Thus all examples of a given subword unit in the training data will be

tied together, and share the same distribution parameters [123].

Phones are elementary sound units and represent the abstract notion of a sound as opposed

to a particular realisation of it. Models based on phonemes are referred to as phone models. The

use of the full set of phones without taking context into account is referred to as a monophone

model set. However, the distributions of the acoustic features will change given the preceding

and following phones. These effects of coarticulation are due to the finite trajectories of the

speech articulators. To model these variations, context dependent models can be built. In a

context model set, phone models are tied together depending on the preceding and/or following

phones. For example, a triphone model ties together all occurances of a phone unit with the

same preceding and following phone context. It is possible to build up larger contexts using an

arbitarily large number of phones (e.g. for quinphone units [118]) either side of the current

phone, but only triphones are considered in this work.

The full set of all possible triphones will be too large for there to be sufficient data to train

each robustly in most systems. Furthermore, there will be some examples of triphones that will

not be present in the training data. To obtain good estimates of model parameters it is necessary

to share or tie the parameters over the full set of triphones. The most common approach is to tie

parameters at the HMM state level, such that certain states will share the same model param-

eters. One method would be to cluster the states using a data-driven approach in a bottom-up

fashion to merge triphone models which are acoustically similar until a threshold is reached.

The problem with this approach is that it will be unreliable for contexts for which there is little

training data and it cannot handle contexts with no training data.
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The solution to the problem of state clustering with unseen contexts is to use a phonetic

decision tree approach instead. A phonetic decision tree is a binary tree with a set of “yes”

or “no” questions at each node related to the context surrounding each model [123]. Figure

2.3 shows an example section of a context decision tree for triphone models. The clustering

proceeds in a top-down fashion, with all states clustered together at the root node of the tree.

The state clusters are then split based on the questions in the tree. The questions used are chosen

to locally maximise the likelihood of the training data whilst ensuring that each clustered state

also has a minimum amount of data observed. The disadvantages of the decision tree clustering

are that the cluster splits are only the local maximisation, and not all questions that could split

the state clusters are considered [122].
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Figure 2.3 Example of a context dependency tree for a triphone model (from [123])

2.2.3 Training

The theory of ML parameter estimation for a HMM system has been outlined in section 2.1.4.

However, the implementation of HMMs as acoustic models in speech recognition presents some

additional issues. The EM algorithm is sensitive to the initialisation of the parameters. The

optimisation function will have many different local maxima which may be found depending

on the initial conditions. Initial parameters can be chosen in a number of ways. An existing

segmentation of the data can be used for the state/model alignment if present. Alternatively, the

models can also be flat started using identical models for each subword unit. Another option is to

use an existing model set from another task to initialise the system. Following the initialisation,

further iterations of the Baum-Welch training algorithm are required.

Using multiple component Gaussian mixture models in the emission PDFs requires both a

frame/state alignment and a frame/component alignment. The complexity of the training steps

will be increased and the search for the maximum likelihood of the training data will be more



CHAPTER 2. HIDDEN MARKOV MODELS FOR SPEECH RECOGNITION 17

complex. One approach is iterative mixture splitting (or mixing up [122]) of the components

in the state emission PDFs. Mixing up progressively increases the number of components in

the system during training. The component with the highest prior in the model is split and the

means of the resulting components perturbed. Several iterations of the EM parameter estimation

algorithm are then used after each increase in the number of components per state.

In typical system training, the initial model set is a monophone system. The set of mono-

phone states are split into all possible triphones, and are then clustered using a decision tree.

The number of components in the state emission PDFs are then gradually increased. Alterna-

tively, if the models are trained from an existing multiple component triphone system, it may

be desirable to repeat some or all of the training steps. Reclustering the triphone classes or

repeating the mixing-up procedure may yield improvements to the system if there is a mismatch

between the initialisation and the target system.

One system for rapidly training a model set on a new set of data given an existing parameter-

isation and model is single pass retraining (SPR) [122]. In SPR an existing model and training

parameterisation is used to retrain a system on a second parameterisation. The first system is

used to calculate the state/model and state/component alignments in equations 2.24 and 2.25.

These alignments are then used in the parameter estimation calcuations of section 2.1.4 using

the data from the second parameterisation. This yields a model set with the same set of states

but updated means and variances for the second parameterisations. The component weights

and transition matrices will be the same as those calculated if the first set of data was used to

re-estimate the first model set. Single pass retraining requires that the two sets of training data

be of identical length. The number of components and the mixture weights may not be optimal

for the second model set. In addition, the alignment found by the first model set may not be

ideal for the second model set. Hence, sometimes further training iterations are performed on

the new model set.

2.2.4 Language models

In section 1.1 the search for the optimal word string was expressed as the maximisation of the

product of two expressions. The first, the likelihood of the data given a word sequence was

obtained from the acoustic model which is given by the HMM as detailed above. The second is

the probability of the given word sequence, which is obtained from the language model. This

section gives an outline of the language modelling problem. A more detailed description can be

found in a review of the field [26].

Stochastic language models associate probabilities with given word strings. For a word se-

quence
' ( 3 ��� 9 �><><>< � � ( � the probability of a given word sequence can be calculated by

taking the product of the conditional probabilities of the words at each position � given their
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histories
' �

�
9 .

� � ' ( � 3 � � � 9 � � � �
	
� � 9 �=<><>< � � � ( � ')(

�
9 � (2.34)

3
(
�
�
�
9
� � � � � � �

�
9 � � �

��	
�><><>< � � 9 � (2.35)

However, for large vocabulary systems and systems with longer sentence structures, it is not

possible to calculate or store estimates for word sequencies of arbitary length. Instead, the set

of all possible word sequences can be clustered into equivalence classes to reduce the parameter

space. The most simple form of this clustering is to truncate the word history after a fixed

number of words. The assumption is made that the current word is only dependent on the

previous N-1 words in the history:

� � ' ( ���
(
�
�
�
9
� � � � � � �

�
9 �><><>< � � �

�
�
�
9 � (2.36)

For example, a trigram model can be build where the set of equivalence history classes is the set

of all possible word-pairs. The estimates of probabilities are then:

� � ' � ��3 � � � � � � �
�
9 � � �

��	
�

� � � � � � � � �
�
9 � � �

��	
� (2.37)

Unigram models can be estimated from reference training documents or data. However, if a

trigram model is to be built given a 60,000 word vocabulary, there are approximately � < ������� � 9 �
different word triplets, and hence it is not possible to estimate, or even observe, all the possible

triplets in a set of language data. To compensate for the data sparsity, it is possible to smooth

the distribution of the word sequences [70]. The data can be discounted and all unseen events

are given a small proportion of the overall probability mass. Another approach is to combine

different length language models, interpolating the probabilities by using weighting functions.

An alternative strategy is not to consider the word sequence probabilities, but to use the

language model to limit the set of permissable words which may follow the current word. Effec-

tively, the language model forms a simplified bigram approach, and is referred to as a word-pair

grammar.

One problem with the use of stochastic language models is that there is a considerable mis-

match between the dynamic ranges of the language and acoustic models. The acoustic model

and the language model are two separate information sources which are combined by the recog-

nition system. The mismatch is due to the different training sets and ability to generate robust

estimates of likelihoods or probabilities for each. The most commonly used solution is to scale

the log-likelihood of the language model, usually by a constant factor for a given task. Another

modification to the language model scoring is the use of a word insertion penalty. Hence the

search for the optimum word sequence is over:


' 3 ����� 	 �
�� 5 � �
	 � � � ' � � �
	 ����� / � � ' � ��� � � @ (2.38)
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where � is the language model scale factor, � the word insertion penalty and � � is the num

ber of words in the sequence
'

.

Using a word insertion penalty penalises the addition of words into the hypothesised word

string, as word errors are frequently caused by the insertion of short words with wide contexts.

Subtracting a word insertion penalty at the log-probability level is equivalent to scaling or dis-

counting the word probabilities by a fixed amount.

2.2.5 Search techniques

The aim of recognition is to search for the most likely utterance over all possible word sequences.

Thus it is necessary to calculate ��� / � � � � for each word sequence. The likelihoods could be

calculated by the Baum-Welch algorithm of equation 2.19, which requires the calculation of all

paths through the model set. For training, where the word sequence is known this is not a

problem. However, for the case of continuous speech recognition, all possible model sequences

are considered. To make continous speeech recognition easier, the most likely state sequence

associated with the observed data is used instead:

� �H�-,1�43 	 �
�� ��� � �
�
��� � 5 ��� / !

� &
!
� � ��@ (2.39)

where � !
�
9 is the set of all valid partial paths of length , � � . The variable

� � �-,.� can be calculated

recursively:

� $ �-,���� ��3 	 �
�9��=��� � 5 � � �-,.� � � $ @ � $ �-* �-, � � � � (2.40)

This recursion forms the basis of the Viterbi algorithm. The search for the path with the high-

est likelihood may be performed using the token passing method [122]. In the token passing

algorithm, for a given time step and feature vector, each state has a single token associated with

it, and the token contains a word-end link and the value of
� $ �-,1� . These tokens are updated

for each time step and the most likely token at the end of each model is propagated onto all

connecting models. A word-link record is kept with a pointer to the token’s value of
� $ �-,.� . At

the end of the utterance, the token with the highest log probability can be traced back to give

the most likely sequence of words. The number of connecting models will be considerably in-

creased if the phonetic context is considered across word boundaries. Using a language model

can also expand the size of the decoding network since tokens can only be merged if the word

histories are identical. If an N-gram language model is implemented, there must be a separate

path through the network for each different word history.

The computational load of the search may be reduced by pruning or removing the tokens

which fall below a given threshold. The most common method is to set the threshold, or beam-

width a certain amount below the current most likely path, and delete all active tokens with a

likelihood below that. Pruning can also be performed at the end of words when the language

model is applied with a more punitive threshold. If the pruning beam-width is too small, the

most likely path could be pruned before the token reaches the end of the utterance, resulting in
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a search error. The choice of pruning beam-width is a trade off between avoiding search errors

and increasing the speed of the system.

Rather than performing a full decoder search for each new system, it is possible to rescore

a constrained set of alternative word hypothesises from the test data generated by a reference

system. This approach is known as lattice rescoring [122]. Word lattices are constrained word

networks, and can be searched using a Viterbi technique. By reducing the search space the use

of lattice rescoring allows much more rapid evaluation of alternative systems and allows more

complex language models and acoustic models to be considered. The assumption is that the

lattice is sufficiently large and the system under test and the system which generated the lattice

are sufficiently close.

2.2.6 Scoring and confidence

The performance quoted on experimental corpora is given as a percentage word error rate

(WER). The hypothesised transcription from the recogniser is aligned with the correct tran-

scription using a optimal string match dynamic programming step. Once the optimal alignment

is found, the %WER can be calculated as

%WER 3 � � � ��� � � � � � ��� ���
� � (2.41)

where � is the total number of words, and � , � , and � are the number of deletions, substitutions

and insertions respectively [122].

When comparing different performances of systems, it is useful to have a measure of confi-

dence in the relative improvement or degradation in WER. The test used for the significance of

results in this work is the McNemar test. The McNemar test gives a probability that the number

of unique utterance errors is different for the two systems begin compared.

The confidence in the significance can be defined as

Conf 3 � � � � 5 � � � � MIN ���
	 � �����
	 ��@ (2.42)

where MIN ���
	 is the minimum number of unique utterance errors of the two systems under

consideration. The number of unique utterance errors is obtained from a DP alignment of the

hypothesised systems and the correct transcription. The total number of unique errors between

the two systems is denoted by � ���
	 . The assumption made is that the distribution of errors

follows the binomial distribution for fair coin tosses. A result is considered significant if the

confidence in the difference is 95% or above. If the confidence is low, then the number of unique

errors in each system is not significantly different given the error rates of the two systems. This

is the significance test used throughout this thesis.

2.3 Noise robustness

There are a number of uses for ASR in adverse acoustic environments, such as automotive appli-

cations, office environments, telephone speech or military scenarios. Environmental noise can
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take a number of different forms. There may be a level of additive background noise corrupt-

ing the speech, and the channel or recording environment can introduce forms of convolutional

noise to the signal. In addition to the external effects on the speech, speakers tend to alter their

speech in the presence of noise to improve the intelligibility. This compensation is called the

Lombard effect [43][47]. The Lombard effect can include alterations such as increasing formant

frequencies, lowering lower frequency energies, increasing pitch and increasing the durations of

certain phone types. The evaluation of noise robustness techniques has often been performed

on data corrupted with additive noise. One example of an additive noise task would be the

spoke ten (S10) addition to the ARPA 1994 CSRNAB evaluation data, which provided a set of

test sentences corrupted with additive noise. More recently, the Aurora corpora have provided a

set of data recorded in noisy environments with which to test systems [53].

Techniques for making a speech recognition system robust to environmental noise can be

split into three broad classes:

1. Use features which are inherently noise robust;

2. Attempt to estimate the clean speech from the noise corrupted input at the front-end;

3. Compensate the speech models to represent the noise corrupted speech signal.

These techniques will be outlined in the following sections.

2.3.1 Noise robust features

Features can be used which are inherently noise robust. For instance, cepstral mean normal-

isation will remove some of the effects of convolutional channel noise. Convolutional noise

can also be removed by the JRASTA and RASTA-PLP approaches [52]. Inherently noise robust

approaches are desirable as they do not need to be adapted to a particular type or source of

noise. However, most noise robust features can be further improved by other noise robustness

techniques.

2.3.2 Speech compensation/enhancement

The speech can be compensated at the front-end extraction stage by estimating the clean speech

parameters using the noise corrupted speech and a model of the noise. Speech compensation

and enhancement approaches include spectral subtraction [7], adaptive noise cancellation [112]

and probabilistic optimal filtering approaches [80].

Spectral subtraction is probably the simplest form of noise compensation [7]. Points in the

� -point spectrum from the noise-corrupted speech 2 �-,.� 3 587�9;�-,1� �><><>< �.7 � �-,1��@ � are compensated

to form the compensated spectral points 
7 � �-,1� given an estimate of the additive noise source

spectrum & 3 � � 9 �><><><;��� � �


7 �H�-,.�43�� � �-,.� 7��-,1� (2.43)
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where

� � �-,.��3
�������� �	� A ! E � 
 ��� � � � A ! E � 
� �	� A ! E 
 
�� �  ��� 	  ��� � if � 
7 � �-,1����� 7 � �-,1�� (otherwise)

(2.44)

and � , � and � can be set to effect various domains of subtraction. A maximum attenuation

is used at � to prevent the spectral values becoming negative. Setting � 3 � , � 3 � and

� 3 � <�� will implement power domain spectral subtraction. The parameter � can be set with

an estimate of the signal-to-noise ratio and can be made time-dependent. One problem with

spectral subtraction is that the phase of the corrupted speech is unknown [21] and thus the

assumption that the noise sources will be additive in the magnitude spectrum domain is not

necessarily valid.

2.3.3 Model compensation

Another method of compensating for noise in a speech recognition system is to adapt the clean

model set or algorithm to the corrupted speech. Techniques using this approach include linear

regression adaptation approaches [116], speech and noise decomposition [106] and parallel

model combination [32].

Parallel model combination (PMC) attempts to combine the “clean” speech HMM models

with a model of the noise distribution [39]. There are no closed-form solutions for the problem

of combining the models. Various approximations can be made to perform the combination of

the clean speech and noise model distributions [32]:

� samples can be drawn and a Monte-Carlo approach [10] adopted;

� the means in the HMM output PDFs can be combined by mapping the means from the

log-cepstral to linear spectral domain and adding the noise and clean speech distributions

together (log-add approximation);

� the cepstral speech and noise Gaussian distributions can be mapped to the linear-spectral

domain where they are log-normal distributed. The two log-normal distributions can be

summed and mapped back to the cepstral domain.

2.4 Feature transforms

If the features used in a system contain correlations, a number of different approaches can be

used to model these correlations:

� Full covariance matrices: Full or block-diagonal covariance matrices can be estimated

from the data. This approach requires a significant increase in the number of estimated

parameters from the data.
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� More components: more Gaussian components can be estimated from the data, and will

model the correlations in the output PDFs. This is approach is a rough approximation,

however.

� Decorrelating transforms: it is also possible to estimate a feature space transform such

as PCA which will decorrelate the elements in the feature vector prior to estimating the

model [10].

Linear transforms such as linear discriminant analysis (LDA) can also be estimated to im-

prove the discriminative properties of the features and reduce the dimensionality.

2.4.1 Linear discriminant analysis

Linear discriminant analysis is a projection scheme which aims to find a set of feature vectors

which have good discriminative properties, that is, the distributions are well separated in the

feature space [46]. The technique attempts to maximise the between-class covariance ��� and

minimise the within-class covariance ��� for a set of features. The assumptions made are that

each transform class can be represented by a single Gaussian component. First, the feature space

is transformed so that the within class covariance matrix has dimensions which are independent

and of unit variance. In this transformed space the within class covariance is broken up using

the eigenvalues
���

and eigenvectors � � . The between class covariance can then be described

in this transformed space by:

�	�� 3 � �
��� � � � �	� � �
� �

���
(2.45)

The between class covariance can also be diagonalised with the transform � � � and the

largest elements of the resulting diagonal between-class covariance matrix in the transformed

space can be selected.

The full LDA transform
� (
�
� can be described as

� (
�
� 3 � �
� �

��� � � � (2.46)

The transformed features are:

* (
�
� �-,.��3 � (

�
� * �-,.� (2.47)

The LDA transform can be truncated to select only the � largest eigenvalues, the transformed

features with the largest ratios of between class covariance to within class covariance. By trun-

cating the lower order LDA components, the dimensionality of the feature vector can be reduced.

An LDA transform can also be used to incorporate temporal information from the surrounding

frames and reduce the dimensionality rather than appending the standard dynamic parame-

ters to each frame. Using an LDA transform will not necessarily yield an improvement in the

performance of an ASR system [69].



CHAPTER 2. HIDDEN MARKOV MODELS FOR SPEECH RECOGNITION 24

2.4.2 Semi-tied transforms

The use of semi-tied covariance matrices is an extension to the use of Gaussian mixture models

with CDHMMs [36]. Rather than calculating full covariance matrices for each Gaussian com-

ponent, each component covariance matrix � $ I is comprised of two parts. First, there is a

component-specific diagonal covariance element � A � ����� E$ I and second, a semi-tied class dependent

matrix � A�� E . The covariance used is then:

� $ I 3 � A�� E � A
� ����� E$ I � A�� E � (2.48)

The semi-tied matrix � A�� E may be tied over an arbitary set of components such as sets of

context-independent classes. The problem of estimating the semi-tied matrix has been solved

by an iterative EM approach on top of the estimation of the other HMM parameters which is

guaranteed to increase the likelihood [36]. The semi-tied covariance transforms may take the

form of full, diagonal or block diagonal structures.

2.5 Speaker adaptation

There exist many variations in speech production between speakers. Speaker adapatation schemes

attempt to rapidly compensate an acoustic model to a given speaker. There exist many schemes

of speaker adaptation, and it is beyond the scope of this work to present them all. The main

techniques for speaker adaptation can be broadly classed as [116]:

1. Speaker Clustering: Speaker classes or clusters can be formed (e.g. gender) and appropri-

ate model sets chosen for each test speaker [73];

2. Feature Normalisation: The speech input is transformed to a normalised space [92];

3. Model Adaptation: The parameters of the acoustic models can be transformed for a given

speaker [75].

These methods are presented in the following sections.

2.5.1 Vocal tract length normalisation

One of the inter-speaker differences in speech can be associated with the differing physiology of

the vocal tract between speakers. The effects of the varying length will move the resonances in

the vocal tract and can be modelled by a transform of the frequency axis in the observed speech.

Several transforms have been investigated, including linear and piecewise linear transforms [92]

[49] and bilinear transforms [44]. Figure 2.4 shows the use of a vocal tract warping function.

The piecewise linear and bilinear warping functions are both constrained to warp the max-

imum and minimum frequencies to the same points. In addition, both are parameterised by a
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Figure 2.4 Example of vocal tract length warping functions

single warping factor for each speaker. The piecewise linear warping function warps the spec-

trum linearly, except at the highest and lowest regions of the spectrum. This is because the

speech spectrum is band-limited and the warping function would otherwise warp the spectrum

beyond the effective frequency range. The bilinear transform warps the lower spectral regions

further than the higher frequency parts of the spectrum. In practice, neither model appears

to outperform the other, but the linear or piecewise linear model is more commonly used for

simplicity [105] [92].

The warping factors in the transforms can be estimated by performing a maximum-likelihood

search over the speaker set on the training and adaptation data [92]. Alternatively the warping

factors can be searched for using other frequency-domain parameterisations, such as formant

frequencies [23].

2.5.2 Maximum likelihood linear regression

Maximum Likelihood Linear Regression is a technique used to adapt model parameters from a

speaker-independent model to a given speaker with a set of labelled data [75]. The data can be

a set of pre-labelled adaptation data, or the labels can be hypothesised by the speech recognition

system. The goal is to maximise the likelihood of the adaptation data with a linear regression

of the mean of a Gaussian component distribution in the HMM output PDF. The mean vector

may be adapted by the � � � matrix
�

and the � -element bias vector � , or alternatively, by

considering the � � � � � � � transform
'

. The transformed mean vector for a state % , �� $ is given

by the unadapted mean � $ and the transform parameters:

�� $ 3 � � $ � � (2.49)

3 '�� $ (2.50)
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where
� $ is the extended mean array 5 �:��� $?9;�><><>< ����$ C @ � . MLLR seeks to find the transform �'

which maximises the likelihood of the training data:

�' 3���� �
	 �
��
�� � �
$

�
!
� $ �-,1� � � 	 � � �-*+�-,.��� '�� $ ��� $ ���

���

� (2.51)

Maximisation of the auxiliary function in the Baum-Welch algorithm with respect to
'

is a

linear regression problem with a closed form solution for
'

[75]. It is also possible to estimate

an MLLR variance transform matrix � where the transformed variance �� $ I may be given by

�� $ I 3 � � $ I � �
(2.52)

and solutions exist for the estimation of � [38].

MLLR uses regression classes to group together Gaussian components in the acoustic space.

The assumption is made that Gaussian components that are close in acoustic space for a given

speaker will also be close for others. Gaussian components close in the acoustic space are clus-

tered together and organised into a regression class tree [34]. If sufficient data exists to estimate

a transform, the lowest nodes in the tree are used as the classes to estimate the transforms to-

gether. If there is not sufficient data then the parent nodes will form the classes and a more

global tying of transforms will be used.

2.5.3 Constrained MLLR and speaker adaptive training

Model-space constrained MLLR (CMLLR) is an extension of model space MLLR where the covari-

ances of the Gaussian components are constrained to share the same transforms as the means.

The transformed means and variances �� $ and �� $ are given as a function of the transform pa-

rameters:

�� $ 3 � � $ � � (2.53)

�� $ 3 � � $ � �
(2.54)

It has been noted that a duality exists between a constrained model-space approach and a

feature-space transform since the two likelihoods are equivalent [35] [96]

���-*+�-,.����� $ ��� $:� � � � � 3 � �-*+�-,1��� � �
9 � � $ � � ��� � �

9 � � � �
9 � (2.55)

3 � � � � � � � � *+�-,1� � � � ��� ��� � (2.56)

where � � � is the Jacobian of the feature space transform and
� � 3 � �

9
and � � 3 � � � . An

iterative solution exists for computing the transform matrix.

It is possible to use the constrained MLLR transforms on the training data in a speaker adap-

tive training (SAT) approach. In the SAT system, CMLLR transforms for the training speakers

are computed and the models retrained using the speaker transforms together with the speaker
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data. These steps can be reiterated several times to yield a model based on the CMLLR trans-

forms of the training data. The models estimated will be more appropriate estimates for the

CMLLR transforms trained on the test data.



3

Acoustic features for speech recognition

The feature sets most commonly used in speech recognition are Mel frequency cepstral coef-

ficients (MFCCs) and perceptual linear prediction (PLP) coefficients. These parameterisations

are described in detail in this chapter. Various speech parameterisations have been proposed as

alternatives to the spectral representations, and these are outlined and their relative merits dis-

cussed. Particular attention is made to features based on the spectral peaks or formant structures

in speech.

In addition, techniques for combining different sets of features in the HMM framework are

provided in the second section of this chapter. Methods for combining features at different

levels in the system are shown and the appropriate features for each combination approach are

discussed.

3.1 Human speech production and recognition

The production of speech sounds can be approximated to a source-filter model, where a sound

source excites a vocal tract filter. The source can be split into various broad classes. The source

can be periodic, due to the opening and closing of the vocal folds in the larynx. This form of

speech is called voiced and the frequency of vibration of the vocal folds is called the fundamental

frequency ��� , and is repeated at regular intervals in spectrum. An example of the source and

filter for voiced speech is shown in figure 3.1. The excitation source in this idealised diagram

exists as a series of impulses separated by the fundamental frequency. The vocal tract filter re-

sponse is characterised by the series of formants or resonant frequencies. The attunuation of the

source by the vocal tract response is obtained by multiplying the two frequency representations

together. The excitation may also be obtained from an unvoiced source. In this case, the vocal

folds can be adducted or a part of the vocal tract can be moved to create a narrow constriction.

The aperiodic excitation source is filtered by the vocal tract and articulators in a similar fashion.

The flow of air through this narrow aperture creates an aperiodic excitation signal. The vocal

tract response filters the regular excitation of the vocal folds at the source. The resonances in

the vocal tract cause peaks to be formed in the resulting speech spectrum. By interpolating the

28
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Figure 3.1 The source and filter response for a typical vowel sound

pitch peaks in the resulting speech, it is possible to recover the original vocal tract response or

spectral envelope.

The vocal tract is a muscular tube which can be modelled as a resonant tube. The resonances

of the vocal tract cause the attenuation and amplification of certain frequencies in the excitation

signal. Along the vocal tract, there are several articulators, structures such as the lips and tongue

which can be moved. The movement of the articulators changes the frequency response of the

tract. In addition, the articulators can restrict the airflow to create turbulent or fricative sounds,

or completely occlude the vocal tract to create stop sounds. The frequency response of the vocal

tract can be characterised by the locations and amplitudes of the resonant frequencies (known

as formants) and antiresonances.

The movement of the articulators and the change of source excitation determines the type of

speech signal created. The complete set of speech sounds can be characterised by the manner

and place of articulation and type of excitation source.

It has been hypothesised that the human speech production and recognition mechanisms

evolved in tandem [81]. Thus, it is also important to consider the human auditory system in the

speech recogntion process. The primary function of the human ear is to focus sound waves and

convert them to electrical impulses in the cochlea. The cochlea is a liquid-filled concentric spiral

tube in the inner ear. A cross-section is shown in figure 3.2. Next to the cochlea is the basilar

membrane upon which lies the organ of Corti, which contains about 30,000 hair cells. Sound

waves are carried here, and transmitted to the fluid by the middle ear. The hairs on the organ of

Corti will vibrate in response to the movements in the fluid, and fire the neurons connected to

them.

As the basilar membrane is tapered and varies in flexibility along its length, the hairs resonate

at different characteristic frequencies. Hence, the neural signals transfer signals proportional to

the energy levels in different frequency bands to the brain. The perception of frequency is

uniform within certain frequency bands in the human ear, called critical bands. In each critical

band sound is analyzed independently. Each band corresponds with an equal section of cochlea.

The resolution is non-linear, with the most sensitive frequency resolution up to about 1kHz.

Below 500 Hz bandwidths are constant, equal 100 Hz. Over 500 Hz the width of each next

critical band is 20% larger than of the band below. It is possible to model the human auditory

system as a set of band-pass filters with bandwidth of corresponding critical band.There are
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Figure 3.2 The physiology of the inner ear (from [14])

various psychoacoustic scales that can approximate the non-linear perceptual frequency scale,

such as the Mel or Bark scales [43].

3.2 Spectral speech parameterisations

There are a number of desirable properties in features for ASR systems. First, they must ad-

equately represent the speech. It is desirable that the features contain sufficient information

to represent the phonetic content of speech. Second, they should be speaker independent and

should not contain redundant or extraneous information. For example, in the recognition of

spoken English, the excitation source is considered to be largely uninformative compared to the

vocal tract response. Also, it is desirable that the feature set be of low dimensionality and as

compact as possible to reduce the number of parameters estimated in the speech recognition

system. Additionally, if the features are mostly uncorrelated then simpler forms of covariance

modelling can be used, and there are fewer parameters to estimate in the system.

3.2.1 Speech Parameterisation

To process speech for ASR, the first stage is to capture the speech waveform with a microphone

and convert it to a discrete signal for the computer. The sampling rate used varies, but typically

the sampling frequency is either at 16kHz or 8kHz, to give a an effective frequency range from

0 to 8kHz or 4kHz. Telephone speech is usually sampled at a rate of 8kHz, but the effective

frequency range will have been limited by the system to 125-3800Hz. The waveform is sampled

at an accuracy of 16 bits in the case of uncompressed speech, but can also be compressed using

u-law compounding down to 8 bits.

Frequency representations of the speech are considered to be more useful for speech recogni-

tion than the time-domain signal. In order to obtain a time-discrete representation, the digitised
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Figure 3.3 Overlapping Mel-frequency bins

waveform is split into overlapping frames. Speech signals are assumed to be quasi-periodic,

stable over short periods and the frames are typically of width 25ms and at 10ms intervals.

