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Summary

Title: Using Augmented Statistical Models and Score Spaces for Classification
Name: Nathan Drysdale Smith

Many data sources in our world are stochastic in nature. They may be represented by
statistical models which are applied to inference tasks such as classification. Unfortunately
the precise nature of data sources is often unknown and sufficiently complicated that any
statistical models proposed are much simpler and to some degree ‘incorrect’. Model incor-
rectness harms the performance of classification algorithms. One technique for attaining
better representation is to view statistical models as differentiable manifolds in the space
of distributions. These manifolds may be augmented through application of the Taylor
expansion to form much more flexible structures called fibre bundles. The definition of
these structures can be extended to the space of scalar functions. This thesis develops the
associated concept of score spaces. Score spaces may be used to facilitate the training of
distributions in fibre bundles, or alternatively can simply be viewed as model-dependent
feature spaces. Experiments were performed to classify fixed length and variable length
patterns of speech data using score spaces, and promising performance was obtained. A
useful characteristic of score spaces is that they permit the application of static classifiers

such as SVMs to the classification of variable length patterns.
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Chapter 1

Introduction

Processes exist in the world around us which can be characterised by measurable quanti-
ties, for example the passage of the sun and moon across the sky or the strength of the
wind and currents in the sea. These processes may be viewed as data sources and are
often highly complicated. Their intrinsic nature is the result of a myriad of interactions
constrained by the laws of nature, and the study and understanding of such interactions
is the goal of scientific research. If the outcome of a process is predictable then the pro-
cess is deterministic. However many processes are stochastic in nature and the outcome
of such a process cannot be predicted with certainty but nevertheless with a measure of
probability. The spread of this measure of probability over the set of possible outcomes
forms a probability mass function, or in the limit of a continuum of possible outcomes, a
probability density function or distribution. Therefore since stochastic data sources have
a mathematical description in terms of probability mass or density functions, it is possible
to deduce these descriptions. In practice, a mathematical model called a statistical model

is proposed and its parameters estimated.

Statistical models find widespread application in pattern recognition. For example, a
quantity of data exists constituting a pattern. The pattern may belong to any one of a
number of classes, where a class is either a single data source or a set of data sources

with some common semantic meaning. The goal is to assign the pattern to a particular



class. However the stochastic nature of the sources implies the decision can only be
made with a measure of confidence. The degree of confidence in the decision should be
maximised. This is formalised in what is known as Bayes decision rule. Unfortunately the
exact nature of each data source is often unknown, so an appropriate feature space for the
statistical models for those sources and appropriate functional forms for the models are
usually unknown. This is called model incorrectness. Counteracting model incorrectness
is the motivation for the techniques described in this thesis. Two methods are proposed.
First, given a sensible feature space and set of statistical models as a starting point, an
alternative model-based feature space called a score space can be derived in which much
simpler classifiers or distributions can be trained. Alternatively and from the same starting
point, augmented forms of the original statistical models called fibre bundles can be defined
and distributions trained within them. Under certain constraints on the fibre bundle and
the score space classifier, these two approaches are identical and simply exemplify the
well-known degeneracy between the feature extraction process and the forms of statistical

models in the extracted feature space.

The thesis applies these techniques to the classification of patterns of fixed and variable
length. The particular application is speech recognition since speech is a naturally occur-
ring source of fixed and variable length patterns. The speech production process is also
sufficiently complicated that any statistical model proposed is unlikely to replicate the un-
derlying or correct data source, thereby introducing model incorrectness. The overall aim
of the thesis is to furnish a better understanding of score spaces and fibre bundles in the
context of classification, with respect to their limitations and advantages. The information
geometric viewpoint of statistical models, developed by other researchers and applied in
this thesis, should be of more general interest than the particular application to speech
data. For those interested in speech recognition, the techniques permit the application of
static classifiers such as SVMs to the classification of variable length patterns. This thesis
does not address continuous speech recognition which is a much more difficult task, except

in some comments for future work.

The thesis is organised as follows. This chapter describes the context and motivation for

the thesis, and also summarises the main contributions in the thesis. Chapter 2 describes



classifiers for fixed and variable length patterns. Chapter 3 describes the theory of fibre
bundles and score spaces. The development extends somewhat beyond that required for
the experiments in the thesis but targets a more general understanding to stimulate further
research. Chapter 4 describes score spaces in more detail in the context of classification.
Chapter 5 then applies score spaces to the classification of fixed length patterns, and
Chapter 6 to variable length patterns. Finally, Chapter 7 draws the thesis to a close with

conclusions and ideas for future research.

It is helpful to summarise the central contributions in the thesis. The list is not self-
explanatory since it is intended as a reference once the reader is familiar with the contents
of the thesis. The theoretical developments are based on the fibre bundle of local expo-
nential families from Section 4.8.1 of [3], developed there in the context of generalising
asymptotic theory to families of distributions which were not embedded in exponential
families. The author also draws heavily on this source for details of viewing statistical
models from an information geometric perspective. The research on the Fisher kernel in
[52] also provided a valuable starting point for applying score spaces to real tasks. The
value of both of these sources cannot be understated. Many of the mathematical defi-
nitions originate from [50] and [108] and various sections of the thesis draw heavily on
these sources. The contributions of this thesis are difficult to isolate from the ideas and
suggestions of other researchers and supervisor, and are subject to the author’s current

knowledge. However with this caveat, contributions with respect to fibre bundles include,

e some further developments for the fibre bundle based on Taylor expansions defined
and described in Section 4.8.1 of [3] (since the Taylor expansion is dependent on
the choice of parameters for the statistical model, the bundle has limited general

interest),

e introducing the concept of a space of scalar functions L(p) to accomodate the eval-

uation of truncated Taylor expansions using fibre bundles,
e developing the relation between such fibre bundles, vector bundles and score spaces,

e developing an understanding of suitable metrics for score spaces,



e introducing within this context a manifold for multiple statistical models,

e developing the concept of score spaces defined on scalar fields other than the log

likelihood, and the consequences for the semantic meaning of distributions,

e developing the concept of estimating distributions outside the statistical manifold

but within the total space of the fibre bundle,

e detailing the concept and constraints under which training a linear discriminant in

score space implicitly trains distributions within the total space of a fibre bundle,

e introducing ‘fibre hopping’, a technique which progressively maximises the log like-

lihood of a set of training samples by defining ‘fibre bundles on fibres’.

With respect to score spaces and their application,

e introducing various ‘appended posterior score spaces’,
e comparing score spaces for the classification of fixed and variable length patterns,

e using score spaces to verify the relative importance of HMM parameters for discrim-

inating letters in a simple isolated letter speech classification task.



Chapter 2

Classifiers

The techniques described and developed in this thesis are presented primarily in the con-
text of classification. For context and motivation, this chapter first introduces the optimal
Bayes decision rule and its implementation through statistical models in Section 2.1. Sec-
tion 2.2 then reviews a variety of statistical models and estimation criteria. Since statistical
models are often incorrect and the resulting classifier suboptimal, there are often advan-
tages in training discriminants, both linear and nonlinear, via nonparametric techniques.
Some common techniques are presented in Section 2.3. The complexity of classifiers can be
reduced by increasing the complexity of the feature extraction process, and some relevant
techniques are presented in Section 2.4. Finally, the classification of patterns of variable
length is a demanding task. Section 2.5 reviews techniques for applying classifiers of fixed

length patterns to this task, particularly in the context of speech recognition.

2.1 The optimal classifier

This section presents the concept of the optimal classifier from a decision theoretic per-
spective. The definitions and approach are taken from Chapter 2 of [25]. Parametric and

nonparametric techniques are then introduced, and the concept of regularisation.



An open set of samples L(O) exists where a sample is a pattern of data. If patterns are
of fixed length, then they are often called static data, if of variable length then dynamic
data. This space is assumed continuous and the samples are distributed according to the
probability density function p(O). Each sample O € L(O) is assumed drawn from a class
w(0) € L(w) where L(w) = {w1,...wg}. There are therefore a finite number of () possible
classes. A decision rule or classifier D is required which assigns to the sample O the class
w(0),s0 D : O — w(0),YO € L(O). From a decision theoretic approach, the optimal

classifier minimises the overall risk R where,
R = / R(&(0)|0)p(0)d0 (2.1)

and where R(&(0)|0) is the conditional risk,

Q
R(@(0)|0) = ) U&(0)|wg)P(wgO) (2.2)
g=1
The term P(w,|O) is the posterior probability of class w, given sample O and [(w;|w,) is
the loss associated with selecting class w; for a sample which belongs truly to class w,. A
popular loss function is one which does not penalise a correct classification but is equally
injurious to incorrect classifications. So,
0 if 1=¢q
Hwilwg) = (2.3)
1 if 1#¢q

With this loss function, the conditional risk becomes,

Q
R@0)0) = Y.  P(wO) (2.4)

g=1

&, # w(0)
The decision rule which minimises the conditional risk for each sample O € L(O), and
hence the overall risk, is that which dogmatically assigns each sample O to the class with
maximum posterior probability for that sample. This decision rule is called the optimal
Bayes decision rule and can be summarised by Dy : O — &(0),YO0 € L(O) where,

©(0) = argmax P(w,|O) (2.5)

wg€L(w)

6



The optimal Bayes decision rule is sometimes called the optimal Mazimum A-Posteriori

(MAP) decision rule. The probability of error &, is then the overall risk R,y so,

S = Ron = [ (1= P2(0)]0))(0)d0 (2.6)

The optimal Bayes decision rule is strictly optimal in the sense of minimising the prob-

ability of error, and only optimal for minimising the overall risk subject to the 0-1 loss

function. One of the most elegant and meaningful expressions of this decision rule is pro-

vided by Bayes Theorem where the posterior probability or class posterior for class w,

is,

P(O|wg) P(w,)
p(0)

The term p(O|w,) is the class likelihood and is the output of a probability density function,

P(w,|0) = (2.7)

the term P(w,) is the class prior and is the output of a probability mass function if @ is

finite, and the term p(O) is the evidence where,

Q

p(0) = Y p(Olw)P(w,) (2.8)

qg=1
Then, introducing the log term, the optimal Bayes decision rule selects the class,

&(0) = argmax (lnp(0|wq)—|—lnP(wq)> (2.9)

weEL(w)
Although the input space has been assumed continuous, the same theoretical development
is possible for a discrete input space but with the relevant replacement of probability
density functions and integrals by probability mass functions and summations. Bayes
decision rule mimics the human reasoning process where decisions are typically based on

previous knowledge and observing circumstantial information.

So far, the explanation has assumed that class posteriors, or class likelihoods and priors
are known. Simply put, it assumes that correct models are known. In real-world applica-
tions, the only information pertaining to the correct models is usually available through
a quantity of samples called training data. The goal of classification is to estimate the
optimal Bayes decision rule through observing patterns in the training data. There are

two common approaches.



e Parametric approaches use the training data to estimate models for class posteriors
directly, or indirectly through estimating models for class likelihoods and priors. A
decision rule in the form of Equation 2.5 or 2.9 is then applied to the estimates.
However if the models are incorrect and do not perfectly capture the statistical
relationships between samples, then the implementation of the decision rule is not
necessarily optimal and the error rate £ does not necessarily attain the lower bound,
ie. &€ > Eypi. This thesis applies the term ‘Bayes decision rule’ or ‘MAP decision
rule’ to any rule of the form of Equations 2.5 or 2.9, but strictly reserves the term
‘optimal decision rule’ for the Bayes decision rule defined on correct models. An
example of a class posterior model is a sigmoid trained about a linear discriminant.
Examples of class likelihood and class prior models are prevalent in many applications

of statistical pattern classification such as speech recognition.

e Nonparametric approaches learn decision rules directly from the data according to
certain criteria but without inferring class models. These techniques make no as-
sumptions about the forms of class models and may be more robust when there is
little training data. Examples include Minimum Square Error classifiers and Support

Vector Machines.

For clarity, this thesis reserves the term ‘error rate’ for the probability of error, and training
error rate and test error rate for the empirically measured error rates on respectively

training and test data, unless clear from context.

Regularisation is an important concept for estimating classifiers via parametric or nonpara-
metric techniques. Taking the example of a parametric approach with statistical models
where the correct forms of those models are not known, then increasing the complexity of
the proposed models lowers the training error rate. However beyond a certain complexity
the test error rate, and hence the error rate which it approximates, increases. The clas-
sifier becomes overtrained and its ability to generalise to unseen data is impaired. This
is illustrated in Figure 2.1. The plots illustrate that there is often an optimal complexity
for a given task, ideally yielding an error rate as close as possible to &,. Overtraining is

due to a mismatch between the relevant statistics for each class of training samples and



mimics theoretical

test error rate ideally

error
rate

error rate

training

\

! classifier complexity

underperform 1 overtrain

optimal
complexity

Figure 2.1: Illustrating the effect of overtraining on training and test error rates

the corresponding underlying distributions, where relevant is defined as that required to
learn the classifier. The mismatch can be minimised by increasing the number of training
samples drawn from the underlying distribution. The absolute size of the training set
is less important than its size relative to the number of parameters to be estimated in
the classifier. Regularisation is a general concept applicable to any form of classifier. It
counteracts overtraining by favouring simpler classifiers where possible and so loosely im-
plements Occam’s Razor. In a wider sense regularisation is any method which constrains
complexity with the intention of improving generalisation. This includes ‘hard’ regularisa-
tion, i.e. enforcing a-priori restrictions on the form of the classifier, or ‘soft’ regularisation,
i.e. optimising an objective function to select the complexity which best trades-off reduced
training error rate for better generalisation. Examples of ‘soft’ regularisation are weight
decay in neural networks [6], optimising the curvature in polynomial regression, regular-
isation operators [6], priors in a Bayesian formulation [6], and the learning criterion in

Support Vector Machines (SVMs) [19]. In the experiments in this thesis, linear classifiers

9



are estimated in linear spaces of high dimension relative to the number of training samples.

Regularisation is then imperative for robust estimation.

This thesis focuses on estimating the optimal decision rule or classifier through modelling
class likelihoods and class priors. The models for class likelihoods are called statistical
models. They are typically incorrect. The main theme of this thesis is the development of
statistical models, and their combination with nonparametric techniques, to attain better

estimates of optimal classifiers.

2.2 Parametric techniques with statistical models

2.2.1 Statistical models

For a parametric approach with statistical models there are the following.

e The data source: this is the real-world process or underlying distribution which

yields samples.

e The statistical model: this is proposed as a description of the source. Although it
may be used in a generative fashion, its application is often constrained to analysis,
typically to calculate likelihoods for samples. If the model is correct, then it perfectly

captures the statistical relationships in the source.

Data sources may be static or dynamic in nature. The statistical properties of samples
within sequences generated by these sources are respectively invariant and variant to the
location of those samples in the sequence. A collection of samples of static, though not
dynamic, data can be randomly permuted without affecting its integrity to the source
(see [85]). If a static statistical model mimics a dynamic data source, the model can only
capture the ‘average’ statistical properties of samples. A dynamic statistical model can

mimic a static data source but with considerable redundancy. In this thesis a sample O

10



is an ordered sequence of T' observations,
O = (01,...04...07) (2.10)

Each observation is a (d x 1) column vector. If T is fixed, the sample is a fixed length
pattern, else it is a variable length pattern. In this thesis, the type of patterns appropriate
for a distribution p(O; @) should be clear from context.

A statistical model is summarised as S(@) where O € L(O) and L(O) is an open set of

samples,
S(6) = {p(0;6) | 6¢€L(6;5)} (2.11)

If each component of the parameter vector @ is linearly independent, then size(6) =
dim(L(8;S)) = n, where size(-) and dim(-) respectively denote the number of components
and dimension of their arguments!. The constraints on the functional form of the model
are implicit in the definition of S(#). A parameterisation defines a probability density

function or distribution [3]?, and @ € L(0; S) ensures valid distributions.

In this thesis, statistical models are restricted to Gaussian Mixture Models (GMMs) and
Hidden Markov Models (HMMs) with state-conditional likelihoods modelled by GMMs.
A distribution within one of these models is respectively denoted by GMD or HMD.
A Gaussian distribution with mean g and covariance matrix ¥ over the open set of

observations L(0) is defined as follows, where size(0) = d,
N wE) = — o expf-2lo—p) T o—p)}  (212)
o (27)2det(X)> 2 '

A GMM with K mixture components is the static model S(8),

S(0)={p(o;0) | 6¢€L(6;5)} (2.13)
where,
p(0;0) = Z wibg (0) (2.14)

! This section always assumes an Identity metric tensor for parameter space so there is no need to

distinguish covariant and contravariant components.
2The application of the term ‘distribution’ to descriptions which are not probability density functions

should be clear from context, for example those prior ‘distributions’ or posterior ‘distributions’ which are

probability mass functions.

11



and,
br(0) = N(o;p, Xi) (2.15)
The set L(0;S) implies Xy, is positive definite and symmetric, and wy, is such that,

0 < wp<1 (2.16)

dwp =1 (2.17)

The statistical model may be augmented with a first order Markov process to create a

dynamic statistical model called an HMM,
5(0) ={p(0;6) | 0€L(6;5)} (2.18)

There are N emitting states® each modelled by a GMM. The transition probability from
state ¢ to state j is the transition probability a(i,j). The models of primary interest in
speech recognition are those which are left-to-right and, unless modelling silence, have
no skips. So enforcing these constraints in this thesis, a(i,j) = 0 if j < 4, and a(i, 1) =
1 —a(i,i+ 1) with a(i,j) = 0 if j > i + 1. This thesis also defines a(s(T),s(T'+ 1)) =1
where s(t) is the state at sequence location, or time, t. The HMM has initial and final

state distributions respectively m and w where,

7 = {m,...7n}, m =P(s(1) =) (2.19)

w = {wi,...wn}, wj=P(s(T) =) (2.20)

In this thesis 7y = 1 and 7; = 0 for j # 1, and wy = 1 and @w; = 0 for j # N. The
HMM has an exponential state duration probability density function, where the rate of
decay is determined by the self-transition probability of the state. It is possible to apply
more realistic duration modelling [80]. Then letting 1/ denote a state-level path through
the HMM, and ¥ the entire set of such paths,

p(0;6) = Y p(O,v;6) (2.21)

pew

= ) _p(O;4,0)P(y;6)

pew

3There are no nonemitting states.
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_ Z(Hbs(t o )(Ha (5(0), st +1)) )

1/)6\1/151

= ZHb s(t), s(t+ 1)) (2.22)

YET t=1

where,

K
ijkbjk(ot) (223)
k=1

and bj; (o) is defined as for b (o) in Equation 2.15 except the index k is replaced by jk.

For a Q-class problem,
S = {S(61),...50q) | €=(0{,...05)" € L(§5)} (2.24)

where,
L&S) = o%,L(0,;5) (2.25)

and @ is the module direct sum (see Section 275.F [50], [108]). The model S(8,) repre-
sents class w,. When this framework is applied to HMMs, the index ¢ distinguishes the
parameters of one statistical model from another. For example, for state j of the model

S(8,), the state-conditional likelihood for o, is byj(0y).

First order Markov processes cannot model long term correlations in the underlying signal.

Other statistical models may be of interest.

e Linear Gaussian Models (LGMs) [85] [84] are often restricted to those which are ei-
ther static models or first order Markov processes. Besides GMMs and HMMs, other
LGMs which may be viewed as statistical models include Factor Analysis, Special
Principal Component Analysis, Independent Component Analysis and Kalman Fil-

ters [85]. Gaussians may also be replaced by any other forms of distribution.

e Markov Random Fields (MRFs) [100] are an extension of one-dimensional first order
Markov dependencies between neighbouring states to two-dimensional dependencies

which may be applied, for example, to pixels in images.
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e Autoregressive (AR) models, under conditions, approximate probability density func-
tions [41]. Then mixtures of AR models may be used to define state-conditional

likelihoods for AR-HMMs [80] [66].

e Connectionist models include time-recurrent neural network [83] which can model
long-term correlations in a sequence. Unfortunately connectionist models typically
estimate class posterior probabilities. They define statistical models only in excep-

tional cases.

2.2.2 Training criteria

This section describes some popular estimation criteria for statistical models particu-
larly relevant to speech recognition. For a ()-class problem, the unknown sources are
described by the distributions p”(O|w,),q = {1,...Q}, and the statistical models as in

Equation 2.24. For supervised training, the training set of ordered pairs is,

{(O1,41),-.. (O y0) } (2.26)

where each sample O; € L(O) has label y, € {1,...Q} and y; = ¢ indicates the sample is

drawn from class w,. Then,

Ouwain = {01, ... 04} (2.27)

Qprain = {wWyy, - - - Wy, } (2.28)

There are ¢, samples with label y; = ¢ and these form the subset Ojrain(q) and their class
identities, all identical, the subset iain(q). The samples in O, are assumed indepen-
dently and identically distributed (i.i.d.) and the class w,, is only dependent on O;. In

this section, the class priors are assumed known and independent of the parameters &.

First, Maximum Likelihood (ML) estimation seeks the parameters &, to maximise the

likelihood of Oyrain,

L
v, = argmax Z Z Inp(O;|w,) (2.29)
£ g=1
=1

y=4q



Asymptotically in the limit of an infinite number of training samples,

Q
&ur = argmax Z/lnp(0|wq)p"(0|wq)d0 (2.30)
¢ py

Only when p(O|w,) and p"(O|w,) coincide is the expected log likelihood for class w, max-
imised. The ML estimator is only consistent if the functional form of the statistical model
is correct, there is an infinite number of training samples, the optimisation method guar-
antees global maximisation, and with certain constraints on the initial model parameters
(see [28]). These conditions cannot usually be guaranteed. ML estimation is typically
implemented by the EM algorithm for GMMs [21] and the Baum-Welch algorithm for
HMMs [80].

In Maximum Mutual Information (MMI) estimation, all parameters are optimised concur-

rently. The mutual information between the random variables O and (2 is,

L PO,
10;) = Y ) P0,9)1 OV (2.31)

O€eL(0) QeL()

where L(O) and L(f2) are respectively the open set of all datasets and the discrete open
set of all possible class permutations. Mutual information may be approximated as below,
where the approximation may be negative (see [28]) and hence not a valid distance metric.

Using this,

v = argmax I(O;Q)‘

£ O = Orain
Q = Qrain
Q ¢
= argmax Z Z In P(w,|O) (2.32)
Y =q

MMI estimation was first presented in the context of speech recognition in [4] using a gradi-
ent descent optimisation, though versions of the extended Baum-Welch (EBW) algorithm
are now available [111].

Maximum A-Posteriori (MAP) estimation [39] searches for the model parameters &y sp
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which maximise the a-posteriori distribution over &,

Q

¢
Euap = argmax Z(lnp(eq)—i- Z lnp(Ol;Bq)> (2.33)

g =
= I=1
h=q
In the limit of an infinite number of training samples for each class, & xp — &y\r,- However

the parameter priors typically introduce robustness when there are relatively few training

samples.

Training criteria may be viewed as minimising differences between sources and proposed
models [28]. A principled approach is introduced in the Kullback-Leibler (KL) information
[28] where for two continuous distributions p(O) and ¢(O) over L(O),

_ q(0)
KL(¢(0)|[p(0)) = / o(0)In 5540 (2.34)

Then KL(g(O)||lp(O)) = 0 if p(O) = ¢(0O),YO € L(O). The KL information is not
a valid distance metric since for example it is not symmetric. Nonzero values indicate
dissimilarity. If both distributions are drawn from the same statistical model, then the
KL information is the a-divergence where o = —1 (see Section 3.2 [3]). KL information
relationships for ML and MMI training are developed in [28] for a discrete space of samples
of data sequences (there is no straightforward extension to continuous space through the
application of dirac delta functions since their definition is inconsistent, see Section 21.9-2
of [59]). However the separation between adjacent samples may be made arbitrarily small.
To describe these relationships, each continuous distribution is given a discrete analogue
by replacing the lowercase letter by its uppercase, for example p(O|w,) by P(O|w,). It
is also necessary to assume the source distribution P"(O|w,) is modelled by a probability
mass function R(O|w,) called the assumed source. Where relevant P"(w,), the correct

prior for class wy, is modelled by the assumed prior R(w,).

First for ML estimation,

Q
v = argénin Y a, KL(R(0]2)||P(0|Q) (2.35)

g=1 O:otrain(q)aQ:Qtrain(q)
where ¢, is any class-specific multiplier independent of §&. ML estimation therefore selects

the parameters &,;;, which minimise the weighted average KL information between the
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assumed source and model distributions. For MMI estimation,

Q
éyn = argmin Y KL(R(Q|0)||P(20)) (2.36)

g=1 O:Otrain(q) aQ:Qtrain(q)

This estimate minimises the average KL information between the assumed source class
posteriors and the model class posteriors. Strictly, Equation 2.35 is evaluated at Qain(q)
and all probability mass in L(O) is then located at Orain(q), Whereas Equation 2.36 is

evaluated at Orain(q) and assumes all probability mass in L(2) is then located at Qirain(q)-

So far the correct source P"(O|w,) has been approximated by the assumed source R(O|w,)
defined as a collection of discrete dirac delta functions. However the intervening KL

information tends to zero as ¢, — oo since,

¢
. . 1 1
Jim R(Olwg) = lim 3 7,00 -0)=P"(O) (2.37)
=1
w=q
With increasing numbers of samples, the assumed source reflects the true source. Conse-

quently with few samples, the ML estimate may poorly approximate the true source.

It is useful to examine the relationship between probability mass functions and probability
density functions, for example P(O|w,) and p(O|w,), when the mass function is assumed
derived from the density function under a discrete sampling of continuous space L(O).
First, let the discrete intervals A describe a ‘grid’ L(gr, O) on L(O). The probability
mass function is defined at the discrete points of this grid. A continuous density ‘block’
h(-) is then fitted to each grid point and weighted by the value of the mass function at
the grid point. The resulting distribution is pgisc(O|w,) where,

Paisc(Olwy) = D P(O,w)h(O - O,)
O4€L(gr,0)
(2.38)
and where,
1 A A
=~ =2 <c0<K=
rO) = & & 2 -2 (2.39)
0 otherwise
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Then as A — 0, pgisc(O|w,y) = p(O|w,). These ‘continuous space versions’ of probability
mass functions converge to the corresponding probability density functions as the interval
of discretisation becomes infinitessimal. In this limit and assuming the probability mass
function is formed by the discrete sampling process detailed above, it seems reasonable to
transfer deductions on relations between probability mass functions to probability density

functions.

2.2.3 Maximum Likelihood Estimation (MLE) discriminant

A popular decision rule for classes w, and w, may be derived from statistical models with

respective distributions,

p(0;0,) = N(O;p,,X) (2.40)
p(0;6,) = N(O;py, %) (2.41)

where O € L(O) and L(O) is restricted to patterns of fixed length. Assuming equal class

priors, application of Bayes decision rule yields the linear discriminant [25],

w'O+b = 0 (2.42)
where,
w = B (Yakty + Yohty) (2.43)
b= s (ol D b+ s 2 ) (2.4
and where without loss in generality y, = +1 and y, = —1. When the single Gaussians are

fitted to individual classes by ML estimation, the discriminant is here called the Maximum
Likelihood Estimation (MLE) discriminant. The tied covariance matrix may either model

the within-class or global covariance.
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2.3 Nonparametric techniques

2.3.1 Linear discriminants

An important subset of classifiers are piecewise linear, or for binary problems, linear
discriminants. A linear discriminant can separate all possible dichotomies, or binary di-
visions, for at least one set of (d + 1) samples in a d-dimensional input space. The
Vapnik-Chervonenkis (VC) dimension of the linear discriminant is h = (d + 1) [9]. The
VC dimension is a measure of capacity [104]. According to [25], when the number of sam-
ples approaches 2h linear separation becomes more difficult for a random dichotomy, and
the discriminant becomes overdetermined. This implies some robustness if the learning
algorithm can accomodate errors. Since the capacity of linear discriminants is relatively
low compared to other discriminants, they generally yield more robust classifiers when
training data is sparse as in the experiments in this thesis. Robustness can be further

improved by additional capacity control.

A linear discriminant is characterised by a weight w and bias b. In application, the
discriminant induces a functional distance d(O;) for the sample O; € L(O) where L(O)

is constrained to samples of fixed length and?*,

and (-, -) is the scalar product between members of the same space. Normalising the weight

vector by its norm ||w|| yields the geometric distance v(O,),

1
v(0) = —{(w,0;)+b
= (wunit: Ol) + bunit (246)
Therefore,
d(Oy)
Y(O0) = 2.47
0 = Tl (2.47)

41t is also possible to define a vector @ = (w',b) " and view the learning algorithms and classification

rules relative to .
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The linear discriminant defines two half-spaces, one for each class. Assuming samples from
class w, and w, are respectively labelled with y, = 1 and y, = —1, then a decision rule
consistent with this labelling is as follows, where the assignment at equality is otherwise

arbitrary,

&(0) = (2.48)

2.3.1.1 Minimum Square Error (MSE) learning machine

The Minimum Square Error (MSE) learning machine [25] minimises the following criterion,

where all samples contribute errors through a quadratic loss function,

Fusew.d) = 3 (~ul(w.0)+) +d) (2.49)

Ol €O¢rain

where d; > 0 is a predefined target or functional margin for the sample O;, and Oy
is the training data. MSE learning is a regression technique and functional margins are
assigned a-priori. All samples from a given class are usually given the same margin, so
requiring d, > 0 and d, > 0,

4 - +d, ity =1 (2.50)

—dy if y=-1

The criterion Fysg(w, b) can be minimised through calculating the pseudoinverse solution
of a linear algebraic equation [25]. Providing the solution exists MSE learning returns a
unique solution. However when the data is linearly separable, it does not guarantee a
discriminant which perfectly separates the two classes. MSE learning finds the linear dis-
criminant which forces all samples to lie as close as possible to the +v, and —v, geometric
hyperplanes, where v; and d;, i = {a, b} are related as in Equation 2.47. Each sample has
equal influence in training the discriminant. If the pseudoinverse solution does not exist,
a unique solution can be obtained through ridge regression [25] which introduces some

regularisation.

The MSE solution has an important relationship with the MLE linear discriminant de-
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scribed in Section 2.2.3 when,

dy = (2.51)

£
tq
dy = E_i (2.52)
and ¢, and ¢, are respectively the numbers of samples in classes w, and wy, and £ = £, + 4.
Referring to Section 2.2.3 for notation, then if the tied covariance matrix is the weighted
within-class covariance matrix, i.e. X = X4, then [25] shows that the weight vector of the
MSE discriminant coincides with that of the MLE discriminant up to a scaling constant.
When normalised the two weight vectors wypit (M SE) and w it (M LE) are identical (and

also identical to the normalised weight vector yielded by Fisher Discriminant Analysis),

but the corresponding biases bynii (M SE) and bynis (M LE) differ,

bunit(MSE) = _W—Sw(yaﬂl—zv_vtlduglob + ybl"’l—)rzv_vtld“glob) (2.53)
bt (MLE) = —= (o] 5, Lty + vty S, Laty) (2.54)
2/|w(MLE)|
where,
1
Hgor = 5(labtq + Lopsy) (2.55)

14

However if £, = ¢y, the two biases and linear discrimants coincide.

2.3.1.2 Support Vector Machine (SVM)

MSE learning penalises samples which lie on the correct side of the hyperplanes geometri-
cally defined at +7, and —~,. It is sensible to limit penalisation to the set of samples Oy
which lie only on the incorrect side of these hyperplanes, i.e. those which fail the margin
constraint. This forms the basis of the Support Vector Machine (SVM) [19]. The SVM
discriminant combines characteristics of the MSE formulation and perceptron learning
with a margin constraint [25]. The SVM minimises, for 5 = {1, 2},

Fsym(w,b) = C Z (—yl(('w, O)+b+ dl))ﬁ + ﬁ(w, w) (2.56)

0€0ms

Setting® 8 = 2 yields the ‘2-norm soft margin’ SVM and setting 3 = 1 yields the ‘1-norm

soft margin’” SVM [19]. The loss functions are respectively quadratic hinge and linear
5The multiplier 1/(22~#)) may be subsumed within C.
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hinge loss functions. The most common SVM formulation is the 1-norm soft margin SVM
and is henceforth implied by the term ‘SVM’. Next canonical hyperplanes either side of
the linear discriminant are defined by d, = d, = 1 and v, = 7 = Ycan- Then,

Fouw.d) = € Y (~ul(w,00) +0) +1) + (w.w) (2.57)

2
Oleoms

The choice d, = d, = 1 is inconsequential since w is permitted to have non-unit length
and hence the geometric margin Yea, = 1/||w|] is free to vary. The SVM finds the solution
which maximises ¥.,, while simultaneously minimising the sum of errors. The parameter C
controls the trade-off. If the two classes are linearly separable, then minimisation does not
guarantee a separating linear discriminant. Capacity control ensures a unique solution
and positions the discriminant ‘midway between the two classes’. The discriminant is
influenced by the samples near to the decision boundary rather than by the data density
as for MSE learning. In the extreme case the solution is minimally defined by two samples

and so is sensitive to class outliers.

Quadratic programming techniques are applied. It is common practice to map the con-
strained optimisation into its Lagrangian dual [19]. Possible optimisation techniques in-
clude interior-point methods [112], chunking methods [8] [54], and the Sequential Minimal
Optimisation (SMO) algorithm [76] [57] (see also comments on [75]). The solution for w
is,

w = Z oqlel (258)

Ol €Otrain

where 0 < oy < C [19]. Any sample for which a; > 0 is called a support vector since
it defines the weight w. Support vectors necessarily fail the margin constraint or lie on
the canonical hyperplanes. Ideally the solution should be sparse with few support vec-
tors. The bias b is available from application of the Karush-Kuhn-Tucker complementarity

conditions.

The MSE and SVM learning machines are compared in Figure 2.2, where the MSE dis-
criminant is equivalent to an MLE discriminant where the tied covariance matrix models
within-class covariance. Briefly, MSE learning trains w to select appropriate geometrical
margins 7, and 7, to minimise errors, while the SVM maximises its geometrical margin

Yean While simultaneously minimising errors.
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loss
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(c) SVM solution

minimises sum of errors over

linear hinge samples violating margin constraint

loss while maximising margin Ycan

Figure 2.2: Pictorial comparison of MSE and SVM linear discriminants
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2.3.2 Kernelisation and nonlinear discriminants

Linear discriminants are poor approximations to optimal classifiers when there is a clear
nonlinear separation between the classes. Nonlinear discriminants perform better in these
cases. However it is often difficult to implement capacity control to ensure good gen-
eralisation. Kernelisation is a technique which extends linear learning machines to yield
nonlinear discriminants in input space while retaining some of the regularisation properties
inherent in linear discriminants. This section briefly describes kernelisation and references

other nonlinear discriminants.

A prerequisite for kernelisation is that the learning and classification algorithms must
only access the samples through scalar products. Any learning machine which fails in this
condition cannot be kernelised. The learning phase may be a closed form solution as for
the MLE linear discriminants based on Identity class-conditional covariance matrices, or
may require iterative optimisation such as for the linear SVM. The scalar product may be
defined in any feature space. Of importance are feature spaces which are transformations
of the input space L(QO). Defining a linear or nonlinear mapping ¢ from input space into
the new feature space or image space ¢(O), then ¢ : O; — (0O;) where O, € L(O) and
p(0y) € ¢(0). The image space ¢(O) is often a nonlinear subspace within a linear space.
For O;,0; € L(O), then the scalar product in the learning algorithm in input space may
be replaced by,

(0:,05) — (¢(0i),#(0;)) (2.59)
Application of the learning algorithm learns discriminants in the image space rather than
in the input space. If the mapping ¢ is nonlinear, a linear discriminant learnt in image
space maps back to a nonlinear discriminant in input space. Any capacity control in
the image space provides regularisation within the constraints of the mapping ¢. The

scalar product in image space can also be written as a function k(-, -) called a kernel with

arguments in the input space,
def
k(0:;05) = (#(0:),¢(0;)) (2.60)

The kernel embodies both the mapping ¢ and the metric tensor in image space. Conversely,

rather than define a mapping ¢ and derive the functional form of the kernel, it is also
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possible to propose an arbitrary function and accept the mapping ¢ and metric tensor
implicit in the proposal. No computation is then required in the image space or even its
explicit definition. However the function must be a Mercer kernel [19]. Common kernels
include the linear kernel, the Gaussian Radial Basis Function (GRBF) kernel with width

w and the polynomial kernel with degree d and offset c. These are respectively,

kin(0;,0;) = 0] 0O; (2.61)

1
kGRBF(Oi; O]) = eXp{—Q—wQ(Oi - O])T(OZ - 0_7)} (2.62)
kpoly(o’ia 0]) = (C + OZTO])d (263)

If ¢ = 0, then the polynomial is homogeneous, else inhomogeneous. Later kernels are
described which are defined on statistical models. Examples of learning machines which
can be kernelised are the SVM, perceptron and MSE learning machines. Learning machines
which cannot be kernelised include those which rely on collecting second order moments
in the image space, for example for the estimation of a covariance matrix required by a

MLE learning machine operating in image space.