The speech waveform � � � � is multiplied by a Hamming window of length � to reduce spectral

distortion at the edges of the window


� � � �43�� � <���� � � <�� ��� 		� � ��
 �� � � �
� � � � � (3.1)

The FFT of the windowed speech is then taken. Thus, from the sampled speech waveform, a

series of time discrete spectral frames is obtained.

3.2.2 Mel frequency cepstral coefficients

Mel frequency cepstral coefficients (MFCCs) are probably the most commonly used technique to

represent the speech spectrum in ASR systems, and can be considered a baseline for performance

comparison of feature sets [15].

The MFCCs are generated by first obtaining the speech spectrum as described above. A

number ( � ) of triangular shaped filter bin functions equally spaced on the Mel scale (see figure

3.3) are taken from the magnitude spectrum:� I � � 3 � ���	� � 	 � 5 � � ������ � � @ (3.2)

Usually around 24 filter-banks are used to represent the spectrum. The log-spectral filter-bank

outputs could be used for speech recognition. The problem, however, is that a high energy in

a given filter-bank corresponds to a high energy in the surrounding filters, and the features are

highly correlated. The cepstral coefficients ( � � �-,1� ) are then calculated by taking the discrete

cosine transform (DCT) of the Mel-bin log energies.

�1� �-,1�43 �� �
�
9
� 	 � � J �

�-,.� ��� 		� �  � � � � <�����
� � (3.3)
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The lowest order cepstra represent the general shape of the spectrum and the higher orders

represent the pitch voicing and the sharper changes in the frequency spectrum. In most appli-

cations, cepstra 1-12 are used for recognition, with a normalised log-energy term appended to

the representation [122]. The MFCCs can also be transformed (or liftered) to emphasise dif-

ferent cepstral parameters [67]. There are several advantages to using MFCCs as features for

ASR. First, the Mel-spaced bins used are analogous to the critical bands observed in the basilar

membrane response in the human ear. Taking the logarithm of the bins will approximate the

magnitude response of the ear. The DCT can been shown to approximate a set of principle com-

ponents analysis (PCA) basis functions, meaning the cepstra are largely uncorrelated [51]. Thus

diagonal covariance matrices may be used to model the distributions of the features.

The effects of any convolutional channel transfer functions are multiplicative in the spectral

domain. However, in the log cepstral domain, this becomes a simple addition. By subtracting

the mean of the MFCCs from the parameterisation of an utterance, the channel effects can be

normalised. This technique is known as Cepstral Mean Normalisation (CMN).

3.2.3 Perceptual linear prediction

Perceptual Linear Prediction (PLP) coefficients have been proposed as an improved spectral

representation [50]. The motivation of PLP is to closely model the psychoacoustics of hearing.

Three properties of the human auditory system are implemented in PLP: the nonlinear fre-

quency response of the the human ear; the critical bands in the cochlea; and the non-linear

amplitude response. In addition, linear predictive analysis is performed to exploit the resonant

nature of the vocal tract function [77].

First, the nonlinear frequency response of the human ear is approximated by warping the

spectrum to the Bark frequency scale � � � ��� .
� � � ��� 3 � 	 � � ��� �

� � � � 5 � �����
� � � � 	 � � � @ ��� � � (3.4)

The warped spectrum is then convolved with a series of critical band filters spaced in the Bark

scale that roughly match the psychoacoustic information available for the human ear. These

psychoacoustic techniques attempt to model the human auditory system’s frequency response

and masking effects. Using Mel-scaled triangular bins to model the critical bands has been

equally successful in other implementations of PLP features [117].

To model the variations in perceived loudness in the human auditory response an equal

loudness function
� ��
 � (eq. 3.5) is applied to the critical band filter-bank values. The equal

loudness preemphasis function has a peak at about 3.5kHz and is based on human auditory

response data.

� ��
 ��3 ��
 	 � � � <�� � � ��� � 
 ���
 	 � � <�� � � � � � 	 ��
 	 � � <���� � � ��	 �.��
 � ��
 <���� � � � 	 � � (3.5)
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Finally, the cube root of the equal loudness bins is taken. This corresponds to the non-

linear relationship observed between intensity of a sound and the perceived loudness. Once the

spectrum is obtained it is then converted back into the time domain and an autocorrelative all-

pole LP analysis is performed to obtain the PLP coefficients. The filter coefficients
� ��9;�><><>< � ��� �

form a prediction filter
� ��� �

� ��� �43 � � ��
� �
9
� � � � � (3.6)

The autocorrelative function can be obtained from the inverse Fourier transform of the power

spectrum. Durbins recursion algorithm can then be applied to obtain the prediction coefficients

which minimise the error [10]. The perceptual linear prediction coefficients �
� 365 � 9;�><><>< �-� � @ �

are calculated from the prediction filter coefficients 5 � 9;�><><>< � � C @ :

� C 3 � � C � �
�

� �
9�

�
�
9
� � �  � � � � C �

� (3.7)

where � C is the ��!#" PLP coefficient. When used in speech recognition, these features slightly

outperform MFCCs and have been shown to provide more noise robustness [50].

3.3 Alternative parameterisations

There has been much interest and research undertaken into other features vectors for speech

recognition. Features based directly or indirectly on the positions of the articulators which pro-

duce the underlying sound have been proposed. Another area of interest is the use of the formant

locations as features for speech recognition systems. Due to problems in robustly estimating

the formants, other speech parameterisations have been proposed which represent the spectral

peaks. These parameterisations are presented in this section and their use in ASR systems is

discussed.

3.3.1 Articulatory features

Different speech sounds are produced by varying the positions of the articulators: the tongue

position and velum; the degree of voicing or of nasalisation [81]. It has been proposed that if the

positions of the articulators were known or estimated they could be useful representations of the

class of speech sound [6]. Articulatory features can either be based directly on the movement

of articulators (using medical imaging data or tags on the articulators) or by using pseudo-

articulatory features [27]. Pseudo-articulatory features are based on extracting information

on the articulators via a non-linear mapping from the original speech [47]. Both the direct

measurement of the articulators’ positions and the estimation of positions have been investigated

for speech recognition systems.

Coarticulation effects between speech sounds are physically caused by the movement of the

articulators between sounds. Hence the articulatory domain may be the best domain in which
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to model those effects [25]. Additionally the much debated psychoacoustic phenomena of cat-

egorical perception can also support the use of articulatory features in a recognition framework

[6].

One approach to using articulatory information in ASR used phones as the basic model unit,

and allowed for asynchronous alignment between the features [24]. The structure of the models

was ergodic and each state in the HMM represented a combination of features so that coartic-

ulation effects were directly included in the model. The features used had strong articulatory

correlates [19], and were assumed hidden by the model, therefore a stochastic (rather than

deterministic) relationship between the acoustic features and the feature values existed.

Pseudo-articulatory features for vowels have been used in a linear regression system [62].

Prelabeled vowel sounds were used to establish a relationship with the cepstra from a frame

and a set of 4 pseudo-articulators (high, back, round and tense). Then a search mechanism was

used to to map this relationship to all phone classes. A dynamic programming step was used to

find the best string of phones. Good recognition was obtained for vowel sounds, since these can

be described well by the pseudo-articulators chosen. However, the plosive and fricative sounds

were poorly represented by this model.

One problem with articulatory features is the extraction of the features. Extracting articulator

positions directly using imaging equipment is not practical for most speech recognition tasks.

The mapping from the speech signal to the articulator positions or pseudo articulatory labels is

often modelled by a non-linear process and relies on appropriately labelled speech data to train

neural nets or deterministic mapping systems [27]. Another problem is that there can be several

mappings (methods of articulation) for a single speech sound [65].

Articulatory features can also be regarded as a recognition unit in the same way as a phone or

a word [22]. Each phone can be subdivided into phonological features - for example, the phones

/m/ and /n/ can be described as [+labial, +nasal, +voiced] and [+velar, +nasal, +voiced]

respectively . Hence, models for these units can be trained in the same way as phones on

labelled training data. Use of articulatory units has been shown to be effective on small tasks

in noise corrupted environments [71]. The articulatory features have been combined with a

“standard” phone model set by combining scores in an asynchronous streaming architecture

[79]. Including these feature scores gives a slight improvement in combination with MFCCs, but

larger improvements were yielded on hyperarticulated or overemphasised sounds [47].

Articulatory features also contain strong temporal correlations. As the articulatory features

represent the positions of the articulators, it is believed that the articulatory domain is a natural

domain to work in for trajectory and segmental models [27]. The mapping from the acoustic

level to the underlying trajectories in a segment model has also been explored using an inter-

mediate articulatory layer [63]. In this approach, the acoustic features were mapped to an

articulatory layer with linear trajectories in a segmental HMM.

Many recognition systems using articulatory-based features implement an alternative topol-

ogy of HMM to successfully utilise articulatory features. It appears difficult to extract articulatory

features separately from the recognition process [20]. The application of articulatory features is
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limited by the ability to estimate the parameters and finding a suitable framework by which to

incorporate them.

3.3.2 Formant features

As mentioned previously, formants are peaks in the spectrum caused by the resonances of the

vocal tract. They are believed to be representative of the underlying speech sequence [13] [88].

It has been shown [59] that formants have a smoother trajectory, and more importantly, these

trajectories are more consistent for a given phone class, than MFCC parameters.

It has been shown that the human perceptive distance for speech sounds is partly based

on spectral distances, but that relatively small shifts in formants could cause large shifts in the

perceptive distance [72]. Other work has also supported the view that formants are extremely

important for human recognition of speech, especially for noisy or band-limited channels [61].

Some results indicated that small shifts in formant position can change the perceived speaker

identification (but not the perceived words) and a small relative shift of one formant with respect

to the others was even possible to simulate a shift of accent [61]. From this it seems reasonable

to conclude that formants can represent some fundamental features of speech.

There have been many proposed methods for calculating formants from the speech signal.

The techniques can be broadly divided into three categories: analysis by synthesis, peak picking

and solving the roots of the linear predictor polynomial. Note that strictly speaking, approaches

using peak-picking algorithms which are not based on finding the resonant frequencies are not

formant-based features.

The ESPS toolkit implements a formant tracker which solves the complex roots of the de-

nominator polynomial of a linear predictor (LP) Z transform [77] [103]. The linear predictor is

an all-pole model. This is reasonable for representing voiced sounds. When obtaining formants

by LP analysis, results can often be poor if no form of continuity constraint or fixed trajectory is

applied. However, these global continuity constraints can be too weak in the case of sonorants

and too strong in the case of vowel-consonant boundaries. The ESPS formant tracker hypoth-

esises more formants than are to be used, and performs a Viterbi search which optimises the

local mapping cost and the transition cost of a given set formants in the utterance. The local

mapping cost is a combination of the bandwidth, frequency and deviation of the formant, and

the transition cost is combination of the relative formant change modulated by a measure of the

signal’s stationarity.

Another proposed formant recogniser uses a code book of spectra which have been hand-

labelled with formant positions by a human expert [57]. The use of a code book of labelled

spectra aims to reduce the problem of ambiguous peak structures or the inconsistent labelling of

LP-based systems. The code book is searched to find the N most likely candidates using a spectral

distance measure, then a dynamic programming alignment step is performed to map the hand-

labelled formant positions to the best match with the input spectra. The model implements

continuity constraints to create consistent formant trajectories, and also gives a measure of
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confidence in the proposed candidates, together with alternative formant positions.

It has also been proposed that calculating formant positions may be aided by some knowl-

edge of the phonetic class of the speech segment. An analysis by synthesis approach has been

investigated using parallel digital resonators [111] to model formant positions. Also, the use of

N-best lists in LPC analysis to delay selection of tracks until after phonetic search [98] has been

investigated. The results using N-best lists of formants [99] performed no better than a MFCC

representation, but when a human expert selected the correct hypothesis from the N-best list,

performance was improved, which suggests formants may be promising for speech recognition

if the identification can be made more consistent.

The formant positions contain information about the class of speech sound. Formants have

been successfully used to improve a speaker adaptation system [120], by shifting formants to

reduce the acoustic mismatches for different speakers. The shifts in formant positions between

speakers have been used to calculate VTLN warping factors [74] [68].

There are a number of problems associated with the use of formants as features [56]. For-

mants are not always well defined in the spectra, for example in the cases of turbulent air flow

(for fricatives) and unvoiced phones. The formant peaks may lie between the fundamental fre-

quency harmonic peaks for speech with a high pitch. Formants can be labelled unreliably by LPC

analysis, and applying continuity constraints can compromise the temporal resolution of the fea-

tures. Formants frequencies alone do not contain amplitude information, which is required to

discriminate between some nasalised sounds and voiced vowels which exhibit similar formant

frequencies [56]. Formants alone cannot describe the general spectral shape, which means it

is impossible to reconstruct the spectrum and some existing adaptation techniques cannot be

applied. Another consideration for their use in ASR systems is that formant features possess a

degree of correlation. Hence, the use of diagonal covariance matrices may not be based on a

valid assumption, and more parameters may be required for the models to adequately represent

the parameters.

It is desirable for recognition systems that the features represent the individual classes

uniquely and consistently. Formants possess the problems that different phone types can have

the same formant locations. In addition, a given phone type may have different formant loca-

tions depending on the context and the continuity constraints applied. However, if these prob-

lems can be overcome, it has been shown that formant or peak representations can be useful in

combination with spectral representations.

3.3.3 Gravity centroids

Energy gravity centroids or spectral sub-band centroids [84] are an alternative approach to

parameterising the peaks in the spectrum. The speech spectrum is split into a number of sub-

bands by band-pass filters. The energy moments for each sub-band are then calculated to form

the gravity centroid features. The first order moment will give an indication of the location of the

peak in a given sub-band, and the second order moment will give information about distribution
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around this peak.

Given a power spectrum 2 �-,.� 3 587 9 �-,.�=<><><?7 � �-,.��@ � , the %F!#" moment ���$ �-,.� order � can be

calculated

� �$ �-,.�43
��
�
�
9  �
� $ �  � 7 � �-,1� (3.8)

where
� $ �  � is the output of the band pass filter for the % !#" moment. Approaches using bins

equally spaced in linear, Mel and Bark frequency intervals have been applied, with the results

yielding similar performance [12]. The optimal filter-bank shape was found to be rectangular.

The zeroth moment gives the energy present in each sub-band From the moment ���$ �-,1� , a

normalised moment
����$ �-,.� can then be computed:

�� �$ �-,.��3 � �$ �-,1�
� �$ �-,1� (3.9)

The first and second order moments (p=1 and p=2) have been found to be useful for speech

recognition and also in combination with MFCCs [104]. The first normalised moment corre-

sponds to the mean of the sub-band filter reponse, and has been related to the location of the

spectral energy peak in the region [84]. The second moment contains information about the

spread or distribution of energy and can be related to the bandwidth of the peak in the re-

gion. Energy centroids have been applied to clean speech and noise corrupted environments

[30]. Although the performance of the gravity centroids alone was poorer than MFCCs in clean

speech environments, they were more robust than MFCCs for certain types of noise corrupted

data. When combined with an MFCC parameterisation, Gravity Centroids have been shown to

improve performance on limited domain tasks [16].

Gravity centroids do not have the trajectory continuity problems that formants present. Con-

versely, one problem is that the dynamic coefficients of the gravity centroids possess too small

a dynamic range for them to be useful. This is most likely to be because the choice of sub-

bands filters will strongly constrain the location of the peaks [12]. Another problem is that the

results will be ambiguous or inconsistent if two spectral peaks are located in the same band.

An alternative implementation has been made using an approximation to the continuous time

differential instead of linear regressive dynamic parameters [11]. Subband centroids are a more

direct spectral representation than formants. As such, it is easier to model additive noise sources

and apply techniques for compensation and adaptation of the features.

3.3.4 HMM-2 System

The HMM-2 system is an extension to the HMM acoustic model framework [110] . Standard

HMMs use continuous density Gaussian mixture models to estimate the probability of a feature

vector given the current state. Each temporal state in the HMM-2 system has a second frequency

HMM associated with it. At each time step, the frequency HMM generates a sequence of scalar
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Figure 3.4 Overview of the HMM-2 system as a generative model for speech

values which represent the filter-bank energies and their derivatives. Thus, the emission prob-

abilities for a given temporal state are estimated by the state-dependent frequency HMM. Each

state in the frequency HMM can be mapped to a set of filter-banks and their dynamic parameters,

as seen in figure 3.4.

The frequency HMMs are used to generate the likelihoods for a filter-bank feature vector.

These likelihoods can be processed by the conventional temporal HMM as likelihoods generated

by a normal output PDF. The HMM-2 system can alternatively be viewed as an expanded HMM

system with synchronisation points enforced at the end of each time step. Thus, the system

can be training with the EM algorithm in a similar fashion to the training of HMMs, estimating

state/time and state/frequency alignments for the HMMs. The HMM-2 system can be used as an

acoustic model, but when used in practise, the recognition results were poorer than those from

a conventional HMM [107].

An alternative use has been proposed for the HMM-2 system. The state transitions in the

frequency HMM may be used as features for speech recognition [108]. If the frequency states

tend to match regions of similar energies, the segmentation of the frequency HMM may indicate

the regions of similar energy levels or peaks. The segmentations have been called “formant-like”

features and may then be used as features in a conventional HMM [107].

To ensure some continuity the filter-bank frequency can also be used as a feature in the

frequency HMM layer. This effectively places a prior distribution on the expected positions of

the formants for a given phone class and hence increases consistency and continuity in the

extracted parameters.

The segmentations from a HMM-2 system have been used in combination with standard

MFCC parameterisations. They improved recognition performance in the presence of additive

factory noise from the noisex database [108]. The advantage of the HMM-2 systems over other
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formant-like features is that the extraction process is expressly part of the recognition process,

so the feature extraction process is class dependent. The extraction process also has a flexible

statistical framework.

Though HMM-2 features can be seen to follow the locations of the formants, the features

based on the segmentations are limited by the number of Mel-scaled filter-banks. Each HMM-

2 feature in the current implementation [108] can only take one of 12 discrete values. The

standard
0

and
0
	 parameters give no improvement when added to the system [109]. This

may be due to high level of quantisation making the dynamic coefficients unreliable. Increasing

the number of Mel-scaled filterbanks would increase the resolution in the frequency domain,

but will lead to an increase in the computational complexity. Also, although the features possess

inherent noise robustness, due to the nature of the extraction process and the mapping between

the spectral and feature domains, it is difficult to apply schemes to rapidly adapt the features.

3.4 Spectral Gaussian mixture model

A number of techniques for extracting formants from speech data were describedin section 3.3.2.

However, there are a number of problems associated with the use of formants as features [56].

For example, formants do not extract any amplitude information from the speech signal, and

are often poorly defined in certain types of phone. Recently, there has been interest in statistical

methods to parameterise the spectrum in terms of its peak structure rather than searching for

the resonances. As outlined in section 3.3.3, the use of Gravity Centroids to describe the first

and second moments of spectral sub-bands has been shown to provide features complementary

to MFCCs. However, one of the limitations of the gravity centroid features is that the choice of

sub-band filters severly constrains the extracted parameters. For instance, the gravity centroid

features will be ambiguous if there are two peaks within a sub-band.

Another statistical method of estimating spectral parameters from a speech spectrum is the

Gaussian Mixture Model (GMM) proposed by Zolfaghari and Robinson [125]. Originally pro-

posed as a method for parameterising the speech spectrum it was later developed as a low-bit

speech codec [126] [127]. The technique assumes that a set of Gaussian components can rep-

resent a distribution based on the spectral envelope. The GMM parameters are iteratively esti-

mated using the expectation maximisation (EM) algorithm. The posterior probabilities of each

bin being generated by the target mixtures are estimated, then these values are used to calcu-

late the Gaussian component parameters. These steps are iterated to converge upon a solution.

The spectral GMM estimation can be viewed as an extension of the gravity centroid features, as

shown in figure 3.5. The gravity centroid features will be related to the GMM parameters in the

case where he posterior probabilities for each component are fixed and identical to the sub-band

filter functions. The spectral GMM has more flexibility to model the spectrum than the gravity

centroids parameters, but has more degrees of freedom.
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Figure 3.5 Extracting gravity centroids and GMM parameters from a speech spectrum
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3.5 Frameworks for feature combination

Alternative speech parameterisations may provide information complementary to the standard

MFCC or PLP parameterisations. Thus, given a suitable framework for combining the two infor-

mation sources, improved performance could be attained. This section details some of the main

approaches that have been proposed. The simplest method of combining features together is to

concatenate them into a single feature vector. Another method is to split the different features

into separate information streams which can be combined in a synchronous or asynchronous

fashion. Different parameterisations or acoustic models can also be combined at the sentence or

word level.

3.5.1 Concatenative

The simplest approach to incorporating different features is to append them onto the existing

feature vector. This is refered to concatenative combination in this thesis. This is the simplest

method of feature combination. After concatenating the features together, the standard dynamic

parameters of all features can be appended to the feature vector. Feature concatenation has

proved to be a successful method of combining MFCC parameterisations with a range of different

speech features. The features from the gravity centroids [16], the HMM-2 system [108] and

spectral phase features [97] have been successfully appended to an MFCC feature vector and

yielded improved recognition results.

Simply concatenating features together increases the size of the feature vector. The alterna-

tive features may be highly correlated with the existing features. Furthermore, not all features

appended to the spectrum will be useful. The use of Fisher ratios can give some indication of

the discriminative information of a feature, but will not take into account the correlations be-

tween the feature sets. An increment information metric has been proposed which can also give

some indication of the amount of improvement to be expected when including a feature into an

existing system [83]. It is also possible to use a transform such as LDA or PCA on the concate-

nated feature vector prior to its use in the recogniser. Feature space transforms can remove the

correlations between the feature types. The LDA matrix approach can be truncated to reduce

the dimensionality of the data and remove the elements with the lowest Fisher ratios. Using this

feature selection/extraction approach is sometimes adopted because adding features increases

the size of the feature vector and hence the number of parameters to be estimated in the system.

Increasing the dimensionality of the feature vector will also change the dynamic ranges of the

state likelihood calculations. As a result, the search techniques will usually have to be run with

a wider beam width on the pruning thresholds to keep the same number of active tokens. The

optimal language model scale factors will be changed. The optimum number of components

in the HMM emission PDFs may also change. If the features are correlated with respect each

other, different forms of covariance matrix may be considered, or the number of Gaussian com-

ponent mixtures may be increased to model the correlations. In conclusion, combining features

by concatenating them into a single feature vector has been used to successfully incorporate
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some alternative speech parameterisations. However, care must be taken when considering the

usefulness of the additional features and the effects of increasing the size of the feature vector.

3.5.2 Synchronous streams

It is also possible to split the observations to the recogniser into multiple information streams.

The feature vector � �-,.� can be divided into � separate information streams
� * 9 �-,.� ��������� *�� �-,1� � .

The observations are treated as conditionally independent information sources, that is, inde-

pendent given the state generating the observation. Synchronous streams allow the number of

“effective” full dimensional components to be increased without a large increase in the number

of model parameters. The use of the stream weights also allows the contribution of different

streams to the likelihood computation to be varied.

The output probability for a synchronous stream system for state % at time , is then given by:

� $ �-*+�-,.� � 3
�
�

� �
9
� 	 ��
I
�
9
� ��
 $ � I � � $ � I �-* � �-,1� � 
 � � (3.10)

where � � is the stream weight of stream � , and � � the number of mixtures in the �F!#" stream.

The component priors
� ��
�$ � I � will sum to one for each given stream ( � 	

�I
�
9 � ��
 $ � I �43 � ) and:

� $ � I �-*+�-,1� ��3 � �-* � �-,1����� $ � I ��� $ � I�� (3.11)

where � $ � I and � $ � I are the mean and covariance for stream � . By increasing the value of the

exponent � � different observation sources can be given more emphasis.

Training of the system can be accomplished by optimising the parameters for each state,

mixture and data stream, since the data streams are considered to be independent given the

state.

The training is then based on the stream/frame alignment
� $ � I ��� � where� $ � I ��� ��3 � $ ��� � � $ � I �-* � ��� � �� 	

�I
�
9 � $ � I �-* � ��� � � (3.12)

and the state/frame and mixture/frame likelihood can be calculated as before. Hence, the up-

dated means for the model set are given by:


� $ � I 3 � � �
�
9 � $ � I ��� ��* � ��� �� � �
�
9 � $ � I ��� � (3.13)

and the component weights are given by


� ��
 $ � I ��3 � � �
�
9 � $ � I ��� �� � �

�
9 � 	

�I
�
9 � $ � I ��� � (3.14)

There does not exist an algorithm to train the stream weights in a maximum-likelihood

framework. However it is possible to train using discriminative fashion using minimum classi-

fication error [78] or using gradient probability descent methods [89]. However, the simplest

technique is to set a fixed global value for the stream weights. This value can be trained heuris-

tically on a subset of the test or training data.
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3.5.3 Asynchronous streams

In synchronous stream systems each observation is independent given the state that generated

it, and each state is assumed to generate observations in the streams at the same time instance.

Alternatively, each stream may be considered independent, and run separately in time as an

asynchronous stream system. Recombination of the streams can occur at sentence, word or

phone level. The recombination points are refered to as anchor points.

One approach to using asynchronous information streams formed a recogniser using param-

eters from frequency sub-bands as the different streams [8]. The anchor points were set between

speech units to force some level of synchrony between the streams. Three strategies for recombi-

nation were considered: stream weights based on normalised phoneme-level recognition rates;

stream weights based on normalised signal to noise ratios in each band and recombination using

a neural net.

The use of an asynchronous stream can only be considered advantageous if the separate

streams are not synchronous. This will determine whether the assumptions of the model are

appropriate for the data. Other systems have also been built using an asynchronous streaming

system to combine spectral sub-bands to yield improved recognition results on the TIMIT corpus

[113].

3.5.4 Using confidence measure of features in a multiple stream system

When combining different features with MFCC or PLP features the complementary features may

be more useful for certain classes. For example, spectral peak representations may be less reli-

able for certain classes of phones such as fricatives and nasalised sounds. In order to allow for

this, the stream weights could be made to be class dependent and trained heuristically or in a

discriminative fashion. However, this could effectively weight the probabilities of given phone

classes and affect the recogniser performance.

An alternative approach is to make the stream weights a function of the observed speech

signal at time , [114]. A measure of confidence
� �H�-,1� has been extracted from the spectrum when

estimating the formant frequencies [56]. This confidence metric was based on the amplitude

and degree of curvature of each formant or spectral peak. The formant features were combined

with the MFCCs by applying the confidence measure as scaling factors on the state probability

calculations. The likelihoods of the formant features were weighted by their confidence measure,

and the higher order cepstra included were deweighted by the confidence metric to maintain

the dynamic range of the system. As the system built used only a single component in the state

output PDFs, the confidence scales can be viewed as a form of streaming system with time-

dependent stream weights � � �-,1� :

� $ �-* �-,.� � 3
�
�

� �
9
� 	 ��
I
�
9
� ��
 $ � I �
� �-* � �-,1����� $ � I ��� $ � I � 
 � � A ! E (3.15)
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The system used a representation of eight cepstral coefficients and three formant frequencies.

The first five formant frequencies and their dynamic features had the stream weight fixed to

one. The weights of the three formants were set to their respective confidences
� � �-,1� . The three

higher order cepstra had a weight set such that each was weighted by a corresponding formant

confidence � � � �H�-,1� .
Using the stream system as defined above gave an improvement in performance on the TIMIT

task over an MFCC system and a concatenative MFCC+formant system [114].

3.5.5 Multiple regression hidden Markov model

Some features which can be extracted from the speech signal can represent some of the inter-

speaker variations. These features will be referred to as auxiliary features. The multiple-

regression HMM (MR-HMM) is a method of incorporating auxiliary information features (such

as the fundamental frequency � � ) to adapt the model parameters and thus better represent the

standard acoustic features [28]. The means of the MFCC parameters � $ �-,1� are adapted based

on the auxiliary information *
	
�-,.� and a transform � :

� $F�-*+�-,1� ��3 � �-*�9 �-,1����� $ � � *
	
�-,1� ��� $:� (3.16)

The use of a MR-HMM incorporating pitch and a low-frequency energy term has been used

to reduce error rates on a phone recognition task by more than 20%. The approach could

be extended to allow the transform � to be tied over multiple classes. Features which could

possibly be used to transform existing spectral parameterisations include pitch, energy, degree

of voicing and formant features. The MR-HMM is more suited to using auxiliary information

which models the intra-speaker correlations rather than features which could be used to provide

discriminatory information. Formant features could be used as they possess both discriminatory

information about the task and speaker-dependent information as well.



4

Gaussian mixture model front-end

In this chapter, a method for parameterising the speech spectrum based on estimating a Gaussian

mixture model (GMM) from the speech spectrum is shown. The use of the EM algorithm to fit

a set of Gaussians to a spectral histogram is described, together with issues in representing

the speech using this model. In addition, techniques to extract features from the parameters

of the GMM are discussed, along with the properties of the extracted features, and a measure

of confidence in the GMM estimate is presented. Methods to apply temporal smoothing and

for enforcing continuity constraints on the extracted parameters are also described. Finally,

techniques to compensate the GMM features in noise-corrupted environments are presented.