Kernelisation is only one method for learning nonlinear discriminants. An advantage is a
principled method to incorporate capacity control through a linear discriminant in image
space. Other techniques for nonlinear discriminants in input space include the training
of polynomial discriminant functions [25] or splines, k-Nearest Neighbour classifiers [25],
Condensed Nearest Neighbour classifiers [46], Parzen windows [25] [34], and appropriate
neural networks [6]. Alternatively, more complicated GMM classifiers can be implemented.
For example, if the class covariances defining the MLE discriminant are not tied, hyper-
quadric discriminants are yielded [25]. In addition, the number of mixture components
in the mixture models for each class can be increased yielding nonlinear discriminants.
This thesis is restricted to the comparison and application of SVM and GMM classifiers
since the former includes a principled approach to capacity control, and the latter permits

flexibility in varying complexity.
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2.4 Feature selection and extraction

Each linear space is described by a number of components called features. Ideally the
set of features should perfectly capture characteristics of the underlying signal for the
intended task such as representation or classification [100]. For representation, relevant
features are those which preserve as much of the semantically meaningful structure in
the original signal. For classification, relevant features are those which enable distinctions
between classes. Some of the complexity of the classifier can be transferred into the feature

extraction process and vice versa, illustrating degeneracy.

Feature space mappings may be proposed either to extract the most relevant features from
a given feature space, or simply to reduce the number of features, thereby limiting the
effects of the ‘curse of dimensionality’ for subsequent classifiers. The mappings fall into
two general categories. Feature selection selects those features which contain the most
information according to the task-dependent criterion. Feature extraction is identical
but with the extra degree of freedom that new features may be formed through linear
or nonlinear combination of the original features. Both techniques assume that a low
dimensional representation of the underlying signal exists. Feature selection assumes it
is linear in the frame of the original feature space, feature extraction assumes it is linear
or nonlinear depending on the technique. Otherwise, the techniques are simply principled
approaches to reducing the size of feature space. Unfortunately feature selection may
select features which are highly correlated but which possess little mutually exclusive
information. Feature selection and extraction can be subdivided [58] into filter techniques
which are preprocessing methods independent of performance in the selected space, and
wrapper techniques which embed the feature selection or extraction process in a feedback
loop monitoring performance. Wrapper techniques are more computationally expensive,
are more prone to overfitting without proper regularisation, but often perform better. For

computational reasons, this thesis is restricted to filter methods.

Methods of feature selection and extraction which preserve representation include linear
techniques such as Principal Component Analysis (PCA) and Common Factor Analysis

(CFA) [78]. Nonlinear techniques include the Sammon mapping [100] and the isometric
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feature mapping (Isomap) [98] which are based on preserving as closely as possible the
geodesics of low dimensional structures, and locally linear embedding [86]. In kernel PCA
[71], it is not immediately clear how to ensure the nonlinear mapping inherent in the kernel

extracts representative information.

Techniques which emphasise separability and are therefore appropriate as preprocessing
for classifiers include feature selection based on divergence-like ‘distances’ or the relative
entropy [100] or Fisher ratios. These are described below. An alternative is selection by
correlation coefficients [44]. Common examples of linear feature extraction techniques are
Fisher Discriminant Analysis (FDA) [100] and its @)-class extension to Multiple Discrimi-
nant Analysis (MDA) [25], and Linear Discriminant Analysis [34] and its heteroscedastic
extensions [61] [87] [36]. Examples of nonlinear feature selection and extraction techniques
include kernel FDA [70] and kernel LDA [42]. Likelihood scaling [111] is a specialised tech-
nique applied to a @-dimensional space of linear class posteriors (later called an appended
zeroth order linear posterior score space). It is also applied in this thesis to increase

confusion for MMI training.

2.4.1 Feature selection using Fisher ratios

The experiments in this thesis use Fisher ratios for feature selection. It is instructive to
view the relationship of the Fisher ratio to other measures. Assume there are two classes
w, and wjp with class-conditional distributions over L(O) defined by p(O|w,) and p(O|wy).
The separation between distributions can be measured by the KL information [3],

p(Olw,)
p(0|wb)

KL(p(0[u) [p(Of) = [ p(Oln)ln2 5“2 d0 (2.64)
the measure called the ‘divergence’ [100] [20],

D(p(Olwa)llp(Olws)) = KL(p(Olwa)||lp(Olws)) + KL(p(O|ws)||p(Olwa)) (2.65)

or the Bhattacharyya ‘distance’ [100],

B(p(Olwa)|lp(Olws)) = —ln/\/p(O\wa)p(Olwb)dO (2.66)
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The KL information is not symmetric, and none of these measures obey the triangle
inequality [100]. Hence none are valid distance measures. When the class conditional

distributions are single Gaussians with tied covariance matrices,

Pa = P(Olws) =N(O;p,, %) (2.67)
Py = p(Olwy) = N(O; p,, X) (2.68)
then [100] shows,
D(pa|lps) = 8B(pallps) = (1ta — 1y) " Z7 (10 — 1) (2.69)
and also,
D(pa|lps) = 2KL(pal|ps) = 2KL(ps|[pa) (2.70)

The similarity measures only differ in a scaling constant. Assuming the covariance matrix
¥ is diagonal, they return identical rankings for individual features. The ranking for the
ith component of L(O) is determined by F(i) where,
. _ . 2
F(Z) — (Na(l) I‘l’b(l)) (271)
v(i)

and p, (i) is the 7th component for a vector p,, and v(i) = X(4,¢). The selection process

retains features with highest values of F'(i) since these separate the two classes most
distinctly. The measure F'(i) is sometimes called the Fisher ratio [65]. In this thesis,
this feature selection technique is applied to large linear spaces called score spaces since
it is a robust method to reduce their size. It is possible to define Bhattacharyya and

divergence-based measures on more complicated distributions.

2.5 Applying static classifiers to dynamic data

The nonparametric linear discriminants detailed in Section 2.3.1 classify patterns of fixed
length. Extensions to classify patterns of variable length would be useful. Since this is one
of the main applications of this thesis, it is worthwhile to highlight some techniques to map

variable length patterns to fixed length patterns. The review is biased towards preparing
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input for SVM classifiers since the generalisation properties of SVMs have encouraged con-
sideration of these mappings. The review is also biased towards speech applications since it
represents a demanding dynamic classification task and forms the basis of the experiments
in this thesis. The mappings may often be viewed as front end processing techniques and
can sometimes be embedded in the subsequent classifier, for example through kernelisa-
tion. There is also discussion of more general techniques to incorporate static classifiers
into dynamic classifiers. In this section the sample O € L(O) is a sequence of observations

and is sometimes called the input data sequence.

2.5.1 Front end processing techniques

Front end processing techniques map variable length data sequences into those of fixed
length. In speech applications, a sequence of observations is often split into contiguous seg-
ments, where each segment is an acoustic realisation of a speech unit such as a monophone.

The segments are usually of variable length.

e In [64], manually marked monophone units of variable duration were forced into
patterns of fixed length by two methods: (a) dividing each segment into a fixed
number of contiguous subsegments of equal duration and then averaging the ober-
vations within each subsegment, or (b) linear compaction or elongation of segments
by omitting observations from segments which are too long, or repeating some ob-
servations for segments which are too short. In their approach the duration of the

segment was retained as an extra feature for a subsequent SVM classifier.

e A similar approach was taken in [38] [45] [23]. Each segment of variable length
was divided into three contiguous subsegments according to a 3-4-3 ratio. The

observations within each subsegment were mean averaged.

e In [5], observations were concatenated to form a variable length input vector. Re-
garding this sequence of observations as a trajectory, fixed length was enforced by
discarding the necessary number of observations at the flattest points on the trajec-

tory.
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Averaging, omitting or repeating observations all corrupt the original signal and its in-
formation content. Sometimes this is useful, for example averaging removes noise, but
at other times useful information may be lost. Front end processing techniques should

therefore be selected considering the subsequent application.

e For example, if a data sequence is intended as input for an SVM classifier, then the
similarity between this sequence and alternative sequences should provide the basis
for SVM training. With this viewpoint, [89] proposed a dynamic time-alignment ker-
nel which uses a dynamic time warping (DTW) algorithm to compare the similarity
between two data sequences. The DTW path calculated is that which maximises
the similarity measured by a kernel function. Alternatively, [89] noted linear time

warping may be applied.

2.5.2 Model-based front end processing techniques

Alternative techniques use statistical models of data sequences to map the sequences into
fixed length patterns, where the length is dependent on the number of parameters in the

models. These techniques typically use all the data from the sequences.

e One of the most popular schemes for SVMs is the Fisher kernel [52]. In [52], the
Fisher kernel was introduced as a similarity measure between two data sequences

and was derived from a statistical model for the sequences. For two sequences

O,, Oy, € L(O), the Fisher kernel returns the scalar £(O,, Op) where,
T
k(04,00 = (Velnp(Oui€)) F'Velnp(Oy;€) (2.72)

and p(0O;€) is a probability distribution over L(O) with parameter vector £&. The
covariant derivatives with respect to model parameters are implicitly defined at a
fixed model parameterisation, and for shorthand p(Oy; &) denotes p(O; €)|o=0,. The
matrix F is the Fisher information matrix, as defined in Appendix D.1.3. The
mapping implicit in the Fisher kernel is extended and investigated in this thesis. In

[73], the Fisher kernel was extended to a larger family of natural kernels and the
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regularisation properties of such kernels discussed. The natural kernel is defined by
simply replacing the Fisher Information matrix with any positive definite matrix A.

The ‘plain kernel’ is yielded if A is the Identity matrix.

The ‘tangent vector of posterior log-odds’ (TOP) kernel was introduced in [102]
using a Taylor expansion. A similar variant of the Fisher kernel was developed
simultaneously in [91]. Both highlight the generic nature of the mapping from input
space. In [102], the mapping is described as a family of “model-dependent feature
extractors”. In [51], an algorithm was described which has similarities to the SVM
and incorporates the Fisher kernel. However the discriminant objective function
differs from the SVM and may be viewed as an attempt to directly model the log

class posterior-ratio between competing classes.

Applications of the Fisher kernel include speaker verification or identification [31]
[32] [105] [106], speech recognition [91] [94], and multiaspect target recognition [60].
The researches in [52], [102] and [51] were applied in computational biology, for
example for protein classification. Typical statistical models for this application are
HMDMs with discrete output distributions. However speech applications typically

require HMMs with continuous density output distributions.

An alternative model-based front end processing scheme was proposed in [10] in the
context of SVMs and speaker recognition. Speaker recognition requires the definition
of a scoring function and this was provided through sequence kernels based on general
linear discriminants. In [11], the endpoints of sequences were provided by an HMM
Viterbi segmentation. Also of relevance to score spaces, [10] noted that all support
vectors can be collapsed down to a single vector when the feature space is explicitly

calculated and linear kernels employed in feature space.

String kernels are applied, for example, in protein classification and text categori-
sation. In [88], string kernels were viewed as Fisher kernels and extended to finite
state automata thereby permitting similarity measures between variable length sub-
sequences of a document. In [17], string kernels were viewed as a special case of
‘rational kernels’, and rational kernels were applied to measure topic similarity be-

tween word lattices.
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2.5.3 Embedding static classifiers in standard dynamic classifiers

A different approach embeds a static classifier, such as an SVM, within a dynamic classifier.

e A popular approach uses the static classifier to process the input data sequence on an
observation-by-observation basis, moderates its output, and relegates the modelling
of temporal variation to the dynamic classifier. The outputs of SVMs are typically
moderated by converting the functional margins for each observation to class pos-
terior estimates, for example through a sigmoid fitted to the appropriate decision
boundary [62] [77]. Moderated outputs fit naturally into the Bayesian framework
and permit the application of Bayesian inference for the selection and interpretation
of SVM parameters [63] [97] [96]. However since SVMs are trained as classifiers,

there is some inconsistency in using them to return class posteriors.

Moderated outputs were applied in the hybrid SVM/HMM architecture in [38]. A
1-v-rest SVM was trained for each HMM state and a sigmoid then discriminatively
trained at the decision boundary thereby defining a state posterior distribution.
The system was modified in [45] by replacing SVMs with Relevance Vector Ma-
chines (RVMs). Since the RVM directly models the state posterior, its output is
probabilistic and more naturally fits into the hybrid framework. Another hybrid
system, able to incorporate 1-v-1 classifiers, was applied to speaker verification in
[24]. The posterior for a state was the output of a Gaussian distribution fitted to
vectors of 1-v-1 class posteriors. Each element in the vector of 1-v-1 class posteriors
was obtained by the familiar sigmoidal fit to 1-v-1 decision boundaries. Essentially

SVMs were used in feature extraction.

e An alternative approach in [12] is the Forward-Decoding Kernel Machine applied to
phone recognition. In this hybrid HMM /SVM system, state posteriors were obtained
by a technique called GiniSVM which provided a sparse approximation to kernel

logistic regression.

e A selection of techniques have been developed combining GMMs and SVMs. For
example [31] applied SVMs, the Fisher kernel, the sigmoidal fit, and Error Correcting
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Output Coding to a speaker identification task. The system was extended in [33]
for speech recognition by using a conventional HMM network to yield an N-best
list for each state, and SVMs to select the best candidate from each list. An SVM
‘adviser’ to a standard GMM classifier was described for speaker identification and

verification in [32].

2.6 Summary

This chapter has introduced the optimal Bayes decision rule in the context of statisti-
cal models. Unfortunately there is an increase in error rate consequential on incorrect
estimates of statistical models. For this reason, discriminants trained by nonparamet-
ric techniques are sometimes preferred since they circumvent any explicit representation
of class models. Unfortunately, these discriminants often lack the rich probabilistic in-
terpretation available to statistical models. This suggests there is promise in combining
statistical models and nonparametric discriminants, for example through kernels defined
on statistical models. These kernels, and the mappings implicit in them, are described in
the remainder of this thesis. The degeneracy between the feature extraction process and

the classifier is a recurring theme.
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Chapter 3

Augmenting statistical models

This chapter introduces the concept of viewing a statistical model as a differentiable man-
ifold in the space of probability distributions, or more generally in the space of scalar
functions. Estimating distributions in the statistical model is analogous to estimating
points on the manifold. First differentiable manifolds are introduced in Section 3.1 and
applied to the description of statistical models in Section 3.2. Section 3.3 describes how a
scalar field may vary over this statistical manifold and a Taylor expansion used to recover
the value of the scalar field at distant points on the manifold. Section 3.4 then describes
a structural augmentation as the statistical manifold forms the base of a fibre bundle.
Applications are described in Section 3.5. Fibre bundles permit a formalisation of approx-
imations to the Taylor expansion. They also permit distributions to be estimated outside
the base manifold which are not in the original statistical model. Various techniques to
estimate distributions in fibre bundles are presented. An important property of the base
manifold is the metric defined in its tangent space, with repercussions for both calculat-
ing the Taylor expansion and estimating distributions. Suitable metrics are discussed.
Section 3.6 details how some constraints are relaxed for certain experiments later in the
thesis. This chapter assumes some familiarity with tensor algebra (e.g., see Chapter 19
of [81]). The simplicity of the task permits all summations to be written explicitly rather

than implied in Einstein’s convention.
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3.1 Differentiable manifolds

This section introduces some concepts describing differentiable manifolds, namely their
nature, the means of describing points upon them, the variation of scalar fields over them,
and their tangent spaces. The concepts are later applied to the description of statistical

models.

A differentiable manifold S is here viewed as a n-dimensional topological manifold which
is a Hausdorff space (see Section 108 of [50]). Describing points on the manifold usually
requires an atlas of coordinate neighbourhoods which provide an open covering of the
manifold. However, in this thesis the manifold S is sufficiently described by a single

coordinate neighbourhood (S, ) where,
v:S — L(6;95) (3.1)

The mapping ¢ is a homeomorphism called the coordinate chart [108], and L(8;S) is an
open set of R” isomorphic to points on S and sometimes called the ‘coordinate space’.
There is a set of real-valued continuous functions (6',...6") which operate on points on
S and which are abbreviated to [#?] and called the global coordinate system in (S,). The
coordinates of a point ¥(p) € L(0;S) are often assembled in column format and called the

coordinate vector 6 where,

6=(0"(p),...0"p)" (3.2)

and where the dependence of @ on p is implied. For convenience, this thesis often refers to
0 as the ‘coordinate vector of a point p on the manifold S’. The manifolds in this thesis

are assumed C'* (see Section 1.1 of [3] and Section 108.H of [50]).

Next, a scalar field f varies over the manifold S such that,
f:S—=R (3.3)

It is difficult to analyse a function which operates on points on a manifold but easier to
analyse a function which operates on points in L(0;S). It is possible to define a scalar

field £,
f= foy (3.4)
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where for a point p € S with coordinate vector @ € L(8;5),

fp) = F(0'(p),...0"(p) = f(6) (3.5)

and,
f:p— f(p) (3.6)
F:0 f(6) (3.7)

Then Section 1.1 of [3] defines,

Of at Of
so for ¥ (p) = 0,
Of | aet (OF NI _Of
o0il, <aei w) » 00le (39)

Similar relations follow for higher order partial derivatives and covariant derivatives. For

example,

def

Fiaviesin = (f§j1§---§jr © 7/1)‘ = fijrjomin
P p ]

(3.10)

Indeed if f is C*, then f is called a C* function on S. In this thesis, a scalar field f
over S is strictly defined as a scalar function whose sole input argument is the location
p € S, hence f : p — f(p). However there is an important set of scalar functions which
are dependent both on the location p € S and on another random variable. Of relevance
are scalar functions of the form ¢(O;p) where O € L(O),p € S and L(O) is an open set
of input samples as defined later in Equation 3.21. If the random variable O is then fixed

at O; € L(O), then a scalar field ¢ is defined,

g : S—R (3.11)

g p<(Oyp) (3.12)
and for @ € L(0;S) where ¢(p) = 6,

g : L(6;S)—R (3.13)
T 0*—)5(01,0) (314)
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The linear space tangential to a differentiable manifold S at a point p € S is called the
tangent space T,(S) and has dimension n. A suitable basis for T,(S) can be formed by
assigning the ith element of the basis to a tangent vector parallel to the ith coordinate
curve through point p, where a coordinate curve is the curve traced on the manifold by
keeping all coordinates but #* constant. In particular, a natural basis for T,(S) for the

coordinate system [#?] is e;,i = {1,...n} where for ¢ : p— 8,

0
- 9 1
“ 907 | (3.15)

Any scalar field over S can be mapped to a point in tangent space. Of particular interest

is the class of all real-valued C'*° functions on S. As an example, a function in this class

g is mapped to a member V¢ of T,(S) where,

VQL = Zn:(V%Cl) ) = Xn:(gl);z’ )

=1 i=1

(3.16)

the term (V o )|, is the covariant derivative of ¢ with respect to 9/06° evaluated at
o6

point p € S, abbreviated to (¢).i|,. Numerically, for 8 = ¢ (p),
0g

, T (%)ﬁ(ﬁ"w)

For convenience the following abbreviation is applied in this thesis for 8, € L(8;S),

_ 94

(<0);i = (3.17)

7]

def

(0560 ¥ c(0s0)|_ =7 (3.18)

3.2 Statistical manifolds

Having introduced differentiable manifolds, this section applies these concepts to a statis-
tical model thereby defining a structure called a statistical manifold. This structure exists
in the space of probability distributions or more generally the space of scalar functions.
The section proceeds to make various assumptions concerning the statistical manifold to
aid tractability in the analysis. Many of the definitions and descriptions in Section 3.2 are
summarised without further reference from Chapters 1 and 2 of [3], and the only references

explicitly stated are those not from [3].
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A statistical model or family of distributions may be written as S(6#) with parameter

vector 0,
S@) = {p=p(0;0) | 6cL(6;S)} (3.19)

The scalar function p(O; @) has unit integral over L(O) and is a probability density func-

tion, simply called a distribution. Hence,

/ p(0:00d0 = 1 (3.20)

The term L(0;S) describes an open set in R” defining valid distributions. The n parame-
ters of the statistical model are assumed linearly independent so the dimension of the coor-
dinate space and size of the parameter vector! are both n, i.e. dim(L(0;S)) = size(0) = n.

The variable O is called a sample and O € L(O) where,

def

L(O) = supp(p) = {O | p(O) >0} (3.21)

and supp(p) is assumed invariant to the parameterisation of p € S(0). This thesis also
requires invariance of the support across different statistical models. Hence L(O) may be

viewed as defined by a typically unknown source.

It is possible to view the statistical model S(0) as a manifold in the space of probability
distributions, or more widely scalar functions. The manifold has a global coordinate
system [#"] and coordinate vector? 8. If S(0) is a C™ differentiable manifold, then it is
called a statistical manifold. All parameterisations which are C* diffeomorphic to [#"] are

regarded as ‘equivalent’.

The most useful properties of a differentiable manifold are those which are invariant to
a change in coordinate system (see Section 1.1 of [3]). However this chapter references
a manifold through its coordinate system, for example the manifold S expressed in the

coordinate system [¢] is written as S(@) where the implication is that 6 € L(0;S). This

1 This thesis assumes that the parameters of S(8) are components of a tensor of type (1,0). This does
not seriously restrict the analysis since if the parameters of the statistical model include tensors of higher

rank, then suitable isomorphisms may be defined mapping them to a type (1,0) tensor.
2The term parameter vector may be used when emphasising a distribution in the model and the term

coordinate vector when emphasising a point on the manifold.
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is simply for clarity and any analysis transfers from one coordinate system to another
unless explicitly stated. An example of a property which is not invariant to a change in

coordinate system is the Taylor expansion along the manifold, as detailed in Appendix B.2.

Various structural assumptions for S(@) ease analysis. In most physical processes, the
structure of a differentiable manifold is defined relative to an embedding space. However
the frame of reference for S(0) in the space of probability distibutions or scalar functions
is not defined. Hence, it is reasonable to endow the manifold with properties and thereby
implicitly define such a frame of reference. An analogy in our 3-dimensional world is

contorting a flexible 2-dimensional surface till it acquires a shape with desirable properties.

The first structural assumption or augmentation concerns defining the tangent space of the
statistical manifold as a metric space, or more usefully as a Hilbert space (see Appendix C).
An affine space is then defined on this Hilbert space with an affine frame conistent with
the natural basis in tangent space. The metric can then be fully described by a metric
tensor g with fully covariant components g;;,7 = {1,...n},j = {1,...n} determined by
the relation of the tangent space to the embedding space. For example, assuming the
embedding space is Euclidean with its own Identity metric tensor, then the scalar product
between the ith and jth elements of the basis for 7,,(S), as calculated in the embedding
space is,

(€i,ej) = (%, %) = gij (3.22)
The manifold becomes a Riemannian manifold (S(0),g), and g is known as the Rieman-
nian metric or fundamental tensor of S(@). There are an infinite number of possible

metrics and hence an infinite number of possible Riemannian manifolds for S(8).

As the location of the point p € S(0) varies, the orientation and magnitude of each element

of the natural basis varies. For tractability, the manifold is assumed equipped with an

3 real numbers called connection coefficients I't. k =

affine connection described by n i

{1,...n},i={1,...n},j = {1,...n}. The coefficients generally vary with location on the
manifold and are defined by,

n

(Vees)|, = D@l vivi (3.23)
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where V., e; is the covariant derivative of e; with respect to e; and is evaluated at point p,
and e; = 3/06". The only constraint on the functions yielding the connection coefficents is
that they are C'*°. Hence the affine connection has this degree of freedom. For convenience,
an affine connection is sometimes simply called a connection and abbreviated to V. If the
basis is invariant to location on the manifold, then the manifold is flat with respect to V
and the connection coefficients Ffj = 0,V1, 7, k. Then it is always possible to characterise
the tangent space with an Identity metric tensor g;; = d;;, where d;; is the Kronecker delta.
The corresponding coordinate system for the manifold is a Euclidean coordinate system

with respect to g.

The manifold is also characterised by a curvature tensor and a torsion tensor. If the
curvature tensor is zero, then the manifold is flat with respect to the connection V. This
is very restrictive. However the torsion tensor is often assumed zero and consequently the
connection V is symmetric so Pk = FfZ,Vz', J, k. Next, the affine connection V is assumed
compatible with the metric g so that it becomes a metric connection with respect to
g. A connection which is both symmetric and metric is a Riemannian connection, also

known as a Levi- Civita connection with respect to g. For a Riemannian manifold, a unique

Riemannian connection exists with connection coefficients,

_Z ‘ (aéz 007 —3972) (3.24)

The numerical values of the components of g and the connection coefficients generally vary

across the manifold.

To summarise, a statistical model, under various conditions, may be viewed as a C'* differ-
entiable manifold and called a statistical manifold. This manifold is assumed Riemannian
with an affine connection. The connection is assumed torsion-free and hence symmetric.
It is also assumed compatible with the metric, so the connection becomes a Riemannian
connection with respect to this metric. The curvature tensor is only zero as a special case.
If the statistical manifold is single-dimensional, then the torsion and curvature tensors are

zero and the manifold is flat with respect to the connection.
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3.3 Taylor expansions along the manifold

Given a statistical manifold and a scalar field which varies over the manifold, a sensible
analysis is the Taylor expansion. This permits the value of the scalar field at a point
on the manifold to be recovered from analysing the variations of the scalar field at a
possibly distant point on the manifold. The familiar form of the Taylor expansion (e.g.
Section 4.7 of [81]) assumes the manifold is flat with respect to its connection and the
coordinate system is Euclidean. This section presents the more general expression for a
manifold with nonzero curvature. It also shows how, by employing suitable isomorphisms,
the Taylor expansion can be reduced to a single bilinear form between two members of a

unit rank tensor space. These tensor spaces are later called score spaces.

In terms of the coordinate space,
G :0—¢(0;0) (3.25)

Recovering the value of the scalar field ¢ at point p' € S(0) is identical to recovering the
value of the scalar field § at point & where 8’ = 1 (p'), but according to the structure
of the manifold. However the only information available is at point 6y where in general

0, # 0'. The following power series is proposed,

2(@, 01’ 00 = §l + Z ,31 01]1 - Z Z ,Jl,]2 9”1 9(])'1)(011'2 - 0(])2) +

J1=1 _71 1j2=1

(3.26)

where the scalar field § and all covariant derivatives are evaluated at point @, and are

expressed in the coordinate space. More precisely,

(5, ', 6)) Z Ty, (0 (3.27)

r=0 j1...Jr
where the summation over j; ... j, implies all possible permutations for the r indeces where

Ji = {1,...n}, Vi, the scalar T(O;) = ¢ |g—g, and,

T _
1300 = 5(@inisir |, (3.28)
ot — H(glji_%'i) (3.29)
i=1
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Expressions for the terms of this series are given in Appendix B.1. When this power series
Z(5, 0, 80) coincides with the value of the scalar field ¢ evaluated at @', then the power
series is a Taylor expansion of ¢ about 6y along the manifold. However this requires

certain conditions (see Section 25.B of [50]).

e First the scalar field ¢; must be holomorphic about 6y, i.e. the field must be contin-

uous and first order partial derivatives must exist at 6.

e The scalar field § must be analytic at 6, i.e. a convergent power series called the
Taylor expansion does exist centred at 8y so that the value of the power series and

scalar field coincide in a neighbourhood of 6.

e The coordinate vector 8 must lie within the convergence domain of § about
(see Section 25.B of [50]). A special case is a scalar field of a single variable. Then
there is a single radius of convergence which is uniquely defined through the Cauchy-
Hadamard formula (see Section 336.A of [50]), and the convergence domain is known
as the circle of convergence. There must be at least one singularity at this radius,
and the power series is guaranteed to converge in the open set inside this circle and

diverge outside it.

The remainder of this section assumes that the power series z(g, @', 8) is a Taylor expan-
sion of ¢ at @' about 0. Since an infinite order Taylor expansion is difficult to calculate,
the series of terms in the expansion can be truncated to yield an approximation with an
error (see Appendix B.1). Denoting the gth order approximation by a (¢ + 1) term series
5(0y; 0,6, 89),

0
(05 0,6',0,) Z (0,;6',6,) (3.30)
r=0
where,
(050,600) = Y Ty (0o (3.31)
J1egr

and T}, ;. (0;), a7 and the summation notation are as detailed above. As p — 00, so

$(Oy;0,0',60) — $(0;0)|g—g'
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The Taylor expansion may also be written as a sum of bilinear forms where,

(05;0,0,) = <a"0(0',0,), (055, 0,) > (3.32)
and,
0@, 00) = oI ELe; (3.33)
J1edr
#0055, 00) = D T, (00 &7y ¢ (3.34)
J1.-dr

Again the summation over j; . .. j, implies all possible permutations. The (r+1)th term of
the Taylor expansion is therefore a bilinear form between two tensors which are members

of tensor spaces L™ (a; ¢, 0p) and L™ (ax; ¢, 0) of respective types (r,0) and (0,7) so,

ar(r,O) (0/’ 00) c IV/T(TaO)(a; S, 00) (3.35)
#00(055,8,) € 1075, 0, (330
where,
Er(r,o)(a; $,00) = Span{ej1---jr = ®j—1€j;, VJ1 - - Jr} (3.37)
L'®)(0;5,00) = span{el 7" = ®]_,e¥,Vj ...} (3.38)

and j; = {1,...n},Vi. The reason for this notation becomes apparent in later sections
of this chapter. For the present it is sufficient to know that the breve ( ”) indicates an
unbounded linear space. The tensor spaces are assumed affine spaces defined on Hilbert
spaces, so scalar products and norms are permitted (see Appendix C). The two tensor
spaces are dual spaces. Both take 8y as an argument because their bases are the natural
bases defined at point py € S with coordinate vector @y, and points in both spaces are
given an interpretation in terms of the scalar function ¢. The two spaces have identical
dimension. In practice the tensors o (@', 8,) and ¢"(*")(Oy; S, ) may be bounded to

subspaces within these linear spaces.

Next, the Taylor expansion may be written as a single bilinear form by defining isomor-
phisms from the direct sum of tensor spaces to single unit rank tensor spaces. These

unit rank tensor spaces are also assumed Hilbert spaces so scalar products and norms are
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defined. The isomorphisms are,

Lo L' (a;c,0,) = P (0,5, 60) (3.39)

B0 L0 0) = L (e0.5.0) (3.40)

The unit rank spaces are of dimension § where § = »_?_  n". The isomorphisms are defined
by the mappings,

fi @ o™ ™0(@,0,),r ={0,...0} — (0,0, 6,) (3.41)

fo o @ 9(045,80),r ={0,... 0} = (0y; 0,5, 6y) (3.42)

Bold font without and with a bar respectively denote linear algebraic vectors formed from

contravariant and covariant components (see Appendix C.2). Summarising,

o0 repetitions

a(0,0,0) = (a,a',...a" o . ..o " )T (3.43)

_ . — _ T
‘P(OIJQagaoo) - (TaTla"'TnaTlla"'T n...n ) (344)

o0 repetitions
where for brevity T}, ;. abbreviates T}, j,(O;). Using this column notation, the gth order

approximation to the Taylor expansion may be written as,
g_(ola 0, 01, 00) = < a(g, ol, 00)’ @(Ola 0, §_, 00) > (345)

The approximation to the Taylor expansion is a bilinear form or scalar product between
two tensors in unit rank tensor spaces. As o — oo, the unit rank tensor spaces have infinite
dimension. It is more conventional to express scalar products in terms of two members of
the same tensor space. Therefore, letting A denote the metric matrix for the (r,0) tensor

space, and A the metric matrix for the (0, ) tensor space, and remarking that A=A,
$(01;0,6,0,) = <c(0,6,0:), (00,5 60) >
= a(0,6',60)" A7¢(0s; 0,5, 00) (3.46)
or,
$(01;0,0',00) = a(p, 0 GO)TA_1¢(013 0,5,00) (3.47)

The structures of A and A must support the orthogonality of tensor spaces i’"(o”")(a; S, 60)
or z’"(”o)(a; G, 0p) of different degree . They must also be consistent with the metric ma-

trices G and G for the tangent space and its dual respectively (see Section 3.5.4.2 for more
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space of scalar functions L(ﬁ)

Ygeod geodesic on manifold

“VYtay  Path for Taylor expansion

coordinate space L(O)

isomorphism

P : S — L(6;S)

L(6;5) < L(6)

Figure 3.1: Relationship between the coordinate space and space of scalar functions for

the manifold S(€) and coordinate chart 1)

details). The Taylor expansion makes no claims about convergence of ||@(Oy; 0,3, 6o)|| in
< 1(0,1)
the infinite dimensional Hilbert space L (a; 0,5,600) as 0 — 0.

The Taylor expansion is not a property of the manifold alone, but of the manifold and its
coordinate system. Generally, the gth order approximation to the Taylor expansion, where
o > 1, differs under different coordinate systems (see Appendix B.2). It is also useful to
consider the path on the manifold along which the Taylor expansion is calculated [107].
Figure 3.1 illustrates two points py and p’ on the manifold S(@), with respective coordinate
vectors By and @' under the coordinate chart 1. A geodesic between the two points along
the manifold follows the path® 74eq (for a Riemannian connection, the geodesic is locally
the shortest path between two neighbouring points, see Section 360.C of [50]). However the
geodesic does not necessarily trace the shortest path in the coordinate space. This shortest
path in the coordinate space is that along which the Taylor expansion is calculated. This

in turn does not necessarily map onto a geodesic of the manifold.

3The path of a geodesic, viewed in the coordinate space, is the solution of a second order ordinary

differential equation, see Section 1.8 of [3].
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3.4 Fibre bundles

Having proposed a statistical model S(0), it is standard practice to identify a distribution
po € S(@) which is a representation of the data source being modelled. If the model is
complicated, it is possible to propose a much simpler statistical model which is an expo-
nential family and which locally approximates the original model S(@) at the distribution
po. This new statistical model is part of a fibre anchored at py. If fibres are defined at
all points in S(@), then the entire structure is called a fibre bundle (see [108] and Section
155 of [50]). A fibre bundle permits a principled approach to approximating the Taylor

expansion and can furnish better estimates of the data source.

3.4.1 Describing fibre bundles in the space of scalar functions

First, it is necessary to formalise the concept of a statistical model in the space of dis-
tributions, and extend this to the space of scalar functions. First, using the definition in

Section 2.1 of [3],
Lp) “ {p:LO)>R | p0)>0 YO e L(0), / p(0)O =1} (3.48)

where L(O) is as defined in Section 3.2 and R is the field of real numbers. Extending this

definition to the space of scaled distributions L(p),
L) = {7:LO)>R | p(0)>0 YO e L(O), / 5(0)d0 >0} (3.49)

Finally, the space of all possible scalar functions L(p) with possibly negative or undefined

integral,
Lp) = {p:L(O)—R} (3-50)

These spaces form a nested structure so L(p) C L(p) C L(p).

Next, let a n-dimensional C* differentiable manifold in L(p) represent the statistical model

S(0) as described in Section 3.2. The statistical manifold is,
S0) = {p=p(0;0) | 0¢€L(6;5)} (3.51)
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where the open subset L(6;S) ensures p is a valid distribution. The statistical manifold
S(0) exists within L(p), L(p) and L(p). The denormalisation of S(€) yields the C*
differentiable manifold S(,8) C L(p) where,

S(r,0) = {p=p(0O;1,0)=1(0;0) | T€L(r 5’), 0 € L(0; S)} (3.52)

where L(r;S) is the open set such that 7 > 0 and L(0;S) = L(8;S). The manifold
has dimension (n + 1) since 7 is linearly independent of the coordinate system [#*]. Of

course, S(6) may be viewed as a ‘slice’ of the denormalisation of constant 7 = 1, i.e.

S(0) = S(1,0)|,=1 = S(0;7)|;=1. This ‘slice’ is a submanifold, where a submanifold is a
smooth embedding in a manifold [3]. The denormalisation is then extended to include all

realisations of (7, 0) including those which do not yield valid scaled distributions. Hence,

1%

S(r,0) = {p=p(0;7,0) | TeL(r;5),0cL®;5)} (3.53)

where L(7;S) = L(r) = R and L(8;5) = L(#) = R*. This is not a differentiable mani-
fold though certain submanifolds may be. The analysis in this chapter only requires the
introduction of S(0) for the original statistical model, though the concept of the denor-
malisation and its extension are relevant for fibres. Although this explanation assumes the

statistical manifold S(0) is C*, it need only be differentiable up to the required order.

Next it is necessary to extend the definition of the scalar field. For O; € L(O), there is a

scalar field ¢,

a:p — <(O;p) (3.54)
which in terms of the coordinate space where 1(p) = @ yields,

G:0 — (0;0) (3.55)

At least in an abstract sense, the definition of the scalar field ¢, may be extended to all

points within L(p), and by introducing a dependency on 7, to all points within L(p).

The fibre bundles of relevance to this thesis are described in Section 4.8 of [3] and called
fibre bundles of local exponential families. As a preliminary description, let a statistical

model S(0) exist and let a point py € S(@) be selected with coordinate vector 6y. A

47



scalar function ¢ varies over samples and distributions in the statistical model. If the
statistical model is very complicated, particularly if it is not an exponential family, its
properties at point p, may be difficult to analyse. For this reason, Section 4.8 of [3]
proposes that another statistical model, defined as a constrained exponential family and
which replicates some of the properties of the original model at py, may be defined at py.
In geometric terms, the statistical manifold S(8) is locally approximated at py by another
manifold S(c; 0,¢, 80, 0y) with coordinate vector c. The interpretation of the argument
list is described later, but for the present it is important to note that the manifold is
dependent on the scalar function ¢. The term p indicates that the new manifold osculates
(3] S(0) at py to the pth order, indicating that both manifolds contain py, and their tangent
spaces and ‘higher-order tangent spaces’ coincide up to and including the pth order. The
manifold S(a; 0,3, 0', 0y) is actually a submanifold within a larger structure S (1,5, 6p)
called a fibre. Hence there is a fibre anchored at point py € S(0). The manifold S(0) is
called the base manifold and each point in the base manifold has a distinct fibre. The
collection of fibres and base manifold is called a fibre bundle. The fibre bundle which exists
in the space of scalar functions L(p) is abbreviated to 7 when its definition is clear from
context (fibre bundles are described more generally in Appendix F). The application of
different scalar functions yields different fibre bundles. Whether the semantics of points in
the fibres and points in the base manifold are comparable depends on the choice of scalar
function. By restricting the definition of the fibre bundle to the space of distributions
gives what is called in this thesis an augmented statistical model, where the augmentation

(see Section 4.8.1 of [3]) is relative to the model described by the base manifold.

It is necessary to describe a fibre and its submanifolds in more detail (a summary of the
notation used to describe different submanifolds is given for reference in Appendix F.2).
The base manifold is S(@) and a point py € S(0) is selected. The fibre at this point is

fully described by the extended denormalisation S (1,05, 600),

v

S(r,0;5,00) = {p=p0;7,) | T€L(T;9),a € L(e; S)} (3.56)

where L(7;S5) = L(r) = R and L(a;S) = L(e) = R™®. Since each component of e is

assumed linearly independent then size(a) = dim(L(«)). A submanifold of this fibre is
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the denormalisation (see Section 2.6 of [3] for the concept of denormalisation),

S(r,0:5,00) = {p=p(0;7,0) =7p(0;) | 7€ L(T;5),a € L(ax; S)} (3.57)

where L(7;S) € L(r) is the open set fulfilled by 7 > 0 and L(a;S) = L(e; S) where
L(c; S) ensures valid distributions. A submanifold of the denormalisation is the statistical

model defined by constraining 7 =1,
S(e;5,00) = {p=p(0;a) | ael(xS)} (3-58)
So,

S(aag_a 00) = g(a;Ta C_, 00) = S(Taa;g_a 00) (359)

=1 T=1
A nested structure is implied by the submanifolds so that S(a;<,80) C S(7, a;5,00) C

S(7,@;¢,0). The first is the ‘fibre in L(p)’, the next the ‘fibre in L(p)’, and the next the

‘fibre in L(p)’ or simply the ‘fibre’. The fibres have infinite dimension.

These manifolds and submanifolds are constrained to exponential families since the prop-
erties of these families are well-known, and sufficient statistics of a fixed size are available
facilitating the estimation of parameters of members of these families. For this reason,
scalar functions which are log terms are preferred over scalar functions which are linear
terms, for example the log likelihood over the linear likelihood. The constraints defining
the exponential families have not been explicitly stated and are assumed implicit in the
definition of the fibres relevant to this thesis. For example the form of a function p within
the exponential family defining the fibre is,
o0
P=p0;a) = exp{C(O)+> D F; ;(0)’ 7 —D(a)+In7} (3.60)
r=1 j1...jr
where the terms are as described for distributions in Appendix A, and where the summa-
tion over j ...J, is over all possible permutations where j; = {1,...n},Vi. The following

constraints CS’(T,a;E,OO) are implied, and applied to all submanifolds within the fibre,
C(0) = Inp(O; )
CS’(T,a;c‘,Oo) = F‘jl...jr (O) = ,le...jr (O) (vjl .. ]r)

D(e) =In [exp{C(O) + 372, 32}, ;, &’ Fj,..;,(0)}dO
(3.61)
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The term Tj,. ; (O) is as detailed in Equation 3.28. Submanifolds such as the denormali-
sation and statistical model then simply differ in the constraints on the parameters a and
7. Only if the scalar function is the log likelihood of a sample, i.e. ¢ = Inp(O;p) where
O € L(0), does a distribution in the fibre submanifold S(e; ¢, 8y) have the same seman-
tic meaning as distributions in the base manifold. The fibre has a number of important

submanifolds besides the denormalisation and the statistical model.

e A submanifold 5’(7’, a;¢, 0, 0,) exists, all points on which replicate some properties

of the base manifold at point py where,
S(r,a;5,0,00) = {p=pO;1,a) | 7€ L(r),a € L(a;6',0,)} (3.62)

where the constraint o € L(a; 0',6,) C L(cx) forces each component to be of form,

r

ot = (0% - 0) (3.63)

i=1
and where 6,0, € L(0). The point p, is given when 7 = 1, the scalar a = 1 and
adt~ir = 0,r > 0. The effective dimension of S’(T, «;<,0',60)) is n since each point
within the submanifold is fully specified by the n components of the cordinate vector

@', the coordinate vector 8y being known.

e Another important submanifold is S(7, a; cd, <, 8',0y) C S(7,0:¢, ', 8,) where o €
L(a;cd,,6,00) C L(e;5,0',60y) and where L(a;cd, s, 0',0,) is the convergence
domain of the function ¢ about point 83. When limited to the space of distributions,
then S(e; cd, 0,¢,0',0y) as o — oo becomes coincident with S(0), but not necessarily

over the whole surface of S(8).

e Since the fibre is a family of scalar functions with an infinite number of parameters,

this is impractical for analysis. Hence a submanifold is introduced S (1,05 0,,600) C

1%

S(7, @; ¢, 8g) where, for 0 < p < oo,
S(r,0;0,5,00) = {p=p(0;7,@) | TeL(r),ac (a0} (3.64)
where v € L(av; o) implies,

oIt =0, if > (3.65)
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The dimension of L(e; 0) and effective size of o are then reduced to § where,

4
sg=>n" (3.66)
r=0

If « € L(e; 0,0',0y) where the argument ¢ implies the constraint in Equation 3.65
and the argument @' the constraint in Equation 3.63, then the submanifold is de-
noted by S(r, a; 0,5, 6',8y) C S(1, ;5,8 ,0,) for finite p. The effective size of a
is still & but the effective dimension is the lower of 4 or n. Applied to the space of
distributions, then all points within S(c; 0,¢, @', 0¢) osculate with the base manifold

at pp up to and including the order p.

Although the description of submanifolds has focussed on those for the fibre in L(p),
submanifolds in L(p) and L(p) may be similarly defined with similar notation. Although

T is a variable, only two values are important in this thesis.

o 7 = 1: in the case of the denormalisation, a ‘slice’ of constant 7 is S(7, e 0,5, 00) |71
which is abbreviated to S(e; p,¢,0q). All points on this submanifold are distribu-

tions.

o 7 = 7% = exp{D(a)}: the corresponding ‘slice’ of the extended denormalisation
is S (1,05 0,3, 600)|;—rtey. Points on this submanifold do not have unit integral over
L(O) and there is no need to evaluate the integral. As described later, these points
yield gth order Taylor expansion approximations to ¢ providing « is additionally

within the appropriate convergence domain L(e;cd, <, 0', 6y).

Since submanifolds are topological spaces, isomorphisms between them are homeomor-

phisms.

In summary, a base manifold S(6) has been introduced and, at each point py € S(0),
a fibre S (1,3, 0y) defined. Each fibre contains a number of important submanifolds.
Some of the relations between the submanifolds are illustrated in Figure 3.2. The whole

structure is the fibre bundle 7;.
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fibre

v

[ S(Ta a;@ 00)

[ S(Ta a;f; 00)

[ S(a7fa 00)

Space of scalar functions
(and submanifolds of a fibre)

Lp)  L®) L(p)
L(e) = L(e;; S)
L(a; S) = L(e; S)
Space of ) _
coordinates Q ! L(a;cd, <, 0, 60)
L(a,f, 01700)
- L(1;5)
Space of o
coordinate T } » L(r) = L(7;5)

Figure 3.2: Tllustrating some of the subspaces and submanifolds relevant to the fibre bundle
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3.4.2 Introducing vector bundles

The fibre bundle described above is defined as a structure in the space of scalar functions
L(p). It is useful to estimate points in such a fibre bundle and this often requires the
application of ‘distance-based’ learning algorithms in linear spaces. However a fibre within
the space of scalar functions is not a linear space. Although metrics such as the Hellinger
distance [3] apply along statistical manifolds, it is more convenient and versatile to work
with linear spaces. For this reason an isomorphism is defined to map each point within a
fibre to a distinct point within a linear space. It is then relatively straightforward to define
sensible metrics with invariant properties within these linear spaces. The fibre bundles
yielded by the fibre isomorphisms are examples of vector bundles (see [108] and Section

155 of [50]) as detailed in Appendix F.1.

Before describing a vector bundle, it is first necessary to define the isomorphism from
S (1,;¢,0p) and its submanifolds to the linear space and its subspaces. From Equa-
tion 3.60, the parameter or coordinate vector « is a set of fully contravariant tensors of
ever-increasing degree. Denoting this set by {a/+/"} where,

oo repetitions

{a?7Y} ={a,at, ... o™ o't a0 ) (3.67)

and the corresponding linear space as L({a77}), then it is possible to define an isomor-

phism,
Lo ) =L (a) (3.68)

This isomorphisms permits the convenient use of the term « to define the parameters of
a scalar function even when the parameters include tensors of degree greater than unity.
It also permits the fibre isomorphism between points on S (1,53, 0) and the linear space

<1(1,0)
L (1,5 ¢, 60). Hence,

o +1(1,0)
S(Ta Q; 6; 00) =L (T7 Q; 67 00) (369)
where,
<1(1,0) <>1(1,0) <1(1,0)
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=0
=9
N~
A @
fibre > =2

isomorphisms

@

base manifold

5(6)

o <1(1,0)
@ ~(T,oz;c‘,Oo) @ A1(1,0)(T’a;€’00)
@ S(r,a;¢,00) @ (1,55, 0q)
@ S(a;¢,80) ® L9 (a;s, 8)
@ S(a;0,5,00) @ L*%9(as; 0,5, 6)
® S(a;0,5,6',60) ® Li9(a;0,5,6',60)
® S(7,0660.00)| ® L (706060

Figure 3.3: Illustrating the isomorphic relations between fibres of 15 and 7yec

<>1(1,0)
and where L (7) is the tensor space of type (1,0) which is isomorphic to L(7) and
< 1(1,0)

defined by simply regarding the scalar 7 as a contravariant component. Of course L (1
<51(1,0)

and L (a; <, 6p) are assumed linearly independent. The structure with base manifold

S(6) and fibres of form L' (7, a; S, @,) anchored at each point py € S(8) is the vector

bundle 7. The linear spaces necessarily include all possible realisations of 7 and « so

the vector bundle 7y is isomorphic* to 7;.

Given a single base manifold S(8), the isomorphic mapping between the fibres of n; and fi-
<1(1,0)

bres of 7. permits the adoption of analogous notation for subspaces within L (1,05, 6p)

as for submanifolds within S(7, a; <, 8). This is briefly described below with illustrations

11t is also possible to define another vector bundle isomorphic to 7yec and 7y which is the Whitney

sum (see Section 155.F of [50]) of fibre bundles whose fibres are tensor spaces of ever increasing rank.
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in Figure 3.3.

< 1(1,0)
o L (1, ): this is the linear space which forms the fibre.

<1(1,0)
o L (T, ;G,600): this is the linear space appropriated to the point py € S(0),

thereby defining the basis for tangent space at p, and hence for this linear space.
Each point in the linear space is given an interpretation in terms of the scalar function
. It is isomorphic to 5’(7’, a;S,00).

~1(1,0) -
o L (1,55, 600): the coordinates are constrained so 7 € L(7;S) which is the open

set where 7 > 0, and a € L(a; S) = L(a; S), where L(c; S) ensures a valid distri-

bution. This subspace is isomorphic to S(7, a; S, 0p).

o L'10(q; ¢, B,): the coordinates are constrained so o € L(a; S) where L(a; S) is as

above. This subspace is isomorphic to S(a;¢, 6y).

Elsewhere, the notation follows a similar pattern to that for submanifolds in Section 3.4.1.

3.4.3 Score spaces

This thesis is primarily concerned with estimating coordinates or parameters in the fibres of
Nvec. An important linear space is the ‘slice’ of the fibre defined by 7 = 7% and some p > 0,
denoted by 21(1,0) (a; 7, 0,3, 600)|;—rtay. Its dual is the linear space 21(0,1)((1; T, 0,$,00)|r—rsay
which is called a score space. Score spaces are a convenient descriptive tool. A mapping

exists from input space to score space,

~1(0,1) ~1(0,1)
p:L(O) —» L (a;7,0,0,%,600) L CL (e; 7, 0,5, 00) t (3.71)

where the presence of the argument O simply identifies the subspace of score space which

is ‘reachable’ from the input space. Then for O; € L(O),
@ Ol — ‘p(ola 0, QT, 00) (372)
where ¢(Oy; 0,, 0y) is a member of score space where in terms of previous notation,

_ . — _ T
?(0y;0,5,00) = (T,Th, ... Topy ... T o 0 ) (3.73)

o repetitions
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where for brevity Tj,. ;. = Tj,.;, (0;). The following terms are used in this thesis,

e score mapping: the mapping o,
<1(0,1)

e score space: the linear space L (a;7,0,3,00)|r=rtay,

e score for sample O;: the member of score space denoted by @(Oy; 0,3, o).

Later in this thesis the score space and score are respectively abbreviated to ¢*"P(p, 8y)

and @*"?(Oy; p, ), where ‘sup’ identifies® the scalar function ¢.

3.4.4 Introducing manifolds for multiple statistical models

Before proceeding onto applying fibre bundles to approximate Taylor expansions or es-
timate distributions, it is necessary to extend the concepts developed above to multiple

statistical models, for example those for different classes.

First a space is defined,
L(P) = @ L(p,) (3.74)

where L(p,) is the space of scalar functions for class w,. Next, a statistical model for class
w, is defined as S(6,) C L(p,) and a point on this manifold is p, € S(6,) with coordinate

vector @,. The entire set of () statistical models is S(¢) € L(P) and a point within this
set is P € S(§) where,

S = @?:15(0(1) (3.75)
P = (pi,---pq) (3.76)
£ = (6],...0))7 (3.77)

If dim(S(0,)) = n, and dim(S(§)) = n then if the parameters of each statistical model

5The superscript ‘sup’ may be omitted when clear from context or score spaces are referenced in a

generic sense.
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are linearly independent,

n = an (3.78)

This analysis assumes no parameter tying between or within statistical models so all

parameters are linearly independent. Then for example,
L(&S) = &LL(0s9) (3.79)

and similarly for other subspaces. If there is parameter tying, then Equations 3.78 and
3.79 do not hold. Since S(&) is a manifold, it is possible to define a tangent space to this
manifold as the direct sum of the tangent spaces of the individual statistical manifolds.
The dimension of this tangent space is also n. Let a scalar function ¢ over the space of input
samples L(O) and the manifold S(€) be decomposed into a linear sum of class-specific
scalar functions ¢(¢) over L(O) and the individual manifolds S(8,) such that,

Q

¢ = Y ca)sla) , clg)# Mm(0) (3.80)

qg=1
where fn(-) is a generic function which varies with its argument. Fixing a sample O; €
L(O) then a scalar field is defined over S(&) where,
Q

@ = 3 e)«)@ (3.81)

g=1
In terms of scalar fields over the coordinate space,

Q

a = Y @)@ (3.82)

q=1

where ¢ = ¢(0y;€), <(q); = (5(g))(0y;8,) and c(q) € R. It is possible to define a fibre in

)

L(P) anchored at point Py € S(€) with coordinate vector &, as,

S(T,B;5,&) = &¢.15(ry, ag;c(9)5(9), (64)o) (3.83)
where,
T = (m,...7Q) (3.84)
B = (af,...a)" (3.85)
& = ((81),...(0g)g)" (3.86)
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It is then straightforward to extend the analysis for a single statistical model to that
for multiple statistical models. For the special case that each class-conditional statistical
model S(ay;c(q)s(g), (8,)0) forms a C* differentiable manifold, then the set of statistical
models §(8;¢,€&,) is also a C* differentiable manifold. However if the scalar function
¢ cannot be decomposed in this manner, then the fibre at point Py € S(£) cannot be
decomposed. The fibre is then S (1,;¢, &) and has as coordinates a single value of 7 and
a single vector av. This fibre describes a single family of scalar functions. Since there is no
guarantee that the distributions within this family can be related to a set of distributions
for each class, this fibre has little obvious application. The analysis would however proceed

in a similar manner to that for a statistical model for a single class.

3.5 Applications of fibre bundles

3.5.1 Estimating points on the base manifold

Given a statistical manifold and an unknown data source, it is instructive to consider how
different learning criteria use the training samples from the source to estimate different
points on the base manifold. These estimates may be subsequently used to define points
from which to ‘extend fibres’. Adopting the source/model approach and training criteria
of Section 2.2.2, each class w, has correct and assumed source probability mass functions
P"(O|w,) and R(O|w,) respectively. As explained in Section 2.2.2, assuming a probabil-
ity mass function is viewed as a sampled version of a probability density function, then
the mass function may be cast into continuous form as a ‘block-like’ probability density
function. This ‘block-like’ function converges to the density function being sampled as
the level of discretisation becomes infinitessimal. The convergence is also in terms of the
KL information. Hence under these assumptions and in this limit of infinitessimal dis-
cretisation, the deductions concerning probability mass functions in Section 2.2.2 may be
applied to probability density functions. These assumptions and this limit are applied in

this section.
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Transferring the analysis to the space of distributions, the correct source is represented
by the point p; and the assumed source by the point r,, where p,r, € L(p). Next S(6,)
is proposed as a statistical model of the source. In the special case that the model is of
correct functional form so p; € S(6,), then ML estimation does not select the distribution
Py € S(6,) which has minimal KL information with the correct source p; but the assumed
source r,. However as ¢, — oo where ¢, is the number of training samples in class wy,
Section 2.2.2 shows that, assuming a consistent estimator, r, — pj so p; — p;. This
justifies the popularity of the ML estimate. However if py lies outside S(,), i.e. the
proposed model is incorrect in functional form, then even with infinite training data, the
estimate p, € S(@,) is only at best the ‘minimum error’ estimate. In this respect the ‘error’
is measured in terms of the KL information. In practice, finite training data or nonglobal
maximisation of the training criterion implies that pﬁz is probably only an approximate to

the ‘minimum error’ estimate.

For the multiple class problem, the manifold S(£) defines a set of @ class-conditional
models. A realisation of this set is P’ = (p},...pp) € S(§). The set of assumed source
distributions is R = (ry,...7g) which in general does not coincide with the set of correct
source distributions P" = (pf,...pg5). To compare the ML, MMI and MAP estimation
criteria, a pictorial representation of their estimates is given in Figure 3.4 for Q) = 2.
The manifold S(§) = S(0,.) ® S(0,) is drawn as a plane. Each point on the plane lies
on §(&), but each point above or below the plane cannot be described by distributions in
S(&). In the diagram, the KL information is the norm defined on an Identity metric tensor
(this assumption is purely for illustration since the KL information is not a valid distance
metric). The assumed set of source models R lies above the plane S(€). The ML criterion
estimates the point Py € S(&) which is the perpendicular projection of R onto S(§). In
practice, a Bayes decision rule based on Py may not yield the lowest possible error rate
on unseen data. The MMI criterion instead selects the distributions Pjq € S(€) which
minimise the sum of KL informations over all classes between the assumed source class
posteriors and model class posteriors. The point Py is the shortest ‘distance’ from S(§)
to R along a path which denotes the sum of these KL informations. The MAP solution
Piap € S(§) migrates to the ML solution Py, as £, — 00, £, — oo. The migration is

‘smooth’ if the parameter priors provide good regularisation. Of course in practice the
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Pictorial representation of the space of distributions
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Figure 3.4: Comparing the different estimates on S(€) and how they relate to the correct

and assumed distributions P” and R respectively

assumed sources R only approximate the correct sources P”. However as £, — oo and
£, — 00, the assumed sources R converge to the correct sources P” in terms of the KL
information. Consequently, the estimates P}, and Py both track the ‘shadow’ of R
across the manifold S(€) according to their respective criteria. The MAP estimate Pj;ap
plays ‘catch-up’ to the ML estimate Py along the manifold. Hence different estimation
criteria may be used to estimate the point on the base manifold P, from which to ‘extend

a fibre’. In the experiments in this thesis, ML and MMI estimation are used.

3.5.2 Approximating Taylor expansions

Having defined fibre bundles 7; and 7y, it is possible to formalise Taylor expansion
approximations as the evaluation of scalar fields at points within the total space of the

fibre bundle. To recap for the single model case, let ¢; denote a scalar field which varies
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over the statistical model S(8) such that ¢ : p — ¢(Oy; p) where p € S(0). The value of
the scalar field ¢; at point p’ € S(0) is required by taking measurements at point py € S(0)
where p’ # py. For the coordinate chart ¢ : p — 6, then from Section 3.3, the pth order

Taylor expansion approximation is,

4
(05;0,6,60) = > > Ty (0o (3.87)

=0 f1...jr
where T}, ;. (O;) is defined in Equation 3.28 and o'/ is as defined in Equation 3.29. The
value <(Oy; 0, @', 6y) is the value of the scalar field ¢ at point pf € 5’(04; 7,0,5,0',00)|r=rtay
but as a function of coordinates a. Since the Taylor expansion makes no claims as to
whether o permits a distribution, the Taylor expansion is the main motivation for defining
fibres within L(p) rather than within L(p). The evaluation of the scalar field at point p'
requires the subtle redefinition of the scalar field over the total space of the fibre bundle
rather than simply the base manifold. As p increases, the scalar field is evaluated at
different points within the submanifold S (a;7,5,0',00)|,—rtey. In the limit, and providing

@' is within the domain of convergence of g about 6y,
<(010,6,60) = <(01;0)]0—g (3.88)

If this is true of all scalar fields defined on the same scalar function, i.e. for ¢, VO, € L(O),
then,

t 0 !

p— p (3.89)

In this case, it is also interesting to note that letting pt € S(a;7,0,<,60",00)|,—1 =
S(e; 0,5, 6',6,) be a point which has identical coordinates o as p' but a different value

of 7, then since p' is a distribution,

T 23 (3.90)
pr 23 (3.91)

Therefore, as ¢ — oo, the submanifolds S’(a;T, 0,$,0,00)|,—v and S(a; 0,¢,6",0,) co-
incide with S(0) at least within the domain of convergence of ¢ about 6. It is possible
that different scalar fields have different domains of convergence. The description has

focussed on submanifolds within the fibre bundle 7;. This is because the fibres in 7. do
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not possess the same semantic meaning in terms of distributions or points in L(p) except

through an isomorphism.

Hence the truncated Taylor expansion of a scalar field ¢; at p’ about the point py where
p',po € S(@), may be regarded as evaluating the scalar field at a point pf, where p' does
not lie on the manifold S(@) but within a fibre anchored at point py. The point p' lies
within a submanifold of the fibre characterised by the value 7 = 7'%. As p — oo, and
under the conditions described above, so p! — p'. A similar analysis is possible for a

manifold defined for multiple statistical models.

3.5.3 Estimating a point within the total space of a fibre bundle

Although the fibre bundle n; provides semantics relating points to scalar functions or dis-
tributions, the vector bundle 7. provides a convenient framework for ‘distance-based’
learning algorithms. The algorithms effectively operate in 75 due to the isomorphism be-
tween fibres in 75 and 7. An example is when a vector bundle 7 is used to estimate
distributions outside the base manifold but within the total space of 7. This section con-
siders maximum likelihood and discriminative methods for estimating such distributions.
It is important to note that for a fibre bundle defined on S(6,), distributions outside the
base manifold only have the same semantic meaning as those on the base manifold if the

bundle is defined on the log likelihood scalar function for a sample.

3.5.3.1 Maximum likelihood estimation

A point in the total space of a fibre bundle for a single statistical model may be estimated

to better represent a set of samples O where,
O ={01,0,,...0/} (3.92)

A suitable scalar field for achieving this is the log likelihood of the samples so ¢o : p —
Inp(O;p). A scalar field ¢, may also be defined on a single sample ¢, : p — Inp(Oy;p).

Both these fields vary over points in the base manifold, and by extension to points in the
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total space. Since the present task is restricted to the estimation of distributions, it is
only necessary to consider the fibres in L(p). Under the coordinate chart v : p — 6, the
scalar fields are ¢p : @ — Inp(0;0) and ¢ : @ — In p(Oy; B), where for convenience the bar
in the notation for the log likelihood is omitted. First, a point p; € S(€) with coordinate
vector B is estimated to maximise likelihood,

0y = argmax Inp(O;0)
6cL(8;S)

¢
= argmax Zlnp(Ol;O)
=1

6cL(8;S)
12
= argmax g (3.93)
0cL(8;S) lX_;

where the samples are assumed i.i.d.. Next it is possible to define a fibre S (1,55, 0q) at po
with submanifold S(«; ¢, 8g). The submanifold contains a nested structure of submanifolds
S(a; 0,3, 0)) indexed by o > 0. After selecting an appropriate order of expansion g for a
submanifold S(e; o,<, 8y), a point p'(p) is estimated with coordinate vector a'(p) where,
a'(p) = argmax Inp(O;o,,6y) (3.94)
acL(a;S)

The original point p, is contained within S(e; 0,3, 8y) and corresponds to the coordinate

vector oy where the scalar @ = 1 and /9" = 0,7 > 0, i.e. ap = (1,0,0,...0)". So,
Inp(O; o, a, 6y) o > Inp(O0;0,a,8y) o =Inp(O;0) oo, (3.95)
Hence the estimate p'(0) € S(e; 0,<, 8y) is guaranteed to yield a likelihood for the samples
O not less than the estimate py € S(@). By a similar argument, the estimate p'(p) is

guaranteed to return nondecreasing likelihoods as p increases. Hence,

np(O; e, 60) > Inp(O;0a60) |

, s>t t>0 (3.96)
a=a(s) a=a/(t)

So far, the estimation has only been confined to submanifolds of the form S(e; ,¢,6o)

rather than the more restrictive form S(a; 0, <, @', ) which enforces osculation constraints

including in the zeroth order. While this endows the estimate p'(p) with considerably more

degrees of freedom, the osculation constraints are useful and act as a form of regularisation.

The constraints need not be enforced if there is a lack of confidence in the estimate pg. It
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is also important to note that if p’(0) € S(e;0,<, @', 0) then there are only n parameters
that require estimation for o > 1. However as p increases and higher order covariant
derivatives are included in the definition of the curved exponential family, the estimates

for those n parameters may vary. The points p'(0) € S(e; 0,4, 0', 8y) necessarily vary with

0.

So far, the optimisation required to estimate points p'(g) € S(a; p,<, 0¢) has been ignored

and assumed tractable. Using the bilinear form from Section 3.3, optimisation requires,

o'(¢) = argmax Inp(0;p,a,6,)
acLl(w;S)
= argmax < a,®(0;0,5,600) > —D(a)
acLl(a;S)
= argmax o @(0;0,5 6y — D(c) (3.97)
acLl(w;S)
where,
¢
2(0;0,5,00) = D @(0:;0,5,6) (3.98)
=1
D(a) = ln/exp{acho(O; 0,$,00)}dO (3.99)

and @(0y; 0,<, 0y) is as in Equation 3.73. The maximisation is a constrained optimisation
requiring an explicit expression for the normalisation term D(a). This increases the
analytical complexity of the ML estimate o'(p). However since e« and @(O; 0,<, 6)) are
conveniently obtained in fully contravariant and fully covariant form respectively, there is

no need to define a metric matrix for ML estimation.

It is possible to extend this estimation technique in an iterative manner as illustrated in
Figure 3.5. Once a point p'(p) has been estimated on the submanifold S(e; 0,3, 6,) or
S(e;0,¢,6',0)), then the submanifold may itself form the base for a new fibre bundle. A
fibre can be defined at p’(9) and this new fibre searched to yield a new estimate. This iter-
ative procedure can be continued indefinitely, although with considerable computational
expense. The procedure guarantees distributions which are nondecreasing in terms of the

likelihood of the training samples. This procedure is called ‘fibre hopping’.

e Fibre hopping may be compared to a decision tree search, where each level of the

tree is a new submanifold and the number of branch points at each level corresponds

64



‘fibre hopping’
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Figure 3.5: Estimating distributions p’ by ‘fibre hopping’
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to the infinite number of points in the submanifold. Fibre hopping is then a depth-
first search which makes a decision at each level of the tree to locally maximise the
likelihood of the training samples. Alternative training criteria may be introduced at
selected levels of the tree. While this destroys the trend of nondecreasing likelihoods,

it may be useful to force the estimates away from local likelihood maxima.

e The training samples are regarded as produced by an unknown source p”. As detailed
in Section 2.2.2, the only information concerning this source is that available from the
training samples furnishing an assumed source r, which, as described in Section 3.5.1,
is a ‘continuous space’ form of the probability mass function R. As illustrated in
Figure 3.5, as the number of samples / — oo, so r — p”. Hence for finite ¢, the
assumed source r may be distant from the correct source p”. With each iteration of
fibre hopping, i.e. with each level of the decision tree, the ML estimates p’ converge
to the assumed source 7 in the sense of KL information. The estimates become
overtrained to the assumed source r rather than to the correct source p”. For this
reason, the depth of the decision tree should be in proportion to the number of

training samples available.

3.5.3.2 Discriminative estimation by maximising mutual information

Discriminative estimation techniques can also be employed to estimate points within the
total space of a fibre bundle. Discriminative techniques require the definition of more
than one class. For MMI estimation, the fibre bundle has base manifold S(£) as defined
in Section 3.4.4. The scalar field is {p = In P(w(O0)|0; &), where the training data is,

O = (01,0y,...0) (3.100)
w(0) = (w(01),w(0y),...w(0y)) (3.101)

and where w(O) € L(w) = {w1,...wgq} is the correct class for the sample O € L(O).
The sample/label pairs are assumed i.i.d.. The definition of the scalar field is extended
to the total space of the fibre bundle. A fibre is defined at a point Py on the base
manifold with coordinate vector §,. A point in this fibre may be estimated using MMI

estimation. However since the scalar field {» cannot be decomposed into a linear sum of
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class-conditional scalar fields as in Equation 3.81, the analysis must resort to a submanifold
of form S(7, e 0, ¢, &,). Furthermore, since the class posterior is not a probability density
function, there is no motivation to normalise the scalar function to yield unit integral
over L(O). A point P’ may be estimated on the submanifold 5’(0[;7’, 0,5,&0)|r=rtey With

coordinate vector o'(p) where,

Q y4
o(9) = argmax» > InP(w,O0;0 &) (3.102)

aELa;S —
( )ql =1

w(01) = wq

and similarly to ML estimation in Section 3.5.3.1,
In P(wq‘ol; o &, EO) = <o ‘P(Ola 0,5, 60) >= aT‘p(Ola 0,5, 50) (3103)

where @(Oy; 0,<, &,) is defined similarly. Hence a'(p) corresponds to a point which max-
imises the sum of correct log class posteriors for each sample, though without the constraint
that the class posteriors are bounded by zero and unity. It is not straightforward to ensure

the estimates correspond to a valid set of distributions.

3.5.3.3 Estimation by training a linear discriminant

Next, a discriminative estimation technique is presented based on calculating a linear
discriminant in a fibre of 7y.. This permits the inclusion of learning algorithms such
as the SVM into the training process. The training data is O and w(O) as defined in
Section 3.5.3.2. It is straightforward to relate the estimation technique to training distri-
butions if the scalar function ¢ is a weighted linear sum of class-conditional functions ¢(g)
as in Equation 3.80, and the scalar field ¢; for a sample O; € L(O) is a weighted linear
sum of functions (;)(¢) according to Equation 3.81. Otherwise, as for MMI estimation, it
is difficult to relate the linear discriminant to a set of distributions with the same semantic
meaning as those in the base manifold. Expressing the functions in terms of the coordinate
space, the definitions of ¢ and ¢(¢) are extended to the total space of the bundle 7, with
base manifold S(€).

The fibre bundle 7. exists with a fibre anchored at Py € S(&). Following the notation in
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Section 3.4.4, an important subspace of this fibre, for o > 0, is,

S 1(1,0) 0 ~1(1,0)
L (ﬁ;T,Q,c‘,ﬁo) = @il (037, 0,¢(9)5(q), (84)o)

o=7¢" Va} Tq=14""
(3.104)
It is possible to map each training sample O; € O into the dual to this fibre subspace.

Hence the mapping ¢ is defined where,
<1(0,1)

@ : Ol = @(Ola 0, C_a 60) €L (IB’ Ta 0, C_, 60) (3105)

_Tt;ay Vq}

As described in Section 3.4.3, this dual subspace is called the score space. Since the samples
are drawn from two classes, it is sensible to calculate a separating linear discriminant
(w,b) in the score space. To relate the linear discriminant (w,b) to distributions for
the Q classes, it is necessary to employ an isomorphism from the fibre subspace in 7y
to the corresponding fibre submanifold in 73 for 7, = T;ay,Vq, and thence to employ an

isomorphism from this submanifold to the submanifold defined by 7, = 1, Vq.

For the first isomorphism from the fibre subspace in 7y to the fibre submanifold in 73, it

is necessary to consider the mapping from w to corresponding tensors,

o0 repetitions

w— (w,w, . whwt o w ) (3.106)
and for an unlabelled sample O, € L(O),
¢(0l7 0, §_, 60) = (Ta Tla = -TnaTlla T n...n ) (3107)
N —

0 repetitions

where for brevity T}, ;. = T}, (0;) as defined in Equation 3.28 and the scalar field g
is evaluated at point Py € S(§). Analogous to the decomposition of the scalar function,

each tensor can be decomposed as follows,

Q
Jl J’I‘ Ol ZC .71 Jr Ol) (3108)
qg=1

where (T});,..;, (0y) is the scaled covariant derivative defined on the scalar field ¢(g); at

point (pg)o € S(6,).

It is then possible to view the linear discriminant in terms of a pth order Taylor expansion
approximation,

b = wl(0) +ZwﬂTJ1 0)) +Zzwﬂ 2T, (O1) + ...

J1=1 Jj1=1j2=1
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i > w5, (0) (3.109)

r=0 ]1]7"
where the summation over j; ... 7, implies all possible permutations for j; = {1,...n}, Vi.

Division by the scalar w followed by decomposition yields,

b 0 wjl- -Jr
o = TO)+> ya(e))
r=1j1..Jr
Q e wjl- Jr
S IODIDD (Tg)s1..5.(O0) (3.110)
g=1 =0 ji...jr

Many of the tensors (1});,..;,(O;) are zero due to the independence assumption between the
parameters of statistical models. Next isomorphisms between w and the set of parameters

for each statistical model is required. For each ¢ € {1,...Q},

o repetitions o repetitions

l m 0l mm m...m _ 1 ng 11 Ngng Ng ...Ng
(w,w w™, w w w ) = (o« all o o' o )
LW w™ w L yee 0 Qgy - g, Qg g™y
(3.111)
where,

qg—1
=) m+1 (3.112)

i=1

q
mo= Y n (3.113)
=1

Hence all ‘cross terms’ w’!J, where all contravariant indeces do not refer to the same
statistical model, can be ignored and should be forced to zero in training the linear discrim-
inant (w, b). Then the linear discriminant may be written as follows, where the summation

implies all permutations of j, ... j, but for j; = {1,...n,}, Vi,

Q e .71 Jr
Py doy Y ), 00

g=1 =0 j1...Jr

c(q ))(Or; 74, 0, (04)0) (3.114)

I
M@

tay
Tqg=T,
g=1 9—'q

However the points identified are not distributions. To remedy this the normalisation
factors must be substituted into the expression so that,

Q

= Z{C(Q) (ST(Q))(Ola Tgs 0, (0(1)0)"“1:1 + D(aq)}

b
w put
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Q
- ZC(Q)D(QQ) = Z OlaTq’ o, (0 ) ) ra=1

= (Oz, 0:&o) (3.115)

The right hand side of the equation is the value of the scalar field  evaluated at a point
P e S(B; 0,3, &,) which potentially lies outside the manifold S(§). This corresponds to
a set of () class-conditional distributions which potentially lies outside the corresponding
statistical manifolds S(0,),Vq. The left hand side of the equation is a new threshold ¥

where,

Q
- e(q)D (3.116)

g=1

SI@

The linear discriminant therefore reduces to a threshold decision on the output of the
scalar field § evaluated at P’. Training the linear discriminant effectively trains the point
P’ and the threshold &'. Of course this assumes that each parameter c, gives rise to a
valid distribution, i.e. oy € Ly S),Vg. The distributions are discriminatively trained.
Learning machines which yield different solutions in (w,b) imply different estimates for

the distributions P’ and threshold ¥'.

It is important to understand the constraints and limitations of learning distributions

through training linear discriminants.

e A mechanism is required to constrain the optimisation of w so that each o, €
L(ay; S). Without this mechanism there is no guarantee that a solution w corre-

sponds to a set of valid class distributions.

e It may be helpful to restrict each distribution p; to the corresponding submani-
fold S(a; 0,¢(9)3(q), (8,)',(0,)0) and hence enforce osculation to the pth order. At
present, only osculation at the zeroth order is enforced since o/, = 1, Vg.

<1(0,1)

e The optimisation is within the linear space L (B;T, 0,53, §o)|{Tq:T;ay7vq}. This is
isomorphic, but via a nonlinear mapping, to the linear space Zl(o’l)(ﬁ; 0,5,&p) =
< 1(0,1)

L (B;T,0,5,&)|{ry=1,9g}- The estimation technique is more easily implemented

to minimise errors in the first rather than the second linear space. Since the second
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space is related to submanifolds of distributions, it is intuitively more desirable to
optimise in this linear space. However this requires the calculation of normalisa-
tion terms either explicitly or within the optimisation process and this adds extra

complexity.

e If the scalar function ¢ does not decompose in the manner described in Equation 3.80
with ¢(¢) = Inp(O;p), or if any of the multipliers ¢(¢q) are functions of O, then it
is difficult to relate a linear discriminant to a set of class-conditional distributions.
An example of such a scalar function is the log posterior for the correct class. In
such cases, it is better to view S(£) as a single manifold rather than a direct sum of
class-conditional manifolds. Even then if ¢; is not the log likelihood function, then

the set of distributions does not have the same semantic meaning as a point in the

base manifold S(§).

e The linear discriminant effectively trains a single threshold classifier in the output
of a scalar field. It is a binary decision. More complicated decision rules require, for

example, methods to map binary decisions to multicategory decisions.