4.1 Gaussian mixture model representations of the speech spec-

trum

This section outlines the basic theory of extracting parameters for a set of Gaussian components

from the FFT of the speech signal. Unlike the previous work with spectral GMM estimation, the

histogram is formed from continuous bin probability functions as opposed to the single impulse

functions used in previous approaches [125].

4.1.1 Mixture models

The Gaussian mixture model for speech representation assumes that a M component mixture

model with component weights
� ��
 I � and parameters 
 I can represent the spectral shape.

The general form of a univariate mixture model is

������� 
���3 	�
I
�
9
� ��
 I � ������� 
 I �.
 I � (4.1)

where
� ��
 I � is the prior probability of component J and 
 I the component parameters. The

mixture components in this case are Gaussian, and hence can be described by

�����4� 
 I �.
 I � 3 �
� ��
�� 	I��

��� � � ��� � � I � 	��� 	I � (4.2)

45



CHAPTER 4. GAUSSIAN MIXTURE MODEL FRONT-END 46

where � I is the mean and � I the standard deviation for component 
 I . The first step in

estimating a GMM from the speech is to form a continuous PDF based on the spectral represen-

tation. The distance between the spectral PDF and the GMM is then minimised with respect to

the GMM parameters to yield the optimal GMM parameters.

4.1.2 Forming a probability density function from the FFT bins

�����������

��������������������������������������������
����������������������

������������������������������������������������������������

������������������������������������������������������������

 x

PSfrag replacements

�2 �-,1�

�7 �H�-,.�

� �

������� �B�
������� � � �

Figure 4.1 Formation of a continuous probability density function �
	��

 ��� from FFT values

As mentioned in the previous section, in order to estimate the GMM parameters from the

spectrum, a PDF must be formed from the spectrum. From the N-point magnitude FFT rep-

resentation of the speech 2 �-,1� 3 587 9 �-,1�=<><>< 7 � �-,1��@ � , a continuous probability density function is

formed as the summation of functions based on the FFT points. Each point in the FFT 7��H�-,1�
exists at a discrete frequency value. To form a continuous probability function, each point in the

FFT is associated with a bin function ������� ���H� 1 where �F� denotes the  �!#" bin, and � is the FFT bin

frequency.

In previous work using the GMMs as a vocoder, to form a spectral histogram, each FFT fre-

quency bin was represented by an impulse function weighted by the normalised FFT magnitude

[125]. In this work, the bins have a width of � and are centred on the point � � in the range
� � � � 9

	
	 � 	 � � � 9

	
� , where � � 3  ��� <�� , as shown in figure 4.1. A continuous probability

density function is formed from the summation of the set of N FFT bins:

�����4� ��� 3
��
�
�
9
� � �F�H� ������� �F�H� (4.3)

where
� � �F�H� is the prior probability of the  !#" bin �F� . The bin functions used could be trapezoids

or linear interpolations of the FFT magnitudes. However, the assumption here is that the bins
1The time index t has been dropped for simplicity.
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are simply rectangular functions centred at the value ��� :
������� �F�H�43

� � � � � � 9
	
	 � 	�� � � 9

	
�

� otherwise
(4.4)

The prior probabilities are obtained from the normalised spectrum
�2 �-,1�

� � �F� �43 �7 � �-,.� (4.5)

The normalised spectrum
�2 �-,1� is computed from the points in the input FFT such that the his-

togram bins satisfy a sum to one constraint.

�7 � �-,.��3 7 �H�-,1�
� �
$
�
9 7 $F�-,.� (4.6)

By forming a continous histogram in this fashion, it is possible to avoid some of the problems of

data sparsity that may occur.

4.1.3 Parameter estimation criteria

Having obtained a function from the FFT bins which is a valid probability distribution from the

speech spectrum, the next step is to estimate an optimal set of GMM parameters according to

some criteria. The approach used in this work is to minimise the distance between the GMM and

the smoothed distribution. In this case, the measure used is the Kullbeck Leibler (KL) divergence�
, where the KL distance between the two PDFs ������� and � ����� can be defined as:

� � ������� ��� ����� � 3 � ���������
	 ��� �������� ������� � � (4.7)

3 � ���������
	 �B������� ��� � � ���������
	 � � ����� � � (4.8)

The distance between the GMM ������� 
B� and the spectral histogram ������� �B� is given by:

� � �����4� ��� �-�����4� 
�� � 3 � ���
�
� ������� �B���
	 � � ������� �B�������� 
B��� � �

3 � ���
�
� ������� �B���
	 ��������� �B� � � � � ���

�
� ������� �B���
	 �B������� 
B� � � (4.9)

The first term does not vary with the parameters 
 . The second term can be expressed as the

sum of the expected value of the log likelihood over each histogram bin � � . Since for a single bin

(from equations 4.3 and 4.4):� ���
�
� � ����� �F� ���
	 �B������� 
B� � � 3 �
	 � � ��

	 � � ��
� ����� �F� ��� 	 �������4� 
�� ��� (4.10)

3 ��� �
	 �������4� 
B� � �:�H� (4.11)

and each bin is weighted by its probability mass
� � � � � , the second term in equation 4.9 can be

written as the expected log likelihood of the Gaussian mixture model over all the histogram bins
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�����4� ��� weighted by their prior probabilities:
��
�
�
9
� � �F�H� � ���

�
� � ���4� �:�H���
	 �B������� 
�� ��� 3

��
�
�
9
� � �F� � ��� �
	 �������4� 
B� � �:�H� (4.12)

3 � � �
	 �������4� 
�� � ��� (4.13)

The first term in equation 4.9 is dependent only upon the spectral histogram. The second term

in equation 4.9 is the expected log-likelihood of the Gaussian mixture model in equation 4.13.

Thus to minimise the KL distance with respect to the GMM model parameters, it is necessary to

maximise the expected log-likelihood in equation 4.13.

4.1.4 GMM parameter estimation

There does not exist a closed form solution to the problem of maximising the likelihood in equa-

tion 4.13 when ������� 
B� is a GMM. However, it is possible to iteratively estimate the mixture com-

ponent parameters using the expectation-maximisation (EM) algorithm. The EM algorithm is a

general optimisation technique and provides a method to iteratively update model parameters

such that the log-likelihood of the data is guaranteed not to decrease at each step.

One method to estimate the GMM parameters would be to use a Monte-Carlo approach and

draw a sufficiently large number ( � ) of data points � �
3 � � 9;�><><><;� �

�
� from the histogram, and

then use the standard form of the EM algorithm for estimating GMMs from discrete datapoints

- as outlined in appendix A.1 - to estimate the mixture parameters. In this case, the auxiliary

function
	 ��
�� 

�� would be:

	 ��
�� 

�� 3 �
�

	�
I
�
9
�
��
�
�
9
� ��
 I � � � �.
���� 	 � � ����� � � 
 I � 

 I ��� �

� �
�

	�
I
�
9
�
��
�
�
9
� ��
 I � � � �.
B���
	 � � 
� ��
 I ��� � (4.14)

However, as � increases, this method would become prohibitively computationally expensive

for extracting speech features. Instead it is possible to make some approximations concerning

the histogram data.

The first approximation made is that all the data points that are drawn from a given his-

togram bin � � can be assigned the same posterior probabilities. For the data points � A
� � E� drawn

from a given histogram bin � � , denoted � A � � E� , we can then approximate that all points drawn will

share the same posterior probability:

� ��
 I � � A � � E� �.
�� � � ��
 I � �F�H�.
�� (4.15)

Alternatively, the bins can be arbitarily sub-divided to reduce the power of this assumption, how-

ever, in practise this appears to make no difference to the GMM parameter estimates obtained.
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Figure 4.2 Overview of the extraction of GMM parameters from the speech signal
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The auxiliary function can then be written:

	 ��
�� 

�� �
�
�

	�
I
�
9

��� �� �
�
9
� ��
 I � �:� �.
B� ������ �	�
 �
	 � � ����� � � 
 I � 

 I � ����
�

� �
�

	�
I
�
9

��� �� �
�
9
� ��
 I � �F� �.
�� ������ � �
 �
	 � � 
� ��
 I ��� ��
� (4.16)

where the sum � � ��� ���
 is taken over all the data points drawn from bin � � . As the number of data

points approaches infinity we can consider the prior probabilities of data coming from a given

bin
� � �F�H� , and the expected log-likelihood of � given a mixture 
 I with parameters 

 I :

	 ��
�� 

�� � 	�
I
�
9
� ��
�
�
9
� ��
 I � �:�H�.
�� � � �F� � ��� �
	 ��������� 
 I � 

 I � � �:��� �

� 	�
I
�
9
� ��
�
�
9
� ��
 I � �:� �.
�� � � �F�H���
	 � � 
� ��
 I ��� � (4.17)

The expected value of the log-likelihood of the data over the bin � � is given by:

��� � 	 �������4� 
 I � 

 I � � �F��� 3 �
�
�
	 ��� �

� ��
 
� 	I�� � �:��� � ��� � � ��� � 
� I � 	� 
� 	I � � �:���
3 � 	 ��� �

� ��
 
� 	I � � �� 
� 	I � ��� � 	 � �F� �	� � � � 
� I �4� �:�H� � �!� 
� 	I � �F� � �
3 � 	 ��� �

� ��
 
� 	I � � �� 
� 	I � ��� � 	 � �F� �	� � 
� I � � �4� �:�H� � 
� 	I � (4.18)

This expression for expected log-likelihood involves the first and second moments of the his-

togram bins. For a rectangular bin from � � � 9
	

to � � � 9
	

the first moment is the same as that of

a single data point or impulse function:

��� �4� �:�H� 3 � ���
�
� �F�����4� �:�H� ���

3 �
	 � � ��
	 � � �� � ���

3 � � (4.19)

The second moment of a histogram bin is given by:

��� � 	 � �:�H� 3 � ���
�
� � 	 �����4� �:�H� � �

3 � 	 � � ��
	 � � �� � 	 � �

3 � 	� � ���� (4.20)
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Thus for observation data with a probability mass
� � � �H� centred at �:� , the expected value of the

log-likelihood of data from a spectral histogram bin given a Gaussian component is:

��� �
	 ��������� 
 I ��

 I � � �F��� 3 �
	 � � �
� ��
 
� 	I�� � � � � � � � 
� I � 	 � 99

	� 
� 	I � (4.21)

This expression is similar to the likelihood of a single data point, save for the extra term of99
	

due to the variance of the rectangular bin function. This will have the effect of adding a

floor to the value of expected log-likelihoods obtained. The above expression assumes that the

value of
� ��
 I � �F� �.
 I � is known. In practice, this must be estimated from the current model

parameters. To calculate this exactly is not practical, as it would require an evaluation of the

expected likehood of the Gaussian function
� � ������� 
�$F�.
 $:� � �F�H� . Instead, the posterior probability

that bin � � was generated by component 
�$ can be approximated by:

� ��
 $ � �F� �.
B� � 
� ��
 $ �
�
� � � � � �
	 � � ������� 
 $ �.
 $ ��� � � � � �

� 	I �
9 
� ��
 I �

�
��� � � � �
	 � � ������� 
 I �.
 I � � � �F� � � (4.22)

The auxiliary function in equation 4.17 for the histogram is maximising with respect to 
� ��
 $ �
and 

 $ . Differentiating equation 4.17 over 

 $ and equating to zero, the following equation is

obtained:

� 	 ��
�� 

B�
� 

 $ 3

��
�
�
9
� � �:�H� � ��
 $�� �F� �.
 $F� �

� 

 $ � ��� ������� 
 $ � 

 $:� � �F� � � 3�� (4.23)

Substituting equations 4.21 and and 4.22 into equation 4.23 the new parameter estimates 
��$
and 
� 	$ are obtained:


��$ 3 � �
�
�
9 � � � � � � ��
 $ � � � �.
�� � �

� �
�
�
9 � � � � � � ��
 $ � � � �.
B� (4.24)


� 	$ 3 � �
�
�
9 � � �F�H� � ��
 $ � �:�H�.
�� � � � � � 
��$F� 	 � 99

	
�

� �
�
�
9 � � �F� � � ��
 $ � �F� �.
�� (4.25)

The component priors have a sum to one constraint, and thus the new estimates can be given by

considering the probability mass assigned to each component:


� ��
 $ �43 � �
�
�
9 � � � � � � ��
 $ � � � �.
B�

� 	I �
9 � �

�
�
9 � � �F�H� � ��
 I � �:�H�.
�� (4.26)

The denominator is the sum over all mixtures and all bins, and hence will be equal to � . The

updated prior components can simply be written as:


� ��
 $:��3
��
�
�
9
� � �F� � � ��
 $�� �F� �.
B� (4.27)

The EM algorithm converges upon a solution for maximising the auxiliary function by iterating

two steps. The expectation (E) step is the estimation of the complete data by calculating the

posterior bin probabilities. The maximisation (M) step then finds the optimal values of the

model parameters to maximise the auxiliary function.
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4.1.5 Initialisation

The EM algorithm is an iterative process. An important consideration is that the parameter

estimates need to be initialised for the first iteration of the algorithm. The choice of initial

parameters will constrain the solution found by the EM algorithm and hence is very important.

There are several options for the choice of initial parameters.

The first option is to initialise the components equally across the spectrum. In this case, the

component means will be distributed evenly and the component priors will be equal. The choice

of the initial variances is also important. If the initial variances are small, the components

will be more strongly constrained to the initial positions. Setting the variances too large will

allow too much variation in the locations and may not yield a useful solution that represents

the spectral PDF. For the initialisation of an � -component GMM when estimating a � -point

histogram ������� �B� , small initial experiments suggested that good initialisation values for each

component J in the GMM will be:

� I 3 � � J � � <����
�

� � <�� (4.28)

� 	I 3 � 	
� 	

(4.29)

� ��
 I � 3 �
� (4.30)

Another option used in previous work is to use the parameters from the final iteration of

the previous frame as the initial parameters for the current frame [126]. It would also be

possible to use the parameters estimates from another peak-picking algorithm to initialise the

system. However, if the estimates from the other system are poor, the solutions found by the EM

algorithm may also be poor estimates.

4.2 Issues in estimating a GMM from the speech spectrum

In the previous section the theory for estimating GMM parameters from a speech spectrum was

presented. In this section, a number of issues with the implementation of the algorithm on a

speech spectrum are examined.

4.2.1 Spectral smoothing

The characteristic shape of the speech spectrum can present problems for estimating a set of

Gaussian components. The voiced speech spectrum is characterised by a number of pitch peaks

separated by the fundamental frequency. As mentioned in the previous section, the choice of

initial parameters can determine the maxima found by the EM algorithm. There exist many local

maxima the EM algorithm could find at each of these pitch peaks. If the pitch peaks are separated

by a high fundamental frequency, a maximum could be found estimating a Gaussian component

to a single pitch peak, and ignoring the adjacent harmonics. The Gaussian component which

models the harmonic will have a very small variance, but will not represent the general spectral
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envelope, as seen in figure 4.3. In this figure two of the Gaussian components have converged

upon the pitch peaks and are not modelling the general spectral shape. In order to represent the

phonetic class of the speech spectrum it is desirable that the GMM model the spectral envelope

and avoid the problem of components converging upon the pitch peaks.
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Figure 4.3 EM algorithm finding a local maximum representing the pitch peaks in voiced speech

There are two possible solutions to the problem of the Gaussians components representing

the spectral harmonics:

� Variance flooring: applying a variance floor to the Gaussian components prevents any

component becoming too narrow and representing only a single pitch peak.

� Spectral smoothing: using a smoothing algorithm to remove the pitch or voicing from the

spectrum and estimate the vocal tract function.

� Overlapping bin functions: rather than the FFT bins being represented by a rectangular

histogram function, the bins could be allowed to overlap each other. This technique can

be related to a spectral smoothing approach.

The problem with using a variance floor is that the floor would have to be set suitably large

to account for the highest possible fundamental frequency between the pitch periods in the

spectrum. With a large variance floor the system will not be able to model narrow formants

particularly well. In addition an unsmoothed spectrum is not modelled by a Gaussian mixture

model very well.

In this work, the spectrum is smoothed prior to the GMM estimation. Three different forms of

spectral smoothing which can be applied to the spectrum are presented below: cepstral liftering,

estimating the SEEVOC envelope and applying a convolutional pitch filter.
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4.2.1.1 Cepstral liftering

The cepstral representation of a spectrum is obtained by taking the inverse FFT of the log-

spectrum. The cepstra can be approximated by taking the discrete cosine transform (DCT) of

the log spectrum [17], as in equation 3.3.

The lower order cepstra represent the general spectral envelope and the higher order cepstra

represent the pitch and voicing information. For a typical voiced speech signal, the cepstral

representation will have most of the energy in the lower cepstral region with a single peak in the

upper cepstra. The higher order cepstra can be removed by truncating the cepstral coefficients

after a given point. After removing the higher order coefficients, the remaining cepstra can be

used to reconstruct the spectral shape with the source removed. The spectrum is reconstructed

by taking the inverse DCT of the exponents of the cepstra.

One possible problem is that the response of the cepstra is constrained by the maximum

possible fundamental frequency set in the system. Thus, the frequency resolution of the recon-

structed spectrum and the definition of the spectral envelop will be limited by the maximum

fundamental frequency chosen.

4.2.1.2 SEEVOC envelope

The Spectral Envelope Estimate Vocoder (SEEVOC) is a sinusoidal model-based low bit rate

codec [86]. The method has also been used in analysis/synthesis systems [94]. In this scheme,

the spectral envelope is estimated by detecting the peaks in the speech spectrum and interpo-

lating between them. The pitch peaks are found in the regions defined by multiples of the fun-

damental frequency � � in the spectral domain. The locations and magnitudes of the pitch peaks

thus obtained are linearly interpolated to form an estimate of the spectral envelope function.

Given an estimate of the pitch ��� , the interval 5�� ��� � � � � ��� �;@ is searched to find the location

and amplitude of the largest peak, denoted (
� 9;� � 9 ). The pitch intervals 5�� � � 9 � � ��� � � � � � 9 � � � ��� �;@

are then searched to find the � !#" peak amplitudes
� � and locations � � . If no peak is found, the

search is continued from the highest amplitude point in the region. The values obtained from

the search are linearly interpolated and used to form the spectral envelope.

The pitch can be estimated by searching for a peak in the short-term autocorrelation function
� ��� � over the

�
width speech signal � � � � :

� ��� �43 �
�

��
C �

9 � � � � � � � � � � (4.31)

The autocorrelation function indicates the degree of linear relationship between points sepa-

rated by period � in a sample waveform � � � � . The pitch period is estimated as the period of the

largest peak in the autocorrelation function within the thresholds for minimum and maximum

pitch periods, typically 30Hz and 400Hz respectively. The SEEVOC technique does not require

an exact measurement of the pitch and doesn’t require harmonic peaks whilst searching. It is

thus reasonably robust.
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This method of spectral smoothing has been used in preference to cepstral smoothing prior to

estimating GMM parameters for speech coding [126]. The SEEVOC algorithm is useful in com-

bination with a sinusoidal based coder, since the magnitudes of the pitch peaks are preserved,

as is the quality of the coded speech.

4.2.1.3 Convolutional pitch filter

Another technique to remove voicing from the spectrum is to convolve the spectrum with a

function to smooth the pitch periods. The width of the cosine filter � 	 � � ! is based directly on the

pitch period �
�
�
! G " of the speech and the number of points � in the FFT

� 	 � � ! 3 � � �
�
�
�
! G "

� � <������ � (4.32)

where the pitch period �
�
�
! G " can be estimated by searching for the peak in the autocorrelation

function as detailed in section 4.2.1.2. The convolutional pitch filter � 365 � 9;�><><>< � � C�� ��� � @ � is then

defined as:

� $ 3�� <�� � � <���� 		� � ��
 % � � <��
� 	 � � ! � (4.33)

Hence the smoothed power spectrum 
2 �-,1� is given by:


7 � �-,1� 3
C � ��� ��

$
� � C � ��� � � $ 7 � � $ �-,.� (4.34)

The approach of using a convolutional pitch filter does not require an exact measurement of

the pitch to set the width of the raised cosine window. It is thus also reasonably robust to the

estimate of pitch. Convolution operations in the spectral domain are equivalent to multiplication

in the temporal domain. Thus, the convolution with the raised cosine window in the spectral

domain is equivalent to using a windowing function with a width based on the pitch period in

the temporal domain. The pitch filtered spectrum will be smooth and is effectively based on

fewer points (or a shorter window) of the source waveform.

This approach is closely related to the functions formed from the FFT bins as well. A similar

technique could be implemented if the histogram bin functions ������� � � � were represented by a

raised cosine function instead.

4.2.2 Prior distributions

The technique for estimating a set of Gaussian components from a spectral histogram in sec-

tion 4.1 places no prior constraint on the parameters extracted. However, small changes in the

spectral histogram could lead to large changes in the solutions found by the EM algorithm. It is

possible that the estimated parameters could vary greatly between two frames that appear simi-

lar. Some statistical spectral peak representations have constraints, or priors, on the locations of

the peaks modelled. The locations of the gravity centroid parameters are explicitly constrained

as each centroid provides information specific to a particular pre-defined spectral sub-band [84].
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The HMM-2 system incorporates the location of the current frequency bin as a feature when es-

timating the second spectral HMM giving a class-dependent prior on the location of the spectral

peaks [108].

It may be useful to be able to incorporate some form of constraint on the extraction of GMM

parameters. The EM algorithm has been modified to use prior information on the data in the

form of penalised log-likelihoods [45]. It would be possible to apply a component-dependent

prior weighting to the data before the EM Gaussian estimates, effectively filtering the data ob-

served by each component during the estimation process. Using a prior model in this fashion

places a constraint on the observations for each mixture in a similar fashion to that used in the

gravity centroid work. The EM algorithm can be constrained to give Gaussian parameters for

the sub-bands the same as the gravity centroid system by fixing the component posterior prob-

abilities
� ��
 $�� �F� ��� $:� for each bin � � to a sub-band filter function. Penalising or weighting the

prior probabilities
� � � �H� or the bin functions on a per-component basis with a sub-band function

will place a similar constraint on the auxiliary function of equation 4.17 and the maximisation

function equation 4.23.

Weighting or penalising the data prior to the EM estimation would strongly constrain the

locations of the components. Hence, applying a prior distribution to the data in this form will

limit the range of the parameters estimated. Using a prior distribution can limit the flexibility of

the technique to model the spectrum and reduce its usefulness in a recognition system. However,

it may be helpful to weakly constrain the mixture components to certain regions in the spectrum,

in order to maintain smoother trajectories and smaller discontinuities.

This section presents a method of including a prior distribution using a different technique

to modify the log-likelihoods. A prior distribution is added directly to each of the components

in the estimated model distributions. Effectively, the prior distribution will augment the data set

of the histogram on a per-component basis. This approach gives a form of count smoothing on

the EM estimation process. The prior distribution 
�A � E of each of the components are modelled

by Gaussians:


 A � E 3 � � A � E9 �><><>< ��� A � E
	
� � A � E 	9 �><><>< � � A � E 	

	
� � ��
 A � E9 � �><><>< � � ��
 A � E

	
� �

In this implementation, the prior distribution augments the observation set. The observations

will either come from the spectral histogram, or from the prior distribution. The motivation is

that the contribution from the prior distribution is constant over all frames. In spectral frames

where the local maxima are found that differ greatly from similar frames, the prior distribution

will alter the maxima found. Thus, it is hoped to obtain parameter estimates with smoother

trajectories and fewer discontinuities.

The prior probabilities of the bins in the spectral histogram are discounted to ensure that the

sum of the histogram bins and of the prior probability mixtures are one:

����� 	�
I
�
9
� ��
 A � EI ��� ��� �����

��
�
�
9
� � �F�H�43 � (4.35)
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where � is defined as the discounting of the histogram probabilities due to the prior probabilities

and is in the range 0 to 1. With � set to be 0, the prior distribution gives no contribution to the

estimated parameterd.. When the prior weight is set to 1, the estimated parameters are based

solely on the prior distribution.

The following expected log-likelihood is optimised:

��� �
	 �B������� 
B� � ���.
 A � E � 3 ��� � �=�
��
�
�
9
� � �:�H� � � �
	 �������4� 
B� � �:�H�

� � 	�
I
�
9
� ��
 A � EI � ��� �
	 �B������� 
 I � � 
 A � EI � (4.36)

The auxiliary function can then be altered to take into account the two distributions, with

data either being drawn from the spectral histogram bins or the prior components. The data

points � drawn from a given bin � � can be denoted � A � � E� and the data drawn from a prior dis-

tribution component 
 A � E$ are � A ��� E� . As in equation 4.15, the approximation is made that all

data drawn from the same histogram bin or prior distribution has the same prior distribution.

Following from equations 4.16 and 4.17 the auxiliary function with a prior distribution may be

written:

	 ��
�� 

B� 3 �
�

	�
I
�
9

��� �� �
�
9
� ��
 I � �F� �.
B� �� � � � �
 �
	 � � ����� A � � E� � 
 I � 

 I ��� ��
�

� �
�

	�
I
�
9

��� 	�$
�
9
� ��
 I � 
 A � E$ �.
�� �� ��� � �
 �
	 � � ����� A ��� E� � 
 I � 

 I � ����
�

� �
�

	�
I
�
9

��� �� �
�
9
� ��
 I � �:� �.
B� �� ��� � �
 �
	 � � 
� ��
 I ��� ��
�

� �
�

	�
I
�
9

��� 	�$
�
9
� ��
 I � 
 A � E$ �.
�� �� ��� � �
 �
	 � � 
� ��
 I ��� ��
� (4.37)

Using the same approach from section 4.1, taking the limit as the number of data points

approaches infinity � ���	� � we can consider the prior probabilities that an observation came
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from a given bin ��� ����� � � � � � or from a component in the prior distribution � � ��
 A � EI � :

	 ��
�� 

B� 3 	�
I
�
9
� ��
�
�
9
� ��
 I � �F� �.
B�.��� ����� � � �:� � ��� �
	 � � ������� 
 I � 

 I ��� � �:��� �

� 	�
I
�
9

�� 	�$
�
9
� ��
 I � 
 A � E$ �.
B� � � ��
 A � E$ � ��� �
	 � � �����4� 
 I � 

 I � � � 
 A � E$ � ��

� 	�
I
�
9
� ��
�
�
9
� ��
 I � �:�H�.
��.��� ����� � � �F� ���
	 � � 
� ��
 I ��� �

� 	�
I
�
9

�� 	�$
�
9
� ��
 I � 
 A � E$ �.
B� � � ��
 A � E$ � � ��
 A � EI ���
	 � � 
� ��
 I � � �� (4.38)

The posterior probabilities of data coming from a given bin are the same as in 4.1. The

posterior probabilities of each prior component are fixed to the corresponding Gaussian mixture

component being estimated from the histogram:

� ��
 I � 
 A � E$ �.
�� 3 �F� J 3 % � (4.39)
� ��
 I � 
 A � E$ �.
�� 3 � � J �3 % � (4.40)

The expected log-likelihood of the bins can be calculated in a similar fashion to equation 4.18

to obtain the expected log-likelihood of a component 
�$ over 
 A � E� :

� � �
	 �������4� 
 $ �.
 $F� � 
 A � E� � 3 �
	 � � �
� ��
 
� 	I��� �� 
� 	I � � � � 	 � 
 A � E� � � � 
��I � � �4� 
 A � E� � � 
� 	I 
 (4.41)

The first and second moments of the prior distributions are given by:

� � �4� 
 A � E$ � 3 � A � E$ (4.42)

� � � 	 � 
 A � E$ � 3 � � A � E 	$ � � A � E 	$ 
 (4.43)

and substituting these into equation 4.41 gives:

� � �
	 ��������� 
 $F�.
 $F� � 
 A � E� ��3 �
	 � �� �� ��
�� 	$
�� � � � � A � E� � ��$:� 	 � � A � E 	���� 	$ � (4.44)

By differentiating the auxiliary function with respect to the parameter updates and equating to

zero, the estimates of the new parameters are obtained:


� $ 3 � � ��
 A � E$ � � A � E$ � ��� ����� � �
�
�
9 � � �F� � � ��
 $�� �F�H�.
�� � �

� � ��
 A � E$ � � ��� ����� � �
�
�
9 � � �F� � � ��
 $ � �:� �.
B� (4.45)


� 	$ 3
� � ��
 A � E$ � � � A � E 	$ � � A � E 	$ 
 � ��� ����� � �

�
�
9 � � � � � � ��
 $ � � � �.
 $ � � � � 	� � 
� 	$ � � 99

	 

� � ��
 A � E$ � � ��� � �=� � �

�
�
9 � � �F�H� � ��
 $ � �:�H�.
 $ � (4.46)


� ��
 $:� 3 � � ��
 A � E$ � � ��� �����
��
�
�
9
� � �:� � � ��
B�.� �F� �.
 $F� (4.47)
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The use of the prior distribution allows a form of count smoothing to be utilised when extracting

the GMM features. The prior weight � can be set to vary the contribution of the prior distribution.

4.3 Temporal smoothing

One of the problems associated with extracting formants from a spectrum, as mentioned in sec-

tion 3.3.2, is that the formants cannot be consistently estimated [54]. As the formants are rep-

resentative of the underlying articulator movements, they are expected to have mostly smooth

trajectories when present [59]. However, inconsistencies in labelling formants or spectral peaks

can lead to discontinuities in the formant tracks, giving noise in the extracted observations.

Applying continuity constraints during the extraction process has been used to improve the ro-

bustness of other formant estimation algorithms [98] [103]. The process for extracting GMM

features outlined in section 4.1 uses no frame to frame constraints on the locations of the Gaus-

sian components. It may be desirable to impose some form of continuity constraint upon the

features to ensure smooth trajectories are estimated. One simple implementation would be to

use a moving average filter over the extracted parameters. However, applying a moving aver-

age filter would lead to a loss of temporal resolution, and is a relatively crude implementation.

Another technique is to use the surrounding speech frames when estimating Gaussians from the

spectral data. Rather than estimating parameters from the single dimensional histogram from

the smoothed speech spectrum, a set of two-dimensional parameters can be estimated. The

frames adjacent to the current spectrum can be used to make a 2-D histogram and the Gaussian

components then form a two-dimensional representation of the data. This method is outlined in

this section.

4.3.1 Formation of 2-D continuous probability density function

As in the previous technique on single dimensional data, the first step is to form a continuous

PDF from the speech spectrum. The frames
� 2 �-, ��� � �><><><;� 2 �-, ��� � � are used, where F is the

frame width. Again, a normalised version of the spectrum
�7 �-,.� is used where:

��
�
�
9
���
� �
�

�7 � �-, � � �43 � (4.48)

and a set of 2-dimensional histogram bins � �8$ can be assembled with prior probabilities:

� � �:� $ �-,.� �43 �7 � �-, ��� � % � (4.49)

The bin functions in this case are rectangular and are given by:

������� , � �:� $:��3
� � � � � � 9

	
	 � 	�� � � 9

	
� and � % � � 	 , 	 % �

� (otherwise)
(4.50)



CHAPTER 4. GAUSSIAN MIXTURE MODEL FRONT-END 60

where �:� is the centre frequency as before. Hence the 2-D probability distribution is thus given

over the full set of bins � :

������� , � � � 3
(�
�
�
9
�����B� ,>� ���H� (4.51)

3
(�
�
�
9

��
$
�
9
� � �:� $��-,.� � �����B� ,>� �F� $F� (4.52)

where

� 3 � � 9 �><><><;� � ( � (4.53)

� � 3 5 � � 9 �><><>< �H� � � @ � (4.54)

and
� 3 � � � � . An example of the formation of a 2-D PDF can be shown in figure 4.4. The

central frame is from the current time indexand the two frames preceeding and following the

current frame are incorporated into the PDF.

4.3.2 Estimation of GMM parameters from 2-D PDF

The estimation of the GMM parameters proceeds in a similar fashion as for the 1-D case out-

lined previously. The approximation that all points drawn from a bin can be assigned with the

same posterior probabilities is made again, so that a set of two-dimensional Gaussians may be

estimated from the spectral histogram using the EM algorithm as before. The auxiliary function

is similar to that of equation 4.17, but is taken over all the 2-D PDF bins:

	 ��
�� 

�� � 	�
I
�
9

�� �� �
�
9

(�
$
�
9
� ��
BI � � � $ �.
B� � � � � $ � � � �
	 �����4� 
BI � 

 I � � � � $ � ��

� 	�
I
�
9

�� �� �
�
9

(�
$
�
9
� ��
BI � � � $ �.
�� � � � � $ ���
	 � ��
� ��
BI � � �� (4.55)

The posterior probabilities of the components given the 2-D bin functions,
� ��
 I � �F� $F�.
�� , can

be calculated from the expected bin log-likelihoods:

� � �
	 �B������� 
 I � 

 I � � �F�8$ � 3 � 	 � � �
����
�� �� � 
� I � �� �� � � �� � � � � 
� I � � 
� �

9I � � � � 
� I ��� ���� � (4.56)

and the priors can be calculated in the same fashion as the 1-D case in equation 4.22. The

means of the second (temporal) dimension are fixed to the current (or central) temporal frame.

This constraint is imposed to ensure that the features extracted are modelling the current input

frame. Thus for a mixture component J :

� I 3
� � I �

�
� (4.57)
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Figure 4.4 Estimating Gaussians in two dimensions, and extracting eigenvectors of the covariance matrices

In addition, the frames adjacent to the input frame can be de-weighted with a scale or window-

ing function
� � ��� �

�7 � �-,�� � ��3 � � ��� � 7 � �-,�� � � (4.58)

where
� � ��� � could be a raised cosine window or a triangular function, for example. The moti-

vation for windowing in the temporal domain is twofold. First, by deweighting the surround-

ing frames, the parameters estimated are more dependent on the current frame. Second, by

deweighting the data at the edges, the histograms will be better modelled by a set of Gaussian

components as the distributions for Gaussian data are expected to tail off at the extremities.

4.3.3 Extracting parameters from the 2-D GMMs

The 2-D GMM estimates yields a similar set of parameters to that estimated for the 1-D GMM.

From the two-dimensional Gaussian estimates a set of component priors, two dimensional means

and two-dimensional covariance matrices are obtained.

The spectral dimension component means � 9 can be used in the same fashion as the single

dimensional GMM means. The component means in the temporal direction �
	 are constrained

to the central frame and thus will not vary over the spectral frames. The component priors can

also be used in the same fashion as the 1-D component priors.

The covariance matrices could be used in two ways. The first approach would be to use

the covariance element of the frequency dimension � 9 9 in the same way as the variance in the

single dimensional case is used. The second method is be to extract additional information from
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the extra terms present in the full matrix. The full two-dimensional covariance matrix contains

information about the correlations between the successive frames. By extracting the eigenvectors

of the covariance matrix, it is possible to analyse the covariance of each mixture J in terms of

the set of eigenvectors � I 3 ��� I 9 � � I
	
� and eigenvalues

� I 3 � � I 9;� � I
	
� . The directions

of the eigenvector will be represent the degree of temporal correlation. As shown in figure

4.4, the eigenvectors can represent the trajectory of the Gaussian components. The eigenvector

components give an indication of the velocity of the GMM parameters. The eigenvalues could

be used as dynamic parameters rather than using the linear regression parameters used for

conventional features. The scalar product of the eigenvector and the observation in one direction

will yield a term representing the variance in the spectral dimension in the transformed space:

� �I 9 3 � I 9 �
�

� 9 9
� 	

9 � (4.59)

The scalar product of the other elements of the covariance matrix with the second eigenvec-

tor will yield a term representing the variance in the temporal dimension which could be used

in a similar fashion to the standard dynamic parameters for the position of the component:

� �I
	
3 � I

	
�
�

� 	
9

� 	 	
� (4.60)

Thus an extra feature modelling the temporal correlations can be extracted from the 2-D GMM

parameters.

4.4 Properties of the GMM parameters

The previous sections have outlined how to extract a set of GMM parameters to model a PDF

formed from the speech spectrum. This section discusses the properties of the extracted param-

eters. The formant-like properties of the GMM parameters are discussed, along with their use

as features for speech recognition. A measure of confidence in the extracted parameters is pre-

sented, together with a framework for its use in medium- and large-vocabulary systems. Finally,

approaches for speaker normalisation of the GMM features are discussed.

4.4.1 Gaussian parameters as formant-like features

The GMM parameters can be considered to be analogous to a set of formant-like features [125].

The component means correspond to the formant locations, the standard deviations to the for-

mant bandwidths and the component energies to the amplitudes. Once the GMM parameters

have been extracted, they are ordered according to their frequency values. Thus the component

with the lowest mean is the first component and so forth.

An example speech frame is shown in figure 4.5(a). The spectral envelope for a frame

smoothed by cepstral deconvolution and the associated four component GMM estimates are
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shown in figure 4.5(b). The speech comes from a section of a voiced vowel utterance and thus

has a characteristic formant peak structure. The cepstral deconvolution has managed to remove

the effects of the voicing from the speech. The GMM manages to represent the general spectral

shape and follows the locations of the spectral peaks reasonably well. In addition, the overal

structure of the spectrum is well modelled.
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Figure 4.5 Example plots showing envelope of Gaussian Mixture Model multiplied by spectral energy

In figure 4.6 the Gaussian component means for each of the spectral representations have

been plotted over the spectrogram for the all-voiced utterance “Where were you while we were

away?” which possesses strong formant structures. The component means follow the observ-

able formant structures in the speech. No frame-to-frame constraints were used to extract the

parameters. Despite this, the trajectories of the component means are fairly smooth. During

the silence periods the positions of the means vary slightly but mostly they stay close to their

initialisation points. The mixtures do cross the boundaries of the spectral sub-bands they were

initialised in and exhibit a large degree of freedom in their locations across the spectrum. This

shows the flexibility the GMM features possess over the gravity centroid parameters.
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Figure 4.6 Gaussian mixture component mean positions fitted to a 4kHz spectrum for the utterance “Where

were you while we were away?”, with four Gaussian components fitted to each frame.
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4.4.2 Extracting features from the GMM parameters

In section 3.2, a number of desirable properties of features for speech recognition were men-

tioned. Features should represent the underlying phonetic classes in a distinct fashion, and be

separated in the feature space. The features should be well represented by the output distri-

butions. They should be as speaker independent as possible. Ideally, to reduce the number of

parameters to estimate, the features should be compact and uncorrelated.

The Gaussian parameters estimated by the EM algorithm are the means, variances and com-

ponent priors. It is possible to apply post-processing to these features before using them in a

speech recognition system, in order to yield features which better represent the phonetic class

or are better represented by the emission probability distributions in the HMM states. In this

case, the HMM output PDFs will also be Gaussian.

Scaling the component priors by the spectral energies yields the component energies. The

component energies or log-energies � I �-,1� may be preferable to the component priors as the

component log-energies contain spectral amplitude information required to distinguish certain

types of phone which may have similar peak locations. This was the approach used when the

spectral GMM was used as a vocoder. It is worth noting however that most spectral features

(PLP and MFCC for instance) remove the spectral energy before calculating the parameters.

� I �-,1��3 �
	 � 5 � ��
 I �
��
�
�
9
7 � �-,1��@ (4.61)

If the component energies are used, then the log scale is a more appropriate domain for energy

terms as it will compress the dynamic range of the parameters [122]. The log-energies can

also be normalised on a per-utterance basis, with the maximum component log-energy term

normalised to 1 and a silence floor can also be applied 50dB below this to all components,

resulting in the range of component energies being ���:��� � � <�� ��� . The maximum energy is defined

as 	��
� ! � I �-,1� and the normalised log energies
�� I �-,.� for each component are given by:

�� I �-,.�43
� � � � <�� � if � I �-,.� � 	��
�

! �
I �-,1��� � � <�� ��:< �	� � 	 �
�

! �
I �-,.��� � I �-,1� � otherwise

(4.62)

Alternatively, the energy amplitudes at the locations of the means may be used as features

instead. The peak amplitudes may be preferable in the cases where two peaks are close together

or the estimates are inconsistent and the component energy or prior does not represent the

spectral peak.

Another consideration is the distribution of the parameters. The means and standard devi-

ations will be constrained to be positive, and hence will not be Gaussian distributed. However,

in most cases, the range of the parameter values in the distribution will tail off before reaching

zero. However, applying a silence floor to the log-energy features will change the distribution

of the extracted features. All of the log-energy features which would have been below the floor

will now appear in the distribution at this point causing a peak in the distribution at the silence

floor. Hence the log-energies may well not be Gaussian distributed. Also, the component mean
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��� ��� ��� ��� ��� �	� �	� �
� ��
� ���� ���� ���� r(t)
��� 1.00 0.34 0.12 0.24 0.86 0.26 -0.04 -0.21 -0.12 0.06 0.10 0.17 0.04
��� 0.34 1.00 0.58 0.35 0.46 0.86 -0.05 -0.26 -0.37 -0.28 0.00 0.09 -0.20
��� 0.12 0.58 1.00 0.41 0.28 0.59 0.26 -0.44 -0.38 -0.41 -0.17 0.06 -0.28
�	� 0.24 0.35 0.41 1.00 0.37 0.31 0.14 -0.75 -0.43 -0.37 -0.36 -0.18 -0.34
��� 0.86 0.46 0.28 0.37 1.00 0.41 0.02 -0.32 -0.43 -0.25 -0.17 -0.08 -0.26
�	� 0.26 0.86 0.59 0.31 0.41 1.00 -0.08 -0.23 -0.43 -0.40 -0.11 -0.02 -0.30
�	� -0.04 -0.05 0.26 0.14 0.02 -0.08 1.00 -0.20 -0.23 -0.23 -0.36 -0.22 -0.27
�
� -0.21 -0.26 -0.44 -0.75 -0.32 -0.23 -0.20 1.00 0.33 0.26 0.23 0.00 0.23
���� -0.12 -0.37 -0.38 -0.43 -0.43 -0.43 -0.23 0.33 1.00 0.95 0.89 0.81 0.96
���� 0.06 -0.28 -0.40 -0.37 -0.25 -0.40 -0.23 0.26 0.95 1.00 0.91 0.84 0.97
���� 0.10 0.00 -0.17 -0.36 -0.17 -0.11 -0.36 0.23 0.89 0.91 1.00 0.94 0.96
���� 0.17 0.09 0.06 -0.18 -0.08 -0.02 -0.22 0.00 0.81 0.84 0.94 1.00 0.91

r(t) 0.04 -0.20 -0.28 -0.34 -0.26 -0.30 -0.27 0.23 0.96 0.97 0.96 0.91 1.00

Table 4.1 Correlation matrix for a 4 component GMM system features taken from TIMIT database

features are ordered by their location. Hence, the distribution will be constrained as a higher

formant cannot have a value of frequency lower than the one below it.

The GMM features from the EM algorithm tend to have high degrees of correlation between

the features compared to MFCC features. The correlation coefficient matrix for the GMM fea-

tures for the Resource Management data for a four component GMM system estimated from a

4kHz spectrum is presented in table 4.1. The spectral log-energy feature for the frame, � �-,1� , is

also shown in the table. The component mean position features are strongly correlated both

with each other and with the corresponding standard deviation feature. For instance, � 9 is most

strongly correlated with � 9 , and less so with the other standard deviation features. This corre-

lation between the standard deviation and the mean positions can be explained by considering

that the higher in frequency the component mean is located, the less likely it is to be modelling a

strong spectral peak rather than the general spectral shape. Thus if a component peak is located

at a higher frequency, the larger the standard deviation will tend to be and the lower the cor-

responding energy term. However, the opposite is true for the higher order components, where

a strong negative correlation is observable between � � and � � . This suggests that if the fourth

component is found higher in the spectrum, the bandwidth of that component will tend to be

smaller. Hence, it appears that the more centrally located a component is, the more likely it

will be wider and model the general spectral shape rather than a narrow peak. There are also

negative correlations between the component means and the energy terms which could also be

explained in a similar fashion as the lower energy sounds will not have strong peak structures

and the components will have larger variances to model the general spectral structure. Com-

ponent energies will tend to be correlated since if the energy of one component is high, the

energies in the adjacent components will also tend to be higher as the overall energy in the

sound is greater. Additionally, if the spectrum has a less defined formant structure, the compo-

nents will be distributed higher in the spectrum and have larger variances to model the general

spectral shape. The correlations between the mean features could also indicate some degree of

inter-speaker correlation. The vocal tract length variations between speakers would lead to the

components to be estimated uniformly higher or lower in the spectrum, and hence would be

correlated.
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The correlations may affect the performance when used with a speech recognition system.

It is usually assumed that the elements of the feature vector are uncorrelated, and thus that

diagonal covariance matrices can be used to represent the data in the HMM output PDFs. If

highly correlated features are used, a diagonal covariance matrix may not be appropriate, and

different approaches should be used to model the correlations. Such approaches could include

increasing the number of mixtures or using a full covariance matrix.

4.4.3 Confidence measures
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Figure 4.7 Confidence metric plot for a test utterance fragment, with
�����
	��

As mentioned in section 3.5.4, peak representations of the spectra may be less reliable for

certain classes of phone, especially if the locations of the peaks alone are used. One proposed

solution to the problem of different performance on different classes is to incorporate a confi-

dence measure to combine formant locations with an MFCC parameterisation [114]. The system

proposed implemented a measure of confidence to decrease the contribution of the formant fea-

tures in regions where such features were not strongly defined. The confidence measure was

used to scale the log-probabilities of the formant features when combining them with the MFCC

features. As the HMMs only used single component output distributions, the confidence mea-

sures were effectively used as a time-dependent stream weight on the features. The confidence

measure was derived from the Holmes formant estimator. The Holmes formant tracker gives a

measure of confidence based on the amplitude and degree of local curvature for each hypothe-

sised formant.

For a Gaussian component in the GMM, the amplitude can be represented by the log-normalised

component energies
�� I �-,.� . For a given Gaussian component in the GMM it has been shown

that the 3dB bandwidth is proportional to the standard deviation [125]. Thus, for the GMM
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confidence metric, the curvature term is replaced by the reciprocal of the component standard

deviation.

The individual component confidence metrics were defined as

� I �-,.�43 �� I �-,1� ��� � <�� �
� I �-,1� (4.63)

The silence floor at 50dB (10.53) has been added to the log-normalised component energy
�� I �-,1�

to constrain
� I �-,1� to be positive. Hence the confidence measure will be high if the component

has a narrow variance and high energy. The assumption made is that regions with pronounced

peak structures will be estimated more reliably and consistantly. Components with lower ener-

gies and wider variances are more likely to be representing the spectral shape and will not be

estimated consistantly.

The confidence measure could be applied to each GMM component mean probability sepa-

rately in a similar fashion to the approach outlined in section 3.5.4. However, initial results using

the confidence measures in this way gave only slight improvements. An alternative configura-

tion was considered where all the component means and their derivatives could be placed into

the same stream and a single confidence measure used on them. If the component means are

to form a single stream weight, they must be combined in some fashion. The simplest approach

to combining the scores is to take the arithmetic or geometric mean of the confidence mea-

sures. Small-scale initial experiments suggested that the geometric mean was preferable. The

geometric mean has the advantage that if a single component is poorly defined, the combined

confidence measure for the frame will be low. Hence, with a geometric mean, the confidence

measure for the frame will only be high if most of the components appear to be well-defined. For

a frame , , a confidence metric
� �-,1� can be defined taking the geometric mean of the component

energies and curvatures:

� �-,.�43 �
�
	�
I
�
9
�� I �-,.����� � <�� �

� I �-,.� � �
�

(4.64)

where � is a fixed scale factor. An example spectrogram and associated confidence
� �-,.� are

shown in Figure 4.7. The confidence metric is high in regions with strong formant structures

and low during unvoiced sounds, as expected. As mentioned previously, the confidence metric

is constrained to be positive, hence the minimum value possible will be zero, during periods

of silence. The upper limit of the metric is set by both the scale factor, maximum energy and

standard deviations of the components. In practice, this means that the typical range of the

metric is � � � � � .
For a synchronous stream system, the output probability distribution

� $F�-*+�-,1� � for an input

vector *+�-,1� divided into � streams
� *49 �-,1� �><><><.*�� �-,1� � is calculated as

� $ �-* �-,.� � 3
�
�

� �
9
� 	 ��
I
�
9
� ��
 $ � I �
� �-* � �-,1����� $ � I ��� $ � I � 
 � � A ! E (4.65)
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where � � �-,.� is the time-dependent stream weight and
� ��
�$ � I � , � $ � I and � $ � I are the weight,

mean and variance for component J of stream � for state % .
The framework previously mentioned combined the formant features with MFCCs by scaling

the log-emission probabilities of the formant features by the confidence measure. However, the

implementation was only performed with single-component HMM models on a phone recogni-

tion task. If the stream weights are to vary as a function of time, it is necessary to consider the

fact that the feature streams may have different dynamic ranges. As mentioned in section 2.2.4,

the acoustic model and the language model are separate information sources and will have dif-

fering dynamic ranges. Hence, a language model scale factor is used to compensate for the

mismatch. Thus, in a medium or large vocabulary system, different parameterisations will have

different optimal language model scale factors, � 9 and � 	 . Simply using a sum-to-one constraint

on the stream weights will not ensure that the weighted streams will have the same dynamic

range. Hence the optimal grammar scale factor will vary depending on the confidence metric for

a given utterance. The search for the optimal word string over each information stream2 / A 9 E�
and

/ A 	 E� separately is:


' A 9 E 3 ����� 	 �
�� � �49 �
	 � � � ' � � �
	 ����� / A 9 E� � ' � 
 (4.66)


' A 	 E 3 ����� 	 �
�� � �
	
�
	 � � � ' � � �
	 ����� / A 	 E� � ' � 
 (4.67)

If the log-likelihood of the acoustic model in the second stream is scaled by � �� � , the optimal

language model scale factor for that information stream is also � 9 . Thus, if the log-likelihoods

of the second stream are scaled by � �� � , both streams will approximately have the same dynamic

range. Thus the two streams can be appropriately weighted or deweighted given the confidence

metric
� �-,1� , and the dynamic range will approximately be preserved. In a two-stream system

using a confidence metric the stream weights are given by� 9 �-,1� 3 � � � �-,1� (4.68)� 	 �-,1� 3 � ��9�
	

 � �-,.� (4.69)

and these will be substituted into equation 4.65 during recognition.

4.4.4 Speaker adaptation

Formant features are not speaker independent, and can exhibit strong inter-speaker correlations

[23]. The inter-speaker correlations have been exploited to estimate speaker adaptation trans-

forms for speech recognition [44]. The positions of the formants for a given speaker can be used

to estimate a vocal-tract length warping factor for a speaker [74] [68]. These warping factors

have been used to warp the positions of the Mel or critical band filters in MFCC parameterisa-

tions to adapt the features and give improved recognition performance [44]. As shown in figure

2.4, the vocal tract warping function can assume different forms. The vocal tract variation can

be approximated by a piecewise linear function or by a bilinear transform.

2The word insertion penalty has been neglected for simplicity
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Work using formants and spectral peak estimates as acoustic features has sought to nor-

malise these features on a per-speaker or per-utterance basis [104]. If the formant positions are

uniformly scaled by a given value, the effects of a change in vocal tract length could be easily

removed. Thus, for spectral features, the search for vocal tract normalising factors can be easier,

since the formants are represented directly in frequency values.

An alternative approach is to apply feature mean normalisation to the formant features.

This approach removes any linear shift from each formants and has been likened to a vocal tract

normalisation transform [114]. The assumption made is that each formant should be distributed

about its mean for a given utterance. Any shift on the mean position is assumed to be an an

inter-speaker variation based on the change in vocal tract length, and can thus be removed.

This approach is a linear subtraction and will have different effects from the application of a

scaling factor to the extracted parameters. One difference is that observed range of the formants

for a given speaker will be unchanged when a linear shift is applied, whereas using a linear

scale would compress or expand the effective range of the formants. Applying feature variance

normalisation could possibly compensate for this effect if it is an issue. As the means are shifted

up for a speaker, the variances will also be expected to increase as the seperation of the peaks

increases.

As mentioned previously, the GMM spectral features can be viewed as analogous to a set of

formant eatures. As such, the approaches using formant features outlined above could prove

useful for the GMM features as well. The extracted features for the speakers will allow for a

VTLN transform to be simply estimated by linear regression. A linear warping of the component

means will effect a simple VTLN normalisation approach directly on the features. Feature mean

normalisation and feature variance normalisation will also help to normalise the speakers in

terms of the vocal tract function. As the component means are scaled, the standard deviation

features should be varied as well. As mentioned previously, the standard deviations can be re-

lated to the bandwidths of the components. If the locations of the components are to be linearly

scaled, the standard deviations may also be expected to increase as the separation between the

peaks increases.

The component log-energies in the GMM features will also exhibit inter-speaker variations.

The arguments for cepstral (or log-spectral) normalisation will also apply to the GMM com-

ponent log-means. Some of the effects of environmental noise or any speaker bias such as a

spectral tilt could be removed by applying feature mean normalisation to these features.

4.5 Noise compensation for Gaussian mixture model features

Two approaches for compensating the GMM features in the presence of additive background

noise are outlined in this section. The first operates during the feature extraction stage and

attempts to estimate the clean speech parameters from the noise corrupted spectrum given a

noise model. The second technique operates on the model set, attempting to form a noise

compensated model set from the clean speech HMM and a noise model. Both compensation
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schemes use a model derived from the average GMM features calculated from the additive noise

source. This section does not address the issue of estimating the noise model itself. The noise

model is assumed to be known, but could be obtained by similar approaches to those used when

using the PMC techniques [40].

4.5.1 Spectral peak features in noise corrupted environments

Spectral peak features have been demonstrated to give some improvements when combined

with MFCC-based systems on noisy data [16] [108]. Since the peaks represent the high energy

regions of the speech, it is hoped for many noise sources that the formants or spectral peaks

will sit above the level of the noise. If the spectral peaks sit above the level of the noise, the

spectral peak features will be less corrupted by additive noise than the MFCC or PLP parameters

would. The MFCC and PLP features represent the spectral shape. Adding a noise source will

affect all of the parameters, although the lower order cepstra which represent the more general

spectral shape will be worst affected [33]. However, noise sources with peak-structures in them

can corrupt spectral peak or formant representations severely. For coloured noise of sufficient

amplitude the spectral peak features will model the noise source rather than the speech signal.

The gravity centroid systems has shown improved recognition performance over MFCCs for

certain additive noise conditions [12]. Specifically, significant reductions in WER were observed

when using these features on speech corrupted with additive white Gaussian noise and car noise

[31]. However, little improvement was gained from using gravity centroid features when the

noise source was factory noise or background speech, since these sources contain strong peaks.

In these circumstances, it is desirable to compensate the system to account for the mismatch

between training and test environments. However, given the non-linear mapping between the

spectral domain and the features extracted, this is not always simple. Additionally, some alter-

native parameterisations cannot map from the feature domain back to the spectral domain. In

contrast, the GMM features have the advantage that it is possible to recover the speech spectrum

from the feature set. In addition, the representation of the features directly in the log-spectral

domain makes it simpler to implement a model of an additive noise sources.

4.5.2 Front-end noise compensation

This section presents an approach for compensating the GMM features during the feature extrac-

tion process. In this method, a set of fixed Gaussian components representing the additive noise

are combined with the estimated GMM parameters in the EM process. The assumptions that are

made are that the speech and noise are additive in the linear FFT magnitude spectrum, and that

the noise source is stationary. By estimating the GMM parameters with the noise GMM added

to the estimated distribution, the aim is to extract the clean speech GMM parameters from the

noise corrupted speech. An overview of the use of a noise GMM to obtain estimates of the clean

speech GMM parameters is shown in figure 4.8. The technique adds a set of noise mixtures to
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model the additive noise during the EM estimation process, with the aim of estimating the clean

speech models.
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Figure 4.8 Using a GMM noise model to obtain estimates of the clean speech parameters from a noise-

corrupted spectrum

This approach attempts to use a static noise model during the feature extraction process

to estimate the clean speech parameters, assuming a model of additive noise. In this respect,

it resembles the approach of spectral subtraction systems [7], but it avoids the problems of

negative spectral values that can occur [21].

The aim of the EM step is, thus to optimise the log likelihood of the data given the clean and

noise GMM parameters: with respect to the clean speech parameters 
 :

� � �
	 ��������� 
��.
�ADCFE � � � � 3
��
�
�
9
� � �:�H� � � �
	 �������4� 
��.
�ADCFEH� � �:� � (4.70)

The optimisation technique needs a model of the noise source. There are several approaches

that could be used to estimate a noise model, such as using a voice activity detector. However, for

simplicity in these systems, the noise model is assumed to be known, and a pre-calculated noise

model is used. The noise model 
 ADCFE for a given frame is formed from the average features �* ADCFE
of a series of � extracted features of a Q-component GMM estimated offline from the additive

noise data:

�* ADCFE 3
��

��
!��
9
*+�-,1� (4.71)
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where the average features comprise the means, standard deviations and the component ener-

gies of the noise spectrum:

�*�A C:E4365 � A C:E9 �><><>< ��� ADCFE� � � A C:E9 �><><>< � � A C:E� � � ADCFE9 �><><>< � � A C:E� @

The corresponding GMM parameters can be calculated from the average features. The noise

model is assumed to be at a fixed energy level. Thus, the weight of the noise model is dependant

on the spectral energy in the frame. For frames with low spectral energy the weighting of the

noise model will be higher. The priors of the noise components will sum to one and are taken

from the average noise features:

� ��
 ADCFEI ��3 � ADCFEI� ��
�
9 � ADCFE� (4.72)

and the weight of the noise distribution for a given frame is:

� 3 � ��
�
9 � ADCFE�

� ��
�
9 � A C:E� � � �

�
�
9 7 � �-,1� (4.73)

Hence, the weighted prior probablities for the speech and noise mixture components will sum

to one:

� � �
�� �
�
9
� ��
 A C:E� � � ��� � � � 	�

I
�
9
� ��
 I ��3 � (4.74)

Using the approximation that data drawn from the same distribution can be assigned with the

same posterior probabilities as before, the auxiliary function can be described as:
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The posterior probabilities for the estimated components are calculated over the noise and

speech models:

����� ��� 	 ��

��

� ��� ����� ������� � ����� � ������� � ��!#"%$'&)(*� 	 � � � � 

� � � � 	 ��+ �, �-/. � ���/�0� � ����� - �1����� �2��!#"%$'&*(�� 	 � � � - 
3� - � + �54 ,7689. � �2� � ����� ��� �8 �1�����;: ��!<"�$'&*(�� 	 � � � �=� �8 

� �=� �8 � +#>
(4.76)
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The parameter update equations are then:
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The noise component GMM parameters are assumed to be fixed over all frames, and are not

updated using the EM algorithm. Thus if the model of the noise is accurate, it is hoped that the

GMM parameters estimated will represent the underlying clean speech.