An example of a learning machine for calculating linear discriminants is the SVM with
linear kernel. An SVM trains the discriminant through calculating scalar products be-
tween members of its input space. In the current context, scalar products are required
in Ivll(o’l)(ﬁ; T, 0,3, 60)|{Tq:7_;ay,vq}. For two members of this space @(Oy; 0,$,&,),l = 4,7,

their scalar product is,

(@(04;0,5,&), (055 0,5, &) = @(0i;0,5,&)  Ap(Oj;0,5,€,)  (3.117)

The matrix A is formed from fully contravariant components and is the metric matrix for
score space. The solution (w,b) returned by the SVM ordinarily varies with the choice
of the metric matrix, as does any learning algorithm which derives its solution through
calculating distances between members of score space. The choice of metric is discussed

next.
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3.5.4 The choice of metric

The statistical models in this chapter are assumed Riemannian manifolds with a metric in
tangent space. Tangent spaces are also assumed Hilbert spaces. An affine space is defined
in tangent space with an affine frame defined on the natural basis. The elements of the
natural basis are not in general orthonormal or even orthogonal, and their orientation and
magnitude relative to one another generally vary across the manifold. The metric permits
the calculation of distances in tangent or higher rank tensor spaces defined on the tangent
space and its dual. The metric is fully specified by a metric tensor g. An example of
the application of the metric tensor is the calculation of scalar products in tangent space.
Assuming the statistical manifold has a Riemannian connection, the connection coeffi-
cients are uniquely determined by the components of the metric tensor and, as detailed in
Appendix B.1, are required to evaluate the Taylor expansion along the manifold. Metric
tensors are discussed in more detail in Appendix D. This section proposes some metric
tensors suitable for tangent spaces. For brevity, this section only considers the tangent
space to statistical manifolds. A similar analysis is possible for its denormalisation and

those submanifolds in its extended denormalisation which are differentiable.

3.5.4.1 Metric tensors for tangent space

Log likelihood scalar field over S(6,)

For O, € L(O), a scalar field is defined as <(q); : p; — Inp(Oy; p,) where p, € S(8,). This
corresponds through the coordinate chart 1, : p, — 6, to the scalar field ¢(¢); : 8, —
Inp(O;; 0,). The definition of ¢(g), is extended to the total space of the fibre bundle with
base manifold S(0,), and ¢(g); similarly. When mapped into the tangent space, the scalar
field over the coordinate space yields the gradient V<(g); where,

Nq

0
9 = —1 ; A1
V<(g) ;:1 50,y np(0y;0,) . (3.118)
A suitable metric for this tangent space is,
0 0
gii(0,) = / -Inp(0;0,)—— Inp(0O;0,)p(0)dO 3.119
J( Q) a(eq)z ( q) a(eq)J ( (1) ( ) ( )
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where the covariant derivatives are evaluated at point (6,)o. This metric tensor is a second
order moment in tangent space. If p(O) = p(O;8,)|e,~(s,),, then the first order moment
is additionally zero and the metric tensor is also a second order central moment. It is
then called the Fisher metric (see Section 2.2 of [3]). The Fisher metric is maximally
noncommittal with respect to the relative importance of each component of tangent space
to the squared norm of V{(¢); as O, varies, but assuming a diagonal Fisher metric (see
Appendix D.1 for more details). Of course the maximally noncommittal notion is only in
terms of the distribution of samples p(O;6,). The Fisher metric is also invariant to ex-
pressing distributions over their sufficient statistics (see Appendix D.1.3). Unfortunately,
when p(O) # p(O; 0,)|6,=(,), and the first order moment is nonzero, any distances calcu-
lated with this metric tensor are more sensitive to those components with large nonzero
first order moments. An alternative metric tensor which counteracts this bias and is maxi-
mally noncommittal but with respect to the zero-mean gradient in score space (VS(q);— it)

even when p(O) # p(O;8,)e,=(,), 1S

9i7(0g) = /(8(§q)i Inp(0;8,) — Mz‘) (a(gq)j Inp(0;0,) — ,uj)p(O)dO (3.120)

where,

pi = /%q)ilnp(();ﬂq)p(@w (3.121)

all covariant derivatives are evaluated at (6,)o, and g = (u1,. .. n,)" . This metric is
however only invariant to sufficient statistics for various distributions and sufficient statis-
tics and no longer in the general case. The fully covariant components g;;(6,) may be
assembled into a matrix written as G(6,). The fully contravariant components ¢/(6,) are
defined such that when assembled into a matrix G(0,), then G(8,) = [G(0,)]"'. Where
there is no ambiguity as to the manifold, then the metric matrices may be written as G

and G.
Decomposable scalar field over S(¢)

A decomposable scalar function exists,

$(0;¢) = Zc(q)lnp(O;Hq) ,c(q) #Mm(0) (3.122)



where fn(-) is a generic function which varies with its argument. An example of such a
decomposable scalar function is the log likelihood ratio between two competing classes.
The function is a field which varies over L(O) x L(§;S). For a fixed O, € L(O), a scalar
field G : € — $(Oy; &) varies over L(€;S). The definitions of both fields are extended to
coordinate space corresponding to the total space of the fibre bundle. The tangent space

at a point Py € S(€) with coordinate vector €, is,

Tp,(S) = span{g, . %H&EO (3.123)

where n = Zqul ng is the dimension of S(§) and hence of the tangent space. The scalar
field ¢ can be decomposed into individual fields over individual statistical models. The
tangent space is therefore the direct sum of () class-conditional tangent spaces of form
T(p,)o(S) which are linearly independent and where Py = ((p1)o,.--(Pg)o). The metric
tensor for the tangent space to S(&€) can therefore be defined from the metric tensors of
the tangent spaces of each individual statistical model. In component form,

4 \
( 1

1=m— Zz:1 Ny
j=1- Zq;l N
c(9)°95(0), | .., = , oo a=1{1,...Q}
gmi(§) = 5 Do <m <Yy (3.124)

-1
ho e << DTk e

/

\ 0, otherwise

The metric tensor is a block-diagonal structure and implies the absense of ‘cross terms’
in the Taylor expansion. This is reasonable. For example if the metric tensor in tangent
space is the global covariance of members of tangent space, then it is reasonable to assume
that the covariant derivatives relative to the parameters of different statistical models are
decorrelated, thereby implying the absense of ‘cross terms’. This decorrelation assump-
tion is not implied by the independence assumption between the parameters of different

statistical models.

The fully covariant components of this metric tensor may be assembled into a matrix
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c(1)2G(6,) 0 0
G() = (_) C(Q)QG(%) o (,) (3.125)
I 0 0 . c(Q)*G(8q) |

By definition, the inverse relationship yields G(¢) = [G(¢)]~" and the components of G(£)

are the fully contravariant components g™ (€) of the metric tensor.
Nondecomposable scalar field over S(§)

If the scalar function ¢ cannot be decomposed in the manner of Equation 3.122, then it
is difficult to express a fibre over the base manifold S(€) as a direct sum of fibres over
individual base manifolds S(6,). In this case, a metric tensor is calculated directly in
the tangent space for S(€) described in Equation 3.123. A sensible metric tensor is the
covariance in tangent space which is maximally noncommittal in the sense described above.
The covariance in tangent space for a general scalar function ¢ : (O, &) — ¢(O;€) is then,
9i;(§) = /(ic(O;ﬁ) - ui) ((%c(o;g) — ,uj)p(O)dO (3.126)

where,

b= / a%qo;e)p(omo (3.127)

and where covariant derivatives are evaluated at £,. This metric tensor may have nonzero
entries for all its components. However a block diagonal structure can be enforced. The
metric tensor has a nonlinear relationship to the metric tensors for the tangent spaces
of individual class manifolds, when those metric tensors are calculated as covariances
on the log likelihood scalar function. The fully covariant components can be arranged

into the metric matrix G(£). The fully contravariant components are available from

G(€) =[G(o)] "
Calculating scalar products in tangent space

For Oy, O,,, € L(O), two scalar fields are defined as G : € — $(Oy;€) and G, : € — $(O; €)
where & € L(€;S). Each of these scalar fields can be mapped to gradients in tangent
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space at a point Py € S(€) with coordinate vector &,. The scalar product between the

two gradients is,

(Ve Von) ZZ 0i)9(6)" 35;5(0mi6) (3.128)
=1 j=1

where covariant derivatives are implicitly defined at point &,. In linear algebraic form,
(V& V&) = Vq G(§) Vin
= Vg [GE)]" Vi (3.129)

where G(¢) and G(€) are described above. Consequential to this is the definition of the
‘natural gradient’ [2] defined as V§ = [G(£)]"'Vg and which is described in [52] as the
direction of steepest ascent for the scalar field along the manifold. The natural gradient

is simply the conventional gradient in contravariant component form.

Having considered metric tensors for individual samples O, it is sometimes useful to pro-
pose a metric tensor for a sequence O of £ i.i.d. samples. There is in general no simple
relationship between the metric tensor g(&; O) for a single sample, as denoted above by
g(£), and the metric tensor g(&; O) for a set of samples. An exception is the Fisher metric

where, for the statistical model S(6),

Ideally metric tensors should be invariant to sufficient statistics. However only the Fisher
metric fulfills this invariance requirement for all distributions and sufficient statistics. It is
defined on the log likelihood scalar function. However noninvariance to sufficient statistics
is tolerated since it permits the application of a wider variety of scalar functions. However
this ties the metrics to a particular set of sufficient statistics for the statistical models.
This is analogous, though perhaps less severe, to a ‘distance function’ which is not a tensor

and is tied to a particular coordinate system for the base manifold.

3.5.4.2 Metric tensors for score spaces

Having defined different metrics for the tangent space of a manifold S(8,) or S(§), it is

sensible to define metrics for the linear spaces defined on tangent spaces and their duals.
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<1(0,1)
For example for linear spaces of form L (ag; 745 0, ¢(9)S(q), (04)0) which, for 7, = 72%

q
are elsewhere called score spaces, the metric tensor must be defined in a manner consistent
with that for the tangent space. Once the metric tensor for the linear space is defined, it is
straightforward to calculate the metric tensor for the dual space by the inverse relationship.

From above, G(8,) is the metric matrix for tangent space and G(8,) for its dual.

For brevity, the metric matrices for the dual of score space are analysed since it is con-

ventional to consider the fully covariant components of metric tensors. Furthermore, the

metric tensor is obtained in this form if calculated as the covariance of members in score
<1(1,0)

space. For L (oeg; 74, 0, ¢(q)S(q), (0q)0)|Tq:T;ay, the dual of score space, the metric-like

quantity is the (§, X d§,) metric matrix A(p, 8,) where,

4

S = Y (ng) (3.131)

r=0
and using ® to denote the Kronecker product of matrices and 0 to represent a matrix of

zeros of the appropriate size,

1 0 0 0
0 G, 0 0

A(00,) = |0 0 &2_,G6, ... 0 (3.132)
0 O 0 o ®_,G(6,)

The use of A(p,@,) ensures the isomorphism between the relevant tensor spaces and the
dual of score space is isometric. Substituting G(8,) for G(6,) in the right hand side
of Equation 3.132 yields A(p, 8,) which is the metric matrix for score space. The two

matrices are related by an inverse relationship so A(o, 8,) = [A(o, 8,)] .

Whether the scalar function is decomposable according to Equation 3.122 or not, the
<1(1,0)
metric matrix for the dual of score space L (B:T,0,5,&,) is of size (0 x §) where,

e T
5=y (Z nq) (3.133)
r=0 g¢=1
Then if G(£) is the metric matrix for the dual of tangent space formed from fully covariant
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components, then A(p,§) is,

(1 o 0 0 ]
0 G(¢) 0 0

A(€) = |0 0 &_,GE) ... 0 (3.134)
|0 0 0 o ®70G(€) |

Again replacing G (&) by G(€) in the right hand side of the equation yields A(p, &) which
is the metric matrix for score space. Again A(p, &) = [A(o,&)]™". If the scalar function is

decomposable, then G'(€) is as given in Equation 3.125.

3.6 Application to experiments

This section gives details concerning the relaxation of constraints permitted when training
linear discriminants in score space. First, when scalar products are used to train such a
linear discriminant, it is acceptable to relax the constraints on the metric tensor providing
the weight vector of the discriminant fulfills the constraints required for the relevant sub-
manifold. For example, the score space may simply be viewed as a type (0, 1) tensor space
and a metric defined in this space. Such an approach was adopted for the experiments in
this thesis with o = 1. In these experiments, the metric matrix for the dual of score space
defined on S(&) was®,

ane = |V ° (3.135)

0

where ¥ was the diagonal covariance matrix in tangent space and v was not necessarily
unity but the variance in the zeroth degree subspace. The metric matrix for score space
was then A(1,€) = [A(1,€)] . By this means the contribution of the zeroth degree
covariant derivative to the square of the norm of a member of score space was sensibly

scaled by its inverse variance 1/v.

6 A similar approach was also applied to score spaces defined on single models such as S(8,) or S(0).
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Furthermore, in the experiments no attempt was made to ascertain whether the relevant
scalar fields were analytic about the points of expansion or what were their domains
of convergence. This was of no consequence for the validity of the solutions obtained.
However no attempt was made to verify whether it was possible to relate the weight
vector of each linear discriminant trained in score space to valid distributions in the total
space of the corresponding fibre bundle. This was simply for convenience, and constrained

optimisation would otherwise be required to guarantee the relationship.

3.7 Summary

This chapter has introduced the concept of viewing a statistical model as a differentiable
manifold in the space of scalar functions. Scalar fields vary over the statistical manifold
and the Taylor expansion for recovering values of this scalar field at distant points on
the manifold was presented. Rather than assume the coordinate system is Euclidean, ex-
pressions were presented permitting nonzero curvature in the statistical manifold. Next
a fibre bundle was introduced as a structure also existing in the space of scalar functions
and with the statistical manifold as its base. This permitted a principled approach to
approximating the Taylor expansion by evaluating the scalar field at a point outside the
base manifold but within a fibre. By considering submanifolds of fibres in the space of
distributions, a fibre bundle could be defined as an augmented form of statistical model,
where the augmentation was relative to its base model. It is then possible to estimate
distributions within the total space of the bundle but not necessarily within the origi-
nal statistical model. Maximum likelihood and discriminative estimation techniques were
presented in the context of a vector bundle, and particularly in the context of fibre sub-
spaces called score spaces. The vector bundle is closely related to the aforementioned fibre
bundle, but more readily permits the application of ‘distance-based’ learning algorithms.
Some suitable metrics were then proposed with a view to calculating distances within score

spaces or defining connection coefficients on the base manifold.
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Chapter 4

Score spaces for classification

The previous chapter introduced the concept of score spaces. Score spaces may be viewed
as ‘tools’ to train scalar functions in the total space of fibre bundles. More generally, they
may be viewed as model-based feature spaces in which statistical models or classifiers can
be trained. This chapter adopts this general view. Section 4.1 introduces some simple
score spaces relevant for the thesis. Sections 4.2 and 4.3 discuss the nature of score spaces
and factors affecting classification performance in score space. Section 4.4 describes some
common training criteria for statistical models from the perspective of a simple score
space. Section 4.5 discusses why a distinct division between the score mapping and score
space classifier may be advantageous. Section 4.6 then describes a normalisation technique

applied for variable length patterns.

4.1 Description of different score spaces

In Chapter 3, statistical models were proposed to model samples in input space. Given
a statistical model S(0), a Taylor expansion can be taken about a point or distribution
po € S(0) up to the order p. The covariant derivatives in the Taylor expansion can be
assembled into a linear space called a score space as defined in Section 3.4.3. The technique

is a model-based mapping from input space to a new ‘feature space’. The term ‘score map’
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introduced in [73] is extended to describe all such model-based mappings.

In the experiments in this thesis, the set of statistical models S(£) is either a set of class-
conditional GMMs or HMMs. For clarity, a point Py € S(€) corresponds to a particular
set of Gaussian Mixture Distributions (GMDs) or Hidden Markov Distributions (HMDs).
As detailed in Section 3.4.3, the notation for score spaces can be considerably simplified.
Hence for the model for class wy, oy € L(e) and 7, = 7,;% are assumed, and the linear
space,

~1(0,1)
L (o7, 0,¢(9)5(q), (8)0) = ¢""(0,(04)0)

ta;
Tq=Tg""

where the superscript ‘sup’ contains information relative to the scalar field, and g is simply
replaced by the order of exponentiation where ¢ € {0,1}. Though simple, these score
spaces illustrate important principles without heavy analytical or computational cost.
In this chapter, the unit degree covariant derivatives are often restricted to those with
respect to Gaussian means. This is simply for convenience but also because these covariant
derivatives are often the most discriminative (e.g., see Section 6.3.4). These simple score

spaces may also be spliced together to form appended score spaces.

The notation for a set of () class-conditional statistical models is as described in Sec-
tion 2.2.1. Scores are detailed for a sample O; € L(O). The simplest of the score spaces

are those where p = 0.

e Likelihood score space, p™(9(0,(0,)o): for class w,, this is a l-component space
consisting of a log likelihood scalar field evaluated at point (8,)o. The score for O,

is unbounded and,
#“(01;0,(8,)0) = | Inp(Oy;(8,)0) (41)

e Likelihood-ratio score space ™) (0, €,): the 1-component log likelihood-ratio score
space between classes w, and wj evaluated at point &, = ((0,)g,(0s)4)". The score

for O, is unbounded and,
@ (01:0,€) = | mp(Oy; (8a)o) — Inp(Oi; (64)o) (4.2)
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Posterior score space, pP@(0,&,): this 1-component score space for class wy is the

output of a log class posterior scalar field. The score for O; is unbounded and,
P"9(00,&) = | mP(w,l0) (4.3)

Linear likelihood score space, ™9 (0, (8,)o): the linear form of the above likelihood

score space for class w,. Lower bounded by zero, the score for O is,
#9050, (6)0) = [ p(Oy; (6,)0) | (4.4)

Linear posterior score space, o*'9(0,&,): the linear form of the above posterior

score space for class w,. The score for O; is bounded by zero and unity and,
¢9(0530,¢) = | Pw,0) | (4.5)

Appended likelihood score space, ©'®(0,&,): formed by appending the individual
likelihood score spaces for different classes. For () classes, this yields a ()-component

score space. The score for O, is unbounded and,

[ 10p(0s; (8:)o)

&(0:0,6) = | Inp(O: (8,)o) (4.6)

| Inp(Oy; (6g)o) |

Appended posterior score space, ¢P*@D(0,&,): identical to the appended likelihood
score space except that log class likelihoods are replaced by log class posteriors. The
class posteriors provide all the information necessary to implement a MAP decision
rule. For O, the score is bounded by sum-to-unity constraints on the linear class

posteriors and,

[ InP(wi|0)

P (04;0,€)) = | InP(w,]O)) (4.7)

| In P(WQ‘Ol) i
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Score spaces may also be defined with o = 1, i.e. on zeroth and first degree covari-
ant derivatives. Definitions follow an identical pattern to the corresponding zeroth order
score spaces. The number of parameters and dimension of model S(8,) is n,. Covariant

derivatives are implicitly taken at (6,)o or &, as appropriate’.

e Likelihood score space, o™ (1,(0,)o): this has (n, + 1) components and for Oy, the

score is unbounded and,

lnp(ol; (oq)O)

P (051, (60,)0) =
Ve, Inp(Oy; 6,)

(4.8)

e Likelihood-ratio score space, ¢*®P)(1,€,): this has (n, + ny + 1) components with

unbounded score for Oy,

Inp(Oy; (64)0) — Inp(Oy; (03)0)
PP (051, ¢)) = Ve, Inp(0y; 6,) (4.9)
—Ve, Inp(Oy; 6)

e Posterior score space, pP*@ (1,&,): this has (1+ 25:1 n,) components with score for
Ol:
In P(w,|Oy)

™ V(0;1,¢) = (4.10)
Veln P(w,|O)

The appended likelihood score space @@ (1,&,) and appended posterior score space
Pl (1 &,) are defined similarly to the case where o = 0. However there are many
repeated components in the score space ¢P*@(1,¢,). This linear space can be reduced
in size without sacrificing any information to give the reduced appended posterior score
space P (1, €,) with Z?Zl(an + 1) components. A slightly more generalised form of
this appended linear space is also proposed which has no straightforward relation to fibre
bundles and is simply a discriminative feature space. The score space is called the gener-

alised appended posterior score space denoted by 8@ (1, £,) and also has ZqQ:l(?nq+ 1)

!For convenience there is a slight abuse of notation for covariant derivatives as explained in Ap-

pendix B.3.
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components. These two score spaces are detailed in Appendix B.4. Also proposed and
detailed in Appendix B.4 is a hybrid score space which combines the zeroth order linear
posterior score space and the unit degree covariant derivatives of the appended likelihood

score space. This is denoted by ¢P™@ (1, ¢,) and has fewer components at Zqul(nq +1).

If S(0) is a single statistical model for @) classes and has dimension and number of param-

eters n, then for p € {0,1},

e Likelihood (Q-class) score space, Q) (p,0;): this is identical to the likelihood
score space (@ (g, (6,)o) except the defining distribution is marginalised over the

class labels.
When @ = 2, another score space implicitly defined by the Fisher kernel in [52] is,

e Fisher score space, ¢™®P)(8,): this is identical to the likelihood (2-class) score space
@b (1, 6,) except for the omission of the zeroth order subspace. The score space

has n components.

Whether a statistical model refers to a single class or is marginalised over more than one

class should be clear from context.

The unit degree covariant derivatives for the log likelihood, log likelihood-ratio and log
class posterior scalar fields are detailed in Appendix B.3 for statistical models which are
HMMs (GMMs may be viewed as single state HMMs). All score spaces calculated in this

thesis are defined on these statistical models.

4.2 The nature of the score mapping

An understanding of the nature of score spaces and score mappings is useful (see set theory

in Section 376 of [50]). To recap, L(O) is defined as the open set of all possible samples
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determined by the source. For a statistical model S(0) and a point 8y € L(0;S), a score
mapping ¢ may be defined?,

¢:LO) — ¢(0,8)) (4.11)

where ¢(O, 0,) is the image space and is a possibly open, closed or boundary set within
the score space ¢(6). The score space is assumed isomorphic to R’ where ¢ is the size of

the score space. Hence for O, € L(O) and @(O; 8,) € ¢(0O,0y),

The score mapping is a surjection with respect to the subspace ¢(O,0,), and certain
regions of score space may be ‘unreachable’ from L(O). In addition, the score mapping may
either be injective or noninjective. Mappings which are surjective and injective are bijective
and imply an inverse mapping exists. These principles are illustrated in Figure 4.1(a) for

a noninjective mapping .

Two important subspaces of score space are defined by the data sequences or samples
mapped into score space. If there are £ training samples summarised by the sample set O,
then their £ training scores define the vertices of a hyperpolyhedron ¢ (O, ;) in score space.
The span of the hyperpolyhedron is a linear subspace ¢(sp, O, 6y). In Figure 4.1(b), a mag-
nified version of Figure 4.1(a), the hyperpolyhedron (O, 8,) is represented by the shaded
region and ¢(sp, O, 6y) is labelled along its limiting boundaries. The subspace (O, 0y) is
strictly enclosed within the image space ¢(O, 8y) and may be nonlinear due to restrictions
induced by the distribution pg € S(@) in input space. The subspace ¢(sp, O, 0y) is strictly
enclosed within (sp, O, 0y) which is the span of the image space ¢(O, 6,). Hence,

¢(sp, 0,00) C ¢(sp, 0,00) C p(6) (4.13)
©(0,8y) C ¢(sp,0,8) (4.14)
©(0,0y) C o(sp, O, 0y) (4.15)

Also, dim(¢(0, 0y)) < dim(L(O)) where dim(p(0, 8y)) is sometimes called the intrinsic

dimensionality of the structure in score space. A simple illustration is given in Figure 4.2

2The scalar field ¢ and order of expansion p are assumed known and are not explicitly detailed.
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manifold ¢ (O, 8¢)
‘reached’ from

input space

surjective
with respect to

‘p(0700)

L(0) ¢ ¢(60)

(a) The score mapping is noninjective

different manifolds

in (p(@o) different decision
boundaries trained
A @ in score space
w(sp, 0, 8¢)
2
! 5 3
#(sp, 0, 60) § @
#(sp, O, 80)
#(sp, 0, 00)
S I
¢ (sp, 0, 00)
#(0,80)
(0, 6q) @
#(sp, 0, 89)
@ @ { ¢(sp, O, 80)

(b) Different subspaces within score space

Figure 4.1: Illustrating a score mapping and corresponding score space
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P(1|0)

B

'

S scores constrained to a
' / triangular manifold ABC

0 = P(w|0)

A A& is the 1-dimensional
P(w3|0) &7 manifold BM
[ 3-dimensional score space ¢ (&) }

Figure 4.2: Example of an image space ¢(O, &) in score space

for the appended linear posterior score space P (0, &,) and its associated score map-
ping. A 3-class task is presented. The entire space of input samples L(O) is mapped
onto a finite 2-dimensional boundary set ABC defined by the zero-unity bounds on class
posteriors and their sum-to-unity constraint. Any point outside the set ABC cannot pos-
sibly be reached by the score mapping. However, the structure of the distributions Py in
input space may additionally constrain the permissible combination of class posteriors. As
a result the image space @@ (0, &,) may be a subset within ABC. A trivial example
is presented where the class posteriors P(ws|O) and P(ws|O) are always identical, e.g.
when class priors are identical and class-conditional distributions coincide. This restricts
the scores to a 1-dimensional line on ABC which is P! (0, ;). Hence both the score

mapping and distributions Py impose constraints on the image space.

The nature of the mapping from input space to score space is also described by the metric
it induces in input space. Both [1] and Remark 3.16 in [19] view the input space L(O) as

a Riemannian manifold and the image space here abbreviated to ¢(QO) as a linear space.
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A metric g(Oy) is defined on the tangent space to this manifold at a point with coordinate
vector Oy € L(O) (this is in a similar manner to the metric g(6,) defined on a Riemannian

statistical manifold at a point with coordinate vector 6y). A mapping is assumed,
v:L(O) = ¢(0) (4.16)
Following [1], the metric is described by a tensor with component g;;(Op) set to the scalar

product of the gradients of ¢(O,) and @(Oy), where O,, Oy € L(O) and ¢(0,), p(O0) €

©(0). Hence,

3500 = 50), = (50590 565¢0)

- (ngm’““’“ob))

If both O, and O, are single observations of equal length with d components, then the

0,=0,=09

(4.17)

0,=0,=09

components (O,)% i = {1...d} are linearly independent and (O,)’,j = {1...d} are also
linearly independent. The metric tensor g(QOy) has (d X d) components. If both O, and O,
are sequences of observations and individual observations are not i.i.d., then the dimension

of the input manifold is difficult to determine.

The metric g(Oy) describes the infinitessimal change in the image vector @(O) for in-

finitessimal changes in the components of the input space at Qgy. For a d-component input

space,
d d ' _
WO, = 303 0,(00)a(04(0) (4.18)
-0 i=1 j=1
where || - || denotes the norm. This metric is induced by the mapping ¢ or by a kernel

function which implicity defines the mapping. Alternatively any positive definite metric
may be substituted for the metric in Equation 4.17, tantamount to assuming a different
mapping or kernel. A different expression for this metric tensor is calculated in [19] and
is derived from the second order term of a Taylor expansion but the derivation in [1] is
preferred since it is clearer. Following this, [1] derive a magnification factor M (Qy) which
defines the ratio increase for an infinitessimal volume about Oy as it is mapped into the
image space. Letting det(-) and |- | respectively denote the determinant and absolute value

of their arguments,

M(Oo) = 4/[det(G(O0))| (4.19)
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4.3 Factors affecting classification performance

There are a number of factors which affect classification performance in score space. These

include,

the definition of the score space,

the noninjective nature of the score mapping,

the nature of the classifier in score space,

the number of training samples,

the magnification induced by the mapping near to the decision boundary.

These factors are described below and are related to the experiments later in the thesis.
The factors have a complicated interaction and the effect of one cannot be viewed in

isolation.

4.3.1 Definition of the score space

The score space may simply be viewed as a collection of model-dependent ‘features’. If
score spaces are always defined through Taylor expansions, the ‘parameters’ of the score
space are the defining scalar function and the order of expansion g. The order of expansion
is often limited by computational or analytical complexity, so the choice of scalar function is
often the most important influence. For the present, it is sufficient to show how score spaces
may be used to enhance class discrimination. Classes which cannot be disambiguated by
inspecting likelihoods alone can sometimes be distinguished by inspecting their scores. For
example, consider the two-class problem in Figure 4.3. The statistical model S(8,) is a
single Gaussian in a 1-component input space with variable mean p, but fixed variance.
The distribution may be viewed as a poor fit to either of the two classes w, or wy. The
two classes cannot be linearly separated by viewing the log likelihoods In p(Oj; (1,)0) alone

but can in the likelihood score space.
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Figure 4.3: Enhancing class discrimination by mapping into a score space
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4.3.2 The noninjective nature of the score mapping

A single point in input space L(O) can only map to a single point in score space ¢(O, 6,)
since the score mapping ¢ is deterministic. However two points in input space may map
to a single point in score space. The score mapping may be noninjective. Providing the
mapping is differentiable, the correspondence between points in L(O) and ¢(O, 8,) imply
decision boundaries in score space can be consistently mapped back to decision boundaries
in input space, but not vice versa. A single class region in score space may map back to
disjoint class regions in input space. However with strong regularisation in score space,
it is hopefully possible to maintain the good generalisation ability of the classifier, by a

similar argument to that for SVMs with nonlinear kernels.

The noninjective nature of the score mapping may aid or impede class discrimination?.
For example, let O,, O, € L(O) where O, # O,. The score mapping ¢ maps the two
samples O, and Oy to the same point in score space so that @(0O,) = @(O;). If the two
samples are drawn from the same class, then the inability to distinguish the two scores is
not harmful and eliminates within-class variability between the two samples. However if
drawn from different classes, then it is impossible to define a decision rule in score space
to separate these two samples. Ideally, the score mapping should emphasise or retain

between-class variability and eliminate or reduce within-class variability.

A simple example illustrates how the noninjective nature of the score mapping can limit
classification performance. Two single Gaussians are located in a 1-component input space
with means at —3.0 and 3.0 and with coincident fixed variances at 2.0. The two Gaussians
respectively represent classes w, and w,. Two score mappings and score spaces are defined.
The two Gaussians may be given equal weighting and used to form a 2-component GMM
modelling both classes. The Gaussian distributions then define a likelihood (2-class) score
space ¢'*®P)(1,0y) where 8y = ((11a)0, (11s)0) . Alternatively, the two Gaussians may be
kept distinct and used to define a likelihood-ratio score space golr(a’b)(l,ﬁo) where &, =

((1a)o, (11)0) T The 2-component projections and 3-component score spaces are plotted in

3This explanation assumes the classifier in score space has sufficient complexity to take advantage of

increased class separability in score space.
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Figure 4.4: Distributions in score space

Figures 4.4(a) and 4.4(b). The full line represents scores from class w, and the dotted line
scores from class wy, where, for convenience, class membership is assigned using a MAP
decision rule based on the outputs of the single Gaussians and assuming equal class priors.
The effect of the component posteriors in the likelihood score space causes the structure in
Figure 4.4(a) to fold back on itself and intersect at the point defined by zero gradients. This
not only introduces ambiguity at the cross-over point but also an ‘XOR-like’ classification
problem. A single linear discriminant is insufficient for separating the two classes. However
there is no folded structure for scores in the likelihood-ratio score space in Figure 4.4(b)
and there is better class separation. These remarks can be extrapolated to score spaces

defined on multiple component GMMs for each class. This is the fundamental reason why
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the likelihood (2-class) and Fisher score spaces, when defined on a distribution modelling

two classes, often perform poorly in separating those two classes.

An increase in the complexity of the defining distributions may detriment class discrimi-
nation. For example, Figure 4.5(a) illustrates the log likelihoods for two classes w, and wy
which are both modelled by GMMs with 2 mixture components. Class w, has components
al and a2 centred at -7.0 and 1.0, and class w, has components bl and b2 centred at
-1.0 and 7.0. All variances coincide at 4.0. By symmetry, the MAP decision boundary is
located at the origin O = 0.0. The plot detailing the magnification factor in Figure 4.5(b)
is explained later. The score subspace defined on unit degree covariant derivatives has
4 components. Six orthogonal 2-component projections of this subspace are plotted in
Figure 4.5(c). Again the trajectory is bold for points assigned to class w, by the MAP
classifier and dotted for points assigned to class wj, where class priors are assumed equal.
The 2-component projections show folding in score space. Such folding is a characteristic
of distant mixture components, whether or not they model the same class. Fortunately,
there is a clear linear separation in the projection of derivatives relative to g and pp,
and this indicates linear separation in the full 4-component subspace. If score spaces are
defined on more complicated GMMs, then the resulting score spaces exhibit more folding.
This suggests that increasing the complexity of statistical models may yield score spaces

with decreasing class discrimination.

4.3.3 The nature of the classifier in score space

In general, any mapping which increases the separation between classes while simultane-
ouly decreasing the variability within each class yields a space in which it is potentially
easier to distinguish classes. The adjective ‘potential’ is important since the ability to
distinguish classes is dependent on the nature of the separation in the new space and
whether the learning algorithm can take advantage of this. For example, a linear discrim-
inant cannot take advantage of a hyperquadric separation. The experiments in this thesis
favour linear discriminants in score space because of their regularisation properties and

their relation to fibre bundles.
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The generalisation properties of classification algorithms are often linked to the degree of
smoothness of their decision boundaries. The degree of smoothness may be measured as
inversely proportional to the highest nonzero derivative along the decision boundary. An
analysis of the interaction between degrees of smoothness in the score space and input
space is possible through defining a scalar function h(@) such that k(@) = 0 defines the
decision boundary ;. in score space where ¢ € ¢(6,). Splitting the score mapping ¢ into

two steps ¢(1) and ¢(2) so that ¢ = ¢(2) o (1), then defining for fixed 6y,

o(1) : O (0;6) (4.20)
©(2) : <(0;60) — @(0;6,) (4.21)
b @ (@) (422

it is possible to define a scalar function f = h o ¢(2) o (1) where,
f : O~ f(O) (4.23)

The decision boundary 7, in score space then induces a decision boundary i, in input

space at the contour f(Q) = 0. Defining all covariant derivatives at a point O,

Vi = (Vhop(2)op(1)) + (hoVe(2) op(l)) + (hop(2) o Ve(l))  (4.24)
and similarly for higher order covariant derivatives. If the decision boundary . is wholly
contained within (O, 8,) and is differentiable to maximum order r, then since the decision
boundary follows a contour on h(@), it should be possible to find a scalar function A which
is C" over score space. Providing the function ¢(O; @) is C* over L(O) for fixed 6 and
C> over L(0;S) for fixed O, then the scalar function f is C" over L(O). However there
is no means of deducing the order of differentiability of the zero contour of f, or the order
of the maximum nonzero derivative along the zero contour. It is therefore nontrivial to
deduce the ‘degree of smoothness’ for a decision boundary in input space given the ‘degree
of smoothness’ of the boundary in score space. This problem is very similar to the decision
boundaries trained in input space by SVMs with nonlinear kernels. Rather than optimise
kernel parameters such as GRBF widths, an appropriate distribution pg, scalar function
¢ and order of expansion p should be selected. The analysis is equally valid for injective
or noninjective mappings ¢. The restriction that s is contained within the image space

©(0, 8y) is unimportant since any points along s outside (O, 8y) have no projection in

L(0).
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4.3.4 The number of training samples

This section assumes a linear discriminant trained in score space has a weight vector
defined within the subspace ¢(sp, O, 8y) spanned by the training scores but no projection
in the complimentary subspace ¢(sp, O, 8)*. This assumption often applies for learning
algorithms whose solution is defined only on the data. If an unseen score is located wholly
within ¢(sp, O, 8y)*, then its classification is no better than random. Therefore, if the
dimension of the image space dim(p(0,0y)) < dim(p(0, 6y)), then the generalisation
ability of the decision rule is severly limited. Since dim(¢(O, 8y)) < ¢, the generalisation

ability normally decreases with fewer training samples /.

At this stage, it is instructive to review the decision boundaries in score space described in
Figure 4.1(b). A decision rule trained in ¢(sp, O, 6,) by default assigns a class decision to
all points in ¢(O, 0y). First, it is clear that only decision boundaries which are identical
in ¢(0, 6y) are identical in L(O). Hence decision boundaries (1) and (2) in Figure 4.1(b)
yield different solutions when mapped back to input space, but (2) and (3) yield identical
solutions in input space. Decision boundaries (4) and (2) are identical within ¢(sp, O, )
but not elsewhere in (0, 6y), and the decision boundaries differ when mapped back to
input space. The subspace ¢(O, 8y) may be nonlinear and it is possible to train deci-
sion boundaries such as (5) which are continuous in ¢(8y) but not wholly defined within
©(0, 8p). Such a boundary may correspond to two disjoint decision boundaries in input

space.