4.5.3 Model based noise compensation

The previous section showed how to use a noise model to estimate “clean” GMM parameters

from the noise corrupted speech. However, there are still some problems associated with this

technique. One problem is that the components in the noise source can mask lower amplitude

peaks in the clean speech. To avoid the problem of masking caused by the front-end noise

compensation, the clean speech HMMs may be adapted to model noise corrupted speech by

using an average noise model. A diagram showing the steps used to compensate the clean speech

HMM using the noise model is shown in figure 4.9. The spectrum is reconstructed from the mean

GMM featurs from a given HMM state component, then the noise model is added in the linear

spectral domain. Next, the GMM parameters for the noise corrupted spectrum are estimated

using the EM algorithm as before. Finally, the GMM parameters of the average spectrum for the

state/component are transformed to yield the compensated average GMM features.

The approach is similar to that of the log-add approximation for MFCC or PLP features

[33]. The GMM features are used to reconstruct the clean speech spectrum for a state in the

HMM, then a noise model is added to form a noisy spectrum, and the parameters for the noise-

corrupted spectrum are calculated.

Using the static means of the output PDF from HMM state % component � , it is possible to

obtain the average GMM parameters for that state/component 
 $�� . A set of data points at a

uniform interval
�

can be calculated from these mixture models. In the original estimation

process of section 4.1.4 the bins had a width or interval of 1. The arbitrary width allows for

more rapid compensation schemes where the re-estimated histogram has fewer points than the

original estimates. The number of points in the reconstructed spectrum is � where � 3 � � �

and � is the number of points used to originally estimate the spectrum. The spectrum 2 $�� 3
� 7 $�� 9 �><><>< �.7 $�� � � can be generated from the GMM mean parameters �* $�� from the HMM output

PDF for state % and mixture � . A noise spectrum & 3 5 � 9 �><><><;��� ��@ can then be added to the

the reconstructed spectrum. The reconstructed points are distributed uniformly, such that each
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point 7 ADGHE$�� � is located at � � where � � 3 � �  � 9
	
� . The noise-corrupted spectrum is given by:

7 ADGHE$�� � 3 	�
I
�
9
� � $�� I � � � ������$�� I � � 	 $�� I � � � �� �

�
9
� �� A C:EI � � � � � ��4ADCFEI � � ���A C:EI � 	 � 
 (4.80)

A piece-wise continuous PDF �����4� ��� is then formed from the noise-corrupted spectrum. The

prior probabilities of the reconstructed data will be:

� � � ADG E� �43 7 ADG E$�� �
� ��

�
9 7 ADG E$�� � (4.81)

and the PDF functions form a histogram with each bin centered at � � with a width of
�

:

������� � ADG E� ��3
� 9� � � � � �

	
� 	 � 	 � � � � �

	
�

� (otherwise)
(4.82)

The noise corrupted Gaussian parameters 
4A G E can then be estimated from the noise cor-

rupted PDF. A new set of GMM parameters
�
 A G E$�� for state % and mixture � in the output PDF of

the HMM are estimated from the noise corrupted PDF.

By optimising the log-likelihood of the noise corrupted PDF for newly estimated noise com-

pensated parameters 
 A G E$�� , a set of noise-compensated model features can be obtained. The

likelihood to be optimised is:

� � �
	 ��������� 
 ADG E$�� � � � A G E � 3
��
�
�
9
� � �F�H� ��� �
	 ��������� 
 A G E$�� � � � A G E� � (4.83)

For a bin of width
�

, the expectations of the data given the estimated bins are:

� ���4� � ADG E� � 3 � 	 � � � �
	 � � � � � ������� �F�H� � �

3 � � (4.84)

� ��� 	 � � ADG E� � 3 � 	 � � � �
	 � � � � � 	 �����4� �:�H� ���

3 � � 	 � �
	��� (4.85)

Substituting these values into the posterior probabilities and auxiliary function it is possible to

calculate the expected log-likelihood:

� � �
	 �������4� 
 I � 

 $�� I � � �F��� 3 �
	 � �� �� ��
�� 	$�� I
�� � � � � � � � ��$�� I � 	 � � �

9
	��� 	$�� I � (4.86)

Thus, using an arbitary bin width reduces the computation overhead when compensating the

models, but loses some of the resolution in the spectrum.

Rather than reconstructing the spectrum and forming a continuous histogram for each state,

an alternative implementation exists. It is possible to directly add a set of noise mixture com-

ponents directly to the spectral GMM from the HMM state output PDF. The clean speech GMM
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can be added to a noise GMM to form a set of GMM components which represent the corrupted

speech. However, since it is formed from the summation of two mixture models, the number of

components in this corrupt-speech GMM will be larger than the from the clean speech model.

From the corrupted speech set of spectral GMM components a number of components equal to

that in the clean speech GMM can be estimated. The EM algorithm is then used to estimate the

posterior probability of a given (target) Gaussian being generated from components in the noise

corrupted speech model. The likelihood of the data set is then maximised given these posteriors.

The expectation of the data given a Gaussian component in the noise corrupted speech is:

� ���4� 
B� � 3 ��� (4.87)
� ��� 	 � 
 � � 3 � 	� � � 	� (4.88)

And as above, it is posible to calculate the posterior probabilities of each (target) Gaussian being

generated by each component in the speech+noise model. The expected log-likelihood of a

given (target) Gaussian given a Gaussian in the speech+noise model is:

��� �
	 ��������� 
 I � 

 $�� I � � 
B��� 3 � 	 � �� �� ��
�� 	$�� I
�� � � � � � � � ��$�� I � 	 � ������ 	$�� I � (4.89)

The parameter update equations can also be calculated as before using the above values, in a

similar fashion to the use of Gaussian priors in section 4.2.2. Using the speech and noise GMM

to compensate the spectral GMM parameters for each state will be faster than reconstructing

the spectrum. However, each noise+speech Gaussian component will have only a single pos-

terior probability to reassign its probability mass, and the technique may suffer from the same

problems as using a large bin width.

From the estimates of the noise corrupted parameters we can calculate the static means for

GMM features for the given state and mixture output PDF in the HMM. The fewer data points

that are generated from the source mixtures, the more rapidly the technique can be applied.

However, if too few points are estimated from the combined speech and noise mixture models,

then the technique will perform poorly. Using only a few points gives a low resolution to the

frequency spectrum. All of the data represented by the histogram bin is assigned by the same

posterior (
� ��
�$�� � A G E� �.
 $�� I ). With only a few data points used, the variances of the sample data

points are larger and the points less distinct. Additionally, the assumption that the data from

a histogram bin can be represented by the same posterior probability function becomes less

valid as the bin widths increase. In practice, as fewer bins are used, the posterior probabilities

will become more evenly shared across all components. As a result, some mixtures will tend

towards the same point and have a larger variance to cover all the points with identical posterior

probabilities for the source bins.

The computational cost of this technique is of the same order of magnitude as compensation

using parallel model combination (PMC) with a log-add approximation [40].



5

Experimental results using a GMM front-end

In chapter 4 a new method for parameterising speech by describing its peak structure was pre-

sented. Using this technique, a GMM is estimated from the speech spectrum using the EM

algorithm. By estimating a GMM from a normalised speech spectrum, the speech can be repre-

sented by the parameters of the GMM. The GMM features can be related to the gravity centroid

features.

In this chapter, baseline experiments using GMM features are presented on a medium vo-

cabulary task, the Resource Management (RM) corpus. The RM corpus is based on a naval

management task and has an approximately 1000-word vocabulary. The corpus is described in

more detail in appendix B.1. The aim is to evaluate a variety of techniques and configurations

that estimate GMM features from the spectrum for speech recognition.

5.1 Estimating a GMM to represent a speech spectrum

This section presents a series of initial experiments performed using the GMM features on the

RM task. First, a baseline system is presented. Next, experiments with a number of spectral

smoothing techniques to remove the pitch from the spectrum are shown. Results implementing

psychoacoustic transforms on the spectrum, using Mel-scaling or a pre-emphasis filter are also

detailed.

5.1.1 Baseline system

The first experiment on the RM corpus was to build a baseline system using a standard param-

eterisation for comparative purposes. This system was built using an MFCC parameterisation

together with the RM recipe from the HTK toolkit [122]. The feature vector was comprised of

the first twelve Mel-cepstra ( 5 � 9 �-,.� �><><>< ��� 9 	 �-,.��@ � ) and a normalised log energy term ( � �-,1� ), with

the
0

and
0
	 terms appended. This gave a feature vector of length 39. The feature vectors

were computed from frames of speech taken every 10ms. The initial model set was based upon

monophone models and was initialised using a flat start. Several iterations of the training were

77
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then performed. The model set was then clustered into cross-word context-dependent triphones

using decision-tree based state-clustering. A total of 1605 distinct states were used in the model

set. The number of components in the HMM output PDFs was increased until no further im-

provement was observed on the ’feb89’ subset of the data. By this measure, the optimal number

of components was six. The language model scale factor was also tuned on this subset, and then

used for recognition on the other test sets. The average WER over all four sets was 4.19%.

5.1.2 Initial GMM system

An overview of the system block layout is shown in figure 4.2. An inital GMM system was built

for the RM task using GMM features estimated from the speech signal. Frames of speech 25ms

wide were taken every 10ms and a Hamming window was applied. The RM data was sampled

at 16kHz, yielding an FFT window 400 samples long which was then zero padded to 512. A

256-point magnitude FFT was then obtained, truncated to the first 128 bits to yield a maximum

frequency of 4kHz. This bandwidth has been found to yield the most reliable estimates of the

GMM components [125] and was thus chosen as a baseline. The spectrum was then normalised

and a continuous density PDF formed using the technique outlined in section 4.1.2. No form of

smoothing was applied to the spectrum initially. From this spectral histogram a set of six means,

variances and component priors for a Gaussian mixture model were iteratively estimated using

the technique detailed in section 4.1.4. Twelve iterations of the EM algorithm were taken. From

the parameters of means, variances and component priors, a set of features were estimated.

The components were ordered according to the frequency values of their means. Thus, the

component with the lowest mean is the first and so forth. These features were the means � �-,1�43
5 ��9;�-,.� �><><>< ���

	
�-,.��@ � , standard deviations � �-,.�+3 5 ��9 �-,.� �><><><;� �

	
�-,1��@ � and component log energies

�� �-,.� 3 5 �� 9 �-,1� �><><>< � ��
	
�-,.��@ � with a normalised log energy term � �-,.� , for the frame appended. The

component energies were estimated by multiplying the component priors by the energy in the

frame. The features were appended with the dynamic parameters to give a feature vector *+�-,1� :

*+�-,1� 3
���� � � � �-,1� � � � �-,1� � �� � �-,.� � � �-,1� � �� 0 � � �-,1� � 0 �

� �-,1� � 0 �� � �-,1� � 0 � �-,.� � �� 0 	 � � �-,1� � 0 	�� � �-,1� � 0 	 �� � �-,.� � 0 	 � �-,1� � �
��

� (5.1)

The length of the feature vector for an � component GMM is � � � � ��� � .
Using the HTK RM recipe [122] as described in appendix B.1 with this new feature vector,

a cross-word context dependent triphone HMM recognition system was built. A flat start was

used to initialise the model set as before and decision tree based state-clustering was used to

form cross word triphones. The optimal number of distinct states in the initial model was 2202,

larger than the MFCC system. In the systems built in the following sections, the number of

states was roughly constrained to be the same. The number of components in the HMM output

PDFs was increased until no further improvement was observed on the “feb89” subset of the test

data. The language model scale factor was also tuned on this subset of the data. The optimum
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number of components per state in the HMM output PDFs was seven, slightly higher than the

MFCC system which used six, possibly due to the correlations in the model set and the extended

feature vector. All systems built on the RM task in this chapter were trained using individual state

clusterings. It is worth noting that for the GMM systems both the optimal number of distinct

states for the triphones was larger than that of the MFCC system. In addition, the size of the

feature vector was larger than than of the MFCC system. The combined effect of these increases

means that the total number of parameters to estimate in the HMMs for the GMM systems was

higher than that of the MFCC system. This is something that was observed with a number of

configurational changes in this chapter. However, care has been taken to ensure that the number

of parameters and states in each system in the following sections are tuned to the optimal value

(in terms of WER for a subset of the test data) to ensure that the systems are comparable and

the best possible for a given parameterisation for the RM task. On the full set of test data, the

GMM baseline system had a word error rate of 6.02%, significantly worse than that of the MFCC

baseline system, which was 4.19%. The poorer performance of the GMM features is consistent

with results using other formant or peak representations [12] [109] [111]. It may be that the

GMM features do not represent the phonetic classes as well or provide as much discriminatory

information as the MFCC features. Alternatively, it may be that the model does not represent

the GMM features as well.

5.1.3 Spectral smoothing

One of the first considerations was to use some form of spectral smoothing to estimate the

spectral envelope and remove the effects of the speech source. Three different techniques were

investigated:

� A convolutional pitch filter was used as outlined in section 4.2.1.3. The pitch was estimated

by searching for the peak in an autocorrelation function. The spectrum was then convolved

with a raised cosine window centred on the fundamental frequency.

� Cepstral deconvolution was performed by taking the DCT transform of the DFT log-magnitude

spectrum, then truncating it after a fixed number of bins (20 in this case), as presented

in section 4.2.1.1. The spectrum was then reconstructed by taking the inverse of the log-

cepstral representation.

� The SEEVOC envelope was extracted by searching for the pitch peaks at multiples of the

fundamental frequency, as detailed in section 4.2.1.2. The locations and values of the pitch

peaks were then interpolated to obtain the spectral envelope. An estimate of the pitch was

obtained from the autocorrelation function as in the convolutional pitch filter.

The approaches used for estimating the vocal tract response or spectral envelope have dif-

ferent effects on the resulting spectrum, as shown in figure 5.1. In particular, the magnitudes

and bandwidths of the formants, and the magnitudes of the anti-resonances differ greatly. The
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(a) Original FFT: (b) SEEVOC envelope:
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(c) Pitch filtering (d) Cepstral deconvolution
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Figure 5.1 Removing pitch from spectrum by different smoothing options
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SEEVOC smoothing finds the pitch peaks and interpolates between them to extract the envelope.

Also, by interpolating between the pitch peaks the SEEVOC envelope will increase the total spec-

tral energy and maintain the spectral magnitude at the locations of the pitch peaks. Thus, the

envelope extracted can have wider peaks or formant structures and less defined peaks. Con-

versely, the convolutional pitch filter tends to extract more pronounced peak structures. With

the SEEVOC envelope, more of the auxiliary function of the EM algorithm to be optimised is

concerned with representing the lower-energy portions of the the spectrum. The SEEVOC enve-

lope was used in the vocoder because it maintained the peak amplitudes of the partials within

the spectrum. It is not the optimal smoothing technique if the GMM parameters are to be used

in a recognition system, and the interpolated structure is not well represented by a GMM when

the speaker pitch is relatively high. The cepstral filtering loses some of the definition of the peak

structure when the high order cepstra are truncated. The strongly defined formant peaks can be

attenuated by truncating the higher cepstra, as shown in figure 5.1.

The results of these experiments are presented in table 5.1. The optimal smoothing pro-

cedure in terms of reducing the error rate was the pitch-based convolutional filter. All other

smoothing systems gave a similar performance on the RM task. The improvement of the pitch-

filter over the SEEVOC window and the no smoothing case was significant at a confidence of

not less than 95%. The SEEVOC and cepstral deconvolution approaches can be seen to remove

the voicing effects from the spectrum. However, they also change the spectral representation in

ways which degrade the extracted GMM features.

Smoothing Type % WER

None 6.02

SEEVOC window 6.08

Pitch Filter 5.59

Cepstral liftering 5.90

Table 5.1 Performance of parameters estimated using a six-component GMM to represent the data and dif-

ferent methods of removing pitch

5.1.4 Feature post-processing

The energy levels vary on a speaker and channel basis, so using the log component energies

directly may not be ideal. A simple technique to reduce the problems this presents is to nor-

malise the log energies in a sentence. A standard approach used in the HTK environment was

implemented in which the log energies were scaled such that the maximum log energy had a

normalised value of 1 [122]. A silence floor was implemented 50dB below this, so the effective

range of the component log energies was set at ���:��� � � <�� ��� . Also, the energy value at each GMM

mean position may be more useful than the energy of each component. Some components are

used to represent the general spectral shape rather than the peaks, and have very large vari-
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ances. Also, in the cases where two components or peaks are close together, the component

energies will not represent the spectral amplitude correctly.

The best feature set obtained so far was from a six-component GMM estimate from a 4kHz

spectrum smoothed with a pitch filter. The two techniques above (log energy normalisation,

and use of log magnitude values at the means) were applied to this feature set. Applying the

component log-normalisation gave a reduction in WER from 5.59% to 5.24%, a reduction of 6%

relative. Using the log-magnitudes at the means rather than the component log-energies gave

a further reduction the error rate to 4.90%, a relative improvement of 14% in total. This im-

provement can be attributed to both using the component mean energies and the log-component

energy normalisation.

5.1.5 Psychoacoustic transforms

Psychoacoustic processing or transformations have been successfully applied in many feature ex-

traction schemes [50]. These techniques can be applied to the GMM estimation by transforming

the spectrum before extracting the parameters.

Work with other features such as MFCCs and PLPs has shown improved performance using

a spectral pre-emphasis filter [122]. A pre-emphasis filter will increase the energy in the upper

regions of the spectrum. The human ear has the greatest amplitude sensitivity in the region

1-5kHz. Thus applying a pre-emphasis filter on data sampled at a rate of 8kHz will emulate

the non-linear response of the human ear. A pre-emphasis filter can be applied to the speech

waveform � � � � :
� � 	 � � ��3 � � � ��� � <�
	� � � � � � � (5.2)

Implementing a pre-emphasis filter on the spectrum raises the energy in the higher frequency

regions. Hence probability mass in the higher frequency regions of the spectrum is increased. As

a result, maximisation of the auxiliary function places more emphasis on modelling the spectral

energy in the higher bands and less on the low-frequency peaks. The effects of using pre-

emphasis on a sample spectral frame are shown in figure 5.2. Applying this filter to the speech

prior to estimating the GMM increased the WER to 6.08%. This was a relative increase in WER

of 25% relative to the performance of the best system so far (from section 5.1.4. The lower

frequency regions’ spectral peaks are believed to be more useful for speech recognition [61]

and if too much emphasis is placed on the region about 2kHz, it seems reasonable that the

recognition performance will suffer.

A psychoacoustic non-linear frequency warp can be applied either prior to the EM algorithm

or after the features have been extracted. In the first case, Mel-scaled filter bins can be positioned

over the spectrum. The responses of these filter-banks can then be normalised and used instead

of the normalised magnitude spectrum as a PDF for the Gaussian estimation. This warping has

the effect of widening the formants at the lower frequencies and narrowing those at the higher

frequencies, as shown in figure 5.2. In addition, calculating the mel-scaled frequency bins are
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(a) Original FFT: (b) Pre-emphasis (c) Mel-Binned
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Figure 5.2 Psychoacoustic transforms applied to a smoothed speech spectrum

wider in the higher regions of the spectrum. This has the effect of increasing the magnitude

of the higher frequency regions.Alternatively, the extracted mean positions from the magnitude

spectrum GMM can themselves be Mel-scaled and a continuous histogram function formed from

the mel-warped points. However, in the EM estimates of the GMMs, the lower frequency formant

structures already have a large contribution to the EM estimation process, as they possess the

greatest magnitude and therefore the largest amount of probability mass. The Mel-warping of

the spectrum gives a further increase in the lower frequency probability mass by widening the

formant structures there. The mel-scale binning increases the energy in the upper half of the

spectrum. In practise, neither approach appears to improve the performance of the estimated

features, suggesting that the balance of lower and upper region energy when using no warping

is optimal.

Spectral Warp % WER

none 4.90

Mel-binned spectra 7.49

Mel warping EM 7.19

Mel scaled mean positions 5.15

Table 5.2 Warping frequency with Mel scale function, using a 4kHz system on RM task with GMM features

estimated from the a six-component spectral fit

Experiments were run using spectral Mel-warping and the Mel-scaling during the EM esti-

mation on the RM task. The results are presented in table 5.2. Warping the spectrum with the

Mel frequency scale degraded the performance of the GMM features considerably. The greater

energy that exists in the lower frequency regions gives them a larger probability mass to con-

tribute to the histogram. Hence increasing the probability mass in the lower regions by using

Mel-warping does not help. Mel-scaling the estimated GMM component mean features before

using them in an ASR system gives no significant degradation in the performance of the features.

However, this scaling was not expected to yield an improvement, as Mel-scaling the component

energy features after extraction does not change the relative importance of the frequency bands
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but will merely alter the dynamic ranges of the features slightly.

5.2 Issues in the use of GMM spectral estimates

The configuration of the EM algorithm - the initialisation, the number of components estimates

and the spectral bandwidth used will all affect the parameters estimated. These effects are ex-

plored in this section. In addition, the use of a prior distribution during the estimation procedure

is examined.

5.2.1 Number of components

One variable to consider in estimating GMMs from the spectrum is the number of components

used. A series of RM systems was built using features extracted from a six component GMM

estimate of a 4kHz pitch-filtered system using the normalised log-magnitudes at the component

means. Initially just the number of components estimated from a 4kHz spectrum was varied,

and the results are presented in table 5.3.

Components Number of % WER

Estimated parameters

3 30 7.95

4 39 6.53

5 48 6.12

6 57 5.59

7 66 6.66

8 75 6.96

Table 5.3 Results on RM with GMM features, altering the number of Gaussian components in the GMM,

using pitch filtering and a 4kHz spectrum

Note that increasing the number of components increases the size of the feature vector, and

hence the number of components in the system. The state tying during the formation of the

cross-word triphones was optimised using the “feb89” subset of the test data to evaluate to

obtain a reasonable number of parameters in the model set. The general rule for estimating for-

mants from the spectrum is to assign one formant per kHz in the spectrum [81]. Estimating six

components from the spectrum gave the best performance, improving on the performance of a 4

component system by 15% relative. The optimal number of components for the GMM features,

6, is higher than the typical number of expected formants in the spectrum. However, in the GMM

estimate, some of the components are not modelling spectral peaks, but are just representing

the general spectral shape. The components representing the general spectral shape do not

model the peaks, but tend to have larger variances and smaller magnitudes at the means. The

results using the spectral GMM as a vocoder [126], also gave optimal perceptual performance
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when six components were used. The gravity centroid system also used the same number of

spectral sub-bands [16]. Hence, although not all the structures extracted are formants or have

a peak-like characteristic, it appears that the most consistent and robust strategy is to estimate

six components in the mixture model.

5.2.2 Spectral bandwidth

Experiments presented so far only estimate parameters using a spectral bandwidth of 4kHz.

The region 0-4kHz is believed to contain the most well-defined formant structures in speech

[61]. Therefore, most formant or peak representation systems only use this frequency range.

Beyond this region, the spectrum becomes more noise-like and formant features cannot model

the spectrum well. However, there is information contained in the region above 4kHz which may

be useful for recognition. For example, voiced affricative sounds have a significant proportion

of their spectral energy above 4kHz. Hence, by only using the region 0-4kHz some potential

discriminatory information in the spectrum may not be exploited by the GMM features. In order

to estimate the degradation when only using this frequency range, a baseline MFCC system was

built which was band limited to 0-4kHz. This system gave a WER of 4.30%, whereas the full

8kHz system had a error rate of 4.19%. Recognition systems built with MFCC or PLP features

using only a 4kHz band limited signal perform worse than those using a full 8kHz spectrum.

The RM data was parameterised using a GMM system with pitch filtering, mean values and

log-energy normalisation as before, but the full 8kHz spectrum was used. The components were

initialised evenly across the spectrum. As previously, the size of the feature vector varies with

the number of components. Hence, the optimal number of parameters in the HMM model will

also vary. The number of parameters was tuned by changing the tying during the formation of

the cross-word triphones and was tuned on the “feb89” subset of the test data. The results are in

table 5.4. The best performance, 6.51% WER was obtained by estimating 8 components from an

8kHz spectrum, however, the performance of these features was worse than the WER obtained

by estimating 6 components from a 4kHz spectrum.

Number of Numer of Word Error Rate

components parameters

4 39 8.88

6 57 7.61

8 75 6.51

10 93 8.20

12 111 8.96

Table 5.4 Varying number of components on a GMM system trained on a full 8kHz spectrum

The problem with using an 8kHz spectrum in the system is that the extracted component

means were still, on average, distributed evenly across the spectrum. Hence, the upper 4kHz
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region had as many features dedicated to it as the lower 4kHz. Most speech recognition fea-

tures such as MFCC or PLP are based on non-linear frequency scales which emphasis the lower

frequency regions. It can therefore be expected that the majority of the upper component pa-

rameters are not useful for speech recognition. Additionally, there exists the problem that the

upper band (4-8kHz) does not predominantly contain strong formant structures.

Nevertheless, the upper band does contain some useful information. Instead of initialising all

the components evenly, it is possible to split the spectrum into sub-bands and perform separate

GMM estimates for each region. Thus, the number of parameters dedicated to each band can

be explicitly controlled by varying the number of components in the GMM in each region. The

band-filtering of the spectrum in this fashion can be related to the work with gravity centroids

[84]. The gravity centroid system is effectively the same as estimating a single set of Gaussian

parameters from each spectral sub-band, or fixing the posterior probabilities of the GMM to the

band-filter functions. Hence, each centroid has a fixed region to which it belongs. Splitting the

spectrum into two bands and estimating the GMM parameters from each separately allows direct

control of the frequency band each Gaussian represents, but is less severe than the constraints

of the gravity centroid system.

In MFCC and some PLP features the Mel frequency scale is used to set the relative con-

tribution of the frequency bands. The Mel-frequencies can also be considered when assigning

components to frequency regions in the GMM estimates. The ratios of the Mel scaled frequen-

cies at 4kHz and 8kHz from equation 3.2 is � < ��� � . This suggests that for four or five lower

band components one upper component should be estimated to give each band an amount of

parameters proportional to its sensitivity in the human ear.

Components Components 4-8kHz

0-4kHz 0 1 2

4 6.45 5.14 5.56

5 5.77 4.80 5.54

6 4.90 5.04 5.45

Table 5.5 Estimating GMMs in separate frequency regions

The results of the band-splitting experiments are in table 5.5. For a system using four or five

components in the lower band, estimating extra components in the 4-8kHz band improves the

performance. Estimating a single component in the upper band and five in the lower frequency

band reduced the error rate by 3.3% relative to a system built using six components in the lower

band only. This improvement is not statistically significant, however. The six component GMM

system was not improved by adding extra components in the upper band. This may be due to

the effects of over-estimating parameters or from increasing the size of the feature vector. The

experiments agree with the ratios of Mel-frequencies hypothesised above. In addition, given the

lack of formant structures in the upper region, it is only necessary to estimate a single Gaussian
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to represent the general spectral shape and give an indication of the upper band energy.

5.2.3 Initialisation of the EM algorithm

The EM algorithm is sensitive to the values used to initialise the parameter estimates. The choice

of initial parameters will constrain the local maximum found. As such, the choice of initialisation

parameters for each frame is an important consideration.

The systems presented so far used a uniform distribution of the Gaussian components to ini-

tialise the GMM estimation. In previous work with the GMM features as a vocoder [126] the use

of the previous frame values for the initialisation of the GMM algorithm was mentioned. Alterna-

tively, it is possible to use the values from a formant plot or the gravity centroids as initialisation

points. However, when features extracted from these systems were used as initialisation values,

poor performance was obtained using the resulting GMM features.

Initialising the EM algorithm with the GMM parameters from the previous frame causes

problems when the speech changes suddenly, such as a plosive sound. The estimated features re-

spond poorly to rapid changes in the speech. The mixture weights of some components weights

can approach zero and the variances become very large. When the values are passed onto the

next frame the small component weights and large variances used to initialise will lead to the

EM algorithm finding a local maximum with the variances approaching infinity and the priors

approaching zero.

The system can also be initialised using the GMM parameters for each sub-band. These val-

ues can be related to the gravity centroid features. However, this limits the range of frequencies

each component mean can occupy, since the initial estimates of variance are smaller than those

previously used to initialise the EM algorithm. Hence, when GMM parameters were estimated

using these values to initialise, the estimated components were much more limited in the regions

they occupied. The parameters extracted using the sub-band did not vary significantly from the

initialisation points. When used on the RM task, the GMM features extracted gave a WER of

6.70%. This is much higher than using the standard initialisations.