4.3.5 The magnification induced by the score mapping

There are two important aspects of magnification from input space to score space.

e If a classifier is trained to minimise errors in score space, then the classifier is more
sensitive to variations in samples from regions of input space which have higher
magnification. If the magnification factor varies uniformly across all of input space,

then the relative sensitivity to samples is transferred without loss from input space
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to score space.

e More important is the increase or decrease in separation between closely-spaced
samples as they are mapped from input space to score space. High magnification
is desirable in the locality of the decision boundary since this usually magnifies
the errors of misclassified scores. Minimal error classifiers are then biased towards
the correct classification of these scores, reducing the training error rate. However
the potential magnification of ‘noise’ at the decision boundary requires strongly
regularised classifiers in score space. Low magnification is desirable in regions far
from the decision boundary since this implicitly deweights the contribution of distant
scores to the specification of the decision boundary. Magnification factors which are

non-symmetric about the decision boundary introduce implicit cost functions.

It is instructive to compare the magnification factors from input space for a variety of
simple score spaces. A simple example is a 1-component input space L(O) which is popu-
lated by two classes of samples, w, and wyp, respectively modelled by Gaussians centred at
—3.0 and 3.0 with coincident variances at 4.0. The two Gaussians may either be combined
as a single two-mixture component GMD modelling both classes (labelled as class w(a,p)),
or kept distinct as two class-conditional Gaussians. Different score spaces are defined on
these distributions. Their log likelihoods ‘log lik.” and magnification factors M are plotted
to the same scale in Figures 4.6(b) and 4.7(a), with similar plots for other distributions in
Figures 4.6(a) and 4.7(b) (Appendix E details expressions for the metrics g(O) required
to calculate the magnification factors). A dotted line is drawn at unit magnification to

demark regions of compression and expansion from input space®.

In Figures 4.6 and 4.7, the magnification factor is nondecreasing with distance from the

decision boundary in input space, any increase originating from the zeroth order score

“For the likelihood score space for class wy, the likelihood-ratio score space between classes w, and
wp, and the likelihood (2-class) score space for both classes, the metric tensors in the tangent space
to the statistical manifolds at selected points are respectively denoted by g™(@((8,)o), g"®P)(¢,) and
g*%(@P)(9y) where the corresponding statistical manifolds are S(8,), S(¢) and S(8). Arbitrarily in these
plots, g™(@)((8,)o) is set to unity for all classes, g"*(>P) (€,) to Identity, and g'*(2")(8) has leading diagonal

components set to unity and off-diagonal elements set to 0.5.
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subspace. The most important region of input space is that directly between the two
classes. The likelihood (2-class) score space in Figure 4.6(a) has lowest magnification at
the peak of its single defining Gaussian (mean at 0.0, variance at 9.0), just where over-
lap between the classes is expected. This should be detrimental to the performance of
classifiers in such a score space. For reference, the corresponding Fisher score space has
uniform magnification across input space since there is no contribution from the zeroth
order subspace. The likelihood-ratio score space in Figure 4.6(b) has a uniform magnifi-
cation since the variances of the two class-conditional Gaussians are tied. Magnification
then plays no role in aiding or impeding classification at the decision boundary. In the
general case of unequal variances, the magnification varies quadratically with a minimum
located at a point in input space dependent on the model parameters. The minimum
may be located between or outside the peaks of the two Gaussians (see Appendix E).
In Figure 4.7(a), the two Gaussian components are combined with equal weight to form
a 2-mixture component GMD modelling both classes. The ‘trough’ of the magnification
profile becomes complicated by the component posteriors. The magnification as O — 00
is governed by the mixture component whose posterior tends to unity. Figure 4.7(b) shows
how the magnification is modified by defining a likelihood-ratio score space on 2-mixture
component GMDs for each class. Class w, is modelled by a 2-mixture component GMM
with components centred at -4.0 and -2.0, and class w, by a 2-mixture component GMM
with components centred at 2.0 and 4.0. All variances coincide at 4.0. Another example
is given in Figure 4.5(b). In general, for score spaces defined on multiple component class-
conditional GMMs, the magnification in the region of overlap is perturbed by the effect of
component posteriors. The ‘trough’ in magnification factor near to the decision boundary

does not aid class discrimination.

A technique to increase classification performance is proposed in [1] whereby the region
of image space near to the decision boundary is artificially magnified. If the mapping
is conformal, the relative angles between scores are preserved and if so, it is unlikely
that the mapping can linearly separate previously linearly inseparable scores. In [1], the
regions of artificial magnification are defined by the locations of support vectors. A similar
approach can also be adopted for score spaces. Neglecting the contribution of the zeroth

order subspace, a mapping is required which effectively increases the gradients in the

100



region of overlap between classes. Such an effect may be achieved through retraining
Gaussian mixture components nearer to the decision boundary. Variances subsequently
narrow and gradients and magnification increase. A training criterion which repositions
Gaussian components in this manner is MMIE. However, the situation is complicated by
the contribution of the zeroth order subspace to the magnification. An example and details

are given in Appendix E.

Appendix E also details how metric tensors induced in 1-component input space can
be assembled into metric tensors for d-component input space under various conditions.
Unfortunately, the task of calculating the magnification factor for a d-component space is

nontrivial due to the determinant in the expression for the magnification factor.

4.3.6 Summary

Overall, improved classification in score space is best served by selecting a score space,
such as the likelihood-ratio score space, which yields good between-class separation. The
score mapping is often noninjective but this is only detrimental to classification if two
different classes map to the same region in score space. The score mapping should also
increase magnification near to the decision boundary and decrease it elsewhere, though
this must be coupled with a strongly regularised classifier in score space. The classifier
should also model the expected separation in score space whether linear or nonlinear, but

compromise this with sufficient regularisation.

4.4 Multicategory classifiers trained in score spaces

4.4.1 Viewing the MAP decision rule as a score space classifier

An interesting set of score spaces are the zeroth order appended posterior and likelihood

score spaces due to their relationship to MAP decision rules. Such a decision rule yields
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the lowest probability of error but only when the class distributions and class priors are
correct and an appropriate loss function used. For an unlabelled sample O, the MAP

decision rule assigns the class Wyap(O) where,

Omapr(0) = argmax P(w,|O) (4.25)

we€L(w)
and L(w) = {wi,...wq} is the set of all competing classes. Without loss in generality
the class priors are assumed equal and the notation is otherwise as described for multiple
classes in Section 3.4.4. When viewed in terms of the score spaces ¢*@V(0,&;) and
P (0, ¢ o), this decision rule is defined by a set of ) piecewise linear decision hyperplanes

radiating from a central one-dimensional axis described respectively by,

P(w1|O) = P(w2|0) =...= P(UJQ|O)

or,

In P(w1|O) = InP(wy|0) =...=1nP(wg|O)

The MAP decision rule for ) = 3 is sketched in Figures 4.8(a) and 4.8(b) for the score
spaces P@(0, &) and P (0,€,) where the radiating hyperplanes are labelled as
‘max hyperplanes’. Since there is a sum-to-unity constraint for the class posteriors, the
projections @*'@(0y; 0, &,) and @@ (0y; 0,&,) for O; € L(O) are constrained to lie on
a 2-dimensional structure, in general a (@) — 1)-dimensional structure. Each figure sketches

the shape of the decision boundaries.

The (@ — 1)-dimensional structure is linear in Figure 4.8(a) and nonlinear in Figure 4.8(b)
in the frame of the score space. The MAP decision rules are respectively piecewise linear
and piecewise nonlinear along these structures. For this reason, a piecewise linear multi-
category classifier is sufficient for recovering the MAP decision rule when trained directly
in oP@ (0, ¢,), but insufficient when trained directly in P (0, &,). Due to model in-
correctness, it is useful to train alternative decision rules in P (0, &,) or @P@ (0, &,).

This is investigated in some experiments later in the thesis.
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4.4.2 Viewing MLE and MMIE learning machines from score

spaces

The training criteria applied to train statistical models in the baseline experiments in this
thesis may be described from the perspective of appended zeroth order linear likelihood
and linear posterior score spaces (@) (0, &,) and ©P!@(0, &,). The statistical models

are assumed mixture models in this description.

For training, there is a set of ¢ training samples O = {O,,...O,} and w(O0,) € L(w) =
{w1,...wg} is the correct class for sample O; € L(O). The Maximum Likelihood Estima-
tion (MLE) and Maximum Mutual Information Estimation (MMIE) training criteria are

described in Section 2.2.2 and select the sets of distributions Py € S(§) to respectively

Fwe€) = Y Inp(Oifw(Oy)) (4.26)
¢
FMMIE(&) = ZlnP(w(Ol)|Ol) (4.27)

where p(O;|w,) and P(w,|O;) are respectively the class likelihood and class posterior for

sample O; and class wj.

The MLE criterion is best viewed in the score space of linear class likelihoods ™ (0, &,).
The constraints on the class likelihoods restrict the scores to the positive hyperquadrant
of score space. This is illustrated for a simple 3-class problem in Figure 4.9(a). The
sketch implies an Identity metric matrix for this space though this is not necessary. For
clarity, the projections of the scores on the linear plane p(O|w;) = 0 are sketched. The
measure of importance for each sample O is the log likelihood of the correct class w(O).
Geometrically, this is the log of the norm measured parallel to the axis for p(O|w(0O)),
interepreted as the likelihood margin of the sample. The MLE criterion attempts to recover
the distributions Py which, at least locally, maximise the average likelihood margin across
all training samples. This average may be interpreted as the likelthood margin of the
training set. If each class model is a mixture model then the assignment of samples to

mixture components is unknown. The EM algorithm is applied and the likelihood margin
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spaces

of the training set is nondecreasing with each EM iteration. Successive iterations modify
Py in such a way that the scores in score space migrate outwards from the origin in an
average sense. Unfortunately, there is no mechanism which prevents scores from migrating
outwards in close proximity to the max hyperplanes. Hence small amounts of incorrectness
in the distributions Py may be sufficient to force unseen scores across onto the false sides

of the max hyperplanes. This is a weakness of MLE.

MMIE may be viewed from the appended linear posterior score space gDPSI(aH)(O, ;). Fora
(Q-class problem, the sum-to-unity constraint and zero-unity bounds on the class posteriors

restrict the scores to a closed set on a (@) — 1)-dimensional plane. This is illustrated for
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the 3-class problem in Figure 4.9(b), where without loss in generality an Identity metric
matrix is assumed for this space. The scores are restricted within the triangle ABC. In
this case the measure of importance is the log posterior of the correct class. For a sample
O € L(0), this is the log of the norm measured parallel to the axis P(w(O)|O) and is
the posterior margin of the sample. It is instructive to view posterior margins in terms
of the scaled distances® along the trangular plane ABC rather than distances parallel
to the axis P(w(0)|0). The distance along the plane can be interpreted as the norm
between the score and the edge of the manifold lying opposite to the ‘correct vertex’ (for
example, if O belongs to class ws, then the ‘correct vertex’ is vertex A which lies opposite
to edge BC). The log of this distance is the posterior margin of the sample along the plane.
The average of these posterior margins across all training samples may be interpreted as
the scaled posterior margin of the training set. The MMIE criterion seeks to estimate
distributions Py, which maximise the posterior margin of the training set. An EM-like
framework (e.g. [111]) may be applied which iteratively modifies the distributions P, to
increase the posterior margin of the training set. However with successive iterations of
MMIE, the sum-to-unity constraints force all scores, at least in an average sense, to migrate
towards the ‘correct vertices’ of the (@ — 1) dimensional ‘hypertriangle’. Consequently,
all scores are driven away from the max hyperplanes and training error rates are typically
very low. If an unseen sample is mapped onto the manifold, then if the distributions P, are
sufficiently regularised, then the resulting score should lie far from the max hyperplanes

and can be labelled with confidence.

The likelihood and posterior margins for the training set are fundamentally different from

the margin of the training set applied to an SVM.

e The margin of the training set for MLE or MMIE is the average of the margins
for individual samples, but for the SVM it is the minimum of the SVM margins
for the individual samples as measured in a feature space. So MLE and MMIE are

‘max-average’ techniques, while the SVM is a ‘max-min’ technique.

e For MLE and MMIE, all samples contribute an error in the calculation of the like-

5If the posterior margin is 7vps and the posterior margin along the plane is Ypsm, then vps = (1/2/3)Vpsm-
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lihood and posterior margins of the training set. In this respect, the edges of the
positive quadrant in @™ (0, &,) or of the (Q — 1)-dimensional ‘hypertriangle’ in
eP1@ (0, ¢,) fulfil a similar role to the canonical hyperplanes in the SVM feature
space. However for SVM learning, only the samples which lie on the ‘incorrect side’

of the canonical hyperplanes contribute an error.

The SVM selects its feature space by an arbitrary but powerful mapping induced by a
kernel function, and then learns a linear decision rule in this new feature space. These
feature spaces may include as special cases either o (@ (0, £,) or P (0, &,). In either
of these cases the SVM cannot train the score mapping but directs all effort into training
a linear discriminant in score space. However MLE and MMIE learning machines direct
all effort towards training score mappings into @ (0,&,) or P (0,&,), and then
apply max decision rules® in these score spaces. Of course, both MLE and MMIE learning
machines may be combined with training SVMs in score space. This approach is taken
in the experiments in this thesis. Unfortunately SVMs are binary classifiers and schemes

such as majority voting or multicategory extensions [109] [48] are required.

4.5 Complexity in the score mapping and score space

classifier

There is degeneracy between the score mapping and score space classifier and a score
mapping can sometimes be incorporated into the classifier by techniques such as kernelisa-
tion. The resultant classifier then operates in the input space rather than the score space.
However this thesis prefers to maintain a distinct division between the score mapping and
the score space classifier for the following reasons, rather than kernelise all algorithms and

specify them in the input space.

e The division permits the application of a greater diversity of learning algorithms

and feature selection techniques in score space. For example, kernelisation does

6 Assuming equal class priors.
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not permit the training of score space classifiers specified on second order central

moments defined in score space.

e Learning algorithms often use training data multiple times to optimise a criterion.
Mapping each sample into the score space where it is stored temporarily incurs a
once-only computational burden. This improves computational efficiency over its

kernelised form which must repeat calculations each time a sample is accessed”.

e Kernelisation hides the structure of the score space.

The complexity of the classifier is the union of the complexity of the score mapping and
the score space classifier. Since the total complexity is limited by the quantity of training
data, then it is sensible to question whether the number of parameters required to specify
the distributions in input space and the score space classifier may not be better utilised
in increasing the complexity of the distributions in input space, and then applying the
conventional MAP decision rule. The approach via the score mapping is favoured for the

following reasons.

e Simple score space classifiers can map back to complicated decision boundaries in
input space by virtue of the nonlinear score mapping. Given a fixed number of
parameters to estimate, it may be difficult to obtain these decision boundaries using

a MAP decision rule operating on distributions in input space.

e Strongly regularised classifiers in score space may compensate for some model incor-
rectness in the distributions defining the score mapping. By a similar argument to
SVMs with nonlinear kernels, it is hoped that training a strongly regularised classifier

in score space should yield a classifier with good regularisation in input space.

However, decoupling the score mapping from the score space classifier effectively introduces
a ‘filter’ method of feature extraction. Hence the score mapping should be chosen with

care considering the factors described earlier in the chapter.

"This assumes the functional complexity of the score mapping and corresponding kernel are similar.
The argument would be reversed if the kernel function were of a much simpler form than the mapping,

for example for SVMs with GRBF kernels.
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4.6 Sequence length normalisation

The degeneracy between the score mapping and the score space classifier implies that a
particular aim can often be achieved by increasing the complexity of either the mapping or
classifier. An example for classifying variable length patterns is normalising the variability
due to pattern length when it is considered primarily a within-class variable. For example
in speech recognition, the duration of a speech unit depends on factors including context,
and speaker manner and accent. This section proposes some methods which attempt to
normalise the effects of pattern length by modifying the score mapping. The class of tech-
niques is called sequence length normalisation originally proposed by [35]. The proposals
concentrate on score spaces defined on the log likelihood scalar field and statistical models

which are HMMs (relevant covariant derivatives are detailed in Appendix B.3).

4.6.1 Different forms of sequence length normalisation

Score spaces are here restricted to those defined on zeroth and first order covariant deriva-
tives of the log likelihood scalar field for an HMM. The sample O; € L(O) is an observation

sequence where,

Ol = ((Ol)l, e (Ol)Tl) (428)

The score space is as detailed in Appendix B.3. For class w, and the log likelihood
1(01;6,) = Inp(0y;0,), a member of score space @ (0y; 1, (0,)0) € ™ (1, (0,)o) is,

l(Ol; Oq)

2 _1(0,; 0
@lk(Q)(Oz;la(eq)o) — 6pq(a)( 1;8,) (4.29)

6aq((9j,j) 1(0; 6,)

where the scalar field and covariant derivatives are evaluated at (6,)o. The term p,(7)

refers to a parameter from state j so pg(j) € { gk Vk, ZgjuVk, wer - k = {2,... K}}. The
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score mapping is,
PV L0) = MO(1,0,(6,)) (4.30)

where (9 (1, 0, (0,)0) C @™ (1, (8,)o) is the set of ‘reachable’ points in score space. The
log likelihood 1(Oy; 8,) is calculated for the whole sequence using the forward-backward
algorithm [80]. If the log likelihood is approximated by the most probable path, i.e.
there is a Viterbi approximation, then the definition of the score space is identical to
that in Equation 4.29 except [(Oy; 0,) is substituted for {(Oy; "', 8,) where 1"* refers to
the state-level Viterbi path. Then the member of score space is @V (Oy;1,(8,)o) €

P D(L, (4)o)-

The log likelihood and covariant derivatives are sensitive to variations in the length of the
sample. However the normalisation of all length information is undesirable since length
is sometimes still a cue for distinguishing different classes, for example different units of
speech, in addition to being a source of within-class variability. For this reason, only
selected components of the score space are normalised, in particular those derivatives
with respect to parameters of form p,(j). The covariant derivatives with respect to the
transition probabilities {a,(j,7),Vs} remain unnormalised since transition probabilities
relate most directly to duration. The zeroth order derivative also remains unnormalised

though this is purely a design option.

The sequence length normalisation considered proposes modified forms of the log likelihood
scalar field. The normalisation may be implemeneted as either a direct mapping from L(O)
to the new score space, or as a composite mapping for example from L(O) to ¢ (1, (8,)o)

and thence into the new score space. The proposals include the following.

e 1,,(0;0,), the average log likelihood per observation: this is the simplest form of

normalisation where,

1
lav(Ol;Oq) = il(Ol,Oq) (431)
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The effect on the relevant components of score space is a scaling by 1/7;. So,

l(Ol; 0q) l(Ol; Oq)
1
avlk (Ol, ’(0 ) ) _ dpq (] lav(olao ) _ Tlapq(] l(Ol,O ) (432)
6%Oﬁzum,0) aaﬁﬂl«?he)

where the scalar field and covariant derivatives are again evaluated at (6,)o. This
normalisation may also be implemented as the composite mapping,

gpavlk(q) — fOQOIk(q) (433)

where,
¢ L) — 91,0, (0,)) (4.34)

and,

g — g if xe{ap 1(04;6,),Vj} (4.35)
x

otherwise

Unfortunately, if the sample is a sequence of quasi stationary segments as typical in speech,
then the scaling preserves the relative contributions of each segment to the mapping into
score space. This is undesirable, for example when the length of the initial or final segment
of a speech unit is lengthened or shortened by coarticulation without effecting the length of
the central segments. A normalisation which forces an equal contribution from each quasi
stationary segment would be useful for speech and similar signals. Hence the following

proposals.

® lmn(Oy; 9%, 0,), a normalised form of log likelihood encompasing a Viterbi approxi-

mation: denoting the most probable state-level path through the HMM by %" then,

N 1 T;
Lun(0507,8,) = 3 ———— In by
00 = Sanis X e
S("/}Wat):
+Ina(j, sV, ¢+ 1)) } (4.36)
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where d(¥"t,¢j) is the duration in state j of the model for class w, according to
path "' s(¢¥*,t) is the state at time ¢ according to path ¢, and the notation
is otherwise as described in Section 2.2.1. The circumflex in the duration term
cZ(th,qj) relates to parameter update rules and indicates it is determined by the
‘old’ set of parameters and hence is regarded as a constant when differentiating with

respect to model parameters. Hence,

B 1 0
— Lm0t 0,) = ———— In b,, 4.37
Bpals) 0500 = G 2. Opa(s) " Voo llO) (437)
t=1
s(Yvt, 1) =
Then for @ %9 (0y; 1, (0,)0) € @ =2(1,(8,)o),

l(Ola ¢Vta oq)
L-)lnmh(ol; tha Oq)

¢nmh(q)(0l; 1, (Oq)o) — 0pq(j

daq JJ) (Ol o 0)

[ wosvte)
_ d(wvlt ) (0l7 ¢ 0 ) (438)
] ]) (Oh ¢ 0 )

This normalisation may be implemented as a composite mapping similar to Equa-
tion 4.33. The normalisation equalises the contribution of each state to the covariant

derivative with respect to p,(7).

® lms(0;;0,), a normalised form of the log likelihood: this is a ‘soft’ form of the
normalisation detailed in lymn(Oy; ", 8,) where,

N

lnms(ol;eq) = Z Z%J lanj (01)¢) +fn({aq(j,j),Vj})
) DR

(4.39)
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where fn(-) is a generic function of its arguments. The term 4,,(¢) is the posterior
probability for state j of the model for class w, at time ¢. The circumflex indicates

it is calculated using the ‘old’ parameters in an update rule. Then,

T;

0
mlnms(ol, oq) = ZT 1’qu 7_) Zl ln bqs((ol)t) (4'40)

Hence for "™ (0;; 1, (8,)0)) € ™1, (8,)o),

1(0;0,) 1(0y;8,)
_o ] (00 L 2510 8,
@D (0;; 1, (0,)0) = | %W .( 58a) | _ el s () 200) (0156
Baq(J,J l(Ol,O) 3%(3,] (Ol, 7)

(4.41)

This normalisation can also be implemented as a composite mapping as in Equa-
tion 4.33. The sum of state posteriors across the length of the sequence is a ‘soft’
form of the state duration. The normalisation for the covariant derivatives of param-
eters of form p,(j) may also be related to the auxiliary function of the EM algorithm
applied to the state-conditional likelihood models for the HMM states. The relation
is,
0
9pq(J) apq( )

where éq € L(6,; S) refers to the ‘old’ set of parameters in the EM parameter update

lnmS(OlQOq) Qb ( g q) (4-42)

rule and,

N 1 R
Qb ( Q> q) = ; (01,0 )23’21 ;)\/qj(T)quj(Oq’eq) (443)

and the term p(Oy; 0,) = p(Oy; 04)lg, _p,- From Section 6.4.3.1 of [80] 8
7
Qu,;(00,6q) = > _P(O,5(t) = 453 8,) Inbg;((01):) (4.44)
t=1

where p(Oy, s(t) = qj;0,) = p(Oy, s(t) = qJ;04)l,-p,-
8Unlike [80] where a4 (s(t—1),s(t)) is defined for t = {1,...T;}, the expression Q,,; (8,,8,) is consistent
with a4(s(t),s(t + 1)) for t = {1,...T;} and aq(s(T7),s(T; + 1)) = 1.
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4.6.2 Relation to subsampling

The normalisation techniques described above may be related to subsampling. Subsamplng
reduces the data rate while attempting to preserve the salient characteristics of the signal.

For the sample O, subsampling is the mapping,
foun 1 Oy O (4.45)
where,

O, = ((0)1,---(&)n) (4.46)

for some suitable positive integer N. The mapping of particular interest is of form,

fsuw + ((01) 1=, - - - (O1) 1) = (01); (4.47)

where the length of the subsample segment is (2¢ + 1) observations, t —c¢ > 1, t + ¢ < T},
and 1 < j < N. The mapping may be simple averaging or some other linear or nonlinear
transform. Modifications for endpoints are not of concern here. Two popular methods of

subsampling are illustrated in Figure 4.10.

e Fixed-rate subsampling: the subsample segment length is fixed and the subsample
segment sometimes called a frame, and the subsampled signal O, is of fixed rate.

This technique is often used as a preprocessing step for a dynamic classifier.

e Fixed-length subsampling: the subsample segment length is variable across sequences
but the number of subsample segments per sequence is fixed. Hence the subsampled
signal O, has fixed length for each sample O,. The length of each subsample segment
in a sequence may be equal or vary, for example according to the 3:4:3 ratio in [38].
This technique transforms a variable length pattern into a fixed length pattern for

a static classifier.

If the sample O, is a quasi-stationary signal as in speech, then valuable information may
be lost if the statistics within each subsample segment vary significantly. However if the

subsample segment boundaries are aligned with the transitions from one quasi-stationary
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segment of the signal to the next, then the variation of statistics within each subsample
segment is minimised. The information lost or ‘smoothed out’ in subsampling is reduced.
Such subsampling is here called model-based subsampling. Each quasi-stationary segment
in the signal can be modelled by a single state of an HMM. If the number of HMM states

is fixed, the model-based subsampling is fixed-length subsampling.

The scalar functions lnmn(Oy;¢"", 0,) and lhms(Oy; 0,) may be viewed as implementing
‘hard’ and ‘soft’ forms of such model-based subsampling. First, lymn(Oy; 9", 6,) is consis-
tent with the subsampling fg,, for j = {1,... N} where,

T

1
Inbg;((ar);) = Ao ) Z Inbg;((01):) (4.48)
’ t=1
s(PV,t) = qj

Providing that the transition probabilities of the HMM are modified such that for the

forward transitions j = {1,... N},

T,
1
Ina (]a]+ 1) = S X Ina (j58(1/)Vtat+ 1)) (449)
' d(¥**, ¢j) 2 '
t=1
s(*',t) = qj
then,
lamn (O 9, 6 = (06 4.

(05070, = 06, , (4.50)

where (8,)o and 0; are the parameterisations respectively prior to and following the mod-
ifications to the transition probabilities. Then the subsampling process preserves the
normalised log likelihood of the sequence. Unlike subsampling which is not model-based,
for example simple averaging, the subsampled signal O always contains typical samples
as measured by the state output distributions b,;((0;),),Vj. However the mapping foup
is noninjective, i.e. for the jth subsample segment in O;, there are an infinite number
of possible solutions for (6;);, corresponding to any point on the relevant contour of the
state-conditional likelihood distribution. However another advantage of the normalisation

is that,

0 0 -
= Imn(O; Vt: 0 = ——1(0;80 4.51
9pq(J) (09 2 8,=(0¢)0 9pq(4) (Or:8,) 0,=0, ( )
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Hence the subsampling preserves the mapping into score space for the covariant derivatives
with respect to state parameters® of form p,(j). A similar approach defines a ‘soft’ form
of the mapping fs,» consistent with,
1 d
Inby((8);) = ———— > Fai() Inby;((ar)r) (4.52)
> i1 Yai(7) t=1

With similar modifications to the forward transition probabilities and similarly to above,
the subsampling preserves the normalised log likelihood and the mapping into the score
subspace defined on parameters of form p,(j). These ‘hard’ and ‘soft’ forms of model-based

subsampling are illustrated in Figure 4.10.

4.7 Summary

This chapter has introduced various score spaces based on zeroth and unit degree co-
variant derivatives of scalar fields, typically those defined on the log likelihoods or log
posteriors of samples. Factors affecting classification performance in score space were dis-
cussed including the definition of the score space and its possibly noninjective nature,
the nature of the score space classifier, the number of training samples, and the relative
magnification near to the decision boundary for mapping from input space to score space.
Appended zeroth order score spaces were also shown to be a useful means of viewing
some training algorithms for GMM classifiers. The chapter also discussed some of the
advantages of maintaining a division between the score mapping and score space classifier.
Sequence length normalisation was presented as a normalisation technique suitable for

variable length patterns.

9This property does not require modifying the state transition probabilities and the right hand side of

Equation 4.51 may also be evaluated at 8, = (84)o.
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Chapter 5

Classitying fixed length patterns

Having introduced score spaces and their characteristics, this chapter applies score spaces
to the classification of simple fixed length patterns. The experiments concentrate on ar-
tificially generated data and vowel data. For the artificial data the source distributions
and optimal classifier are known, whereas the vowel data presents a more demanding task
since the source distributions are unknown and almost certainly more complicated than
any proposed models. Though simple, these experiments permit an investigation of score
spaces, particularly those defined on class posterior scalar fields, without a large compu-
tational burden. The experiments are illustrative and are not intended as an exhaustive

investigation of different score spaces and classifiers.

5.1 Experimental details

5.1.1 Statistical models and classifiers

Following the notation and definitions in Section 2.2.1, a set of () class-conditional statis-
tical models is denoted S(§) with an estimate Py € S(§). The set of statistical models

may be viewed as forming the base manifold for a fibre bundle. Considering the associated
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score space as simply another feature space, a set of statistical models may be proposed

for score space with estimate Ps..

In this chapter, statistical models in input space and score space are restricted to GMMs
with variable numbers of mixture components, but an identical number for each class. Ex-
cept for a single comparison in Section 5.3.2, covariance matrices are always diagonalised.
A set of distributions Py or Py, with » mixture components per class is denoted Py(n) or
Psc(n) respectively. GMM classifiers are defined which assign an unlabelled sample to the
class whose GMM yields the highest output. Since class priors are assumed equal, GMM
classifiers are effectively MAP classifiers. For clarity, this chapter calls a GMM classifier
operating in input space a ‘MAP classifier’ and reserves the term ‘GMM classifier’ for a

score space classifier.

5.1.2 Artificial dataset

There are 4 classes in a 2-component input space. The samples for each class were gen-
erated by GMDs with 3 mixture components. These GMDs formed the set of source
distributions P”. The locations of the centroids of each Gaussian component in input
space are detailed in Figure 5.1, and corresponding weights given alongside in italics. All
Gaussian mixture components were given identical covariance matrices set to 3I, where T
is the Identity matrix. In the dataset there are 100 and 500 samples per class for training

and testing respectively.

5.1.3 Deterding vowel dataset

The Deterding database [7] describes the steady state portions of 11 vowels in English
spoken by 15 speakers, 8 of which were male and 7 female. The speech samples were
originally collected for investigating speaker normalisation. As detailed in [7], each speech
utterance was low-pass filtered at 4.7kHz and then digitised into 12 bits with a sampling

rate of 10kHz. The steady state portion of the vowel in each utterance was then parti-
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Figure 5.1: The centroids and weights of each Gaussian component for the 4 class-

conditional GMDs used to generate the artificial dataset
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tioned into six 512 sample Hamming windowed segments and linear prediction reflection
coefficients calculated. From this, 10 log area parameters were calculated yielding a vector
of 10 components. One utterance therefore yielded one vector or sample. Each speaker
spoke 6 utterances per vowel and 11 vowels in total. Hence each speaker provided 66 sam-
ples. The database of samples was partitioned into distinct training and test sets. The
training set contained 528 samples spoken by four male and four female speakers. The

test set contained 462 samples spoken by four male and three female speakers.

5.1.4 Training distributions and classifiers

The whole training set was used to train both Py and Ps.. The distributions Py defined the
MAP classifier and the distributions P, the GMM classifier. MAP and GMM classifiers
were trained and tested using HTK [49] [114].

When trained by ML estimation, each class-conditional GMM was trained from a single
Gaussian mixture component with mean and covariance set to the global mean and diag-
onalised global covariance. Next the number of mixture components in each GMM was, if
necessary, increased to the required number by mixture splitting [114]. Each application of
mixture splitting increased the number of Gaussian components by one, and was followed
by retraining the GMMs with 5 iterations of an embedded training version of the Baum-
Welch algorithm [114]. Unless otherwise stated, all GMM parameters were updated, i.e.
the Gaussian weights, means and covariances. Also unless otherwise stated, the covari-
ances of all Gaussian components in the set of GMMs were either tied and updated, or
simply fixed to the diagonalised global covariance. Appropriate training parameters were

used.

GMM classifiers were also trained by MMI estimation . The GMM for each class was
initialised with the corresponding GMD trained by ML estimation. For each training

sample, a numerator lattice was generated with 1 output hypothesis and a denominator

'Tn this thesis the criterion was strictly ‘conditional maximum likelihood estimation’ since class priors

remained fixed during training [111].
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lattice with one output hypotheses per class. The lattices were generated using HTK’s
HVite and with the initial ML-trained GMDs. In training the GMMs, either the Gaussian
weights and means were updated, or the Gaussian weights, means and covariances. The
GMDMs were trained with a variable number of iterations of MMI training using HTK’s
HERest modified to support this training technique [111]. The likelihood scale factor x and
FE-parameter were both variable, and other MMI parameters were kept fixed at sensible

values. Appropriate training parameters were applied.

Testing was performed using HTK’s HVite Viterbi decoder which implemented the MAP

classifier in input space and the GMM classifier in score space.

The calculation of unit degree covariant derivatives was performed by modifications made
to SVM!" version 3.02. SVM training and testing was performed using SVM'9"* version
4.00 [54] [53]. Some of the processing to form score spaces was performed with MATLAB

version 5 [68].

5.2 Experiments on the artificial dataset

In these experiments, GMMs were trained by ML estimation according to the procedure
described in Section 5.1.4 and using HTK version 3.1 [49]. The optimal classifier, i.e. the
MAP classifier based on the correct distributions P”, yielded 43.75% test error rate and
45.75% training error rate. Such a classifier, assuming a ‘faithful’ generation process, is
guaranteed to yield the lowest probability of error. The training error rate was higher
than the test error rate. This was probably an artefact of the small size of the dataset and
perhaps because there was some bias in the generation process, for example due to the
pseudo-random nature of the implementation. With infinite training and test sets and a
‘faithful’ generation process, both the training and test error rates should converge to the

probability of error.

Different estimates Py, were obtained by training GMMs of varying complexity and the

resulting MAP classifiers compared in Figure 5.2 with respect to test and training error
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Figure 5.2: Test and training error rates for MAP classifiers defined on class-conditional

GMDs with different numbers of mixture components

rates. As expected, training error rates were higher than for the optimal MAP classifier
based on the correct distributions P”. Generally the training error rate decreased with
increasing complexity while the test error rate showed a slight trough. This illustrates

overtraining.

The MAP classifier is a max decision rule in the space of linear class posteriors ©P*® (0, £,)
or log class posteriors P (0, &,). Since there is no guarantee that this decision rule is
optimal when the distributions Py are incorrect, alternative GMM classifiers were trained

in these two score spaces with the freedom to depart from the max decision rule.

First for reference, the distributions defining the score mapping P, were forced to coincide

with the correct distributions P”. The max decision rule is then the optimal decision rule
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in P (0, &) or P (0, &,). Distributions with 1, 2, 4 and 6 mixture components per
class were then trained in these score spaces and used to define GMM classifiers. The
test error rates for the GMM and MAP classifiers are detailed in Table 5.1. For simple
GMM classifiers based on 1 and 2 mixture components per class, classifiers in the space of
linear class posteriors yielded lower test error rates than classifiers in the space of log class
posteriors. This is expected since, as illustrated in Section 4.4.1, the max decision rule has
a piecewise linear projection onto the 3-dimensional structure of scores in P (0, &)
but a piecewise nonlinear projection onto the structure of scores in P (0, &). In the
latter case it is difficult to model the nonlinear max decision boundaries even with more
complicated GMM classifiers. An increase in classifier complexity in the space of linear
class posteriors oP*@ (0, &) resulted in a marked increase in test error rate. This is
not unexpected since the max decision rule, though only guaranteed to yield the lowest
test error rate for infinite tests sets and assuming a ‘faithful’ generation process, is still
expected to be a good decision rule for this test set. It can be sufficiently modelled by
distributions with a single mixture component per class, and the extra degrees of freedom

from more complicated distributions simply model sample ‘noise’.

classifier | num. mixture score spaces
type | comp. per class | @*@(0, &,) | ¢P5D(0, &)
MAP - 43.75 43.75
GMM 1 44.20 47.05
GMM 2 44.05 47.75
GMM 4 50.90 48.55
GMM 6 52.35 50.35

Table 5.1: Percentage test error rates for GMM classifiers in score spaces and the MAP
classifier in input space (the MAP classifier and score spaces were defined on correct

distributions so Py = P")

It is useful to extract single components from the appended posterior score space and
measure class discrimination. Score spaces were defined on single log class posteriors,

i.e. score spaces of the form P (0,&,) where Py was set to the correct distributions
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P". Table 5.2 details the test error rates yielded by piecewise linear classifiers based
on distributions Ps.(1). The highest test error rates are for score spaces defined on the
posteriors for w; and wy. Inspection of Figure 5.1 reveals that these classes are the most
distant from the global centroid of the training samples. Their posterior distributions were
probably not as informative for distinguishing samples located in the confusible region near

the global centroid.

class | test error rate,%
w1 59.05
Wo 56.85
w3 56.35
Wy 55.70

Table 5.2: Percentage test error rates for GMM classifiers based on Py (1) trained in the
score spaces ©P*@(0,&,), ¢ € {1,2,3,4}

The test error rates in Table 5.2 are much higher than the equivalent test error rate for
a GMM classifier based on Py (1) in the appended posterior score space ©”*@(0,€,) at
47.05% in Table 5.1. This is as expected since the appended posterior score space is
defined on all class posteriors rather than a single class posterior. The cost of this extra

information is an increase in the size of the score space.

In realistic situations where Py is incorrect, the max decision rule implementing the MAP
classifier is no longer guaranteed to be optimal. Alternative decision rules may outperform
it. For example, Py was set to the distribution Py(3). As detailed in Figure 5.2, the max
decision rule yielded 49.95% test error rate. However a GMM classifier constructed on
Py(1) in the score space of log class posteriors ¢P*@(0,&,) defined on Py(3) yielded a
lower test error rate of 48.70%. This illustrates that freeing a score space classifier from
a max decision rule is sometimes beneficial when the defining distributions for the score

mapping are incorrect.