Examination of the extracted parameters suggested that the EM estimation is most sensitive

to the initialisation of the component variances. If smaller variances are used in the initial

parameters, the posterior probabilities of the histogram blocks will be mostly assigned to the

closest Gaussian component. The locations of the Gaussian components will be constrained

by their initialisation values, and it will be less likely that the component means parameters

will vary greatly from the initialisation points. If the variances used to initialise are too large,

the component weights can approach zero or the component will model the general spectral

shape and not the peak structures. Using the values of the variances in equation 4.30 allows

the components a sufficiently wide variance whilst still constraining the components to a rough

frequency band. The estimates of the GMM parameters from the spectrum are not sensitive to

the initialisation values of the component means. Implementing a peak picking algorithm or a

formant estimator to initialise the EM algorithm does not yield any improvement in the features.
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5.2.4 Number of iterations

The EM algorithm does not yield a closed form solution to the estimation of GMM parameters.

However, the EM algorithm is guaranteed to converge upon a local maximum and the likelihood

will not decrease with each successive iteration. The number of iterations used is important

in determining the precise solution. Each successive iteration brings the parameters closer to

a local maximum of the auxiliary function. There must be sufficient iterations to allow the

algorithm to converge upon a solution and hence a good representation of the data in terms of

the objective function. If too many iterations are used the model will not generalise well and

will find a local maximum. There is a balance between allowing sufficient iterations to find a

solution representative of the data, and not finding a specific maximum which generalises poorly

onto other instances of the same class.

Another problem with using large numbers of iterations is that the histogram data is limited

to the frequency range of the FFT. That is, the data lies only in a specific region. Thus beyond

the boundary the Gaussians components will be modelling data which does not exist. This

will affect the prior probabilities of the histogram bins assigned to the component. If a given

component has a large bandwidth, it is possible that after a given point, the relative proportion

of its probability mass outside of the data region can increase whilst the component weight

decreases to zero.

In figure 5.3, the auxiliary function for a sample frame (t=1.85s from figure 5.4) has been

plotted for 200 iterations. The auxiliary function levels off after about 10 iterations. Then, at

around 100 iterations, there is another step in the function. The issue seems to be characteristic

of over-training on the data, as a large change in the estimated parameters results in a small

increase in the auxiliary function. The GMM parameters estimated after a large number of

iterations are optimal in terms of the auxiliary function. However, they may be a local maxima

specific to the given frame and not may not match the phonetic class well. In this case, the

features extracted will perform poorly for recognition. By restricting the number of iterations,

the parameters extracted may represent the general class of speech sound better.

The Gaussian means for the utterance “Where were you while we were away” (a mostly

voiced utterance with strong formants) have been plotted in figure 5.4 estimated using 10 and

100 iterations. Although the trajectories follow roughly the same path there are some large

discontinuities in the component mean trajectories when 100 iteration were used. Some of the

component means are very different from the means estimated from the surrounding frames

even though the spectra appear similar. Using a large number of iterations to estimate the GMM

parameters gives erratic parameters which will not generalise very well for a given phone type.

In all the experimental results presented so far, the number of iterations of the EM algorithm

has been fixed at 12 based on previous work using the GMM as a formant estimation algorithm

[125]. To investigate varying the number of iterations, GMM parameters were extracted from

4kHz pitch filtered speech spectra using a varying number of iterations of the EM algorithm.

From these GMM parameters, features based on the log-normalised component magnitudes,
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Figure 5.3 Auxiliary function for 200 iterations, showing step in function

Number Iterations % WER

5 5.07

10 5.04

12 4.90

15 5.07

20 5.45

100 6.84

Table 5.6 Number of iterations for a 4K GMM6 system
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mean positions and standard deviations were extracted. This was the best performing system

so far out of the previous experiments. The results of varying the numer of iterations is in table

5.6. There is no significant variation in recognition performance until the number of iterations

reaches 20. Additional iterations caused the error rate to increase. The optimal number of

iterations was 12.
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Figure 5.4 Component Mean Trajectories for the utterance “Where were you while we were away?”, using a

six component GMM estimated from the spectrum and different iterations in the EM algorithm

Rather than using a fixed number of iterations for the EM algorithm, it is possible to check

the auxiliary function. Examining the auxiliary function
� A � E ��
 � 

B� after each iteration  it is

possible to stop the EM algorithm if the increase in the auxiliary function is less than a certain

fraction � of the previous iteration.

� A � � 9 E ��
 � 

B� � ��� � � � � A � E.��
�� 

B� (5.3)

This convergence criterion was applied to the EM process with several different values of �

and the results are presented in table 5.7. The value � 3 � < � � � � gave the best performance and
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corresponds to an average number of iterations similar to the optimal fixed number of iterations,

12. A small change in � will cause a large variation in the number of iterations taken. However,

there is no significant variation in the WER between a system using a fixed number of iterations

and one using a convergence criterion.

� Average number % WER

of iterations

0.001 4 5.43

0.0005 13 5.10

0.0001 40 5.51

fixed 12 4.90

Table 5.7 Results applying a convergence criterion to set the iterations of the EM algorithm, 6 component

GMM system features on RM

5.2.5 Prior distributions

The drop in performance when the number of iterations is increased could also suggest some

inconsistencies or problems estimating the GMMs. Increasing the number of iterations used

results in some large changes in the extracted parameters, as shown in figure 5.4 and 5.3. The

plots of the component means show large discontinuities in regions where there are strong

formant structures and the plots would be expected to be stable. The trajectories at 1.45s and

at 1.8s in figure 5.4 show these discontinuities.

In section 4.2.2 a technique to incorporate a prior distribution during the GMM parameter

estimation was discussed. The prior distribution was added on a per-component basis as a form

of count smoothing. Adding a prior distribution during the extraction process should reduce the

discontinuities and result in more consistent plots.

The prior distributions of the GMM component means were calculated from the full RM task

training data. The global mean and variance of each of the GMM components was computed

from a previous parameterisation of the data. This yielded a Gaussian prior distribution for the

features. The parameter estimation was then performed adding the weighted prior distributions

using the method in section 4.2.2.

Segments of speech parameterised using a prior weighting of 0.02 are shown in figure 5.5.

The trajectories are smoother and more consistent than those observed in figure 5.4, but the

locations of the means show less variation. Although the features obtained were smoother and

more consistent, the estimates were less distinctive and provide less discriminatory information.

The prior distributions were added with different weights and the results are shown in table

5.8. The prior distributions prevented some of the problems associated with using higher num-

bers of iterations. Reduced error rates were achieved on systems using 100 iterations, although

no improvement was gained over a system with fewer iterations and no prior distribution. Ap-
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Prior weighting 0.00 0.005 0.01 0.02 0.05

12 iterations 4.90 5.30 5.44 5.60 5.63

100 iterations 6.84 6.51 6.21 5.96 6.08

Table 5.8 Using a prior distribution during the GMM parameter estimation

plying the prior distributions as a form of count smoothing effectively added a fixed observation

on top of the speech data during the estimation process. Although adding the prior distribution

gave smoother and parameter estimates, it appears that some of the discriminatory information

is being lost. From these results, it appears that a more successful strategy is to limit the number

of iterations rather than using explicit prior information during the estimation.

Another possible method to incorporate the priors would be to apply them using a phone-

dependant basis. However, this would require a hypothesis of the phone class before incorpo-

rating the prior smoothing to the GMM estimation.

5.3 Temporal smoothing

A technique was outlined in section 4.3 to incorporate the surrounding frames by performing

a two-dimensional GMM estimation. By incorporating the surrounding frames it was hoped

to obtain smoother and more consistent parameter trajectories. An alternative approach to

smoothing the extracted features using a moving average filter was also proposed.

Taking a number of spectral frames around the current temporal frame, a two dimensional

probability distribution can be formed. The second (temporal) dimension has the current input

frame as the central frame with a number of frames taken around it. Once a 2-D histogram has

thus been obtained, the EM algorithm can be used to estimate a two-dimensional GMM from the

histogram. Using the surrounding temporal frames to estimate the GMM parameters rather than

processing each frame seperately will enforce some smoothness on the extracted parameters

The 2-D GMM was initialised with a diagonal covariance matrix, and the GMM temporal

mean was fixed to the central frame. The parameters extracted from the 2-D GMM were the

spectral dimension means, the square root of the spectral element of the covariance matrix and

the normalised log mean energies. Thus each feature was directly related to a corresponedng

feature from the single dimensional GMM features. The temporal data were also windowed such

that the frames around the central frame were deweighted.

Trajectories for the 2-D GMM system are show in figure 5.6. Using the 2-D GMM system

gave smoother trajectories in the regions of voiced speech, for example around 1.2s in figure

5.6. However, there can be a tendency with the 2-D GMM estimates for the components to jump

between stable regions and also to cluster together when a larger number of iterations are used,

for example at 1.9s and 1.35s in the diagrams. The 2-D GMM system also gives large fluctuations

in the mean positions in the regions of unvoiced sounds.
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Figure 5.5 Using a prior distribution model to estimate six GMM component mean trajectories from frames

in a 1 second section of the utterance “Where were you while we were away?”, using different iterations in

the EM algorithm
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Figure 5.6 GMM Mean trajectories using 2-D estimation with 5 frames of data from utterance “Where were

you while we were away” with single dimesional case from figure 5.4a for comparison.
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To evaluate the performance of the two dimensional GMM features several different temporal

frame widths were used in the estimation of the GMM parameters. Results on the RM task for

the two dimensional estimates are presented in table 5.9. The RM data was parameterised

using different numbers of temporal frames in a 2-D estimate. An additional experiment was

performed using a 2-D GMM with three temporal frames, but with the frames surrounding the

central frame windowed (or deweighted). The 2-D GMM systems gave poorer performance than

the single-dimension GMM system in all cases. As the size of the window increased, so the error

rate increased. In addition, there was a loss of temporal resolution from using the 2-D GMM

estimates and hence discriminative detail was lost.

Rather than smoothing during the parameter extraction stage, the features can be smoothed

directly after the estimation process using a moving average filter. Implementing a moving

average filter of length , 3 � on the data gave drop in performance to 6.10% WER. This drop

in performance is comparable with the degradation of the 3 frame 2-D GMM system. Hence,

applying any form of temporal smoothing may yield more consistant trajectories, but will lose

some of the resolution and discriminative properties of the features.

Temporal Frames % WER

1 frame (1-D case) 4.90

3 frames 6.44

3 frames (+temporal window) 6.07

5 frames 6.79

7 frames 8.32

Table 5.9 RM word error rates for different temporal smoothing arrangements on the GMM system

5.4 Fisher ratios

In this section, all of the extracted GMM parameters were used as part of a speech feature

vector. In this section, the elements in the feature vector are examined to compare the degree of

discriminatory information each possesses. The measure of discriminatory information used is

the Fisher ratio. The Fisher ratio is defined as the ratio of between-class variance to within-class

variance.

Using Fisher ratios makes two assumptions about the distribution of the parameters. The

first assumption is that the elements in the feature vector are uncorrelated. The second is that

the features are Gaussian distributed within each class and that the within class covariances are

the same.

The Fisher ratios were calculated for the best 4kHz system found in this section. This was the

system presented in section 5.1.4 which extracted six Gaussian components from a 4kHz spec-

trum smoothed using a pitch-filter and extracted the normalised log-magnitudes at the means.

The Fisher ratios were calculated on the full cross-word triphone system, using each component
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Figure 5.7 Fisher ratios for the feature vector elements in a six component GMM system with a MFCC+6

component mean system for comparison

mixture in the HMM output PDFs as a separate class. The results are in figure 5.7. The features

are presented in the order
� 7 ,���,  � � 0 � 0 	 � . The component log-magnitudes have the highest log-

energies by far. However, there are very high degrees of correlation between the energy terms,

as shown in table 4.1. The component means possess the next highest ratios, with the static

terms in particular having high Fisher ratios. The standard deviation GMM features perform

relatively poorly, especially the
0

and
0
	 parameters.

As a comparison, the Fisher ratios for a system built with the GMM component means ap-

pended to a standard MFCC parameterisation is also shown. The MFCC features are also ap-

pended with a log-energy term. The component means have Fisher ratios lower than the first

few cepstra and the energy term, but higher than the remaining cepstra. This suggest that the

component mean features may be useful in combination with a MFCC parameterisation.

5.5 Summary

In this section a number of techniques and issues in estimating a set of Gaussian mixtures from

a speech spectrum were presented. The optimal performance of a 4kHz band-limited signal was

obtained by estimating six components with twelve iterations from a 4kHz spectrum smoothed

with a convolutional pitch based filter. The most useful parameter set was formed by taking

the component means, standard deviations and log-energy magnitudes at the means. For an

8kHz system, the optimal performance was achieved using the same smoothing technique and

estimating five Gaussian components from the band up to 4kHz and one from the upper band.

The technique for using a prior distribution gave more consistent parameter estimates, but the

extracted features gave worse performance on the RM task. Estimating parameters from 2-D

data using the surronding frames gave smoother parameter trajectories in voiced regions, but
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did not do well in unvoiced regions and gave higher error rates overall.



6

Combining GMM features with MFCCs

Formants and formant-like features have been shown to be useful in combination with a MFCC

parameterisation [55]. In this chapter, several methods for combining GMM features with a

MFCCs are tested with concatenative and synchronous stream systems. The use of LDA fea-

ture space transforms to reduce the dimensionality and a semi-tied covariance matrix to handle

possible correlations in the feature vectors are also tested and the results discussed.

Three speech recognition tasks are used to evaluate the performance of front-ends in this

chapter. These are the medium vocabulary RM task, the large vocabulary Wall Street Journal

(WSJ) task and the Switchboard corpus. All the RM systems were built from a flat started

system as described by the HTK RM recipe outlined in appendix B.1. The exceptions to this

are the synchronous stream systems, which were trained from the MFCC models. The WSJ

and Switchboard systems were built using single-pass retraining from the MFCC or PLP baseline

systems. As such, they contain the same set of states. This may not yield the optimal set of states

for the target systems. However, this approach was used for simplicity on these more complex

tasks.

6.1 Concatenative systems

In common with other formant-like front-ends, the performance of the GMM features alone

was worse than a MFCC feature based system [111] [109]. However, formant information is

considered to be complementary to MFCC features [57]. Other formant-like features have been

successfully incorporated with MFCCs on small tasks [84] [108], and thus it seems likely that

the mean positions from a GMM system can provide similarly useful information.

The simplest way to combine formant or peak information is to concatenate the MFCC and

alternative features into a single feature vector as described in section 3.5.1. This has been

used to successfully combine MFCCs with formants [56], gravity centroids [12] and band-pass

filter-banks [83].

98
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6.1.1 Adding features to MFCCs

Other types of spectral features have been shown to yield improvements when incorporated

with MFCCs. A set of baseline experiments concatenating a MFCC parameterisation with differ-

ent features (including
0

and
0
	 parameters) were performed. The additional features were

based on extra cepstra, formant means, PLPs coefficients and gravity centroids. The results are

presented in table 6.1.

Additional Features Number of %WER

parameters

None 39 4.19

Additional cepstra
� � 9 
 ����� �>9 � � 51 4.29

4 PLP coefficients
� ��9�<><><�� � � 51 4.52

4 Formant frequencies from ESPS 51 4.89

4 Gravity Centroids 51 4.08

6 Gravity Centroids 57 5.02

Table 6.1 Appending additional features to a MFCC system on RM

One issue with appending formant-like features to MFCCs is that the dimensionality of the

feature vector increases. As a comparison, experiments were run with a 16 Mel-cepstral rep-

resentation. To compare the addition of other information sources, another system was built

using 12 MFCCs combined with the first four PLP coefficients. Adding the higher order cepstral

coefficients gave a slight degradation in performance, which is consistent with the belief that

the standard MFCC parameterisation, using 12 cepstral coefficients gives the best representa-

tion of the speech [122]. Appending the first four PLP coefficients onto the MFCCs also gave

no performance gains suggesting that although these are considered the most informative PLP

coefficients, they add no complementary information to the MFCCs.

The gravity centroid parameters can be related to the GMM features. They have been suc-

cessfully combined with MFCCs to reduce the WER on small tasks [16]. Experiments were

performed to evaluate their performance with MFCCs on the medium vocabulary RM task. The

gravity centroid features were calculated by splitting the 4kHz spectrum into rectangular sub-

bands and calculating the first sub-band moment for each. A relative reduction in the the WER

of 2.6% was obtained by adding four gravity centroids to the MFCCs. Adding six gravity cen-

troids slightly degraded the performance of the MFCC features. This result differs slightly from

results in other work with the gravity centroids on small vocabulary tasks which suggested that

the optimal number of gravity centroids was six [16]. The difference may be due to the fact that

standard delta parameters were appended to the parameterisation.

Formants are believed to be representative of the underlying spectral class. However, con-

catenating the MFCCs with a set of formant features has led to degradation on phone and digit

recognition tasks [114] [57]. A state-of-the-art formant tracker was used to extract formant
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frequencies on the RM task [103]. As described in section 3.3.2 this formant estimator uses a

dynamic programming step to obtain smooth and consistent formant estimates. Four formants

were estimated from the 4kHz spectrum. These estimates were combined with the MFCC param-

eters to give a new feature vector. Adding the formants estimated by the ESPS tracker yielded a

degradation in performance.

6.1.2 Adding GMM features to MFCCs

The Fisher ratios for the GMM features were discussed in section 5.4. The component log-

magnitudes had the highest Fisher ratios of the GMM features. However, the log-energy terms

are highly correlated with the energy term already present in the feature vector. The next highest

Fisher ratios were from the component means, and these compared favourably with the MFCC

features.

To investigate the performance of adding the GMM means onto the standard MFCC feature

vector was then augmented with the mean positions from four, five and six component GMM

spectral estimates from a pitch-filtered 4kHz spectrum. Component means were used for two

reasons. First, they can be related to the formant positions or gravity centroids which have

been incorporated successfully in speech recognition systems. Second, these features had the

highest Fisher ratios of all the GMM parameters studied, save for the energy features, which were

highly correlated. The GMM component means will provide information about the spectral peak

locations useful for discriminating between phone classes. The information about locations of

spectral peaks is not directly available from the MFCC positions. The results of the concatenative

GMM feature systems are shown in table 6.2.

Additional Features Number of %WER

parameters

None 39 4.19

4 GMM Means 51 4.08

5 GMM Means 54 4.06

6 GMM Means 57 3.82

6 Means and 6 Variances 75 5.03

5 / 1 Means from split band at 4kHz 57 4.03

Table 6.2 Concatenating GMM features onto a MFCC RM parameterisation

Appending the GMM means from a six component estimate to the MFCCs gave a relative

decrease in WER of 8.8%. Using the means from a four or five component estimate reduced the

error rate by 2.6% and 2.4% respectively, a smaller improvement than using the six component

means. This suggests that the GMM features may be complementary to the MFCC parameteri-

sation. The decrease in WER relative to the MFCC system is significant at a confidence of 96%.

A phone-level confusion matrix was examined for the MFCC and MFCC plus component means
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systems. The gains in improvement tended to be spread over the vowel sounds and strong

voiced sounds. The recognition of affricative and stop sounds was not improved by addition of

the GMM component means to the feature vector.

Incorporating the component means from a split band GMM estimate with 5 components in

the lower band and 1 component in the 4-8kHz band reduced the WER of an MFCC system.

However, it did not outperform the MFCC system with six components estimated from a 4kHz

spectrum. The mean of the GMM component estimated from the upper band did not add useful

information to the MFCC system. The improvement in performance when adding features from

estimating a component in the 4-8kHz band to a system based on a 5 component 4kHz GMM is

most likely from the representation of the energy levels in the upper band.

The concatenative systems so far have added the extra parameters to the standard MFCC

parameterisation. This yields an increase in the overall size of the feature vector. Rather than

increasing the size of the feature vector an experiment was performed substituting the last four

MFCCs by the four GMM means. This is similar to an approach used to incorporate MFCCs with

formants [55]. Replacing the higher order cepstra gives a similar WER (4.14%) to the MFCC

baseline with a similar number of features, and is an improvement over using only 8 MFCCs

which gave a WER of 4.34%.

Optimal performance with the MFCC features was obtained using the GMM means from a

six component fit. The gravity centroids gave their best performance when using four extracted

means. This difference may be attributable to the restrictions the filter-banks in the gravity

centroid system place on the locations of the peaks extracted. Thus the extracted parameters are

less distinct. The gravity centroids have a strong prior on the location of each peak or centroid

which restricts the ability of the features to adequately represent the spectrum. Hence, the GMM

features have an advantage over the gravity centroid features.

6.1.3 Feature mean normalisation

Cepstral mean normalisation is a technique to remove the convolutional noise from a signal by

subtracting the mean of the cepstral feature vector from the parameters, as discussed in section

3.2.2. This technique can equally be applied to other parameterisations than cepstra and its

use is denoted here as feature mean normalisation to avoid confusion when it is being applied

to the GMM parameters. Feature mean normalisation is a simple method of removing some

speaker and channel effects from speech parameterisations on a per-speaker or per-utterance

basis. Feature mean normalisation was applied to the systems built previously and RM systems

were rebuilt from a flat start with the RM recipe as before.

It has been hypothesised that applying feature mean normalisation to formant features can

have a vocal-tract length normalisation effect [114]. Subtracting the mean values from the GMM

component mean features will remove any linear shifts on a per-utterance basis. As mentioned

in sections 2.5.1 and 4.4.4, the effects of a vocal tract length variation may be modelled as a

linear scaling of the frequency. Thus given a variation in the speaker, the GMM component mean
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features will tend to be located higher or lower. Thus, subtracting the means of these features

will remove some of the effects of the vocal tract length variation.

System %WER %WER

Description FMN no FMN

MFCC 4.15 4.19

MFCC + 6 means 3.62 3.81

6 Component GMM 4.94 4.90

Table 6.3 Using feature mean normalisation with MFCC and GMM features on RM task

Results using feature mean normalisation are presented in table 6.3. There is no significant

change in the WER of the MFCC system using cepstral mean normalisation on the RM task.

Using feature mean normalisation on the full GMM set of features also yields no significant

change from the results without the normalisation. This suggests that there is little benefit to

be gained from removing the mean from a set of log-spectral features on the RM task. Mean

normalisation on log-spectral features removes the effects of convolutional channel noise, and it

seems likely there should be little effects from channel noise on the RM task.

Implementing mean normalisation on a system built with six GMM component means con-

catenated onto the MFCC feature vector gives a drop in WER of 13% relative to the MFCC

features with CMN. A reduction in WER of 5.5% relative from a MFCC+6 means system with

no mean normalisation was achieved. This improvement suggests that subtracting the means is

having some normalising effect on the speakers in the system and boosting recognition perfor-

mance.

6.1.4 Linear discriminant analysis

In section 3.5.1, the implications of concatenating extra parameters onto the feature vector were

discussed. One disadvantage is that the size of the feature vector is increased, thus increasing the

number of parameters to be estimated in the model. A solution to this would be to use a feature

selection or projection scheme to remove the least discriminatory dimensions from the data.

This requires an indication of the discriminative properties of each element in the feature vector.

The Fisher ratio - the ratio of the within to between class covariances in the model - is one such

measure. Linear discriminant analysis (LDA) was outlined in section 2.4.1 and is a projection

scheme which attempts to maximise the between class covariance and minimised the within class

covariance. Linear discriminant analysis has also been used to combine complementary features

with an MFCC parameterisation [97]. The LDA generates an orthonormal transform matrix, and

the directions of the vectors are based on the maximisation of the Fisher ratios. Thus, the lower

LDA dimensions will have poor separation between classes and can be discarded.

The statistics for the within and between class matrices were generated on the cross-word

triphone RM systems, with each component in the output HMM being regarded as a separate
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Projected Features

Dimensions MFCC MFCC+6 Means GMM6

10 8.34 10.13

20 5.99 7.36

30 4.90 5.18 6.89

39 4.49 4.88 7.25

50 5.07 7.06

57 5.26 8.07

Table 6.4 RM results in % WER using LDA to project down the data to a lower dimensional representation

class. These were used to compute the LDA transform. The RM systems were fully rebuilt

using this transform on the features, truncating the vectors as required. Results from these

experiments are in table 6.4.

The systems trained with an LDA transform performed significantly worse than the normal

systems. LDA gave no improvement to an MFCC parameterisation on the RM task, although the

MFCC system exhibited less performance degradation than the MFCC+6 Means system when

LDA was applied. The LDA transforms seek to maximise the class separation by maximising

the Fisher criterion. However, it has been shown that maximising the Fisher ratios will not

necessarily increase the classification rate for speech recognition tasks [69]. Problems have

also been noted using LDA for ASR systems if the extra feature vectors added are noisy or less

useful for recognition. The assumption made by LDA that all classes share the same within-

class covariance matrices is not a valid one. In addition, large amounts of data are necessary

to generate robust transforms for LDA, and there may be insufficient data to robustly estimate

transforms to separate the classes in the RM models.

6.2 Multiple information stream systems

Using a concatenative approach to combine the GMM means with an MFCC parameterisation

improved the performance on the RM task in the previous section. Concatenating different

features together assumes that the features were generated from the same data source. An

alternative type of model is to consider the features as coming from separate information streams

and combine them in a synchronous stream framework. This form of model allows different

states, output distributions or numbers of components for each feature stream. In addition,

different emphasis can be put on the feature streams. Thus, if a given stream is believed to be

more or less informative, the stream weight can be correspondingly increased or decreased. As

presented in section 3.5.2, the standard HTK method for doing so is to calculate the likelihoods

of the individual information streams separately. The likelihood scores are then given different

weights and the scores are combined together at the state level [122]. All the streams are

constrained to have the same time-state alignment.
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Synchronous stream systems were built with the first stream *+9 �-,1� containing the first twelve

MFCCs � �-,1� , normalised log energy � �-,1� and their respective dynamic parameters:

*�9;�-,1�43
���� � � � �-,.� � � �-,1� � �� 0 �

� �-,.� � 0 � �-,1� � �� 0 	�� � �-,.� � 0 	 � �-,1� � �
��

� (6.1)

The second stream *
	
�-,.� contained an alternative parameterisation and related dynamic param-

eters.

Three additional parameterisations of the speech were considered:

1. GMM features from a six component spectral estimate of a pitch filtered 4kHz spectrum

(MFCC+GMM6);

*
	
�-,1�43

���� � � � �-,1� � � � �-,.� � �� � �-,1� � � �-,.� � �� 0 � � �-,.� � 0 �
� �-,.� � 0 �� � �-,1� � 0 � �-,1� � �� 0 	 � � �-,.� � 0 	 � � �-,.� � 0 	 �� � �-,1� � 0 	 � �-,.� � �

��

� (6.2)

2. Component means from a six component GMM estimate from the spectrum (MFCC+6MEAN);

*
	
�-,1�43

���� � �-,.�
0 � �-,1�
0
	 � �-,1�

��

� (6.3)

3. For comparative purposes, a PLP parameterisation using the first twelve coefficients: � �-,.��3
5 ��9 �-,.� �><><><;�-� 9

	
�-,.��@ � and the zeroth cepstrum � �F�-,1� (MFCC+PLP);

*
	
�-,1��3

���� � � � �-,1� ��� �F�-,1� � �� 0 �
� �-,1� � 0 � �F�-,.� � �

� 0 	 � � �-,1� � 0 	 � � �-,1� � �
��

� (6.4)

The systems were trained using the stream weight of the alternative features � 	
�-,.� set to

zero throughout the training proceedure, so the HMMs were built using only the MFCC features

for alignment in the Baum-Welch algorithm. This approach was taken as the optimal stream

weight was not yet determined, and the MFCC features outperformed the GMM features on the

RM task. Hence the MFCC features were used to provide the alignments. All three systems

were built using the MFCC context decision tree. Hence, the MFCC stream in the model sets

is identical to the MFCC model trained alone. The models were tested on the RM task with a

range of stream weights, with the sum of the stream weights constrained to sum to one. The

decision tree and state-component alignments used during training will be the optimal for the

MFCC feature stream. They will not be the optimal for the second feature stream.

The performance of the three systems with the MFCC stream weight varied from 0 to 1 is

shown in figure 6.1. The baseline MFCC performance is obtained when the MFCC stream is
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Figure 6.1 Synchronous stream systems on RM with various stream weights, stream weights sum to 1

given a weight of 1 and only the MFCC stream is used for recognition. This is because the model

set was built using only the MFCC features in the probability calculations. The MFCC+6MEAN

system with an MFCC stream weight of 0.8 gave the best performance. This system had a word

error rate of 4.00%, or a relative improvement of 4.5% over the baseline MFCC performance

with a confidence in the improvement of 99%. The MFCC+GMM6 with an MFCC gave a per-

formance of 4.10% with a MFCC stream weight of 0.8, for a relative drop in WER of 2.2%. This

improvement is not significant.

Incorporating MFCC and PLP features in a synchronous stream system gave an error rate of

4.11% with an MFCC stream weight of 0.6. This shows no significant improvement which sug-

gests PLP and MFCC systems contain little or no complementary information. This not surprising

as the PLP features are based on a similar (Mel-smoothed) representation of the spectrum.

Using a synchronous stream system to combine the MFCC features with the GMM means

resulted in a � < ��� relative higher WER than concatenating the two into a single feature stream.

This difference could be due to the assumption made by the stream model that the feature

streams are independent. With the synchronous streams system the output distributions for

each HMM state are independant. The distributions used above used GMMs with six mixture

components for each stream in each state, although the number of components does not have

to be the same.

Combining the full GMM features with the MFCCs using a synchronous stream system im-

proved upon concatenating the two together. The difference is that the full GMM system had

a much larger dynamic range than the MFCC system. The highly correlated energy terms in

particular contribute to this. If an approximation is made that the dynamic range is roughly pro-

portional to the optimal language model scale factor, then the dynamic range of the full GMM
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system is roughly 2.5 times that of the MFCC system. The GMM means alone have a dynamic

range of about 0.5 that of the MFCC system. Hence, using a synchronous stream system allows

the GMM features to be deweighted so the MFCC features, which have a better general perfor-

mance, can contribute more. Retraining the systems using the optimal stream weights of 0.8

and 0.2 as opposed to using only the MFCC features gave a WER of 3.98%, and no significant

improvement in performance.

Using a MFCC stream weight of zero uses only the alternative feature set. The recognition

results in this case are slightly worse than those of the baseline systems. Using only the GMM6

stream gave a WER 10% relative higher than a system built independently on the GMM6 fea-

tures. This is due to the fact that the synchronous stream system uses the MFCC alignments

to train the observation probability density functions and transition matrices. The MFCC state-

component alignments will not be the ML solution for the other features. Using only the GMM6

means, an error rate of 9.23% was obtained with a total feature vector length of 18, which

compares favourably with other systems using only formant features [111].

6.3 Combining MFCCs and GMM features with a confidence metric

In the previous section, using a fixed value for the weights was found to provide no signifi-

cant gain over a concatenative system. However, other work with formant features [114] has

obtained improved performance by using a measure of confidence of the assigned formant loca-

tion to set the weight of the formant stream. A similar measure of confidence can be obtained

from the GMM parameters for each frame directly as shown in section 3.5.4. A confidence met-

ric,
� �-,1� was derived from the component energies and standard deviations, which would be

high in regions with strongly defined peak structures. For an M-component GMM feature the

confidence measure is given by:

� �-,.�43 �
�
	�
I
�
9
�� I �-,.����� � <�� �

�=I �-,.� � �
�

(6.5)

The GMM stream weight can then be set to be proportional to the confidence metric. Hence,

in regions with strong formant-like structures, more of the likelihood score will be based on the

GMM means.

To evaluate the performance of the confidence metric, a two-stream system was built. The

first stream contained the MFCC features plus energy and the second stream the means from

a GMM estimate from a pitch filtered 4kHz spectrum. This is the same as the MFCC+6MEAN

system detailed above.

The stream weight of the GMM component means � 	 �-,1� was set to zero during training,

hence the MFCCs alone were used for alignment during the Baum-Welch training. A set of

models were trained on the RM data and tested using the confidence metric to set the stream

weights. As detailed in section 4.4.3 the ratios of the dynamic ranges can be approximated to
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the ratio of the language model scale factors. For the GMM component means and the MFCC

parameters this ratio is � < � . The stream weights were set as:

� 9 �-,1�43 � � � �-,1� (6.6)� 	 �-,1�43 � <�� � �-,1� (6.7)

Results using a range of scale factors for the confidence weight
� �-,1� are shown in Table 6.5.

Confidence weight � % WER

0.0 (MFCC system) 4.19

0.1 3.95

0.2 3.94

0.3 4.12

0.4 4.32

MFCC+6Mean 3.81

(concatenative)

Table 6.5 Synchronous stream system with confidence weighting

The confidence metric gives a 6% relative reduction in WER relative to the MFCC baseline

system with a value of � 3�� < � . This improvement over the MFCC baseline is significant at a con-

fidence of 92%, and is an improvement over the synchronous stream with fixed stream weights

at a confidence of 99%. Using a confidence metric to combine the information streams gives a

better result than using fixed stream weights. However, it does not improve the performance

of a MFCC and GMM component mean concatenative system. At this scale factor, the average

value for the confidence metric is roughly 0.2. This is similar to the optimal value for the syn-

chronous stream system with a fixed stream weight. The confidence stream system also gives

a small but not significant improvement over the synchronous stream system with fixed stream

weights which had a WER of 4.00%.

The confidence weights can also be used in training as well as testing, rather than using� �-,1�+3 � for the state likelihood calculations. The confidence metrics for the training data were

calculated. The stream weights in equations 6.6 and 6.7 were substituted into the emission

probability calculations with the scale factor � set to 0.2. Retraining the data in this fashion and

testing using the confidence metric to combine the scores yielded a WER of 3.95% on the RM

task. Hence, no significant improvement was achieved by using the confidence metric during

training.

In conclusion, although the confidence metric gave a small improvement over a synchronous

stream system, there was no performance improvement over a system using the MFCCs and

GMM means concatenated into a single feature vector.
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Description % WER

MFCC 9.75

MFCC+6 Means Concatenative 9.56

MFCC+6 Means fixed Stream weights 9.64

MFCC+6 Means confidence metric 9.52

GMM6 system 12.43

GMM6 system with mean normalisation 12.02

Table 6.6 Results using GMM features on WSJ corpus and CSRNAB hub 1 test set

6.4 Wall Street Journal experiments

The performance of the features was also investigated on a large vocabulary task, the Wall

Street Journal (WSJ) corpus. Evaluation was performed on the CSRNAB Hub 1 test set. The

WSJ corpus is based on extracts read from the Wall Street Journal. The SI-284 corpus, using

284 training speakers in approximately 60 hours of data was used to train the models. Further

details can be found in appendix B.2.

Systems were built on the WSJ task using different feature parameters:

MFCC, a baseline MFCC system;

GMM6, system using the GMM means, standard deviations and log-magnitude terms from a

six-component spectral estimate.

MFCC+6Mean concatenative, a concatenative feature vector formed from the GMM compo-

nent means and the MFCCs in a single stream;

MFCC+6Mean fixed stream weights, a synchronous stream system using MFCCs and GMM

component means as two synchronous feature streams with the stream weights fixed at
� <�� and � < � respectively;

MFCC+6Mean confidence metric, a synchronous stream system using a time-dependent con-

fidence weight to combine the MFCC and GMM means feature streams;

The systems were built by single-pass retraining the MFCC model sets for the new features.

The same context decision tree and set of states from the MFCC system was used in all the mod-

els. The synchronous stream systems were built using only the MFCC stream during training.

The GMM parameters were extracted using six components on a 4kHz spectrum smoothed

with a pitch filter. The MFCC and synchronous stream systems used 12 component output PDFs

for each HMM state, the concatenative system 16. The increased optimal number of mixtures

could be required to model the correlations in the GMM features. Results for the systems based

on rescoring the MFCC lattices on the CSRNAB hub 1 test sets are presented in Table 6.6.

The GMM features alone had a WER 23% higher than the MFCC parameterisation, albeit

at a lower spectral bandwidth. Using feature mean normalisation decreases the WER by � < � �
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relative on the task. Since the component log-magnitudes have already been normalised during

the extraction process, the improvement seen here is presumably due to the effect of normalising

the component means. Normalising each component mean over an utterance removes any offset

or linear bias that it may possess. If taken over sufficient data, this has the effect of acting as a

speaker or utterance normalisation, similar to a vocal tract length normalisation as mentioned

before in section 4.4.4 [114].

Adding the GMM component means to the feature vectors decreases the WER by 2.0% rel-

ative, an improvement which is not significant. Using the confidence metric to combine the

features in a streaming system produces a small improvement compated to the performance of a

system with fixed stream weights of 0.2 and 0.8. Combining the features in separate information

streams with a confidence metric also gives a slight improvement. However, the performance

increase over the concatenative system is not significant. Adding the GMM component means

to the MFCC parameters on a large task gives a slight but not significant improvement to the

system.

Results on the WSJ task track the results on the RM task. The GMM features performed 17%

relative worse on RM and 23% worse on the WSJ corpus. The relative improvement in WER

gained by using the GMM features in combination with MFCCs and feature mean normalisation

was 2.0% relative on the WSJ corpus and 13% on the RM task.

Combining the MFCCs with the GMM features on WSJ gave relatively poor performance

compared to the results on the RM task. This could be attributable to a number of factors.

The state clusterings used were those generated for the MFCC features and may not have been

optimal. It may be that the GMM features do not generalise well onto larger tasks and represent

the classes poorly. Another possibility is related to the effects of cepstral mean normalisation.

On the RM task applying cepstral mean normalisation gave no significant performance gains.

However, on the WSJ task applying cepstral mean normalisation to the MFCC features gives a

significant gain. Although the WSJ task has little environmental or channel noise, CMN can

the remove the effects of speaker bias or spectral tilt. The extraction of the GMM features does

not incorporate this normalising effect and hence the features may be giving relatively poorer

performance on this task.

6.4.1 Semi-tied covariance matrices

One problem with the GMM features is that they possess a large degree of correlation. It could be

possible to generate full covariance matrices in the HMM output PDFs to handle the correlations.

Another method for modelling correlations is to use a semi-tied covariance matrix. The use of a

semi-tied covariance matrix was discussed in section 2.4.2.

Semi-tied transforms are a form of covariance modelling with full or block-diagonal covari-

ance matrices tied over multiple classes [36]. The matrices can be tied over all phones or certain

phone classes and can be grouped into separate blocks of features as well.

Global covariance transforms were generated on the WSJ corpus. The transforms were es-
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Form of block Features

structure MFCC MFCC+6Mean GMM6

None 9.75 9.56 12.28

Features+
0

N/A 9.13 11.940
9.03 9.55 12.90

Features N/A 8.99 11.85

Full 8.85 9.67 13.02

Table 6.7 WSJ results giving % WER using global semi-tied transforms with different block structures for

different feature sets

timated on the WSJ model sets, and then two further passes of EM training on the data were

performed. The semi-tied transforms were tested with the transformed model sets and the word

insertion penalties and language model scale factors were not altered. Different block diagonal

structures for the semi-tied transform were considered, grouping features by type (component

means, variances, component magnitudes or MFCCs), static and dynamic parameters, or both

together.

The results of the experiments using these transforms are presented in table 6.7. Using a

full transform with the GMM feature system increased the WER by 6% relative, compared to

the 9.2% decrease in error observed when used with the MFCC system. Although the error rate

went up, an increase in log likelihood was observed in the training data. Implementing a full

semi-tied transform with the MFCC+6 GMM means system increased the error rate slightly as

well. Constraining the semi-tied transform to a block-diagonal structure based on feature type

led to improved performance in the case of the GMM feature system and in the GMM means in

combination with the MFCC parameters. The best performance with the concatenative system

was gained by using two blocks, one with the MFCCs and one with the GMM component means.

However, the performance was still slightly lower than the baseline MFCC system with a full

transform.

It can be concluded that the although a log-likelihood increase can be observed in the training

data using a semi-tied feature-space transform, it does not significantly improve the results using

GMM features. The only systems which showed a slight improvement with the MFCC features

were when a block diagonal structure was used to split the features into separate blocks. The

GMM features possess a high degree of correlation but appear not suited to the approach of the

semi-tied covariance matrix.

6.5 Switchboard experiments

Combining MFCCs with GMM features on the Wall Street Journal gave a smaller relative gain

than the corresponding experiments on the RM task. To explore the effect of combining MFCCs

with GMM features on larger speech corpora, experiments were performed on the large vocab-
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ulary Switchboard corpus.

The Switchboard corpus is a large corpus based on conversational telephone speech from

north American speakers [42]. The speakers were asked to converse either freely or on given

topics, and the speech was recorded at 8kHz. The speech can come from landlines or cellular

connections. Due to the nature of the telephone channel, the effective frequency range of the

speech is 125-3300kHz. The speech has been recorded in stereo and � -law compounded with a

resolution of 8 bits per sample. An echo cancellation algorithm has also been applied.

The experiments were run on a 68 hour training set h5train03sub. The training set contained

data from 1118 conversation sides. The training data contained information from both normal

and cellular calls.

The h5train03sub data was coded using PLPs normalised with a vocal tract length warping

factor found for each speaker using a maximum-likelihood Brent estimation [49], and both

cepstral mean and variance normalisation were used. The baseline PLP system used a model

generated from the full (200+ hours) training data for the 2002 CU-HTK evaluation system1.

This model was mixed down to have single component Gaussians in the output PDFs. The states

were reclustered to yield a model with roughly 6000 unique states with single component PDFs.

The models were iteratively re-estimated and the number of Gaussian components per state

gradually increased. The number of Gaussian components in the output PDFs in the final model

was twelve. The baseline system was then evaluated on the dev01sub subset of the dev01 test

set, which contains data from the cellular and normal call databases. The language model used

was a 58K backoff trigram model, as used in the CU-HTK evaluation systems [48]. Testing was

performed using a Viterbi search for the most likely word sequence (as opposed to the lattice

rescoring used for the WSJ experiments). The WER achieved with the baseline system was

36.8%.
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Figure 6.2 GMM component mean features for a section of the data from the SwitchBoard corpus

The GMM mean features were then evaluated in combination with the PLP features. The fea-

ture vectors were formed by concatenating the VTLN PLP coeffiecients with the GMM component

1see [48] for a related description
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mean features to give a feature vector of length 57. Cepstral mean and variance normalisation

was then applied to these features. The single component model with 6,000 states trained on

the h5train03sub PLP data was then single pass retrained for the PLP+6Mean data. The model

thus obtained was then iteratively re-estimated and the number of components in the HMM out-

put PDFs was gradually increased. The system was tested as above, with increased beamwidths

to account for the increase dynamic range to give roughly the same search time. The WER

obtained using the system was 39.0%. Although the values extracted from the data appear rea-

sonable, as shown in figure 6.2, a significant degradation in performance is obtained including

them on this task. Examination of the Fisher ratios also suggests that the GMM features possess

discriminatory information on this task. As mentioned in section 6.4, there may be a number of

reasons why the GMM features gave poorer performance when combined with the PLP features

on this task. The lack of a log-spectral (or cepstral) mean normalisation for the GMM features

may be affecting the performance when combined with PLP features which do incorporate it.

Experimental results show that implementing CMN on the PLPs improves the performance by

around 7% on the Switchboard task. Hence, if some form of log-spectral normalisation could

be implemented on the GMM features, the features extracted may perform better on the task.

Alternatively, it may be that the GMM features do not generalise well for more complex large

vocabulary tasks. The features may not be distinct between classes, or they may not be consis-

tantly estimated. Another possibility is that the features are performing badly in the complex

noisy environmental conditions of Switchboard.

6.6 Summary

In this chapter, results combining the features from a GMM estimated from the spectrum with

an MFCC parameterisation have been presented. Specifically, the experiments focused on com-

bining the GMM means - which can be compared to the formant positions - with the MFCCs.

On the medium vocabulary RM task, appending the GMM means to MFCC features gives an im-

provement in WER of 8.8% relative over the MFCC system, and an improvement in WER of 13%

relative when feature mean normalisation is applied. Using a synchronous stream system with a

confidence metric to combine the parameterisations gives a small improvement over the MFCC

parameterisation, but did not beat the performance of the concatenative system. Results on the

larger WSJ task tracked the results on the RM corpus, but the improvements were not as large

or as significant. Using an LDA transform on a concatenative system gave a drop in performance

on the RM task, as did using a semi-tied covariance matrix on the WSJ corpus. Combining the

GMM component means with PLP features on the Switchboard corpus gave a relative degrada-

tion in performance as well. This suggests that the GMM features perform poorer on complex

tasks, and this may be due to the lack of log-spectral - or cepstral - mean normalisation with the

GMM features.



7

Results using noise compensation on GMM features

In this section the behaviour of the GMM features in a noise-corrupted environment is discussed.

The performance of models using GMM features in mismatched conditions is shown. Results

using system using GMM features in noise-matched conditions are also shown. Experiments

using the noise compensation techniques in section 4.5 are presented.

The noise corrupted speech in this section is formed by adding random segments of the

Noisex database sound “Operations room” to the test data at the waveform level. This form of

artificial noise corruption does not take into account other effects of recording speech in noise-

corrupted environments such as the Lombard stress. However, it allows easier comparative

evaluation of systems and training in a noise matched environment can be performed using

single pass retraining methods.

All the noise compensation techniques discussed assume that a noise model is available.

In this work, the noise model parameters were estimated by taking the average of a GMM

parameter estimate of the noise source. In practice, this could be estimated using a voice activity

detector on the corrupted speech signal.

7.1 Effects of noise on GMM features

This aim of this chapter is to evaluate the performance of the noise robustness techniques pre-

sented in section 4.5. Work with spectral peak features has shown that they possess some inher-

ent noise robustness in white noise and car noise [31]. However, little or no improvement was

observed when using spectral peak features on coloured noise (i.e. possessing a defined peak

structure) such as factory noise or background noise [12]. The interfering noise source chosen

in this section is the “Operations Room” (Op-Room) noise from the Noisex database. Previous

work has shown that this form of noise severely corrupts MFCC parameters [40]. Figure 7.1

shows plot of the average noise spectrum of the OpRoom source. In addition, a GMM plot of a

clean spectrum and one with additive Op-Room noise at a 18dB signal to noise (SNR) ratio is

shown. This noise source was chosen because it will severely corrupt both the MFCC and GMM

parameters. The Op-Room noise is coloured and possesses a strong low frequency spectral peak.

113
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A spectral peak representation of the corrupted speech signal will model the noise rather than

the speech in the low frequency regions.

(a) Average noise spectrum (b) Clean and noise corrupted speech
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Figure 7.1 Plot of average Op-Room noise spectrum and sample low-energy GMM spectral envelope corrupted

with the Op-Room noise

In figure 7.2 the component means for a section of an utterance have been plotted. The

configuration is the same as that used for figure 5.4(a). During periods of high energy, the com-

ponent mean trajectories extracted change very little from those in clean speech. However, in

the periods of lower energy, the mean positions, especially those of the lower order components

are severely corrupted.

7.1.1 Model distances

Since the relationship between the spectrum and the extracted parameters is non-linear, the

effects of additive noise one the elements in the feature vector will not be straightforward.

However, it would be useful to examine the degree of noise corruption of the various elements

in the feature vector. In this section the corruption of the elements of the feature vector is found

by considering the difference between a model based on clean speech and one trained on noise

corrupted data.

There are a number of different measures of closeness of two model sets, based on distance

measures of the underlying distributions [66]. If the noise corrupted model set is built using a

single pass retraining step of the clean model, then it will possess the same set of states, transi-

tion matrices and component priors. When evaluating the distance between the model sets, it

would be preferable to use a measure based only on the parameters which have been altered -

in this case the means and variances in the HMM output PDFs. Thus the KL distance between

pairs of state/component Gaussian distributions can be considered rather than between com-

plete models [33]. Using this approach it is possible to compare the distance of each parameter

in the feature vector between the clean and noise corrupted feature sets.

The KL distance between two Gaussian distributions � and � with means � � and � � and
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(a) Clean speech:
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(b) Noise corrupted at 18dB SNR:
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Figure 7.2 GMM Mean trajectories in the presence of additive Op-Room noise for the utterance “Where were

you while we were away” (cf fig 5.4)
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variances � 	� and � 	� is given by:
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And the average KL distance between two complete HMM model sets � and 
� is taken as:
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where � ��

�
� is the � !#" model in the model set � and

�
is the total number of mixture compo-

nents in each model.

MFCC / Component Means Six component GMM

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

Feature Vector Element

N
or

m
al

is
ed

 K
L 

di
st

an
ce

MFCCs    
GMM means

PSfrag replacements

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Feature Vector Element

N
or

m
al

is
ed

 K
L 

di
st

an
ce

Means              
Standard Deviations
Log Magnitudes     

PSfrag replacements

Figure 7.3 KL model distances between clean speech HMMs and HMMs trained in noise corrupted environ-

ments for MFCC + 6 GMM component mean features, and a complete GMM system

Figure 7.3 shows the KL distances between the clean model sets and those single pass re-

trained on noise corrupted data on the RM task. The KL distances for each element of the

feature vector are given, where the features are presented in the order
� 7 ,�� ,  � � 0 � 0 	 � .

The GMM component means positions in the MFCC+6Mean feature vector are corrupted

less than the log-magnitude term and the first MFCCs, but worse than the other parameters.

Due to the coloured nature of the noise the lower order means, corresponding to the lower

frequency regions, have been worst affected. The parameters for higher order GMM component

means are relatively close to those of models trained in noise matched conditions. In the GMM6

system, the standard deviations are corrupted to a similar degree to the component means. The

log-magnitude terms in the feature vector are by far the worse affected by the noise.

7.1.2 Performance of uncompensated models in noise corrupted enviroments

In order to initially explore the performance of GMM features in noise, four systems were built.

These were the same used in sections 6.4, namely:



CHAPTER 7. RESULTS USING NOISE COMPENSATION ON GMM FEATURES 117

MFCC, a baseline system using the standard MFCC parameterisation;

GMM6, GMM parameters from estimating six Gaussian components to a 4kHz spectrum smoothed

using pitch filtering - the component positions, standard deviations and normalised log

mean energies were used;

MFCC+6Mean concatenative, a feature vector formed by concatenating the MFCC features

together with the component means from the GMM spectral estimates from the GMM6

system;

MFCC+6Mean Confidence Metric, a two stream synchronous stream system using the MFCCs

and GMM6 component means in independent streams. The stream weights are time-

dependent, set to the confidence metric described in section 4.4.3.

The systems were tested on data with additive Op-Room noise at a SNR of 18dB and the

results are shown in Table 7.1 and Figure 7.4.
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Figure 7.4 WER on RM task for uncompensated (UC) MFCC and MFCC+6Mean systems on RM task cor-

rupted with additive Op-Room noise

The concatenative MFCC + GMM means system in additive Op-Room noise at 18dB SNR

had a WER of 30.6%, a 5.5% relative improvement over the MFCC system. The Op-Room noise

corrupts speech badly even at a relatively high SNR. The improvement suggests that the GMM

means supply complementary information to MFCCs in coloured noise environments. However,

the relative performance gain is less that that achieved on clean spech (8.8%). Figure 7.3 in-

dicates that the GMM component mean features are affected by the OpRoom noise source to a

similar degree as the higher order cepstra. The results in additive noise follow this, as the rel-

ative improvement adding the GMM component means exhibits only a small variation between
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clean and noise mismatched conditions.The reduction in WER is similar to that achieved in clean

speech conditions. This slight improvement is maintained over a range of SNRs.

The GMM system performed badly in the noise corrupted enviroment, with an WER of 66%,

approximately twice that of the MFCC system. The GMM features perform badly in the noise

mismatched conditions. Studying figure 7.3 suggests that the main drop in performance is due

to the high degree of corruption in the component mean log-magnitude terms.

Using the confidence metric on noise corrupted speech also yields a slight improvement of 1%

absolute in WER over the MFCC+6Mean concatentative system. The confidence measure will

deweight the GMM features in regions where are not strongly defined peaks. These regions will

correspond to the low-energy regions of speech which are worst affected by the noise. However,

the confidence measure extracted from the speech can itself be corrupted by the peak-structure

of the noise, limiting its effectiveness.

18 dB SNR Uncompensated Noise

System Matched

MFCC 32.3 8.1

GMM6 66.7 12.3

MFCC+GMM Concat. 30.6 7.1

+ Confidence 29.6 7.1

Table 7.1 Results using uncompensated and noise matched systems on the RM task corrupted with additive

Op-Room noise at 18dB SNR

7.1.3 Results training on RM data with additive noise

The performance of noise matched systems built on the RM task corrupted by additive noise

is presented in this section. The aim is to see what the “optimal” performance of the speech

compensation techniques can achieve if the models are adequately compensated.

A noise matched system was built using single pass retraining from the clean speech models

using training data corrupted with additive noise, as described in section 2.2.3. The clean speech

data was used together with the clean model set to generate the frame/state alignments. The

alignments thus generated were then used in combination with the corrupted data to generate a

noise-matched model set. The results using the above parameterisations with these systems are

also presented in table 7.1 and figure 7.5.

In these noise matched conditions, the MFCC+6Mean concatenative system gives a reduction

in WER to 7.1% from the MFCC system at 8.2%, an improvement at a confidence of 98%. This

improvement suggests that if the GMM mean features can be adequately compensated in the

model set, then they still possess complementary information in noise-corrupted environments.

Table 7.2 shows the performance of the system when the parameters from a noise matched

model are used. The noise matched HMM parameters can be considered the “ideal” parameters
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Figure 7.5 WER on RM task for MFCC and MFCC+6Mean systems corrupted with additive Op-Room noise

for noise matched models retrained with corrupted training data

and should form an upper bound on the performance of any model compensation approach.

The GMM6 models alone perform poorly on data trained on the Op-Room noise. However, with

compensation the relative difference in performance between the GMM6 parameters and the

MFCC system decreases.

Using the compensated values of the static means gives the largest improvement in the WER

for all systems. Using the variances from the noise-matched model gives improvements typically

about 15-20% relative over the systems only using the compensated means.

Compensating the parameters of the MFCC+6Mean system yields reductions in WER over

those of the MFCC system. In particular, compensating only the static means of the MFCC+6Mean

system yields an WER of 12.2%, and this result using the “ideal” static mean parameters should

be considered a baseline for the results using the model-based noise compensation techique

detailed later.

The performance of the compensated MFCC+6mean systems outperforms all of the MFCC

systems. Thus, if the GMM parameters can be adequately compensated then significant perfor-

mance advantages can be achieved.

7.2 Front-end noise compensation

The technique for front-end noise compensation presented in section 4.5.2 was applied to the

feature extraction process for a GMM system. The average noise model was used during the ex-

traction process to estimate the clean speech GMM parameters from the noise corrupted speech.

A sample plot of component mean trajectories calculated using the front-end compensation
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Parameters MFCC MFCC+6MEAN GMM6

Compensated � � � � � � � � � � � �
Static 14.7 13.1 12.2 10.8 26.6 25.4

Static +
0

11.9 9.5 9.9 8.3 18.88 15.9

Static +
0
	 10.2 8.1 8.8 7.1 14.8 12.3

Table 7.2 MFCC Results selecting model features from a noise matched system to complement a clean speech

system on RM task corrupted with Op-Room noise at 18dB SNR

scheme is shown in figure 7.6. When this approach was applied, the observed tracks for the

GMM parameters were closer to the clean speech, but unfortunately exhibited large discontinu-

ities between certain frames. These may have been caused by the noise model masking the low

frequency speech signal during low intensity sounds. To counteract this effect, a moving aver-

age (MA) filter was also applied to smooth the parameters extracted using the front-end noise

compensation. A four-component model of the noise was obtained offline by taking the average

values of GMM estimates from the noise spectra. The compensated GMM means were combined

with the uncompensated MFCCs and were tested with the clean system. A moving average fil-

ter of length 3 was applied over the GMM mean features after the front-end compensation as

mentioned previously. The filter was applied prior to the calculation of dynamic parameters.
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Figure 7.6 GMM Mean trajectories in the presence of additive Op-Room noise using the front-end compensa-

tion approach for the utterance “Where were you while we were away”

Using the front-end compensation technique improves the performance of the GMM6 sys-

tem with a 22% reduction in WER. Applying the MA filter to smooth the extracted parameters

yields a further improvement of 39% relative to the performance of the clean models on a noise

corrupted enviroment. Using a MA filter on the clean speech data actually led to a degrada-

tion in performance when used in section 4.3. The improvement when adding the front-end

compensated features to an MFCC parameterisation is relatively small compared to adding the

uncompensated GMM means. The WER was actually slightly increased using the component
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means from the front-end compensated GMM6 system. Applying the moving-average smooth-

ing technique gives a slight decrease in WER of 7.6% relative to using the uncompensated GMM

means, and the confidence in this improvement is 75%.

It is likely that the compensation technique is most effective on the log-magnitude terms in

the feature vector which were badly corrupted by the noise source. When a moving average

filter was applied to the features from the GMM system in section 5.3, performance was de-

graded. However, when used with the front-end compensation scheme, a small improvement

was observed from the smoothing the GMM features.

Description WER /%

MFCC (UC) 32.3

GMM (UC) 66.6

GMM (FC) 51.1

+smoothing 31.3

MFCC (UC) + GMM (UC) 30.6

MFCC (UC) + GMM (FC) 31.9

+smoothing 28.3

Table 7.3 Word Error Rates (%) on RM task with additive Op-Room noise at 18dB SNR with uncompensated

(UC) and front-end compensation (FC) parameters

The reason the front-end compensation technique did not work as well as expected is most

likely due to the same problems that spectral subtraction techniques face [21]. The noise source

is time-varying and does not always have the same amplitude. Additionally, the phase of the

noise signal is unknown, so the effects of the additive noise signal on the magnitude spectrum

cannot be determined. During regions of low spectral energy, the noise model peaks can easily

mask the speech signal, especially in the low frequency regions.

7.3 Model based noise compensation

In this section, the model compensation technique outlined in section 4.5.3 is used to com-

pensate the HMMs trained on clean speech to the presence of additive noise. The technique

presented in section 4.5.3 compensates the static mean parameters of the GMM features in the

output PDFs in each HMM state. The technique is similar to compensating the MFCCs using a

log-add approximation. The noise model used is the same as used in the previous section and

taken from the average GMM parameters from the noise source.