It is useful to introduce unit degree covariant derivatives into posterior score spaces. De-

spite the good performance of score spaces based on linear posteriors, covariant derivatives
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were only defined on log posteriors. As explained with regard to fibre bundles in Sec-
tion 3.4.1, defining bundles on log scalar fields ensures that fibres with similar semantics
to the base manifold are exponential families. If this property is not required, or if score
spaces are simply regarded as alternative feature spaces, then covariant derivatives may
be defined on linear posteriors. However the restriction to log scalar fields is enforced in
the experiments of this chapter. Posterior score spaces based on zeroth and first degree
covariant derivatives were defined on Py(3) and Py(7) (the MAP classifier defined on Py(7)
yielded the lowest test error rate for MAP classifiers at 44.75%, while the MAP classifier
defined on Py (3) provided a suitable contrast since it was simpler but yielded a higher test
error rate of 49.95%). GMM classifiers were defined on reduced and generalised appended
posterior score spaces? P (1, &,) and P8 (1, ¢,). Table 5.3 compares performance
for GMM classifiers based on Py (1), and the best performance when Py was set to dis-

tributions with 1, 2, 4 and 6 mixture components per class.

defining classifier input score spaces
distributions | type space | P (0, &) | P@(1,£,) | P (1, €,)

Po(3) GMM (Py(1)) - 48.70 51.55 51.40
GMM (best) - 48.70 46.90 45.10
MAP 49.95 - - -

Po(7) GMM (Ps(1)) - 47.45 47.50 47.90
GMM (best) - 47.45 45.75 46.25
MAP 44.75 - - -

Table 5.3: Percentage test error rates for GMM classifiers in posterior score spaces and

MAP classifiers in input space

In general, the performance of the GMM classifiers improved as the estimates improved
from Py(3) to Py(7). The results also show performance improvement from introducing
covariant derivatives. However the piecewise linear classifiers, as implemented by GMM

classifiers operating on distributions Ps(1), did not have sufficient complexity to take

2The appended posterior score space ¢P(@1 (1, &,) contains no more information than the score space
gopsr(am(l,go). However the presence of repeated components may influence the training algorithm and

yield different classifiers.
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advantage of the extra discriminative information. The results also suggest that when P,
is a poor estimate for the correct distributions P”, then posterior score spaces based on P,
may be used to improve performance over the MAP classifier based on P,. However when
Py is a better estimate of P”, then there is probably less to gain by training score space
classifiers. Many practical problems at best offer poor estimates P, due to lack of training
samples, limitations in the estimator, or a simplistic knowledge of the functional form of
the source distributions P”. For this reason, score spaces based on covariant derivatives
are worthy of further investigation. Experiments should be performed on real data where

the source distributions are unknown and most probably more complicated.

Experiments were also performed on posterior score spaces defined on single classes, i.e.
score spaces of form P (1,£,). They showed useful class discriminative information
existed in these spaces. For example, a test error rate of 46.90% was obtained for a GMM
classifier defined on Py.(1) in ¢ (1,£,) based on Py(7). These score spaces are sub-
spaces within the corresponding reduced appended posterior score space. Experiments
were inconclusive as to whether the posterior score spaces defined on single classes outper-
formed the reduced and generalised appended posterior score spaces. More difficult tasks

are required.

5.3 Experiments on the Deterding vowel dataset

In these experiments, GMMs were either trained by ML or MMI estimation as described
in Section 5.1.4. ML training and testing were via HTK version 3.1.1 [49]. When GMMs
were trained by MMI estimation, then a version of HTK modified to support this training
was used (see the Acknowledgments). Further modifications were implemented for both

versions permitting larger input spaces.
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5.3.1 MAP classifiers

First MAP classifiers were trained with varying numbers of mixture components per class.
The covariance matrices were either globally tied and updated (referenced here as GMMs
with ‘updated covariances’), or kept fixed at the global covariance of the training samples
(referenced here as GMMs with ‘global covariances’). These effectively implemented dif-
ferent metrics for input space. The resulting test and training error rates are plotted in
Figure 5.3. Training error rates decreased to zero for the GMDs with global covariances
and virtually to zero for GMDs with updated covariances. This, coupled with the increas-
ing test error rates, illustrates overtraining. The worse performance of GMMs with global
covariances may simply be due to their poorer class modelling ability. The lowest test
error rates were for classifiers based on GMMs with updated covariances at 41.6% test
error rate for 5 mixture components per GMD, and then 42.0% for 3 mixture components
per GMD. In the remainder of this section, these two sets of GMDs with updated covari-
ances are labelled as Py(5) and Py(3) respectively. In [15], 16 component class-conditional

GMDs with diagonal covariances were trained and attained a test error rate of 37.9%.

5.3.2 Score spaces defined on zeroth degree covariant derivatives

The distributions Py(3) were selected as baseline distributions since the number of param-
eters, and hence size of score spaces, was smaller than for Py(5). As for the experiments
on artificial data in Section 5.2, GMM classifiers of varying complexity were constructed in
simple zeroth order appended posterior-based score spaces P (0, &,) and P*@ (0, €,),
but also in the likelihood equivalents @™ (0, &,) and %@ (0,&,). The performances
of the resulting classifiers are plotted in Figure 5.4 and can be compared with the MAP
classifier defined by max decision rules in these spaces (since class priors were assumed
fixed and equal). Class discrimination is poor in the appended linear likelihood score space
™M@ (0, ¢,) but much improved in the appended linear posterior score space ¢ (0, &,).
This is possibly since class posteriors are inherently normalised for variations in acoustic
conditions. However this reasoning is by itself insufficient to explain why the space of log

likelihoods ¢™@ (0, &,) outperforms the space of log posteriors ¢P*@D(0, &,). The MAP
0 0
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error rate of 42.0% as implemented by the max decision rule in these score spaces was
lowered to 38.5% for a GMM classifier based on Py (8) trained in P (0, &,). This
again illustrates that the max decision rule is not necessarily optimal when the defining
distributions are incorrect. Encouragingly the test error rate at 38.5% was lower than
those obtained by MAP classifiers in Figure 5.3. Similar experiments on the distributions
Po(1) and Py(5) also confirmed that classifiers constructed in the appended linear poste-
rior score space P2 (0, £,) outperformed those trained in the linear likelihood equivalent
oM@ (0, ¢,). However, with regard to log scalar fields, the experiments generally showed
that classifiers in the space of log likelihoods ™ (0, &,) outperformed those in the space
of log posteriors P> (0, €,).

Next, techniques were applied to improve performance, either by transforming the scores
in the linear posterior score space P! (0, £) based on Py(3) or by training alternative
classifiers in this space. The best results obtained for each technique are summarised in
Table 5.4. The first row gives the lowest test error rate obtained for the unprocessed
score space @P@(0 &,). The next row gives the test error rate for likelihood scaling
with a scale factor k = 0.05. Next for the third row, the 11 linear class posteriors sum
to unity, so covariance matrices in 11-component space are not of full rank and cannot
be inverted. For this reason, 10 components were selected according to highest Fisher
ratios, and this subspace then transformed using LDA but without further change in the
number of components in score space. For the fourth row, the distributions Py.(8) were
trained using 40 iterations of MMI estimation, and with k = 1 and E = 10. Only the
means and weights of the Gaussian mixture components were updated rather than all the
GMM parameters. Although the search-space for all the experimental parameters was not
exhaustive, the experiments performed suggest there was little to gain by application of
these techniques. The task may be too simple to show the possible benefits from these

techniques.
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technique num. mixture | test error
comp. in Py, | rate, %
none 8 38.5
likelihood scaling 1 39.8
LDA 8 39.4
MMI estimation 8 38.5
MAP classifier in input space 42.0

Table 5.4: Percentage test error rates for applying different techniques to ¢P*@(0, &),

where the score space is defined on Py(3)

With regard to covariance modelling, the substitution of diagonal by full covariance ma-
trices in the distributions Py.(1) in ¢P5@(0,€,) demonstrated the expected decrease in
test error rate for the resulting GMM classifier from 49.6% to 48.1% for Py(1), 55.2% to
50.9% for Py(3), and 59.7% to 57.8% for Py(5). In practice, the size of score spaces de-
fined by zeroth and first degree covariant derivatives disadvantages the application of full
covariance matrices in score space, unless there is a sufficiently large quantity of training

data or the distributions Py have few parameters.

5.3.3 Score spaces defined on zeroth and first degree covariant

derivatives

Next score spaces defined on log scalar fields were augmented by adding unit degree co-
variant derivatives. Three sets of baseline distributions Py(1), Py(3) and Py(5), all with

updated covariances, were chosen.

5.3.3.1 Posterior score spaces defined on single classes

Posterior score spaces defined on single classes are smaller than the corresponding ap-

pended score spaces, and the experiments on artificial data showed their good perfor-
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Figure 5.5: Percentage test error rates for GMM classifiers based on Py (1) trained in

posterior score spaces ¢P*@(1,&;) as the class w, and distributions P, were varied

mance. So for the three sets of baseline distributions, posterior score spaces gopS(Q)(l, &)
were constructed for each class wy, ¢ = {1,...11}. In each score space a GMM classi-
fier was trained based on distributions Py (1) where covariance matrices were tied and
updated. The resulting test error rates are plotted in Figure 5.5. The number of com-
ponents in the score spaces defined on Py(1), Py(3) and Py(5) were respectively 111, 331
and 551. Since single Gaussians were then trained on each class in score space with tied
and updated covariance matrices, there were respectively 1332, 3972 and 6612 parameters
per classifier. Since there were only 528 training samples, there was still a high risk of
overtraining particularly for classifiers constructed in score spaces defined on Py(3) and
Po(5). In Table 5.5, the best of these GMM classifiers in score space are compared with
the MAP classifiers trained directly in input space. There was a significant gain in perfor-

mance of the score space classifier over the MAP classifier for distributions Py(1), but a
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significant loss for distributions Py(3) and Py(5). This was probably due to overtraining.
Furthermore, any noise in the parameterisation of Py may be accentuated in the mappings
to P9 (1,¢&,), though there is a hope this can be negated by inherent regularisation in
simple score space classifiers. Hence simple distributions Py may enable more robust clas-
sifiers in P (1, &,). This is further evidenced by the smoothness of the curve for Py(1)

in Figure 5.5.

defining test error rate,%

distributions | MAP | score space

classifier classifier

Po(1) 55.8 48.9
Po(3) 42.0 54.5
Po(5) 41.6 55.2

Table 5.5: Percentage test error rates for classifiers based on different distributions P

(MAP classifiers and best GMM classifiers based on Py (1) in P (1,&,))

Section 5.2 suggests the classification performance of posterior score spaces for single
classes is influenced by the location of the class relative to other classes. Table 5.6 lists
distances between the centroids of each class, for both training and test datasets, and
the global centroid of the training samples. The distances are calculated with a metric
tensor in input space set to the global full covariance across all training samples (see Ap-
pendix D.1.2). According to the training data, the most distant class is w; and the third
most central is w;. In Figure 5.5, the posterior score space based on w; distinguishes differ-
ent classes poorly while that based on w; generally yielded low test error rates. However a
more informative approach using the KL information may be useful. A comparison of the
distances between the class centroids in the training and test sets and the global centroid
in the training set reveals a mismatch between the training and test sets. This contributes
to the poor state-of-the-art test error rates at approximately 30% for this classification

task.
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class | dataset partition

training | test

w1 2.06 2.12
W 1.33 1.65
w3 1.45 1.32
Wi 1.56 1.55
W 1.37 2.35
We 1.01 1.63
wr 1.11 2.09
W 1.63 2.29
Wy 1.19 1.50
w1o 1.75 2.03
w11 0.78 0.86

Table 5.6: Distances between the centroid of each class and the global centroid of the

training samples (using the global full covariance of training data as metric tensor)

5.3.3.2 Appended posterior score spaces

Next the posterior score spaces for single classes were appended to yield the reduced
appended posterior score space @P*@ (1, £,). Reduced score spaces were defined on Py (1),
Po(3) and Py(5), and the respective number of components in each was 231, 671 and 1111.
In Table 5.7, the simplest GMM classifiers in P (1, £,) are compared with the simplest
GMM classifiers in the posterior score spaces @P*@ (1, &) and P (0, &) (although the
classifiers were the simplest available based on distributions of form Ps.(1), the different
sizes of score space imply different numbers of parameters and hence complexity). The
results consistently show a decrease in test error rate from the best classifiers in P (1, &)
to the corresponding classifiers in P (1, &,). This implies there is some complimentary
information in the different score spaces @P@(1,€,),q = {1...11}. Also, there was
a decrease in test error rate from classifiers in P> (0, &) to corresponding classifiers
in P(@D (1, €,), indicating that the unit degree covariant derivatives added extra class

discriminative information. However lower test error rates can sometimes be obtained
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in pP*@(0,&,) by increasing the complexity of the GMM classifier in score space. For
example, the test error rate for ¢P*@(0,&,) defined on Py(3) decreased from 55.2% to

47.4% when the number of mixture components per class in Py increased from 1 to 10.

defining MAP score spaces for GMM classifiers
distributions | classifier | @P@(0,&,) | P (1,&,) | "D (1,€,)
Po(1) 55.8 49.6 48.9 47.2
Po(3) 42.0 55.2 54.5 47.8
Po(5) 41.6 59.7 55.2 48.7

Table 5.7: Percentage test error rates for GMM classifiers defined on Py (1) in score spaces,
and the MAP classifiers in input space (the results for ¢P*(@ (1, £,) are the lowest from any
class wg, ¢ = {1,...11})

Various techniques were then applied aimed at increasing classification performance in
Pr@ (1, ¢,) based on Py(3). However, selecting components of score space with highest
Fisher ratios yielded classifiers with higher test error rates (the GMM classifiers were
still defined on simple distribututions Py (1) within the subspaces). The results suggest
that, for this task, important class discriminative information is lost when components
are discarded from P@(1,€,). Next the GMM classifiers were defined on distributions
Psc(1) trained by MMI estimation. This successfully decreased test error rate from 47.8%
(for the ML-estimated distributions which initialised the MMI training) to 44.4% (for
k =1, E = 10, and after 20 iterations of MMI estimation in which just the means
and weights of mixture components were updated). This decrease in test error rate is as

expected from discriminative training.

Next, the reduced appended posterior score space was generalised to ¢P@W (1, €,). The
change in performance for GMM classifiers in score spaces based on Py(1), Py(3) and Py(5),
and Py set to Py (1), was inconclusive. Finally, a hybrid score space @P*P@ (1, &) was
tested in an attempt to combine the good class discrimination in the zeroth order linear
posterior score space P21 (0,&,) with the extra information in the covariant derivatives
of the log class likelihoods. A comparison of performance of GMM classifiers based on

Psc(1) in different appended posterior score spaces is detailed in Table 5.8.
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defining MAP score spaces for GMM classifiers
distributions | classifier | @P@(0, &) | @PPED(1,€,) | P (1, €))
Po(1) 55.8 53.0 54.5 47.2
Po(3) 42.0 42.2 43.3 47.8
Po(5) 41.6 42.0 42.6 48.7

Table 5.8: Percentage test error rates for GMM classifiers based on Pg (1) in different

score spaces, and the MAP classifier in input space

No firm conclusions can be drawn on the relative merit of the hybrid score space relative
to the reduced appended posterior score space. However, performance in the hybrid score
space was consistently worse than in the corresponding space of linear class posteriors
eP@D (0, &,). The addition of unit degree covariant derivatives here decreased class dis-

crimination. The present task may be too simple to better the simple GMM classifiers in

PP (0, ).

5.3.4 Summary

These experiments have considered some simple score spaces. The standard MAP clas-
sifier is a max decision rule in the zeroth order score spaces @D (0, &), @@ (0, €,),
oM@ (0, ¢,) and (0, €,) (assuming class priors are fixed and equal). However if the
distributions Py are incorrect, better performance may sometimes be obtained by training
alternative classifiers in these spaces. The score space P (0,&,) based on linear class
posteriors was shown to yield better performance than the equivalent score space based
on log class posteriors. Unit degree covariant derivatives were introduced into appended
score spaces defined on log class posteriors and classification performance improved. The
best multicategory classifier obtained by training a classifier in a single score space yielded
a test error rate of 38.5%. This was obtained twice, once for a classifier in P (0, &)
defined on Py(3) and with Py (8) trained by ML estimation, and additionally by an iden-
tical classifier based on the same distribution Ps(8) but updated using MMI estimation.

The performance at 38.5% is still significantly worse than state-of-the-art classifiers which
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attain test error rates nearer 30%.

5.4 Multicategory decisions from binary classifiers

In the previous section, multicategory classifiers were constructed in input space or a
single score space. An alternative multicategory classifier constructs a set of binary 1-v-1
classifiers between every pair of classes, and then combines their decisions in a high level
multicategory decision rule. Each binary classifier is trained on the two relevant classes.
This is inherently suboptimal unless the binary classifiers and high level multicategory
decision rule are optimised jointly. There is also the need to resolve conflicting decisions.

Despite this, such classifiers are attractive for the following reasons.

e MAP classifiers in input space or GMM classifiers in score space assume a single set
of distributions Py or Ps.. However a binary classifier has flexibility to assume its own
distributions for its relevant pair of classes. A single consistent set of distributions
Py or Py for all binary classifiers is no longer necessary. Discriminative training

methods are expected to improve class discrimination.

e Learning algorithms which are inherently binary in nature, for example SVMs, may

be applied.

e Section 3.5.3.3 describes how a linear discriminant constructed in certain score
spaces, may under constraints, be related to a MAP classifier defined on distri-
butions in the total space of a fibre bundle. This encourages the subdivision of
a muticategory classification task into binary tasks and the application of linear

discriminants.

A suitable high level multicategory decision rule is also required. This thesis does not
investigate the options available but prefers to use a simple majority voting scheme. For
a @-class problem, Q(Q — 1)/2 binary classifiers are trained to distinguish between each
pair of classes. For an unlabelled sample, the full set of binary classifiers yields Q(Q —1)/2
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binary decisions on class membership and the majority voting scheme assigns the sample
to the class with most frequent occurrence. If two classes are tied after application of the
rule, for example classes w, and wy, then the result of the binary classifier for w,-v-w is
inspected. If three or more classes are tied, for example classes w,, w, and w,, and if there
is still no clear winner after inspection of the relevant binary classifiers wg-v-wp, we-v-w,
and wp-v-w,, then the winner is selected by a resolution technique. A simple resolution
technique is random selection, but it is sensible to take the expectation across an infinite
number of random selections. An alternative is back-off where unresolved decisions are
decided by an alternative classifier, ideally immune to unresolved decisions. For consistent
comparison, the alternative classifier should require no additional information beyond that

available to the original classifier.

This section describes experiments on the Deterding vowel dataset. Each binary classifier
was trained in input space or score space using 96 training samples, 48 samples from
each class. Since there were 11 classes, 55 binary classifiers were required. The test data

comprised the full 462 samples in the test partition of the Deterding dataset.

5.4.1 Binary classifiers constructed in input space

The 10-component input space was either scaled or unscaled. In scaling, each component
was scaled by its standard deviation calculated on the training data of the two relevant

classes only. The classifiers were as follows.

e GMM classifier: the distributions Py = ((ps)o, (Ps)o) for each binary problem wgy-v-w
were given complexities of either 1, 3 or 5 components per GMM. The covariance
matrices for the Gaussian mixture components were either tied and updated, tied to

the global covariance, or left untied.

e SVM classifier: the linear kernel and nonlinear Gaussian Radial Basis Function

(GRBF) kernel were used. The GRBF kernel has a width parameter w where,

w = FGRBFM (51)
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and for data-dependency M was set to the geometric mean of the ranges of each
component in input space as determined by the training samples [14]. The factor

Forer was user-defined.

In each experiment the 55 binary classifiers were all given the same complexity or parame-
ter settings. There was no attempt to ‘tune’ individual binary classifiers. The experiments
were therefore purely illustrative. In addition there was only a coarse optimisation of classi-
fier complexity or classifier settings since score spaces are the main emphasis of this thesis.
A majority voting scheme was used and unresolved decisions decided by random selec-
tion. Test error rates were reported by calculating expectations over an infinite number

of random selections.

The MAP, linear SVM and GRBF-SVM classifiers with best performance are summarised
in Table 5.9.

classifier | parameters input | test error
type space | rate,%
pairwise | GMMs with 3 - 41.4

MAP | mixture comp.

(diag. global covars.)

SVM linear kernel scaled | 45.2
C=1
SVM GRBF kernel unscaled | 35.1

C=1, Fgrar =1

Table 5.9: Selected percentage test error rates for a majority voting scheme on binary

classifiers trained in the input space for the Deterding vowel dataset

e The best MAP classifier in input space with 5 mixture components per GMM and
tied diagonalised covariances yielded 41.6% test error rate. The best classifier based
on binary decisions and a majority voting scheme yielded 41.4% test error rate,

with 3 mixture components per GMM and tied diagonalised covariances set to the
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global diagonalised covariances for each pair of classes. The full set of GMDs for
the binary classifiers do not necessarily map back to a single consistent set of GMDs
in input space, thereby permitting tied decisions in the majority voting scheme.
The exception is when each GMM in a two-class problem is trained on within-
class samples only. However using tied and updated covariances or discriminative
training violates this exception. The method of tying covariances therefore influences

performance.

e In these experiments, SVMs with GRBF or linear kernels were both sensitive to the
value of the SVM parameter C. The SVM with GRBF kernel was however more
sensitive to the kernel width as specified by the scale factor Fgrgr. The need to
optimise both the C parameter and kernel width disadvatanges the application of
GRBF kernels. A coarse optimisation of C' and Fgrpr for SVMs with GRBF kernels
in unscaled input space yielded a multicategory classifier with a test error rate of
35.1%. The lowest test error rate for SVMs with linear kernels, where C' was coarsely
optimised for scaled input space, was higher at 45.2%. The better performance of
GRBF kernels suggests classes were not linearly separable in input space. Firmer
conclusions cannot be made without an exhaustive optimisation of SVM and kernel

parameters.

e The performance of SVMs with linear or GRBF kernels depend on scaling the input
space, or equivalently on the metric tensor applied to input space. For example,
the introduction of scaling to the input space decreased test error rate from 47.9%
to 45.2% for SVMs with linear kernels, and increased test error rate from 35.1% to
43.4% for SVMs with GRBF kernels®. Scaling effectively applies a metric tensor in
input space set to the diagonalised form of the global covariance, where components
of input space are for example assumed contravariant components. According to Ap-
pendix D.1.2, this metric tensor may be viewed, under assumptions, as maximally
noncommittal in some sense. This makes it more suitable than the Identity metric
tensor or scaled Identity metric tensor implied by an unscaled input space. However,

the experiments showed that scaling was not always beneficial for the GRBF ker-

3The SVM trade-off parameter C' and GRBF width factor Fgrpr were kept fixed; ideally they should

have been optimised for the scaled and unscaled spaces.
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nel, probably since this kernel is more susceptible to overtraining and the variances
of components in the original input space were already fairly similar (the standard
deviations of each component in input space varied between 0.5 and 1.2 where stan-
dard deviations were calculated over the training data for all 11 classes). Scaling is

expected to be more beneficial when component variances vary significantly.

The lowest test error rate at 35.1% outperformed the best multicategory classifier trained
in a single score space at 38.5% from Section 5.3. However it was still higher than the 31%
test error rate reported in the SVM system in [37]. This is partly because the SVM was
not fine-tuned, but also since in their system a different multicategory decision rule was
implemented and a different kernel width applied. The majority voting scheme cannot be

applied to their system since 1-v-rest SVM classifiers were trained.

The performance of SVMs is sensitive to the C' parameter, the kernel and where applicable
the kernel parameters. The performance of GMM classifiers is sensitive to the number of
mixture components per GMM, the method of tying covariance matrices and the training

criterion.

5.4.2 Binary classifiers constructed in score spaces

Next, the experiments were repeated except that for each pair of classes w, and wy, a
binary classifier was trained in likelihood-ratio score space ©'"(®P)(1, ;) rather than input
space. For brevity, the experiments focussed only on the distributions Py(3) and tied
covariances. Hence a suitable baseline was the MAP classification based on Py(3) in input
space which yielded a test error rate of 42.0%. Again a majority voting scheme was used
except that an unresolved decision was referred back to the MAP classification based on the
distributions Py(3) defining the score spaces. Hence no extra information was required to

resolve decisions. The best test error rates for this approach are summarised in Table 5.10.
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classifier classifier score | test error

type parameters space | rate,%

GMM Pee(1) ~ 426
(score space) | (diag. global covars.)

SVM linear kernel scaled | 32.0
(score space) C=0.01

MAP - - 42.0

(input space)

Table 5.10: Selected percentage test error rates for the MAP classifier, and majority voting
scheme for binary classifiers trained in likelihood-ratio score spaces (the MAP classifier

and score spaces were defined on Py(3))

e The performance of the multicategory classifier based on linear SVMs was sensitive
to the parameter C, the lowest test error rate at 32.0% yielded with C set to 0.01.
The GMM classifier, where the GMMs for each two-class problem had covariances set
to the global diagonalised covariance (where global refers to the two relevant classes
only) yielded a higher test error rate* at 42.6%. With regard to test error rates, the
classifier at 32.0% outperformed the best multicategory classifiers constructed in a
single score space at 38.5% from Section 5.3, and from a set of binary classifiers in

input space at 35.1% from Section 5.4.1.

e Linear classifiers were the focus of these experiments since they possess good regular-
isation properties and, under constraints, can be related to MAP classifiers defined
on distributions in the total space of fibre bundles. The linear classifiers were imple-
mented by SVMs with linear kernels or GMM classifiers defined on single mixture
component GMMSs with tied covariances. Nevertheless, a comparison with nonlin-
ear classifiers is useful. More complicated GMM classifiers were constructed in the
likelihood-ratio score spaces ¢™(®P)(1,¢,) for each binary problem. Increasing the
number of mixture components per GMM from 1 to 3 to 5 yielded respective test

error rates of 42.6%, 43.1% and 47.2% for the final multicategory classifier. The

4Limitations in the GMM training precluded the use of GMMs with tied and updated covariances.
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increase in test error rate was probably due to overtraining since each likelihood-
ratio score space was relatively large at 61 components. A multicategory classifier
based on SVMs with GRBF kernels was trained in scaled and unscaled score spaces,
and yielded test error rates of 38.7% and 40.3% respectively. This was worse than
corresponding test error rates of 36.8% and 37.9% for corresponding classifiers based
on linear kernels. Little can be gained from this comparison without an exhaustive
search of SVM and kernel parameters. The experiments illustrate the benefit of

scaling for SVMs.

Overall, the results show that constructing a full set of SVM classifiers in likelihood-
ratio score spaces is promising. It is not possible, through the experimental results, to
distinguish the effect of discriminatively training pairs of classes and the effect of applying

SVMs.

5.5 Discussion of results on the Deterding dataset

In this chapter, a single set of GMMs trained directly in input space implemented a
MAP classifier and yielded test error rates as low as 41.6%. When a full set of binary
GMM classifiers were trained in input space and a majority voting scheme applied with
random selection of undecided samples, the test error rate remained approximately the
same at 41.4%. These GMMs had a sensible initialisation method. Score spaces were then
introduced. If multicategory GMM classifiers were constructed in single score spaces rather
than in the input space, lower test error rates were obtained down to 38.5%. However,
if SVM classifiers were constructed in likelihood-ratio score spaces and a majority voting
scheme applied with a sensible back-off scheme for unresolved samples, then a test error

rate of 32.0% was obtained.

The documentation supplied with the Deterding vowel dataset [7] lists test error rates in
[82] obtained using a variety of techniques. The best performance was 44% test error rate

given by a nearest neighbour classifier, although it should be noted that the list of results
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are based on single trials and therefore dependent on initialisation. Other leading results
include a test error rate of 38.3% obtained in [47] using a discriminant adaptive nearest
neighbour technique. A lower test error rate of 30.2 +0.3% was obtained for the Separable
Mixture Model (SMM) in [99] where the style (speaker) and content (vowel) were modelled
by a bilinear model embedded within a GMM. A test error rate of 30% was obtained for
an approach with Relevance Vector Machines in [45]. Of particular interest is the SVM
classifier described in [37] which attained a test error rate of 31%. In their approach, SVMs
were trained with GRBF kernels and width w set to a single universal value. A mixture-of-
experts paradigm was used to obtain a single decision on class membership from the set of
binary 1-v-rest classifiers. Tests using SVMs with standard GRBF and polynomial kernels
in input space are described in [15] in which the GRBF kernel outperformed the polynomial
kernel. A test error rate of 33.9% was yielded for a multicategory scheme involving 1-v-all
classifiers, and 30.0% for a scheme utilising 1-v-1 classifiers®. Their baseline test error rate
with GMMs was 37.9% obtained with 16 component class-conditional GMMs. The best
result with score spaces at 32.0% is a little worse, but comparable, to the best speaker-

independent results known to the author for this task at 30.2 & 0.3%, 30.0% and 30%.

5.6 Summary

Experiments in this chapter contrasted the performance of some simple score spaces in
classification. The score space of linear class posteriors P! (0,&,) gave very good per-
formance. In this space, the max decision rule implements the MAP classifier. However
the max, and hence MAP, decision rule is not necessarily optimal when the distributions
Py upon which the classifier is defined are incorrect. Alternative decision rules in this score
space may yield lower test error rates. Larger score spaces were then introduced which in-
cluded unit degree covariant derivatives. For certain score spaces and linear discriminants,
these permit the recovery of MAP classifiers based on distributions which are located in

the total space of a fibre bundle defined on the original statistical models. Alternatively,

5Unfortunately, no indication is given of how tied decisions were resolved in the majority voting scheme

among 1-v-1 classifiers.
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the unit degree covariant derivatives can simply be viewed as a method to add extra class
discriminative ‘features’ into score space. The typically large size of such score spaces

promotes the application of strongly regularised score space classifiers.

The multicategory classification task was then subdivided into a set of binary 1-v-1 classifi-
cation tasks and a simple majority voting scheme applied. This permitted the application
of SVMs. When SVM classifiers were trained in likelihood-ratio score spaces, the mul-
ticategory classification was only a little worse than state-of-the-art systems. A similar

approach is adopted in the next chapter.
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Chapter 6

Classifying variable length patterns

This chapter applies score spaces to the classification of variable length patterns. The
patterns are isolated letter utterances drawn from a speech database. Speech is a naturally

occurring source of variable length patterns.

6.1 Description of the ISOLET dataset

The ISOLET database [16] consists of utterances of isolated letters drawn from the amer-
ican english alphabet. There are 26 letters. In total there are 7800 utterances spoken by
150 speakers, with two utterances per letter per speaker. The dataset is split into five
equal subsets labelled isolet1 to isolet5. Each subset contains the utterances from 15
male speakers and 15 female speakers, with no overlap in speakers between subsets. In
these experiments, isoletl, isolet2, isolet3 and isolet4 were retained as training
data, and isolet5 as test data. An important subset of letters is the E-set which com-
prises the letters {B,C,D,E,G,P,T,V,Z}. Each utterance was supplied in a preprocessed
form with long periods of silence removed from either side of each isolated letter utterance.
However approximately 80ms of silence was retained immediately preceding and following

each letter [16]. The speech was recorded at 16kHz sample rate.
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Rather than extract specialised features, the dataset was coded in a manner consistent
with large vocabulary speech recognition tasks. The data was encoded using the HCopy
tool in HTK version 3.0 [114]. The speech was encoded at a frame rate of 100 frames per
second. Each frame was extracted using a Hamming window of 25.6ms in length giving
a frame overlap of approximately 150%. Each frame was then processed using a mel-
scale filterbank with 20 channels, a preemphasis coefficient of 0.97 and a cepstral liftering
coefficient of 22. The first 12 Mel-Frequency Cepstral Coefficients (MFCCs), ignoring
the zeroth order coefficient, were extracted. A term describing the log signal energy was
also extracted using the default HTK energy normalisation, scaling and silence floor [114].
The 12 MFCCs and log energy term, collectively termed the static parameters, were
then augmented by first and second order time derivatives respectively called the delta
and acceleration parameters. This yielded a 39 element feature vector for each frame.
Delta parameters were calculated using a linear regression over the static parameters of
the preceding two frames and following two frames. Similarly, acceleration parameters
were calculated using a linear regression over the delta parameters of the preceding two
and following two frames. In this chapter, this encoding is abbreviated to MFCC_E_D_A. For
consistency with the rest of this thesis, each frame is called an ‘observation’. An utterance,
which is a sequence of observations, is known as a ‘sample’ (this should not be confused
with the digital samples in the original speech waveform files). The input space L(O) was

the space of observation sequences or samples.

6.2 Baseline input space classifiers

The statistical models S(&) were a set of continuous density HMMs. Each HMM topology
was constrained to left-to-right with no skips. Each letter in the alphabet was modelled
by an HMM with 10 emitting states, and silence by an HMM with 1 emitting state.

State-conditional likelihoods were modelled by GMMs with diagonal covariance matrices.

A series of baseline experiments was performed measuring the change in performance

with HMM complexity under different training regimes. Complexity was defined as the
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number of mixture or Gaussian components per state. The different training regimes were
as follows, where there were 6240 training samples for the full alphabet task and 2160

training samples for the E-set task.

e ML estimation: Initial models with 1 mixture component per state were obtained by
flat-starting (the Gaussian components were parameterised with the global mean and
variance of the training samples). The training samples were then used to update all
the model parameters using an embedded version of the Baum-Welch algorithm [114].
The number of mixture components per state was gradually increased using mixture
splitting [114]. Following each split, 20 iterations of Baum-Welch reestimation were
implemented. Suitable weight and variance floors were also used. This training
regime was implemented using HCompV, HHEd and HERest in HTK version 3.0 [114]
[49].

e MMI-5 estimation: The initial models for MMI estimation were the ML models of
the same complexity yielded by the previous training regime. These ML models
were used to obtain numerator and denominator lattices!. The ML models were
then reestimated to maximise mutual information using 5 iterations of the Extended
Baum-Welch algorithm [111]. A suitable weight floor and other MMI parameters
were used. All MMI parameters were kept fixed except for the likelihood scale factor
k which was varied for optimal performance for each complexity. This training
regime was implemeted using development versions of MMI and lattice generation

code within the HTK environment (see the Acknowledgments).

e MMI-20 estimation: This is identical to the MMI-5 training regime except that there

were 20 Extended Baum-Welch reestimation iterations instead of 5.

To narrow the search space for the experiments, there was no attempt to optimise the
number of training iterations for each trained model. The 20 iterations for ML training
was a design parameter even though there was a risk of overtraining some models. The

greater computational cost involved in optimising the likelihood scale factor and producing

'In these experiments, MMI estimation was only implemented for E-set classification, so only 9 com-

peting paths were required in each denominator lattice.
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lattices for MMI training narrowed the application of this training technique to HMM
complexities ranging from 1 to 6 mixture components per state rather than the 1 to 20
mixture components per state for ML training. The choice of ML and MMI estimation was
made to contrast maximum likelihood and discriminative training techniques, while MMI-5

and MMI-20 were selected to investigate some generalisation issues for MMI estimation.

In total there were 1560 test samples for the full alphabet task and 540 test samples for the
E-set task. In testing a particular sample, all hypotheses were permitted which conformed
to a silence-letter-silence format, where letter was any letter from either the full
alphabet or E-set as required. The sample was then classified according to the most likely
hypothesis yielded by the token-passing implementation of the Viterbi algorithm [114].
This effectively summarised the likelihood of all possible paths for a hypothesis with that
of the single most probable path for that hypothesis. The classification results reported in
this chapter are test or training error rates measured as the percentage of letters recognised
incorrectly?. Testing was implemented using HVite and HResults from HTK version 3.0

[49]. The classifier is a MAP classifier using a Viterbi approximation for each hypothesis.

McNemar’s test [40], a measure of statistical significance, was applied to yield confidence
levels as described in Appendix G.2. The test simply ascertained the confidence that test
error rates yielded by two classifiers on the same test set differed not just because of chance
effects. The only assumption required independence between errors. The application of
nonequal class priors forces modifications to the test, but in these experiments class priors

were assumed equal.

Figure 6.1(a) details the variation of test error rate with complexity for models trained by

ML estimation for the E-set and full alphabet tasks. Some remarks may be made.

e The observed optimal complexity for this training regime and task was 4 components
per state. Models of lower complexity probably do not possess functionality to
model sufficient within-class characteristics such as gender and accent. Models of

higher complexity have too many parameters for robust estimation and instead reflect

2Silence was implicit in the hypothesis and its successful recognition was ignored.

150



12

10+
X
~ 8F
Q
]
<
fa
-
Qo
=
= 6 i
+~
w2
Q
+~
4+ B
2+ i
0 | | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
num. mixture components per state
(a) ML-trained models
12 T
+ MLE (train)
O MLE (test)
*  MMI-5 (train)
& MMI-5 (test)
10l A MMI-20 (train) H
O MMI-20 (test)
x ° 1
o
+
<
~
5 6f 1
~
-
<]
41 i
2+ i
0 1\& I N |

2he

0 1 2 3 4 5
num. mixture components per state

o

(b) E-set: Models trained by ML estimation
and MMI (after 5 and 20 iterations) estimation

Figure 6.1: Baseline error rates for the MAP classifier operating on different sets of dis-
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pecularities of the training data which do not exist in the test set. With more training

data, more complex models are expected to give better performance.

e For computational reasons, a subset of letters was selected as the principal subset for
investigation. A large proportion of the errors in the full alphabet task were between
members of the E-set. For this reason, the experiments in this chapter focus on E-
set classification. For example, for the HMM system with 4 components per state,
74% of false classifications were for test samples drawn from the E-set. The test set
probability of error given an E-set letter was 7.2%, whereas given a non E-set letter
it was 1.4%. The confusion matrix for the E-set letters within the full alphabet task
is not necessarily identical to that for the E-set task alone. Unless otherwise stated,

the ‘E-set task’ refers to the classification of E-set letters as E-set letters.

e Closer inspection of the test set performance for ML training indicated a tendency
to overtrain with 20 iterations. Early-stopping often yielded a set of models with
better test set performance. However this design parameter, while not necessarily
optimal, still yielded a reasonable system compared to those of other researchers (see

Section 6.5).

Figure 6.1(b) details the variation of test error rate with complexity for the three different
training regimes on the E-set task. Training error rates are also included for reference.
Complexity was restricted to 1, 2, 4 and 6 mixture components per state. Some remarks

may be made.

e As expected, training error rates were lower than test error rates because the training
and test sets have different statistics and a classifier more accurately reflects statistics

in its training set.

e Due to its discriminative approach, lower test error rates were achieved for models
estimated by MMI. Test error rates for ML estimation varied down to 6.7%, but for
MMI estimation varied down to 4.3%. In all but one case, the test set performance
of the MMI-trained models was statistically significant in comparison to ML-trained

models of the same complexity to a confidence level of 95%. The exception for the
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models with 4 components per state under the MMI-5 training regime was at a 94%

confidence level.

e The MMI-20 training regime yielded models with consistently better test set per-
formance than the MMI-5 training regime, even when both yielded models which
perfectly separated the training samples. This indicates that prolonging MMI train-
ing, at least in this case, repositioned class decision boundaries at better locations.
This was in accordance with increasing the average posterior margin calculated over
the training samples. However the statistical significance between the test set per-
formance of the MMI-20 and MMI-5 models was much poorer, ranging between 55%
and 62% confidence levels for complexities of 1, 2 and 4 components per state. Only

at 6 components per state was the confidence level acceptable at 93%.

The superior performance of MMI estimation is reflected in the current speech recognition
literature [111]. However MMI estimation requires fine-tuning the likelihood scale factor
k. For 1, 2, 4 and 6 components per state, k was respectively 1/30, 1/30, 1/50 and 1/60.
Of course, values below unity artificially increase the confusion between classes in the
space of linear class posteriors, i.e. in P@D (0, €,) where &, is the set of current HMM

parameters.

There is another viable training regime for MMI estimation. Rather than train all class-
conditional statistical models within a single framework, i.e. under ‘multiclass MMI esti-
mation’, each pair of class-conditional models for a binary problem can be trained inde-
pendently of all other pairs. While these two approaches yield identical sets of models for
ML estimation, this is not the case for MMI estimation. For a complexity of 2 mixture
components per state, the pairwise MMI approach yielded a test error rate® of 4.8% after
4 iterations and x = 1/70. This differed from the 5.4% test error rate at a confidence
level of 42% obtained for models of identical complexity but trained after 4 iterations of
multiclass MMI estimation. Although the pairwise approach may give still further im-

provements in performance by careful selection of likelihood scale factors for each pair,

3Random selection was applied for unresolved decisions. Prior to this, the test error rate was between

4.6% and 5.0%.
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notation | score subspace

W covariant derivatives with respect to mixture component weights

m covariant derivatives with respect to mixture component means

v covariant derivatives with respect to mixture component variances

t covariant derivatives with respect to HMM self-transition probabilities

1 log class likelihood
r log class likelihood-ratio

P log class posterior

Table 6.1: Abbreviations for score subspaces

the greater computational cost incurred by pairwise training may not justify any increase
in performance obtained. For this reason, multiclass MMI estimation was pursued in the

remainder of the experiments.

6.3 Score space classifiers

A collection of software was used for the experiments on score space classifiers. The calcu-
lation of scores within score space was implemented by modifying SVM'"* version 3.02.
SVM training and testing was using SVM“9" version 4.00 [54] [53]. The calculation of
MLE linear discriminants was implemented in MATLAB version 5 [68]. As described
in Section 2.3.1.1, the MLE linear discriminant is here identical to the MSE linear dis-
criminant since there are equal numbers of training samples for each of the classes. The
distributions used to define the mapping into score spaces were those calculated by the

ML or MMI training regimes for the baseline experiments.

The experiments in this section focus on E-set classification and HMMs with complexity
from 1 to 6 mixture components per state. Classifiers were constructed in a variety of
score spaces based on these HMMs and as defined in Section 4.1. Where relevant the
abbreviations in Table 6.1 are used. Linear discriminants were chosen since they may

under constraints be related to classifiers defined on points in the total space of fibre
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bundles* and they have good regularisation properties. For simplicity for SVMs, a single
parameter C' = 100 was used for all experiments. The covariant derivatives in all the score
spaces in these experiments were defined with respect to the GGaussian component means
only. The other parameters of the statistical models were ignored. This was for simplicity
in comparison, and is sensible since Gaussian means are generally known to contain most
of the class discrimination between HMMs. The effect of introducing other parameters
into the definition of the score space is detailed later in Section 6.3.4. For the present, it
is sufficient to regard this restriction as a good compromise between the size of the score

space and adequate performance.

6.3.1 ‘Normalisation’ in score space

There are two ‘normalisation’ techniques which may be applied to score spaces and which

also illustrate the degenerancy between the score mapping and score space classifier.

e The first is the metric matrix in score space. This may either be viewed as embedded
in the score mapping or a property of the ‘distance-calculating algorithm’ in the
classifier. For the SVM classifier, the metric matrix applied in these experiments
was the diagonal form of the global covariance matrix calculated on the training
data. The covariance matrix was calculated individually for each binary problem
using the samples mapped into the corresponding score space. Replacing this with
an Identity metric matrix in the mr score space increased the E-set test error rate for
models with 2 mixture components per state from 5.0% to 10.7% with a confidence
level of 100%. The trend is similar to that expected for a GMM classifier which
has all its covariances set to Identity rather than tied to the global covariance. The
diagonal form of the global covariance matrix is a sensible choice of metric matrix
as explained in Appendix D.1.2. Also as explained in Section 3.6, this metric matrix

is here not constrained to give unit scaling for the zeroth order score subspace.

“However the decision rule is based on normalised log likelihoods of form lnms(Oy;8,) (see Section 4.6);
furthermore there was no attempt to enforce the constraints on the linear discriminant’s weight vector,

so there was no guarantee it related to valid distributions (see Section 3.5.3.3).
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e The second is sequence length normalisation. In these experiments the ‘soft’ form
of the normalised log likelihood [,,5(Oy; 6,) detailed in Section 4.6 was applied.
This normalisation may be viewed as embedded in the score mapping based on the
normalised log likelihood. Alternatively, it may be viewed as a ‘feature-space trans-
formation’ applied to the score space defined on the log likelihood, and may possibly
therefore be viewed a property of the classifier. Sequence length normalisation is ex-
pected to improve performance whenever letters occur which are spoken at a variety
of speaking rates. For the mr score space, there was 0% confidence in the change in
test error rate on the E-set and full alphabet tasks when sequence length normalisa-
tion was neglected. However for the wmvtr score space and E-set task, an absence of
sequence length normalisation increased test error rate from 4.1% to 5.6% at a confi-
dence level of 90%. These experiments are inconclusive as to the merits of sequence
length normalisation. The results suggest that the reduction in within-class vari-
ability caused by sequence length is offset by the loss in duration information in the
mr likelihood-ratio score space. This is not the case in the wmvtr score space where
duration is preserved in the derivatives of the self-transition probabilities. Despite
this, sequence length normalisation is retained in all experiments for the purpose of

comparison.

The metric matrix and sequence length normalisation described above are applied in the
remaining experiments in this chapter. For convenience, the term ‘likelihood score space’
and its mathematical notation, for example (9 (1,(8,)o), are retained, and sequence
length normalisation and its modified form of the log likelihood implied. Similar implica-

tions follow for other score spaces.

6.3.2 Comparing classification algorithms in score space

Next it is important to verify, at least in part, whether SVMs are a good choice of classifier
for these experiments, as suggested in the experiments of the previous chapter. For this
reason, alternative MLE discriminants were trained. These were implemented either by

setting the covariance matrix to the diagonal form of the weighted within-class covariance,
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or to the diagonal form of the global covariance. Covariances were calculated only on the
two relevant classes for each binary problem. A comparison is detailed in Table 6.2 where
test error rates are presented for the E-set task and likelihood-ratio mr score spaces defined
on ML trained models. Confidence levels are given comparing the classifiers with baseline

MAP classifiers operating on the same models.

The SVM classifiers consistently outperformed the MLE (weighted covariance) classifiers,
which in turn outperformed, in all but one case, the MLE (global covariance) classifiers.
These trends were also reflected in identical experiments but where the ML trained models
were substituted for those trained under the MMI-5 and MMI-20 training regimes. The
results emphasise the good generalisation properties of SVM classifiers and that their
training is discriminative. The lack of robustness in the MLE linear classifiers was probably
due to insufficient training samples. For each binary problem, there were 480 samples
available for the GMM classifier to estimate 4683 parameters, two 1561-component class
means and one 1561-component variance. For the SVM, there were 1562 parameters for

the weight and bias.

Setting the classifier covariance matrix to the diagonal weighted within-class covariance
yielded better performance than setting it to the diagonal global covariance. These may
be interpreted as two different metrics which the MLE discriminant assumes for score
space. Both metrics are maximally noncommittal in the sense and within the assumptions
of Appendix D.1.2, but the former in an average sense with respect to each class, and the
latter with respect to the two classes of scores in score space. The former yields better
performance by the same argument as a GMM classifier often performs better when its
covariance matrix is tied to the average within-class covariance rather than the global co-
variance. While it is possible to apply other parametric and nonparametric classifiers, the
main focus of the chapter is the investigation of score spaces rather than their interaction

with different classifiers. The remaining experiments in the chapter solely apply SVMs.
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num. mixture | input score space classifier
comp. per MAP SVM | MLE (wtd) | MLE (glb)
model classifier
1 11.3 6.9 (100) 9.8 (78) 10.4 (50)
2 8.7 5.0 (99) 7.0 (77) 6.9 (83)
4 6.7 5.4 (74) 6.5 (0) 7.8 (66)
6 7.2 5.4 (89) 6.7 (30) 7.0 (0)

Table 6.2: Percentage test error rates for different classifiers for the likelihood-ratio mr
score space defined by ML-trained models (confidence levels relative to MAP classifier

using same models are given in brackets)

6.3.3 Comparing score spaces

Next, some of the score spaces detailed in Section 4.1 were compared. All experiments
applied the metric matrix, sequence length normalisation and SVMs as detailed above. The
score spaces were defined using the baseline models from ML training. Test error rates are
presented in Table 6.3. Confidence levels relative to the baseline models are given, where
useful, in brackets. For a binary problem the two classes are denoted w, and wy, and class
w, Was arbitrarily chosen as the first of the two classes according to alphabetical ordering.
The best performance was for the likelihood-ratio score space defined on models with 2
mixture components per state at 5.0% test error rate comparing to a best MAP classifier

performance at 6.7%. A number of remarks may be made.

e The results show poorest performance for the Fisher score space and likelihood (2-
class) score space. For each binary classification task, both score spaces were de-
fined on a single statistical model describing the two relevant classes. As detailed
previously, the score mapping may be noninjective in nature. This impedes class
discrimination if two regions of input space, typical of two competing classes, map
to the same region of score space. Such is the case for these score spaces. As the
number of mixture components per state increases, so more of input space is mapped

to the same region of score space, which is expected to increase class confusion in
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input space score space
num. Fisher likelihood likelihood lik.-ratio
mixture (2-class)
comp. per | MAP | ¢5aD)(9) | G0 (1, 8p) | (1, (B,)o) | @ (1, )
model classifier m ml ml mr
1 11.3 6.3 5.9 7.6 6.9 (100)
2 8.7 10.2 9.4 6.3 5.0 (99)
4 6.7 23.5 23.3 7.6 5.4 (74)
6 7.2 31.3 31.1 7.8 5.4 (89)

Table 6.3: E-set: Percentage test error rates for different score spaces for ML-trained

models of different complexity (confidence levels relative to the MAP classifier using the

same models in input space are given in brackets)

score space and decrease the performance of score space classifiers. Performance in
the Fisher score space was worse than in the likelihood (2-class) score space based on
the same distributions. The only difference in score spaces was the inclusion of the
log likelihood in the latter. The log likelihood is a useful feature which is nonlinearly
related to its unit degree covariant derivatives with respect to the Gaussian means.
As such it furnishes information which cannot be extracted by a linear classifier
acting on these covariant derivatives alone. Its inclusion is here beneficial for class

discrimination.

The likelihood (1-class) score space has limited ability to distinguish samples in
input space since the model parameters defining the score space represent one class
only. Viewing these parameters as ‘triangulation points’ for input space, there are
insufficient reference points to clearly describe regions of input space outside the
scatter of this class. By adding derivatives defined on model parameters for another
class, the set of triangulation points stretches across a more expansive region of input
space and is far more expressive. For this reason, the likelihood-ratio score space
yields better class discrimination than the likelihood score space based on the model

for a single class alone. A linear discriminant in an appended likelihood score space
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for two classes ¥ (1, &,) can mimic a linear discriminant in the likelihood-ratio
score space. However it has an extra degree of freedom in combining the class log
likelihoods. The likelihood-ratio score space is preferred for its relation to simple

likelihood-ratio tests.

e For the likelihood-ratio score space, the optimal complexity for the defining distri-
butions was 2 mixture components per state. This was a lower complexity than the
4 mixture components per state identified for the best MAP classifier operating on
the same models. Although unwise to draw inferences from a single experiment,
this may simply be because the size of a score space defined on distributions with 4
mixture components per state is much larger and more susceptible to overtraining

when there is a sparsity of training scores.

Experiments were performed with the posterior score spaces® ¢P® (1, £,) and ¢P*®) (1, &),
with score mappings defined on HMMs with 2 mixture components per state at respective
test error rates of 10.6% and 10.9%. The posterior score space P (1,&,) is identical to
the likelihood-ratio score space cplr(aab>(1,§0) except for the substitution of the log class
posterior In P(w,|O) for the log likelihood ratio In p(O|w,)—1n p(O|ws), and the subsequent
weighting of each covariant derivative by P(w,|O). The log posterior is nonlinearly related
to the individual log class likelihoods, and as such the posterior score space furnishes
information which is not available to a linear discriminant operating in the likelihood-
ratio score space. Unfortunately, the class-conditional models in these experiments were
well-trained and despite the similarities in the E-set letters, class posteriors were very
close to zero or unity. Unfortunately a trained classifier will then effectively mainly base
its class decision on the value of the class posterior® and limit the use of information from
covariant derivatives. There is no reason why the posterior score spaces ¢**®(1,&,) and

oP®)(1,¢,) should yield the same performance.

5As an exception, problem DvT for <pps(a)(1,£0) required C = 1000 since there was none or slow

convergence for C' = 100.
6The posterior was not necessarily identical to that used by the MAP classifier since class likelihoods

were calculated using all paths through the model rather than the single Viterbi path.
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An SVM classifier was trained in the mr likelihood-ratio score space defined on ML esti-
mated models for the full alphabet task. The complexity of the ML models was 2 mixture
components per state. The classifier achieved a test error rate of 2.95%, whereas a MAP
classifier based on the same models achieved 4.68% test error rate. The two classifiers
differed with a 100% confidence level. The best MAP classifier for the full alphabet task
achieved 3.40% test error rate for ML trained models with 4 mixture components per
state. The SVM classifier differed from this at a 57% confidence level. The following

details regard experimental implementation.

e The use of a single parameter C' is unlikely to be equally acceptable to all score-
spaces, particularly those of different sizes. The experimental results were therefore

subject to assuming a fixed C' parameter.

e Each log likelihood” in the r subspace which was used to define the covariant deriva-
tives for the remaining components in score space was for the whole utterance,
i.e. for the full silence-letter-silence hypothesis. It is also possible to con-
strain this log likelihood to the segment of speech recognised as letter and not
as silence. Using the log likelihood of the whole utterance does indeed introduce
some unwanted within-class variation to the r subspace since the log likelihood varies
with the length of silence. However restricting the log likelihood to the speech seg-
ment requires a ‘hard’ decision on the silence/speech boundaries. This decision may
in turn degrade performance. Furthermore, if the log likelihood is calculated over
silence-letter—-silence, then a ‘soft’ silence/letter segmentation is incorporated
into the wmvt subspace by virtue of the letter state posteriors. Restricting the log
likelihood to only the letter segment forces the incorporation of a ‘harder’ segmen-
tation into the wmvt subspace. Therefore, it seems sensible to use the log likelihood
of the full silence-letter-silence utterance in the definition of the score spaces.
Furthermore, since little discrimination is expected between letters in the covariant
derivatives with respect to the silence model parameters, these subspaces were always
ignored in these experiments. This is fortunate since the calculation of the covari-

ant derivatives with respect to self-transition probabilities detailed in Appendix B.3

7Or more exactly, ‘soft’ form of normalised log likelihood.
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num. mixture ML MMI-5 MMI-20

comp. per input lik.-ratio input lik.-ratio input lik.-ratio

model | MAP | g"01)(1,€,) | MAP | g"®9(1,€,) | MAP | g9 (1,€,)

1 11.3 | 6.9 (100) | 5.6 5.9 (15) 5.0 5.9 (89)
2 8.7 5.0 (99) 5.4 4.1 (79) 48 4.3 (0)
4 6.7 5.4 (74) 5.0 5.0 (0) 4.4 5.4 (60)
6 7.2 5.4 (89) 5.4 4.4 (56) 43 5.4 (66)

Table 6.4: E-set: Percentage test error rates for MAP classifiers and SVM score space
classifiers (mr score space) defined on models of varying complexity trained under different
training regimes (confidence levels relative to the corresponding MAP classifier using the

same models are given in brackets)

does not permit repeated states. So in the experiments, score spaces were always
restricted to the covariant derivatives with respect to letter model parameters only,

but with log likelihoods calculated over the silence-letter-silence hypothesis.

It is also useful to present results for equivalent experiments but with score spaces defined
on models trained by MMI estimation. Only the likelihood-ratio score space was considered
since this score space yielded the best performance for ML trained models. Experimental
results are detailed alongside the ML results in Table 6.4. It was difficult to substantiate
some of the comparisons in terms of statistical significance. The MMI estimated models
were very discriminative in comparison to ML estimated models of the same complexity,
for example MMI-20 yielded test error rates as low as 4.3%. Constructing classifiers in
likelihood-ratio score spaces sometimes worsened performance. In these cases, covariant

derivatives simply added ‘classification noise’ to the log likelihood-ratio®.

80r more exactly, the ratio formed from the ‘soft’ form of the normalised log likelihoods.
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score num. test error
space | components | rate, %
T 1 8.5
v 1560 | 7.4 (55)
m 1560 5.2 (91)
mr 1561 5.0 (0) <99>
mv 3120 5.0 (0) <0>
wmv 3140 4.4 (75)
mvt 3140 4.4 (0) [75]
wmvt 3160 4.1 (50)
wmvtr | 3161 | 4.1 (0) <100> {67}

Table 6.5: E-set: Comparing SVM test error rates for different subspaces of score space
(confidence levels: (-)=relative to classifier on row above, [-]=relative to mv, {-}=relative

to mr, < - >=relative to r, < - >=relative to m)

6.3.4 Feature selection in score space

In many pattern classification tasks, performance is improved by selecting a linear sub-
space of the original feature space thereby eliminating features which possess little class
discriminative information. For computational reasons, experiments were limited to a
‘filter’ method of feature selection. Any conclusions drawn are only for this particular
dataset and task. Linear subspaces were first selected by parameter type, a form of fea-
ture selection by expert knowledge. Test error rates are detailed in Table 6.5 with various

confidence levels presented within delimiters.

Generally, adding new components or features increased classification performance. Both
the mr and wmvtr score spaces were better than the r score space to respectively 99%
and 100% confidence levels on test set performance. This illustrates that score space
classifiers are indeed useful. The m score space was better than the v score space at a 91%
confidence level. Intuitively, Gaussian means are more descriptive of particular classes than

Gaussian variances, so their covariant derivatives should enable better class discrimination.
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Variances simply give information pertaining to the variability of trajectories in acoustic
space. To a 67% confidence level, the wmvtr score space was better than the mr score
space. Class discriminative information therefore existed in the wvt subspace which was
complimentary to that in the mr score space. Results suggest most of this complimentary

information originated in the t or w subspaces.

Any advantage gained from adding extra components into the score space is normally pre-
cluded by the ‘curse of dimensionality’. However the linear SVM can still return a robust
and competitive solution even in large score spaces, but often with greater computational
cost. For this reason performance must sometimes be compromised by the size of the score
space. Although increased computational cost from increased score space size was not too
problematic in these experiments, most of the experiments in this chapter nevertheless
focus on the mr score space. The t or w score subspaces were not tested alone since they

are unlikely to capture sufficient charactistics to distinguish classes.

Next, a data-driven method for feature selection was adopted, both in the mr and wmvtr
score spaces. Each feature was ranked according to its Fisher ratio. Subspaces were then
formed from components with highest Fisher ratios, either subspaces of fixed size or formed
from all components with ratios above a threshold. The test error rates for SVM classifiers
constructed in these subspaces are detailed in Figure 6.2. When a threshold was used in
the value of the ranking criterion, the test error rate is plotted against the average size of

score subspace across all 36 binary classifiers for the E-set task.

The performance curves describe minima in test error rate typical of feature selection.
As the size of the score space decreases, performance improves as ‘noisy’ components are
discarded but then worsens as useful components are discarded. The lowest test error rates
for the mr and wmvtr score spaces were 3.2% at an average of 354 components per classifier
and 3.3% at 500 components per classifier. These compare favourably with respective test
error rates of 5.0% and 4.1% for the full score spaces at respective confidence levels of
94% and 50%. These results are subject to a single value of C = 100. No attempts
were made to tune this parameter for each size of score space. Improved performance

is expected from nonlinear feature extraction techniques, since scores typically occupy

164



55 T T T T T T
5 -
SN
<45
+~
<
~
—
S
2
(<]
2
0
Q
+~ 4+
351
+ mr (number)
* mr (value)
O wmvtr (number)
O  wmvtr (value)
3 | | | | I I
0 500 1000 1500 2000 2500 3000

number of features/components

Figure 6.2: Comparing test error rates as the size of score spaces was varied using the
Fisher ratio (thresholds either in the ‘value’ of the Fisher ratio in which case the average
number of components per score space is plotted, or in the ‘number’ of components per

score space)

165



nonlinear structures with lower dimensionality than the size of the score space. However
such techniques are often computationally expensive. Encouragingly in [101], experiments
were conducted with Fisher score spaces defined on discrete HMMs modelling amino acid
sequences, and it was remarked that most of the class discrimination was contained in

relatively few components of Fisher score space.

A feature selection experiment was implemented in the wmvtr score space defined on the
ML models, with 2 mixture components per state, for the full alphabet task. The 500 most
discriminative components from each score space were selected. A test error rate of 2.12%
was achieved. This was a decrease from 2.37% for a similar classifier in the full wmvtr score
space, at a confidence level of 60%. The classifier at 2.12% outperformed MAP classifiers
operating in the input space using ML models with 2 and 4 mixture components per state,
with respective test error rates at 4.68% and 3.40%, and at respective confidence levels of

100% and 99%.

6.4 The importance of different HMM parameters for

discriminating letters

The wmvtr score spaces were processed to furnish rankings according to the Fisher ratio.
The 10 components with highest Fisher ratio for each binary problem were extracted
and used to form sets of ‘most discriminative features’ for the training samples. There
were two discriminative feature sets Fie; and Fp, drawn respectively from the E-set and
full alphabet tasks and containing respectively 360 and 3250 components. The feature
sets were analysed and results presented in Figures 6.3 to 6.7. The first of each pair in

Figures 6.3 to 6.6 describes Fes; and the second describes Fiy-

e Figure 6.3 shows simple histograms of the frequency of the covariant derivatives
with respect to each parameter type in the sets of most discriminative features. The
Gaussian means have a greater representation than the Gaussian variances since

they define the typical trajectories of each letter in the MFCC_E_D_A representation of
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acoustic space rather than the variability about the typical trajectories.

Since 3120 of 3161 features are covariant derivatives of Gaussian means or variances,
a greater representation of these parameters is expected in Fige; and Fi,;. An attempt
to normalise for this yields the histograms in Figure 6.4. Rather than plot f, the
frequency of a parameter type, the log normalised relative frequency [ is plotted

where,

I = log10(£ X %) (6.1)

where the number of components in score space Y n = 3161 and,

360 for Frget

Y f o= (6:2)

3250 for Fig
According to the normalised relative frequencies, the log likelihood-ratio and covari-
ant derivatives of the self-transition probabilities and mixture component weights are
the most class discriminative features. The log likelihood-ratio is a powerful feature
since it summarises the modelling ability of all the parameters within each HMM.
The derivatives of self-transition probabilities are informative since they contain
duration information. Since all E-set letters are of similar duration, the covariant
derivatives of self-transition probabilities have a smaller representation in the nor-
malised relative frequency histogram of the E-set than of the full alphabet. In part,
these normalised histograms are unfairly biased against the features derived from
Gaussian means and variances. There is probably only a small subset of these fea-
tures which are discriminative, and their importance is unfairly penalised by the

remaining features of the same type which never occur within the sets Fyg e, or Fiyy.

Figure 6.5 details the variation of features defined on mixture component weights
across their defining states. All weight-dependent features in F,; belong to the
1st and 2nd emitting states. This is sensible since most of the class distinguishing
characteristics for the E-set originate at the beginning of the letters. The spread
of weights across states is much more diffuse for the full alphabet task since there
is greater acoustic variety between letters. Overall, the initial states and final state
are important for class discrimination. Such states model the transitions between

silence and the letter, or vice versa.

172



e Figure 6.6 details the variation of features defined on self-transition probabilities
across their defining states. For the E-set task, the features are concentrated on
the initial two states, reflecting the trend in the weight-dependent features. As for
the weight-dependent features, there is a greater spread for the full alphabet task.
However, excepting the 2nd state, the greatest representation is for the central 5th,
6th and 7th states. These states model the duration aspects of the central part
of each letter. This must be a valuable cue for distinguishing non E-set letters,

particularly those with short sharp utterances or longer ones.

e Figure 6.7 plots the relative frequency of each MFCC term and log energy term in
Feset and Fiyy, distributed across the zeroth, first and second order derivatives with
respect to time (respectively the static, delta and acceleration parameters). The
darker is the rectangle in the image, the greater is its frequency of occurrence. The
plots for the E-set and full alphabet tasks are in broad agreement in that low order
MFCCs possess more class discriminative information than higher order MFCCs,
and the log energy term is also valuable. This is consistent with general knowledge
in speech recognition. In both cases, the most important parameters for the log
energy terms are the delta, then acceleration then static. Since the static log energy
term is dependent on loudness and channel conditions, the dynamic aspects of the
log energy term, as encapsulated in its delta and acceleration parameters, must be
more reliable cues for distinguishing letters. The plot for the full alphabet task has
a slightly higher representation of middle order MFCCs in the delta stream. This
may be a consequence of the greater durational variability in the full alphabet than
in the E-set. The results suggest that discarding all covariant derivatives relative to
MFCC8 to MFCC12 in the definition of the score space should not seriously degrade
performance. This suggests another method of feature selection based on expert

knowledge.
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task | feature classifier | brief test error
space type description rate, %
E-set | input MAP ML, 4 mix. comp. 6.7
E-set | input MAP MMI-20, 6 mix. comp. 4.3
E-set | score space | SVM subspace of mr 3.2
full | input MAP ML, 4 mix. comp. 3.40 (7.2)
full | score space | SVM subspace of wmvtr 2.12 (3.5)

Table 6.6: The best performing classifiers from the experiments in this chapter (E-set

subset results given in brackets)

6.5 Comparison with other ISOLET classifiers

The aim of these experiments has been to illustrate various properties of score spaces
rather than fine-tune performance. However it is useful to compare the results with those
of other techniques. The best performing classifiers from this section are summarised in

Table 6.6 with a brief description.

First, it is important to establish whether the HMM-based MAP classifiers used as base-
lines in the full alphabet experiments are state-of-the-art for the 39-component MFCC-
based feature space. Similar feature spaces are applied in the following research though
model topologies differ. For the same input feature space, [55] report a best ML baseline
of 3.01%, and a best performance of 2.95% for HMMs trained using Frame Discrimination.
Neglecting the acceleration parameters and adopting a 26-component feature vector, [103]
achieves a best ML baseline of 3.91%, and a test error rate of 3.40% following MMI train-
ing. For a 39-component feature vector based on subband features, [72] describes a ML

baseline of 3.3% test error rate. The ML baseline in this chapter is reasonable at 3.40%.

The best performing classifier that the author has found on the ISOLET task was the
HMM-based classifier in [56]. Their classifier yielded 2.0% test error rate on the full
alphabet task, the E-set subset of which recorded 2.8% test error rate. The SVM results

in Table 6.6 are a little worse. It is important to note that [56] report E-set results
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within the full alphabet task, rather than on a dedicated E-set task. Hence their result
may be regarded as an upper bound on the test error rate for the dedicated task. Their
system included an endpoint detection algorithm and utilised signal modelling techniques
to extract new features. The results reported in this chapter did not use endpoint detection
explicitly but utilised a separate silence model. The next best system the author has
found is in [22]. It has no endpoint detection and yielded a test error rate of 2.6% for
the full alphabet task. The score space classifiers described in this chapter are therefore
competitive with state-of-the-art systems. A summary of some results on the ISOLET
task and other alphabet and alphadigit tasks is contained in [67]. One of the original
neural network-based classifiers built for this task was described in [30] and [29], reporting

an E-set test error rate of 5% and full alphabet rate of 4%.

6.6 Summary

HMMs are an important type of statistical model appropriate for variable length patterns
and may be used to define score spaces. Experiments were performed illustrating how
static classifiers such as SVMs can be applied to dynamic classification tasks via score
spaces. The experiments concentrated on the classification of isolated letter utterances.
The performance of HMMs was improved by training SVM score space classifiers. Feature
selection and a careful selection of metric matrix for score space were shown to increase
performance. Experiments also suggested that sequence length normalisation is more

useful when there are other means of retaining duration information in the score space.
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Chapter 7

Conclusions and future work

7.1 Conclusions

Since the nature of a data source is usually more complicated than the statistical model
proposed for it, the performance of inference algorithms defined on statistical models is
suboptimal due to model incorrectness. There is therefore good sense in augmenting a sta-
tistical model to form a fibre bundle in the space of probability distributions. Each fibre is
an exponential family which contains as a subfamily local approximates to a distribution
in the original statistical model. The fibre bundle ‘captures’ a greater variety of distri-
butions and can potentially furnish better estimates for the data source. Vector bundles
and score spaces can be defined as ‘tools’ to train distributions in fibre bundles. Various
training criteria were proposed including a maximum likelihood approach and discrimina-
tive techniques, including an implicit estimation through training a linear discriminant in
score space. ‘Fibre hopping’ was also proposed as a maximum likelihood technique which
involves repeated augmentation of the fibre bundle. This thesis has developed the relations
between such fibre bundles, vector bundles, score spaces and training techniques. Fibre
bundles may also be defined as structures within the space of scalar functions and hence
only include distributions as a structural subset. These bundles permit a formalisation

of truncated Taylor expansions of scalar fields defined on statistical models. Essentially a
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truncated Taylor expansion is the evaluation of the scalar field at points within the total
space of the bundle defined with the statistical model or models as its base manifold.
Taking a more general view, the mapping from input space to score space may be viewed
as a model-dependent feature extraction process. A simple model or classifier can then be
constructed in the score space. It is possible to view this score space as that induced by

a kernel. An example of such a kernel is the Fisher kernel.

The classification performance of score spaces is primarily influenced by the choice of the
defining scalar field. This influences performance through the noninjective nature of the
mapping from input space to score space, and the magnification the mapping induces near
to the decision boundary. Performance is also affected by the number of training samples
available to the classifier in score space and the nature and properties of that classifier.
Sequence length normalisation was described to reduce unwanted within-class variability
due to the length of patterns. In particular, techniques were developed for signals which

may be modelled as contiguous quasi-stationary segments.

A common classification technique for fixed or variable length patterns proposes a set of
statistical models, one for each class, and selects the class with the maximum posterior
probability. This yields the lowest probability of error but only if the statistical models
and class priors are correct and an appropriate loss function is selected. This thesis encour-
ages an approach where the patterns are mapped into a fixed length score space. Static
classifiers with good regularisation properties, for example SVMs, can then be applied to
train decision rules discriminatively and counteract some model incorrectness. For certain
score spaces and solutions, a linear classifier trained in score space can be related to a
maximum a-posteriori decision rule operating on distributions in the fibre bundle defined
on the original statistical models. The experiments in this thesis demonstrate the promise

of this approach.

Experiments on fixed length patterns were conducted on an artificial dataset and a small
vowel dataset. Various score spaces and classifiers were investigated and compared. The
most promising classifier on the vowel data was formed by training 1-v-1 linear SVMs

and combining their decisions in a majority voting scheme. Each SVM was trained in a
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likelihood-ratio score space defined on the statistical models for the two relevant classes.
This classifier outperformed the best GMM classifiers trained directly in the input space,

and was comparable to state-of-the-art systems for this vowel task.

Experiments were also performed for variable length patterns on an isolated letter speech
classification task. Different score spaces were compared within the framework of train-
ing 1-v-1 linear classifiers and combining their individual decisions in a majority voting
scheme. Again linear SVMs trained in the likelihood-ratio score space yielded the best
performance. Feature selection improved performance by eliminating ‘noisy’ features. The
results obtained were comparable to state-of-the-art systems on this task. Furthermore,
an objective analysis of the relative importance of different features in score space for
discriminating letters reinforced common knowledge as to which parameters of HMMs are

the most useful for discrimination.

7.2 Future work

There are a number of interesting avenues of research, both theoretical and applied. Some
of these are listed below with some helpful, though not a comprehensive list of, citations.
The development of fibre bundles and score spaces suggests some applications which were

not implemented in this thesis. These include,

e training a distribution in the total space of the fibre bundle to maximise likelihood,
either by defining a score space with 7 = 1 rather than 7 = 7% or incorporating the

normalisation term into the optimisation process,

e extending the maximum likelihood approach to implement ‘fibre hopping’ and ascer-
taining that the likelihood of the training set is nondecreasing, and that the solution

is prone to overtrain with limited training data,

e deriving expressions for mapping into a score space which includes second degree
covariant derivatives, and comparing distributions or classifiers trained in such score

spaces with those trained using the simpler score spaces in this thesis,
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e investigating the application of distance measures within the total space of the fibre

bundle, for example the distance along geodesics of the fibres.

With regard to improving the performance of classifiers in score spaces, there are a number

of possible directions of research.

e The application of SVMs to multicategory classifiers defined in score spaces has been
constrained to training 1-v-1 linear SVMs and combining their outputs in a majority
voting scheme. It would be interesting to apply multicategory kernel methods [109]
[26] to score spaces, and also techniques aimed at combining binary decisions more

effectively for multicategory tasks [69] [18].

e The interaction between different nonlinear SVMs and score spaces has not been
investigated in this thesis. Since the data in score spaces is expected to have a
nonlinear spread, properly regularised nonlinear SVMs may yield better classifiers.
However it may be difficult to relate nonlinear discriminants to implicitly trained

distributions in fibre bundles.

e The components in score space are typically highly correlated and scores within score
space typically occupy nonlinear structures of much lower dimension than the size
of the score space. The application of nonlinear feature extraction techniques [98]

[86] may be promising.

e Score spaces have only been defined on HMMs with state-conditional likelihoods
modelled by GMMs. It may be worthwhile to derive score spaces on other statistical
models such as other Linear Gaussian Models [85] [84]. Discrete output HMMs are
applied in protein classification, and it may be interesting to continue the research

in [52] by applying some of the concepts from this thesis.

e Score spaces defined on the covariant derivatives of linear posteriors were not in-
vestigated in this thesis, and their comparison with other score spaces would be

useful.

e In the experiments in this thesis, SVMs were the only discriminative training tech-

nique applied to binary subdivisions of a multicategory task for nontrivial score
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spaces. Experiments with other discriminatively-trained binary classifiers would be

useful to discern the effect of introducing SVMs.

e It may be useful to apply ‘spherical normalisation’ [106], which was found in [106] to
be particularly appropriate for likelihood-ratio score spaces (this normalisation aims
to yield a better conditioned Hessian matrix for the SVM quadratic programming

solution).