The model compensation of the static mean MFCC parameters in the HMMs was simulated

by replacing the values in a clean model by the those from the “ideal” noise matched model.

In practice the MFCC static means in the HMM could be compensated by using a log-add PMC

approach or similar. The important consideration is the relative improvement the compensated

GMM means give over a compensated MFCC system. Using the ideal MFCC mean parameters
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Figure 7.7 WER on RM task for MFCC and MFCC+6Mean systems corrupted with additive Op-Room noise

for models with compensated static mean parameters

will give a lower bound on the relative improvements to be gained by compensating the GMM

parameters.

The GMM parameters allow a compensation technique to work directly in the spectral do-

main, thus reducing the complexity of mapping linear cepstral domain and the log-add approxi-

mations that are made with PMC on MFCC features [40].

The results of the experiments are presented in table 7.4 and figure 7.7.

Description WER /%

MFCC (MC) 14.7

GMM (MC) 32.6

MFCC (UC) + GMM (MC) 22.1

MFCC (MC) + GMM (MC) 12.9

Table 7.4 Word Error Rates (%) on RM task with additive Op-Room noise at 18dB SNR with uncompensated

(UC) and front-end compensation (FC) parameters

Adding GMM mean features to a static mean compensated MFCC system reduced the WER

by 7% relative at 18dB SNR, with the confidence on the improvement at 99%. The model

compensation system gave results very close to the performance predicted by the “ideal” static

mean HMM parameter compensated systems presented in table 7.2. As is the case with MFCC

features, adapting the GMM model parameters yields better performance than compensation at

the front-end level. A relative improvement of 31% was achieved when only the six static means
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of the GMM component means were compensated. The model compensated systems were also

tested using the confidence metric to combine the MFCC and GMM features, and the results

are in Table 7.4. Using the confidence metric gives a 4% reduction in WER relative to a single

stream system at 18dB. However, using the confidence metric with a noise matched system gave

no reduction in error rate.

7.4 Summary

In this section recognition results using the GMM features on the RM task corrupted with addi-

tive noise were presented. The GMM features were shown to have some inherently noise-robust

properties, and gave a slight improvement in performance in an uncompensated system. In addi-

tion, results using two techniques to compensate the performance of the system in additive noise

were presented. The front-end compensation scheme improved the performance of the GMM

features on a noise corrupted speech, although the improvement was mostly due to the com-

pensation of the log-magnitude terms, and only a slight improvement was gained when using

the compensated GMM means in combination with MFCC features. The model compensation

technique managed to improve the performance of a MFCC+6 GMM means system in a noise

corrupted environment. Using a system with compensated static means for MFCCs and GMM

means, an improvement of 7% was achieved over a system built with only compensated MFCC

features at 18dB SNR. The improvements gained using the model compensation approach were

close to the “ideal” performance from a system trained in a noise matched enviroment. The im-

provements from a noise matched system show that further progress can be made if the dynamic

parameters of the GMM features in the model set can be compensated.
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Results using speaker adaptation with GMM features

In this section the results of using MLLR speakaer adaptation approaches on the GMM features

alone and in combination with MFCCs are shown. Results using unconstrained MLLR adaptation

on the test set are shown, as well as constrained transform on the test speakers and speaker

adaptive training (SAT) schemes.

Three systems are considered in this section:

1. MFCC:a system built using a standard MFCC parameterisation;

2. MFCC+6Mean: a system built with a feature vector formed concatenating MFCC features

with the GMM component mean features from a six-component spectral estimate;

3. GMM6: a system built with the full set of GMM features: means, standard deviations and

log-component energies.

8.1 GMM features and vocal tract normalisation

One of the motivations of using spectral peak features is the fact that the peak locations are

directly represented as frequency or bin values. Hence, linear scalings of the spectral peak

locations can approximate the effects of vocal tract length variation.

In figure 8.1, the VTLN warp factors for the MFCC means have been calculated for the

WSJ SI-284 speakers. The warp factors were calculated by using a Brent estimation training

likelihood optimisation technique [48]. The technique performs an iterative search to find the

VTLN warp factor which yields the maximum likelihood for each speaker on the training data.

The MFCC warp factors are plotted against warp factors from the GMM system. The GMM

targets were calculated by taking a single diagonal constrained MLLR transform of the GMM

features for each speaker. The warp factors were then calculated as a linear regression of the

scaling on the GMM component means from the global mean to the speaker target.

As can be observed, there is a reasonable degree of correlation between the GMM features

and MFCC warp factors and the correlation index for the two sets of warp factors is 0.7. This

124
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Figure 8.1 VTLN warp factors for MFCC features calculated on WSJ speakers using Brent estimation against

linear regression on GMM component means from CMLLR transforms

correlation suggests that diagonal transforms of the GMM features are a fair approximation to

other estimates of VTL functions.

8.2 Unconstrained maximum likelihood linear regression adapta-

tion

The first type of adaptation investigated was a simple transform of the HMM model output PDF

means using a MLLR transform. The transform was calculated using the speaker adaptation data

from the CSRNAB-1 corpus. The CSRNAB-1 corpus provides forty adaptation sentences for each

speaker.

Block MFCC System

Structure Single Speech Sil 512

Full 8.69 8.69 8.260
8.89 8.84 8.42

Diagonal 9.81 9.61 9.10

Table 8.1 Using MLLR transforms on MFCC features to adapt the HMM means of WSJ systems, using full,

block diagonal (based on
�

coefficients) and diagonal transforms
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There were two variables considered in making the transform: block structure and size of

the regression class tree. Three forms of transform were used for the MFCC and GMM6 systems:

a full transform; a diagonal transform, or a block transform based on grouping the dynamic

parameters together. For the MFCC+6Mean system, two additional forms were considered: a

block structure grouping the features together by type (MFCC/GMM Means) and one group-

ing by both dynamic parameters and feature type (MFCC/GMM Means/
0

MFCC/
0

GMM Means

etc.). The transforms were calculated for each system and the transforms iteratively re-estimated

twice. The model transforms were then tested using the MLLR transforms with the speaker in-

dependent HMMs to rescore the lattices.

Block MFCC+6 Mean System

Structure Single Speech Sil

Full 8.56 8.36 7.98

Features (MFCC/GMM means) 8.66 8.60 7.960
8.74 8.56 8.09

Features+
0

8.77 8.76 8.30

Diagonal 9.53 9.50 9.04

Table 8.2 Using MLLR transforms on a MFCC+6Mean feature vector to adapt the HMM means of WSJ

systems, using full, block diagonal (groupings based on features type and/or ��������� coefficients) and diagonal

transforms

The results for the MFCC, MFCC+6Mean and GMM6 systems are in tables 8.1, 8.2 and 8.3.

All systems stated were single stream (concatenative) systems. Appending the six GMM com-

ponent means to a GMM system improves performance by 2-4% relative in almost all configu-

rations. The best performance for an MFCC system was gained using a full variance transform

with a 512 class regression tree for a WER of 8.26%. The best perfomance for the MFCC+6Mean

system was achieved using a block structure based on the feature type and a 512 class regres-

sion tree. For the MFCC features, little improvement was observed between using a single global

transform and one using two classes (speech and silence). On the MFCC+6Mean and GMM6

system small improvements can be seen using seperate speech/silence transforms as opposed to

a single global transform. This may be due to the non-linear relationship between the spectrum

and the GMM features as the GMMs extracted during periods of silence will experience different

shifts as those during speech.

The full GMM6 systems exhibit similar relative performance improvements to the MFCC

system for most of the systems tested. However, using a diagonal transform gave the GMM6

systems a relative reduction in WER of 4.5% using a single diagonal transform, whereas no

improvement was observed on the MFCC features using this form of transform. Calculating

MLLR variance transforms for each of the test speakers in the CSRNAB Hub 1 set also gave small

improvements to all of the systems tested.
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Block GMM6 System

Structure Single Speech Sil 512

Full 10.51 10.37 10.120
10.99 10.51 10.31

Diagonal 11.67 11.65 11.07

Table 8.3 Experiments using MLLR transforms on GMM6 feature vector to adapt the HMM means of WSJ

systems, using full, block diagonal (based on
�

coefficients) and diagonal transforms

8.3 Constrained maximum likelihood linear regression

Constrained MLLR (CMLLR) transforms as presented in section 2.5.3 use the same transform

for the mean and variance adaptation of the model set, and can be viewed as a feature-space

transform.

In this section, CMLLR transforms were calculated for the speakers in the test set for the sys-

tems presented above. The same block structures were used, and transforms for two regression

classes (speech/silence) were estimated. The results are in table 8.4.

The MFCC systems gave little or no change in the WER from the systems built using un-

constrained MLLR in table 8.1 regardless of the block structure. The MFCC+6Mean system

experienced no improvement in WER from the MFCC system when CMLLR was applied, except

for the case of the diagonal transforms. Using a diagonal transform, the relative improvement of

2% WER over MFCC system was maintained. Compared to the using the unconstrained MLLR

on the MFCC+6Mean system in table 8.2, there is actually a slight degradation in performance

using the CMLLR systems.

Implementing a CMLLR transform on the GMM6 system gave a small reduction in WER over

the baseline. However, the performance gain is much smaller than the improvements gained

using unconstrained MLLR, especially compared to the gains using CMLLR on the MFCC system.

There was very little improvement gained with using larger block sizes on the GMM6 system.

It is interesting to compare the results with those using the semi-tied systems in table 6.7. As

in the case for semi-tied systems, the CMLLR transforms that worked the best used a block di-

agonal structure which split the feature types (MFCCs, component means, standard deviations)

into separate blocks.

8.3.1 Speaker adaptive training

In order to evaluate the performance with speaker adaptive training, CMLLR systems were built

for the WSJ system. For each speaker in the SI-284 training set, CMLLR speaker transforms were

calculated. The same systems as presented in the previous section were used, and transforms for

a two-class regression tree were built. The HMM models were then retrained using the training

speaker transforms, and speaker transforms re-estimated using the new model sets and the

previous speaker transforms. These steps were iterated five times, and the resulting transforms
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Block MFCC System MFCC+6 Mean System GMM6 System

Structure

Full 8.80 8.84 11.26

Feature type (MFCC/GMM mean) 8.750
8.71 8.78 11.36

Feature +
0

8.67

Diagonal 9.61 9.42 11.69

Table 8.4 Experiments using constrained MLLR transforms for WSJ test speakers, using full, block diagonal

(groupings based on features type and/or ����� ��� coefficients) and diagonal transforms

and model sets were tested.

The results of the SAT experiments are in table 8.5. The MFCC systems exhibit a consistent

and significant improvement of around 9% using SAT in combination with a constrained MLLR

test set adaptation for block diagonal and full transforms. Little improvement was gained using

a full transform rather than a block-diagonal structure with the MFCCs.

Implementing SAT on a MFCC+6Means system yields a relative drop in WER of 4% over

the test set CMLLR system in the previous section for block diagonal and full transforms. This

relative improvement is much lower than that exhibited by the MFCC system, and the systems

overall perform worse than the MFCC systems with SAT. The diagonal transform case performs

slightly better than the MFCC system with a diagonal transform, possibly due to the VTLN nor-

malising effects discussed in section 8.1.

Implementing SAT on the full GMM6 systems does not improve their recognition perfor-

mance significantly from test-set only adaptation, except for the case of the diagonal trans-

form, which improved by roughly 3% relative. Although the systems exhibit an increase in

log-likelihoods, this does not guarantee an increase in the recognition rate. It may be that the

high degree of correlations present in the GMM feature vector make them unsuited to the CMLLR

approach.

Block MFCC System MFCC+6 Mean System GMM6 System

Structure

Full 7.98 8.45 11.32

Feature type (MFCC/GMM mean) 8.340
8.05 8.43 11.34

Feature +
0

8.31

Diagonal 9.69 9.40 11.43

Table 8.5 Experiments using constrained MLLR transforms incorporating speaker adaptive training on WSJ

task, using full, block diagonal (groupings based on features type and/or ��������� coefficients) and diagonal

transforms
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8.4 Summary

This section presented results using MLLR supervised adaptation schemes on the large vocab-

ulary WSJ task. Using model-based (unconstrained) transforms, a consistent improvement in

performance of between � � � � was observed for all forms of transform when appending GMM

component mean features to the MFCC parameterisation. However, when using a feature-space

(constrained) MLLR approach, there were no performance gains observed, save for the case of

using a diagonal transform. Using a SAT approach with CMLLR gave no significant gains for the

MFCC+6Means system, and gave a comparative degradation in performance compared to the

MFCC system using CMLLR and SAT.



9

Conclusions and further work

This thesis presents a novel speech parameterisation based on representing the spectral envelope

with a Gaussian mixture model. Features derived from the GMM parameters were used as

formant-like features for speech recognition. In particular, the values of the GMM component

means can be related to the formant or spectral peak locations. Techniques for extracting the

parameters using the EM algorithm were presented, along with frameworks for combining the

GMM features with MFCC or PLP parameterisations. The performance of the features in the

presence of additive background noise was examined, and techniques for compensating the

GMM features were developed and tested. Finally, the use of MLLR adaptation techniques on

the GMM features was investigated.

9.1 Review of work

There are several motivations for using spectral-peak or formant features. Formants are consid-

ered to be representative of the underlying phonetic content of speech. They are also believed

to be relatively robust to the presence of noise, and useful in low-bandwidth applications. Addi-

tionally, it has been hypothesised that formants or spectral peak positions can be easily adapted

to different speakers. However, the extraction of robust and reliable formant estimates is a non-

trivial task. Recently, there has been increased interest in other methods for estimating spectral

peaks, for example, using the HMM2 or gravity centroid features. The GMM features developed

in this thesis bear some similarities to the gravity centroids. The GMM estimates for mean and

variance are directly related to the first and second spectral sub-band moments if the posterior

probabilities of the components are fixed to filter-bank functions rather than being iteratively

updated. Hence, the GMM features possess more flexibility in the spectral modelling than the

gravity centroid features. In addition, the features can be easily mapped into the linear spec-

tral domain, giving them interesting properties for speaker adaptation approaches and noise

compensation.

The theory of estimating the GMM parameters from a speech spectrum was presented in

chapter 4. The EM algorithm was applied to the task of estimating a Gaussian mixture model
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from a set of rectangular histogram bins. In order to impose some form of continuity constraints,

the algorithm was also extended for the case of estimating a two-dimensional histogram using

the surrounding spectral frames. The characteristic shape of the voiced spectrum was shown

to be unsuitable for representing with a GMM. Hence, techniques for smoothing the spectrum

to estimate the spectral envelope prior to estimating the GMM were also discussed. Another

potential problem is that the extracted parameters will not generalise well. To address this, a

method to incorporate a prior distribution to constrain the values of the extracted parameters

was presented. It has been observed that formants or formant-like features do not represent

unvoiced regions of speech which do not contain strong formant structures. A framework to

combine MFCC parameters with the GMM component means using a measure of confidence

in the estimated means was also presented, together with an extension to work on medium

or large vocabulary tasks together with a language model. Another consideration for acoustic

features is their robustness to additive noise, and whether they can be easily compensated to

noise corrupted environments. Two techniques to compensate the GMM spectral features in

additive noise using a noise model were presented in this thesis. The first added the noise model

to the estimated GMM during the feature extraction stage to extract estimates of the clean speech

parameters. The second combined the GMM parameters from the model set together with the

noise model in the linear spectral domain, to obtain estimates of the noise corrupted GMM

parameters.

Results using the GMM features alone were presented in chapter 5. The lowest WER for

the GMM features was achieved on a 4kHz bandwidth system by estimating six components

from a spectrum smoothed with a convolutional pitch-based filter. The best feature set extracted

comprised of the GMM component means, standard deviations and the normalised log-energy

at the component means. The performance of the best GMM system was below that of an

MFCC system and had a WER 17% relative higher than that of the MFCC baseline. Using the

surrounding frames in a two-dimensional estimate achieved smoother parameter trajectories

during voiced speech, but lead to an increase in WER overall. Incorporating a prior distribution

whilst estimating the spectrum increased the consistency of the estimated parameters but also

did not lead to a decrease in WER.

In chapter 6, results combining the GMM component means with MFCC features were pre-

sented. The component means were chosen for their relatively high Fisher ratios and also their

relationship to the formant positions. These features appear to possess some informantion com-

plementary to the MFCC parameters. The GMM component mean features gave a small but

significant improvement when combined with the MFCC parameters on a medium vocabulary

task. A relative improvement of 8.8% was achieved by adding the six component mean features

to an MFCC parameterisation. This improvement is significant at a confidence of 96%. When

feature mean normalisation was implemented, the relative improvement over the MFCC base-

line increased to 13%. Using a synchronous stream system to combine the parameterisations

gave a small reduction in WER, but less than a concatenative system. Using the confidence

metric to combine the systems improved the performance of the synchronous stream system,
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but did not outperform a concatenative system. The results on the large vocabulary WSJ task

mirrored the results on the RM task, but the relative improvements were smaller and not signif-

icant. Furthermore, adding the GMM component mean features to a PLP parameterisation on

the SwitchBoard task led to a degradation in performance. No improvements were gained using

a semi-tied covariance matrix or a LDA transform with the GMM features.

Chapter 7 detailed results using the GMM features in the presence of additive Op-Room

noise. The Op-Room noise was used because it is coloured and corrupts both the GMM and

MFCC features significantly. However, even without using any form of compensation, includ-

ing the GMM mean features gave a small improvement to a MFCC systems. This section also

presented results using the two noise compensation techniques described earlier. The front-

end compensation technique gave a significant improvement on the full GMM system roughly

halving the WER, mostly due to the correction of the component energy terms. The front-end

compensated means only gave a slight improvement when added to the MFCC parameters: ap-

plying the front-end compensation technique reduced the WER of the concatenative MFCC and

GMM component means system by 7.5% relative. The second noise compensation technique

compensated the static means of the HMM states rather than the input features in a similar

fashion to a log-add PMC approach. The model compensation technique gave a significant im-

provement on the RM task, reducing the WER of a static mean compensated MFCC by 12%

relative. The decrease in WER observed was close to the predicted improvement from using the

“ideal” parameters from a model set trained in noise-matched conditions.

Using the GMM features with MLLR transforms was examined in chapter 8. The small im-

provements gained by adding the six component means to an MFCC system were preserved

when unconstrained MLLR adaptation transforms were estimated. However, the MFCC+GMM

means systems performed poorly when constrained MLLR transforms were estimated.

In summary, the GMM features alone perform poorer than MFCCs but give some comple-

mentary information to MFCC features on a medium vocabulary tasks. The GMM features also

reduced the WER when added to the MFCC features in noise corrupted environments, and can

be rapidly adapted given a model of the noise. However, on the large vocabulary WSJ the rel-

ative improvements were smaller, and adding the GMM means onto a SwitchBoard system led

to a degradation in performance. These results may be due to the lack of any form of cepstral

(or log-spectral) normalisation for the GMM features. Applying MLLR to the systems preserved

the small improvements on the WSJ task, but a relative degradation was observed when using

constrained MLLR transforms.

9.2 Future work

The model-based noise compensation systems only allow the means of the HMM model compo-

nents to be compensated for the effects of additive noise. On other schemes such as PMC and

the noise-matched systems presented here, additional performance gains have been achieved

by compensating the
0

and
0
	 parameters and the variances of the models. Extending the
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compensation scheme to the other model parameters is an interesting research direction. For

example, it would be possible to apply the matrix approximation to the dynamic parameters.

Alternatively, the continuous time approximation could be applied to compensate the dynamic

parameters of the GMM.

The noise results presented were performed on a task artificially corrupted with an addi-

tive noise source. However, this neglects the Lombard effect which may degrade performance

further. It would be useful to further consider the performance of the GMM features on a task

recorded in noisy conditions, such as the Aurora corpus.

The use of the GMM features in combination with MFCCs provided smaller improvements

on larger tasks. Further work could be conducted into the relative failure of the GMM features

on the Switchboard task could also be undertaken. In particular, the incorporation of some form

of log-spectral normalisation prior to estimating the GMM features could be investigated, as this

yield significant improvements when applied to MFCC and PLP features on larger tasks.

Work with formant estimation techniques has achieved smoother and more consistent tra-

jectories using continuity constraints. Since the EM algorithm is a statistical approach, it could

be possible to apply similar techniques using cost functions to the estimation of the GMM com-

ponents. A subset of the Gaussian components estimated from the spectrum could be selected

using a DP alignment and a cost function based on the continuity and reliability of estimate.

Further investigation could be performed into other methods for estimating the GMM parame-

ters as well, using other forms of trajectory constraint or implementing class-dependant priors

on the estimated features.

The technique for combining the GMM and MFCC features which yielded the lowest WER

was the concatenative approach. However, it may be interesting to investigate other methods for

combining the two features together. For example, the use of multiple-regression HMMs could

make use of some of the inter-speaker information contained in the GMM features. It could also

be possible to investigate alternative schemes to use the confidence metric when combining the

features.

The use of constrained MLLR schemes suggests that these transforms are not appropriate for

the GMM features. Further research could be performed into alternative transformations using

non-linear adaptation schemes for the GMM features. Other transforms of the GMM features

may also be possible.



A

Expectation-Maximisation Algorithm

The EM algorithm is a general iterative optimisation technique. It provides a method for suc-

cessively updating the model parameters 
 at each iteration such that the log-likelihood of the

training data increases at each step [18].

The EM algorithm is used when it is not possible to optimise the log likelihood ��� � 5 ��� � � 
���@
directly with respect to 
 . Instead discrete random variables

� 3 ��� 9;�><><>< � �
�
� are introduced

which are dependent on the set of observations
� 3 � � 9;�><><><;� �

�
� and the model parameters 
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The expectation of the log likelihood of the complete data, the second term on the right hand

of equation A.1, can be optimised instead. The increase in log-likelihood of the complete data
� � � � � forms a lower bound on the increase in log likelihood for the observed data � � � . The

parameters 

 which produce an increase in the expected log likelihood of the complete data

given the current parameters 
 are found. The expected log likelihood given the complete data

is the auxiliary function,
	 ��
�� 

B� . Optimising the auxiliary function is guaranteed to increase

(or not to decrease) the log-likelihood of the observed data, but does not yield a ML solution.

Therefore it is necessary to iterate the steps of caluculating the auxilary function and maximising

it until convergance.

The basis of the EM algorithm is that if the auxilary function increases, the log-likelihood of

the observed data �
	 � 5 ��� � � 
���@ will not decrease. The auxilary function
	 ��
�� 

�� can be defined as

the expectation of the complete data log-likelihood, conditional on the observed data
�

and the

current values of the parameters 
 :
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And so for the discrete set of observed data
�
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The EM algorithm iterates two stages:

� Expectation: given the current parameters 
 calculate the posterior probability mass func-

tion of the hidden variable,
� � � � � �.
�� . Using this PDF, calculate expected values of the

log-likelihood of the complete data set as a function of the new model parameters 

 given

the current parameters.

� Maximisation: maximise the auxiliary function
	 ��
�� 

�� with respect to 



A.1 EM algorithm for fitting mixture components to a data set

The EM algorithm can be applied to the problem of fitting a set of Gaussian mixtures to a set of

observed data � 3 � � 9 �><><>< � �
�
� . The “hidden” data component is an indicator variable which

indicates which mixture component generated the data.

� � $ 3
� � observation � � was generated by 
�$
� otherwise

(A.5)

And so for the full set of data � there is a corresponding set of latent variables for each data

point, related to the set of mixtures:
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For a single point known to be generated by component 
�$ it is possible to calculate
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and since all the data points are independent:
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The auxiliary function can be written as
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Since the summand is over all
� � � J 3 �:� � � , � � does not depend on � . Therefore

� � can be

denoted by 
 I :
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The posterior probability that observation � � was generated by component 
�$ can be formalised

by:
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The mixture component probability functions are single-dimensional Gaussians in this case, and

thus the probability of the data point is given by:
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Maximisation of the auxiliary function is achieved by maximising each term in equation with

respect to 
� ��
 $:� and 

 $ . Substituting equations A.15 and A.13 into eq. A.12 and differentiating

with respect to 

 $ and equating to zero, the following equation is obtained:

� 	 ��
�� 

��
� 

 $ 3 ��

�
�
9
� ��
 $ � � � �.
 $ �

�

� 

 $ � � 	 � � � ��� � � 
� $ � 
� $ 	 � � 3 � (A.16)

Differentiating for � $ and � $ in eq. A.16 and equating to zero, the new parameter estimates 
�B$
and 
� 	$
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The new prior estimates can be given by considering the probability mass assigned to each

component:


� ��
 $:�43 �
�

� �
�
�
9 � ��
 $�� � � �.
��

� 	I �
9 � �

�
�
9 � ��
 I � � � �.
�� (A.19)

The denominator is the sum over all mixtures and bins, and hence will be equal to � . The

updated prior components can simply be written as:
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Thus the E-step calculates the total likelihood of the complete data set, and also calculates

the posterior probability of each data point value being generated from each mixture. The M-

step then calculates updated estimates for the GMM parameters using the expectations of the

posteriors of each data point.



B

Experimental corpora and baseline systems

Two speech recognition tasks are used in this thesis. First, a medium vocabulary system, the

Resource Management task is used to examine the basic performance. Second, the Wall Street

Journal task is used in combination with the CSR North American Broadcast News task from the

Hub 1 evaluations for 1994 to evaluate the performance of the best systems on a larger task.

These corpora are described in more detail below, and the baseline systems built on each task

are described.

B.1 Resource Management

The Resource Management (RM) task is a medium vocabulary task based on a naval resource

management domain [91]. The RM task consists of 3990 training sentences with a 1000 word

vocabulary. There are 109 training speakers in the corpus and four sets each of 300 test sentences

from a total of 40 subjects. The DARPA evaluation sets are the February 1989, October 1989,

February 1991 and September 1992 sets. The data was sampled at 16kHz and recorded in a

sound isolated recording booth.

All recognition results were formed using hidden Markov models (HMMs) and using the

HMM Toolkit (HTK) RM recipe [122], with the exception that the initial monophone models are

flat started, as described below, rather than being initialised using the Dragon systems MFCC

monophone model.

Initially monophone models with a single component Gaussian output PDF were trained

from a flat start. Each of the state output PDFs in the monophone HMM was initialised with a

mean of 0.0 and a variance of 1.0. Seven passes of the Baum-Welch retraining algorithm were

performed. A variance floor, set at 0.01 of the global variance was used.

Cross-word triphone context-dependent HMMs were then made using a phonetic decision

class tree for each parameterisation. The number of components in the state output probability

density functions was increased by splitting the Gaussian components until no further recogni-

tion improvements were observed on the February 1989 subset of the test data. Four passes of

the Baum-Welch retraining were performed after each splitting of the output Gaussian compo-
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nents. A word-pair grammar was used for recognition with a perplexity of 60. The grammar

scale factor was tuned on the 300 sentence February 1989 test data subset. The optimal value

was then used to test all four evaluation sets and forms the results quoted.

As described in the HTK RM recipe, a baseline system using MFCC parameters from 25ms

frames taken every 10ms using a full 8kHz spectrum built as described above was built and

tested for comparison purposes. There were six components in the output Gaussian PDF in the

HMM models and the word error rate obtained was 4.19%.

B.2 Wall Street Journal

In order to look at the performance of the features in a large vocabulary speech environment,

experiments were run on the Wall Street Journal (WSJ) corpus. The WSJ corpus is an open

vocabulary task based on speakers reading sentences from articles in the Wall Street Journal

[87]. The full training set of 36,493 sentences from 284 speakers (SI-284) in the WSJ0 and

WSJ1 sets was used. The test set was the development and evaluation test sets from the 1994

North American broadcast news set (CSRNAB) [85].

The baseline speech model was a gender independent, cross-word triphone HMM similar to

that used in the 1994 CUED HTK evaluation system [118] [119]. The feature vector was taken

as the cepstra 5 � 9;�><><>< ���>9
	
@ with a normalised log energy term and dynamic parameters appended

to make a 39-dimension feature vector. Cepstral mean normalisation was applied on a sentence-

level basis. The MFCC models were built with a decision tree state clustering to generate the

sets of speech states, and the number of components in the output PDFs was mixed up with

retraining to twelve components in the output PDF Gaussian. A variance floor, set to be 0.1 of

the within-class covariance was used.

To generate models for the alternative parameterisations, alignments from the MFCC train-

ing data were used to retrain the MFCC model in a single pass retraining step with the new

parameterisation. The models thus obtained had twelve mixtures in the state output PDF and

the same context-dependent triphone set. The number of components in the output mixtures for

the new models was reduced to one, then the number of components in the state output PDFs

were increased with retraining until no further improvement was observed on the development

test subset of the training data.

The test data was the ARPA 1994 CRSNAB hub 1 (H1) data set consisting of a development

test (dt) and evaluation test (et) twenty speakers each, comprising test 626 sentences in all. A

trigram language model from the 1994 evaluations was used during recognition. Results were

generated rescoring lattices and language model scale factors and word insertion penalties were

optimised on the development test subset of the training data. Using an system based on an

MFCC parameterisation using cepstral mean normalisation on a per-utterance basis gave a WER

averaged across both test sets of 9.75%.

For speaker adaptation and retraining, there is also a set of transcribed training data com-

prising forty sentences for each speaker in the test sets.
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