With regard to the application to continuous speech recognition, there are some significant

difficulties.

e The framework developed in this thesis does not accomodate the union of score
space classifiers defined on contiguous segments of speech. For example, a classifier
trained to distinguish segments w, and w, cannot be used to construct a classifier
to distinguish the double segments (w,,ws) and (wp, w,). Any method to achieve
this opens up the possibility of recognising a series of contiguous segments using

classifiers trained to distinguish individual segments.

e The SVM framework developed in this thesis requires SVM binary score space clas-
sifiers to be constructed to distinguish pairs of competing hypotheses. In the exper-
iments in this thesis, the competing hypotheses were vowels or isolated letters. In
continuous speech recognition, the competing hypotheses are usually at least sen-
tences. The number of competing hypotheses is prohibitive, unless restricted to an
N-best list and the technique applied to rescoring (i.e. re-ranking the members of
the N-best list). However even for the N-best list, there is usually insufficient data
to train a classifier to distinguish two hypotheses, since there is usually only one
example of each hypothesis. This problem can be circumvented by simulating data
through a model of the sentence, for example that provided by concatenating HMMs
for constituent units of speech [79]. It is also possible to use the constituent HMMs
to estimate a classifier in score space without simulating data where the mapping
from the parameters of the HMMs to the parameters of the score space classifier
is deterministic. Though promising, this latter technique must necessarily make

assumptions about the distribution of scores in score space.
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Overall, there are significant challenges to the application of fibre bundles and score spaces
to continuous speech recognition, and any advantages gained from this approach should
be weighed against the advantages of alternative approaches such as those described in
Section 2.5. However the application of fibre bundles and score spaces to tasks where the

number of competing hypotheses is small, as in the experiments in this thesis, is promising.
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Appendix A

Exponential families of distributions

An exponential family of distributions may be written as,
S(a) = {p(0;a) | a€L(a;5)} (A.1)

where L(a; S) is an open set describing valid distributions and from Section 2.3 of [3],

p(0;a) = exp{C(O)+) > oI F; ;(0)—D(e)} (A.2)

r=1 j1...jr
and,
g . .
Do) = In / exp{C(0)+Y Y i Fy (0)}dO (A.3)
r=1 j1.jr
The summation over j; ... 7, implies all possible permutations with j; € {1,...n}, Vi for

some positive integer n. Each parameter /' is called a natural parameter and F;,..;,(0)

is its sufficient statistic.

An example of an exponential family of distributions is that of univariate Gaussians where

n:2,g:1[3],
T _ M
o = 5
1
2 _
o = -3
F(0) = O
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FQ(O) = 02

Co) = 0
pro 1 2

with the single constraint a® < 0. In more familiar guise,

POi0) = L exp{—g (0 - w7}

(2mo?)2

183



Appendix B

The Taylor expansion along the

manifold

B.1 Expressions for the Taylor expansion along the

manifold

This section gives an expression for the Taylor expansion along a manifold. The manifold
has global coordinate system [#] and is denoted S(@) where 6 is the coordinate vector.
The manifold is of dimension n and is as described in Section 3.2. An affine connection

is assumed described by connection coefficients T'¥. V&, i, 5. A scalar field ¢ : p — <(Oy;p)

K
varies over S(0) and, under the coordinate chart v : p — 0 yields the scalar field G : 8 —

G(Ol; 0)

The value of & at point @' may be recovered by a Taylor expansion about point 8y,

assuming g is analytic at 8y and @’ lies within its convergence domain. Then,

T

_ 1 _ -
@|,_, = 25> @], [[O" =8 (B.1)
r=0 ' =0

0=0' b .
= J1eJr =1

where the summation over j; ... j, is for all possible permutations where j; = {1,...n}, Vi.

From the more general expression for the covariant derivatives of tensors in mixed compo-
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nent form in Section 403.B of [50], the covariant derivative of a fully covariant component

of a tensor under the affine connection is,

(’I"*l) n

_ 0 _

(@ijisisr = %(gl);ju---;j(rq) - Z ZF;?jl(gl);jli---;j(lfl)?m;j(l+1);---;j(r—1) (B.2)
=1 m=1

where the index m has replaced the index j; in the covariant derivative in the second term.
The expression for (G);j;...;, is a function of the covariant derivatives of form (¢),j,;...;j,_,)-
This suggests a recursive though nontrivial relationship for covariant derivatives of ever-

increasing degree.

An approximation to the Taylor expansion results from truncating the series in Equa-

tion B.1. A pth order approximation is,

@,y = Yo O @i |, TTO* — ) (B.3)

=0 ji..dr i=1

The approximation is exact if the scalar field ¢; on S(@) has highest nonzero covariant
derivative of degree 7 where r < p. At least in the case where [#"] is a Euclidean coordinate
system for the manifold, then the approximation error E is given in Sections 109.E and

109.J of [50] and Section 3.6.2 of [81] as,

(e+1)
1 g Y. 3 .
E = (:Q + 1 ! Z (gl)5j1§..-;j(g+1)‘0_o H (01]7' - H(J)l) (B4)
’ J1--J(o+1) T =1
where,
06 = 00 + 6(01 — 00) (B5)

for some 0 < € < 1. An upper bound in F is given by differentiating £ with respect to 0.
(see Section 3.6.2 of [81]). An interesting investigation of the Taylor expansion of a metric

tensor g along a manifold is detailed in [43].

B.2 Dependence of the Taylor expansion on the co-

ordinate system of the manifold

The Taylor expansion is not a property of the statistical manifold alone but also of the

coordinate system [107] (see the Acknowledgments). To illustrate this, a manifold S of

185



dimension n is given two global coordinate systems [#?] and [uf] with respective coordinate

charts,

S — L(6;5) (B.6)
Yo : S — L(u;S) (B.7)

Both L(0;S) and L(u;S) are open sets in R”. The mapping from one coordinate space

to another is x where,
X = tpoty : L(6;S) — L(u;S) (B8)
which may be expressed in terms of n component-level functions,
x = (' x") (B.9)

A scalar field ¢ is defined over S where ¢ : S — R. Then two scalar fields are defined over

the coordinate spaces,

G:L(6;S) — R (B.10)
&:L(u;S) — R (B.11)
where,
G = go1/11_1 (B.12)
S = coapyt (B.13)
S0,
g1 = GRox (B.14)

If the change in the [#"] coordinate system is hy = 6" — 0y where 6y = ;(py) and
0' = 1 (p'), then the equivalent change in the [u] coordinate system is hy = u' — ug

where,

u = x(6) (B.15)
uy = x(6o) (B.16)



Of course 0,6y € L(0;S) and u',uy € L(u; S). Then in component form,

(ha)' = (u" —up)

1%

u .
= / du’
ug

n elk
= ) / x| do* (B.17)
k=1 06" vle
In linear algebraic form,
0/
hy = / J(6)d6 (B.18)
6o

where J(6) is defined as follows, where all covariant derivatives are evaluated at 6,

J(O) = SR (B.19)
X1 X'n

The bold font with an underbar denotes a matrix formed from components of a type
(1,1) tensor. In general hy cannot be expressed as a simple function of h; unless J(6) is
invariant along the path of integration in the coordinate space between 6, and @', or h;

and h, are infinitessimals. In either of these cases, in component form,

(ho)" = Z sz

(h1)* (B.20)

In linear algebraic form,

hy, = 1(0)‘ h, (B.21)
0=0,
Only if the frame of reference between [#°] and [u!] is such that there is no curvature then

covariant derivatives of x* reduce to partial derivatives of the corresponding order,

; _ arXi
N VTR 1 (B.22)

Then the matrix J(0) reduces to the familiar form of the Jacobian matrix [108].

To establish the task, let the scalar fields ¢; and ¢ be expanded about respective points @,
and uo and used to evaluate scalar fields at @' and u' respectively. The analysis assumes

that both & and & are analytic at 8y and wug respectively, and that 8’ and «’ lie within
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the relevant convergence domains. Then explicitly noting the point of evaluation of each

scalar field or its covariant derivative,

o~ © i, (1) + 5 | () () + ..
S| 0=0' ¢l 0:90+;(§1), 0:00( 1)+ 2;;(%),,1 0:00( 1) (h) +
(B.23)
@, T @ +Z(€2);i (h2)2+§ZZ(€2);i;j (ha)*(ha)? + ...
u=u u=ug i=1 u=ug i=1 ]:1 u=ug
(B.24)

If the Taylor expansion is invariant to the coordinate system, then the scalar value yielded
by each term should be identical irrespective of the coordinate system. To test this pro-
posal, the Taylor expansion for &|g_g in Equation B.23 is processed and an attempt
made to map it into the expansion for ¢|y—. in Equation B.24. The terms h; and hy
are assumed infinitessimal so that the relation in Equation B.20 is valid. First applying

Equation B.14 to the zeroth order term,

1

= (fQOX)‘

0=0, 6=6,

= Q2

(B.25)

u=ug
The value of the zeroth order term is invariant to a change in coordinate system. Next
applying the chain rule for the first order term, where for brevity all covariant derivatives

of X' are assumed evaluated at 6,

n n

Z(fl);i 0:00(h1)i = Z(@ 0 X);i

=1 =1

= Z(@);i

o oo(hl)

Zka(hl)k
1

k=

u=uo

(ho)* (B.26)

u=uo

The value of the first order term is likewise invariant to the coordinate system. The
evaluation of the second order term is slightly more complicated due to the differentiation
of a product and the double application of the chain rule. Again assuming the covariant
derivatives of x' are evaluated at 6y, the second order term in the Taylor expansion less
the scale factor of 1/2 is,

Z Z(g_l);i;j

i=1 j=1

ozoo(hl)i(hl)j
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n

= zj: zi: (Z_:(Q);k ‘u:uoxfi) ;j(hl)i(hl)j

= ZZ znj(Z(cz);k;m\u:uOXT?Xf% +(2)

i=1 j=1 k=1 m=1

= Z Z(Q);k;m u:uo(

k=1 m=1 k=1 i=1 j=1

Xfi;a‘) (h1)*(ha)?

u=uo

Ba)™ (k) + DD @ X () (Y

X
u=ug

(B.27)

Only if the second of these two terms is zero, for example if chi;j = 0,Vk,1,j, is the value
of the second order term in the Taylor expansion invariant to the coordinate system. The
second term is not generally zero and invariance to coordinate systems does not hold in

general.

Hence in general if o > 1, the value of a goth order Taylor expansion approximation varies
with the coordinate system. However if the two scalar fields ¢ and &, are analytic about @,
and ug respectively, and both 6’ and u' are within the relevant convergence domains, then
the Taylor expansions coincide as ¢ — oo. The Taylor expansion is not therefore a property
of the manifold but also of the coordinate system. This has important consequences for

fibre bundles with fibres defined on Taylor expansions.

B.3 Covariant derivatives for selected scalar fields and

statistical models

This section presents expressions for the covariant derivatives of log likelihood scalar fields
over the statistical manifolds relevant to the experiments in this thesis, namely HMMs
with state-conditional likelihoods modelled by GMMs (GMMs are viewed as single state
HMMs).

There are () class-conditional models S(6,),q = {1,...Q}. For brevity covariant deriva-
tives are presented in linear algebraic rather than component form. The notation for

HMMs is as given in Section 2.2.1. With a slight abuse of notation let V,, . denote
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the operator of covariant differentiation with respect to >0 9/0(ug;x)’. Using a similar

abbreviation for other operators of covariant differentiation, then for {(¢), = Inp(Oy; 8,),

qu 12 €(Q)l

Vll'qn QT(q)l

Vo, S(q) = VSl (B.28)

Vvec(Equ)g(Q)l

vvec(EqNK)g_(Q)l
Vaq(1,1)§_(Q)l

Vaq(N,N)C_(C])z

where Vg, (), is implicitly evaluated at a realisation of @,. Then from Appendix A of

[92], where V7, k unless otherwise stated’,

Vg S@) = Z{V‘“”“(t) — %ﬂ(t)} k={2,...K} (B.29)

1 - Wajk Wgj1
T

Vi S@i = D a0 Z55(0u(t) = Bgje) (B.30)
t=1

1< T
Veeemos @ = 5 D 7t = (vee(Z,)
t=1

+((0t) = ) =) © (o) — ) T=4) ) (B3

Vi G.i)s@ = Z{ Nyt _ = } j=1{1,...N} (B.32)

=1 aq(4;7)  Taq(4, 7)1 — aq(4; 7))

The notation ‘vec’ refers to the vec operator, ® to the Kronecker product of matrices, and
Yqik(t) is the component posterior at time ¢ given the sample O;. These derivations are
applicable for each model S(0,), where each HMM is left-to-right with no skips and there

is no tying of parameters within or across the ) models (see Appendix A of [92]). The

! The following derivations assume an Identity metric tensor in parameter space, so contravariant and

covariant components coincide and there is no need to distinguish them or introduce the bar notation.
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order of the components of Vg {(¢); can be freely rearranged. Once Vg (g); is defined

then it is straightforward to define covariant derivatives for related scalar fields. Letting,

Vo, f:
Vefi = : (B.33)
Voo fi

then,

e the log likelihood scalar field f; = Inp(Oy; 0,): Equation B.33 applies where,

_ Vo, S(a) if g=a
Vo, fi = : (B.34)

0 if g#a

e the log likelihood ratio scalar field f; = Inp(Oy;0,) — Inp(Oy; ;): Equation B.33

applies where,

Ve, i(a) if g=a
Vo, fi = { —Vgi(b), if g¢=b (B.35)

0 otherwise

e the log class posterior scalar field f; = In P(w,|O;): Equation B.33 applies where
according to Appendix B of [95],

Vo fi = a(¢9)Ve,5(9), (B.36)
where,

alg) = 1 — P(w,|Oy) ?f ¢g=a (B.37)
—P(w,|O)) if g#a

B.4 Variations on the appended posterior score space

The appended posterior score space <pPS<a“>(1,§0) from Section 4.1 has many repeated
components in the unit degree covariant derivatives. The repeated components may be

discarded without loss in information yielding the reduced appended posterior score space

191



@l (1,¢,). For O; € L(O), adopting the linear algebraic expressions for covariant

derivatives in Section B.3, and implicitly assuming class posteriors are evaluated at &,

the score is,

@™ (0551,8) =

In P(w1|0l)

In P(wgq|Oy)
(1= P(w1]0:))Ve, Inp(Oy; (61)0)

(1 = P(wq|01)) Ve, Inp(Oy; (6q)o)
—P(w1]01)Ve, Inp(Oy; (01)0)

—P(wgq|01) Ve, Inp(Oi; (6¢)o)

(B.38)

A more general form of this appended linear space is the generalised appended posterior

score space ¢P*¥( (1 €., where for O; € L(O),

P (051,6,) =

In P(wl\Ol)

In P(wQ|Ol)
_P(w1|0l)v01 lnp(Oz; (91)0)

—P(wq|O)) Ve, Inp(Os; (80)0)
Vo, Inp(Oy; (61)0)

Voo Inp(Oy; (6¢)o)

(B.39)

Finally, a hybrid appended posterior score space PP (1, ¢,) is also proposed which com-

bines linear posteriors with the unit degree covariant derivatives of the appended likelihood
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score space. For O, € L(O),

P(wl\Ol)

Plwo|O
(01, €,) — (4l (B.40)
Vo, Inp(Oy; (01)0)

Voo Inp(Oy; (0¢)o)
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Appendix C

Linear spaces

C.1 A summary of linear spaces

This section gives some brief details concerning linear spaces. A linear space or vector
space L is briefly a space whose members may be added or multiplied by scalars to yield
members of the same space (see Section 256.A of [50]). It becomes a metric space when
endowed with a distance function, also called a metric g (see Section 273 of [50]), and
the distance between X, Xy € L is denoted g(Xi, X). The metric space (L, g) becomes
more useful if a norm ||X|| for X € L is defined. This is then a normed linear space and
9(X1, Xo) = || X1 — Xy||. If the metric space is complete, the space becomes a Banach
space (see Section 39 of [50]). Scalar products do not exist in all linear spaces but strictly
only in pre-Hilbert spaces (see Section 199.B of [50]). If the pre-Hilbert space inherits the
properties of a Banach space, then a norm exists and the space is complete with respect
to the distance ||X; — X3||. Then the linear space is a Hilbert space (see Section 199 of
[50]) and,

IXI = VX, X) (C.1)

An affine space may then be defined with the Hilbert space as the standard vector space
and with a basis and origin specified (see Section 9 of [50]). The metric can then be

numerically evaluated as a metric tensor also in this thesis denoted by g.
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C.2 Linear algebraic representation of tensor spaces

Tensor spaces effectively enable bilinear mappings to be viewed as linear mappings (see
Section 256 of [50]). A tensor is a member of tensor space. This thesis adopts a linear
algebraic representation of tensors in vector/matrix form. For example the objects X and

a”
X = iXiei = iXiei (C.2)
i=1 i=1

¢ = izn:aij‘fi@@jZzn:i:aijeiébej:zn:zn:a;ei@ej (C.3)

i=1 j=1 i=1 j=1 i=1 j=1
where €’ and e; are respectively the ith elements of the contravariant and covariant basis

for the linear space and ® is the tensor product. Then tensors of type (1,0) and (2,0) are

respectively cast into column and matrix format in bold font where,

Xl
X2

X = (C.4)
X
(1,11 a12 . (J,ln
(1,21 a22 . a2n

A = (C.5)
anl an2 .. oa™

Next, tensors of type (0,1) and (0,2) are written in bold font with a bar,

X

_ X9

X = (C.6)
Xn
ai; a2 ... Qip

A _ 21 QA922 ... Q9p (C?)
Qp1 Qp2 ... QApp
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Finally a mixed tensor of type (1, 1) is written in bold font with an underbar,

11 1
a, ay ... ap
2 2 2
ay a5 ... a
1 2 n
A = (C.8)
n n n
| a1 a3 Gy |

As a special case, the metric tensor ¢ yields the matrices G and G where G = G ' In
this thesis these are called metric matrices and inherit the properties of the metric tensor
g and hence are symmetric and positive definite. The scalar product between the objects

X7 and Xy may be written as,

(X1,X,) = X/GX, (C.9)
= X/ X,=<X,,X,> (C.10)
= XITX2 =< X1, X, > (C.11)
= X,GX,=(X1,X,) (C.12)

The scalar product may be expressed as a function (-,-) where its two arguments are
members of the same tensor space, or as a function < -,- > where the two arguments are

members of dual tensor spaces.

If the linear space is a tensor space of rank greater than 2, then it is still possible to denote
its members in column format, but an isomorphism to a unit rank tensor space is first
required. Given a linear space of dimension n and a tensor space defined on this of type
(r,0), then each tensor in this space has n" distinct components. However if a tensor is
additionally constrained to be fully symmetric, then the number of distinct components
is reduced to,

(r4+n-—1)!

n+r—1
Cr ri(n —1)!

(C.13)

which is the number of combinations possible when making r selections from n objects

with replacement (see Section 24.3 of [81]).
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Appendix D

Metric tensors

As detailed in Appendix C.1, given an affine space defined on a Hilbert space, the metric or

distance function is completely defined by a metric tensor. For example, L is a tensor space

of type (1,0) with n components, with a metric tensor g of type (0,2). For X;, Xy € L,

their scalar product or bilinear form is,

(X1, Xs) = Z(Xl)i(Xz)i

= ) (x1) Zgij(X2)

Referring to Appendix C.1, the distance between X; and X, is ¢g(X;, X3) where,

9(X1,Xp) = \/(X1—X2,X1—X2)

n n 1

= {Z D (X1 = Xo)'g5(X0 - X2)j}5

i=1 j=1

D.1 Properties of metric tensors

(D.1)

(D.2)

By definition, the metric tensor is invariant to changes in coordinate system. If the Hilbert

space L can be expressed in terms of two coordinate systems [#?] and [¢"], then the covariant

components of the metric tensor g in [#?] transform to those of ¢’ in [#"] according to (see
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for example [81]),

n n aelk aell ,
9ij = ZZ@@QH (D.3)
k=1 I=1

In addition, desirable properties for the metric tensor include,

e its functional form is invariant to a change in the coordinate system,
e it is maximally noncommittal in some sense,

e it is invariant to sufficient statistics.

The third of these properties is only here relevant for metric tensors defined in tangent

spaces of statistical manifolds. This application is the focus of the discussion.

D.1.1 Invariance of the functional form to the coordinate system

In certain applications, it is desirable that the functional form of the metric tensor is also
invariant to a change in the coordinate system. In this case, g;; and g, in Equation D.3
must share the same functional form. An example is the Fisher metric tensor (see Equa-
tion D.16) applied to the tangent space of a statistical manifold. On the contrary, the
metric tensor implied in the Natural kernel [73] does not necessarily fulfill this constraint
in which case the functional form is tied to a particular coordinate system, else it is not a

tensor.

D.1.2 Maximally noncommittal

The metric tensor specifies the contribution of each component of the unit rank tensor
space to the norm of a member of that space. It is fully specified, for example, once the
relation between the tensor space and its embedding space is known. However, if expert
knowledge is unavailable specifying the relative importance of each component and the

correlations between them, it is sensible to choose a metric tensor which makes the least
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assumptions concerning these factors. This embodies the principles of Occam’s Razor in
which the simplest model is selected fulfilling the necessary constraints but making the

least claims about unknown knowledge.

For example, consider a tensor space L of type (1,0) populated with tensors, and with a
tensor metric g of type (0,2). Two tensors exist which are the global second order moment

with contravariant component, where X € L,
= / / X' X7p(X*, X))dX " 'd X7 (D.4)
and the global second order central moment or covariance with contravariant component,
o = / / (X — ) (X7 — )p(XT, X9)dXid X (D.5)
where,
yio= / Xip(X7)dX’ (D.6)

and p(-) and p(-, -) are distributions. The fully covariant forms are similarly defined on X;
and X;. Both c and v may be used as metric tensors and are both maximally noncommittal
in some sense. The contribution to the expected square of the norm E{||X||?} from the

ordered pair (X?, X7) under the metric g, abbreviated to C(g, X, X7), is,
C(g, X%, X7) = //Xiginjp(Xi,Xj)dXide

= gz‘j//Xinp(Xi,Xj)dXide

- gz-jc” (D7)
The expected contribution from X* is then, noting symmetry,

C(C, Xia ) = QZC(Q,XZ,X]) o C(gaXzaXz)

7j=1
n

= 2) gic” — guc” (D.8)
=1

It is sensible to equate the contributions from each component, for example arbitrarily to

unity. Then since by symmetry ¢ = ¢,
n
2 Zgijc” — giic“ =1 (Dg)
j=1
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For ease of analysis, assuming c is diagonal,
gic®t = 1 (D.10)

A solution is when g = c¢. Hence the second order moment ¢ is maximally noncommittal
with respect to the contribution of each component to E{||X||*} but under the assump-
tion of a diagonal moment c. An alternative metric tensor may be chosen so that the

contribution from each pair X* and X7 to E{||X — u||?}, denoted by C(g, u, X, X7) is,
Clon X' X9) = [ [ (X7 = g7 = wp(x', X7)ax X

. / / (X7 — p) (X — p)p(X, X7)dXid X

Following a similar analysis to that above and assuming v is diagonal, then setting the
metric to v yields a metric which is maximally noncommittal in the same sense as ¢ except

with respect to E{||X — u||?} rather than E{||X|[*}.

There are good reasons for preferring as metric tensor the second order central moment

or covariance v rather than the second order moment c.

e Both the metric tensors ¢ and v are maximally noncommittal but respectively as-
sume c and v are diagonal. Diagonality in v assumes components are decorrelated. A
sufficient condition for diagonality in c is the assumption that components are decor-
related and have zero mean. The metric tensor v is preferred since it makes simpler
assumptions about the distribution of data. It is also useful to note that statistical

independence of components, not linear independence, implies decorrelation.

e The second order moment c is biased, in terms of sensitivity, towards those compo-

nents with large nonzero mean. For example, for X, X5 € L,

(X1, X2) = D) (X1)'gij(X2) (D.12)

i=1 j=1
If X; and X, are varied by small perturbations AX; and AX5, the change in the

scalar product is,
A(Xl,X2) - (X1 + AXl,XQ + AXQ) - (Xl,XQ)
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n n

= Z Z(Xl —+ AXl)Zng(XQ + AXQ)j - Z Z(Xl)zgl](XQ)J

i=1 j=1 i=1 j=1
= D) ) (AX)'gi(AXe) + (X1) i (AXo) + (AX1) gij(Xo)!
i=1 j=1

(D.13)

The contribution to A(X1, X5) from the components (X;)¢ and (X2) is scaled by g;;.
The smaller is the magnitude of g;;, the less sensitive is the scalar product to small
changes in either (X;)" or (X2)?. Setting g to ¢ implies that if y; and p;, the means
of the ith and jth covariant components in L respectively, are nonzero and large,
then g;; is large and unfairly increases sensitivity of the scalar product to variations
in (X;)" and (X5)?, or X} and X7. Setting g to v counteracts this bias to components
with large nonzero mean. The scalar product is then sensitive to small changes in
each component of X; and X, in proportion to the component covariances which is

more sensible.

The two definitions for the metric tensor yield different values for scalar products unless
the mean in linear space p = 0. Expressing the scalar product in linear algebraic form,
where Y05 is the global covariance matrix and where X, Xy and X, are formed from

fully contravariant components, yields the Mahanalobis distance [25],
(X1,Xs) = X[Z,X, (D.14)

These concepts can be extended to multiple classes of data. Within-class second order
moments or central moments are calculated for each class. A metric tensor is defined
as a weighted form of these class-conditional moments, where the weights are either in
accordance with expert knowledge or data-dependent priors. The resulting metrics can be
interpreted as maximally noncommittal in the same sense as described above but averaged
over all classes. In linear algebraic notation, and letting 34 denote the average within-

class covariance matrix formed from fully contravariant components,

(X1,X,) = X2 LX, (D.15)
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D.1.3 Invariance to sufficient statistics

This property of the metric tensor is only here applicable for tangent spaces to statistical
manifolds. Variance to sufficient statistics ties a metric tensor to a particular set of suffi-
cient statistics. Invariance to sufficient statistics subsumes invariance to bijective front-end

processing schemes, since bijective mappings yield sufficient statistics (see Section 2.2 of

3])-

An example of particular importance to this thesis is the Fisher metric. According to [3]
restating a result by Chentsov [13], the Fisher metric, up to an arbitrary scaling factor,
is the only metric for tangent space which is invariant to sufficient statistics. The Fisher

metric tensor is [3],

g:;(0) & 0 Inp(0; 0) - 0

20 507 Inp(0O;0)p(0;6)dO (D.16)

The Fisher metric is both a second order moment and second order central moment since

the first order moment is zero. From the factorisation theorem [25] [3],
Inp(0;60) = Ing(F(O);0)+1nh(O) (D.17)

where a factorisation is selected where ¢(F(O);8) is a distribution over the space of
sufficient statistics L(F(O)). Then, temporarily denoting the Fisher metric tensor defined
on the distribution in L(O) as g;;(0; O),

35(8:0) = [ 2o 1na(F(0):6) 5 Ina(F(0): 0)p(0:6)dO

Fxo0){ o 0 0(F(0); 0) 5 1ng(F(0);6)
= Eur

w010 7 1 0(F(0); 0) - g (F(0);6)
_ / ilnqmm 6)-2_1nq(F(0): 8)¢(F(0): )dF (0)

00 007

The tensor is numerically invariant to definition on a distribution in L(O) or a distribution
in L(F(O)). The equivalence between expectations over p(O; 0) and ¢(F(O); 0) follows at
least for surjective mappings between L(O) and L(F(O)) which are bijective, one-to-many
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or many-to-one. For bijective mappings, it is useful to note that,

0F(0)
90

p(0;0) = q(F(0);0) (D.19)

D.2 Metric tensors for tangent spaces

The Fisher metric is often applied to the tangent space of a statistical manifold since it is
invariant to expressing distributions in terms of different sufficient statistics. However if
the first order moment in tangent space is nonzero, for example if p(O) # p(O; ) then the
metric tensor is a second order moment. As explained above, the covariance in tangent
space is more desirable and is applied as the metric for tangent spaces in this thesis!.

Then,

9:;(0) = /(%IHP(O; 0) — Nz’) (%IHP(O; 0) — uj)p(O)dO (D.20)

where,

i = /8(21 Inp(O;0)p(0)dO (D.21)

Unfortunately, the metric is only invariant to sufficient statistics for various distributions
and sufficient statistics and no longer in the general case. However the advantages of
the covariance metric tensor are here viewed as outweighing this restriction. In a similar
manner, it is more sensible to apply a covariance rather than a second order moment in

the calculation of the Mahanalobis distance in Equation D.14.

!The covariance reduces to the Fisher metric if p(O) = p(O; 8).
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Appendix E

Metrics induced on the input

manifold

Following the analysis in [1] as referenced in Section 4.2, this appendix assumes the input
space L(O) is a Riemannian manifold defined by a metric tensor in its tangent space. The
appendix details the metric tensors induced by different score mappings. As detailed in
[1], these metric tensors may be used to calculate magnification factors from input space
to score space in the vicinity of decision boundaries. The score mappings detailed here

are those given by some simple statistical models.

As a primary analysis, a 1-component input space L(O) is selected and populated by a
set of () classes, each distributed according to a Gaussian. The class-conditional Gaussian
N (O; pg, vg) for class w, has mean p, and variance v, and 8, = (ug,v,)". Both p, and
v, are implicitly contravariant components of the vector 8,. The parameters for the @
statistical models are summarised by & = (BlT, . ..Bg)T. A single statistical model is
denoted by S(8,) and the set of models by S(§). The score spaces contain zeroth and unit
degree covariant derivatives as detailed in Section 4.1. Covariant derivatives are defined

on the Gaussian means only. For a statistical model S(0,), the metric matrix A for the
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dual of score space has the restricted form defined by,

A = ! (_) (E.1)
0 G

where each vector of zeros has the appropriate shape and where G is the metric matrix for
the dual of tangent space to the statistical manifold. The components of G are the fully
covariant components gf;p(Oq), where the superscript ‘sup’ identifies the score mapping.
Also [g;7(04)] " = (9%)**?(8y), i.e. the matrices formed by the fully covariant and fully
contravariant forms of the metric tensor are related by the numerical inverse. A (1 x 1)
metric tensor is regarded as a fully covariant component so [¢117(0,)] ' = 1/¢71%(0,) =
(g't)™*(0,). Then ¢7i*(0,) = (¢')*"?(0,) = 1 only if the natural basis vector 9/0(u'), is
of unit length viewed from its embedding space. If a metric tensor is referenced without
indexing its components, for example g*'?(8,), then this refers to the whole metric tensor.
The metric tensors induced on the input manifold by different score spaces are defined as

follows.

e Likelihood score space, "™ (1,(0,)o): This is a 2-component score space with a
(1 x 1) metric tensor in the tangent space to the statistical manifold, which at point
(64)0 is gi‘;@((oq)o). The metric tensor induced on the input manifold has a single
fully covariant component,

Ik 1 Ik -
g0 8)0) = —((0—1y)* + g5 ((8)0)] ") (E:2)

Yq

e [Likelihood-ratio score space, (plr(a’b)(l, &,): This is a 3-component score space since
S(&) is defined with two models so @ = 2. The metric tensor in the tangent space to
S(€) at point & is of size (2 x 2) with components gg(a’b) (&,)- Since the two class-
conditional models are statistically independent, the off-main diagonal elements are

assumed zero. So,

gﬁ(a)((ea)o) if i=j=1
0"V (E) = § V(60 it i=j=2 (=9

0 if i

205



Then, the metric induced on the input manifold is described by the single fully
covariant component,

2

91" (03&) = 911" (05(8a)o) + 911" (05 (Bu)o) — =

(O = 1a)(O — )
(E.4)

o Appended likelihood score space, oW (1,€,): For a Q-class problem, this is a 2Q-
component score space. There is a @ x @ metric tensor ¢™*@W(£,) at point &, in
the tangent space to the manifold S(€). Assuming statistical independence between
each class-conditional model then it is reasonable that,

ey = |9 (@) i (5
0 if ©1#£
Then the metric tensor induced on the input manifold has component,

Q
058 = Y gh9(0;(8,)0) (E-6)

q=1

The score spaces based on multiple component GMMs are complicated by the log-of-a-sum
terms. However a simple analysis is possible for a 2 mixture component GMM where the
two mixture components are trained to seperately model classes w, and wy, but the two
variances are tied so that v, = vy = v. The new statistical model is simply denoted by

S(8).

o Likelihood (2-class) score space, ¢'*®P)(1,,): This is a 3-component score space and
there is a (2 x 2) metric tensor in tangent space to S(6) at 6, denoted by g*®) ().
The off-main diagonal elements of this tensor are not necessarily zero. If ,(O) and
75(0) are respectively the posteriors of components N (O; 4, v,) and N (O; iy, vp) for
sample O, then assuming the mixture components have equal weight, the component

posteriors are sigmoidal so,

N(O; i, va)
a(0) N (O; tra, va) + N(O; 11, vp)
1
- 1+ Bexp{—AO} -
w(O0) = 1-%(0) =9
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where,

A = (“U;“b) (E.9)
= o]y (2~ i)} (E.10)

The metric tensor induced on the input manifold then has the component,

e ab)(O 0,) = %(%(O)(O — 1a) + 7(0) (0 — /%))2

82 82 lk(a,b) -1
* Z Z 000 Inp(0) d0du; lnp(o)[gn(i)n(j)(oo)]

(E.11)

where n(i) and n(j) are the appropriate indeces which correspond to their class

identifier arguments, and,

0? 1 /ABexp{—OA}O — u,)

aOa/.La lnp(O) = ;( (1 + exp{_OA}B)2 + ’7(1(0)> (E12)
o _ 1(_AB'exp{OA}(O — m)

000y, np(0) = v (_ (14 exp{OA}B-1)2 7b(0)> (E.13)

e Fisher score space, ©™®P)(@,): This score space is identical to the likelihood (2-class)
score space above except for the omission of the zeroth degree covariant derivative.

Then,

fs(a,b) / . — 0? 1 9? ] 1k(a,b) 1 E.14
V(000 = Y Y 5o () g ()l (00 (B4

The likelihood-ratio score space is the most important for the experiments in this the-
sis. When defined on class-conditional Gaussian distributions, then the component of
the metric tensor induced on the input manifold varies quadratically along input space.
This is evident by rewriting the component of the metric tensor in Equation E.4 using
Equation E.2 to give,

D08y = (9 te) Oyt 91 (B)o)] ™" 01" ((8)0)]”

Vg Up v2 v}

Then,

lk(a -1 Ik(b) -1
Jev ey 5 (00 [0 (60)o)

2
v2 vy

(E.16)
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and the minimum occurs at,

o0 - (taUp — Hpva)

(0 = v2) (E.17)

The location of this minimum is dependent on the model parameters. The value of
girl(a’b)(O;ﬁo) differs at the peaks of the two Gaussians, i.e. at O = p, and O =
unless v, = v,. If the two Gaussians have equal variance, v, = v, = v, then the value of

this component is constant at,

[gﬁ@(iga)o)]l . [gi§<b><igb)o>]—1 Ll g

Ir(a,b
911( )(O§£o) =

It is useful to relate the variation of the value of this component to the magnification factor.
Since the value is positive and the metric tensor is of size (1 x 1), then the magnification

factor M(O) is,
Ir(a,b) r .
M(0) = g1 (0:&) (E.19)

For the case of unequal variances, the minimum magnification increases as the two Gaus-
sians narrow and all other variables are kept unchanged. From Equation E.15 and assuming
the Gaussian means p, and pu, are fixed, then magnification is guaranteed to increase at
locations between the peaks of the two Gaussians, if either or both v, and v, decrease.
If the two Gaussians are trained by MMIE, then it is expected that the two Gaussians
will be drawn towards the midpoint between the two classes as their variances narrow. In
this case, magnification is again guaranteed to increase between the two Gaussian peaks,
but providing v, decreases at a greater rate than (O — u,) and v, decreases at a greater
rate than (O — ). With this constraint, distributions trained via MMIE are expected
to increase magnification induced by the score mapping near to the anticipated decision

boundary between the two classes.

The metric tensor ¢'*®®)(0; 6,) can be used to construct a metric tensor for likelihood-
ratio score space based on 2-mixture component GMMs for each class w, and wy, but
where the variances of mixture components within each class are tied. The parameters for
the model for class w, are then 6, = (fta1, fla2, Vo) Where 1141 and p,o denote the Gaussian

means and v, the tied variance. A similar pattern follows for class wy. The resulting metric
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tensor ¢™®P)(0; €,) has the fully covariant component,

AE0:6) = gEE(0;(84)0) + g5PP(0; (6,)0)

= (7(0)(0  par) +72(0)(O — )

(11(0)(O = i) +72(0)(O = i)} (E:20)

where ¢™®*2(0:(8,)0) and ¢***2(0; (8,)0) are detailed in Equation E.11, but where

‘a’ and ‘b’ are respectively replaced by ‘al’ and ‘a2’ and then ‘b1’ and ‘b2’.

The metric tensors detailed for 1-component input space can be used as ‘building blocks’
for the metric tensors for d-component input space. This is under the assumptions that
covariant derivatives are defined with respect to Gaussian means only, the metric tensor
for tangent space to S(6,) or S(§) is diagonal, and each component in d-component
input space is statistically independent according to the statistical model applied. These
assumptions are not always fulfilled, for example statistical independence is not consistent
with using GMMs with two or more distinct mixture components to model data in input
space. As an example, a d-component input space is proposed and a statistical model
S(6,) which is a single Gaussian with mean p, and diagonal covariance X,. The mean
and covariance are both expressed in fully contravariant form so p, = (pt...uY)" and the
(4,7)th component of ¥, is v¥, and v¥ = 0 if 4 # j. Then the metric tensor induced on
the input manifold by the mapping into the likelihood score space for class wy is,

lk Qi i 5 s
k(a) . _ GO vy i =g

Vit viJ

(E.21)

where ¢ (O%; ut, v™) is as detailed in Equation E.2 but here applied to the ith component

of input space. A similar analysis may be pursued for other score spaces.
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Appendix F

Fibre bundles

F.1 General description

The general description of fibre bundles and vector bundles in Section F.1 is summarised

from Section 155 of [50], and [108]. First, a general fibre bundle 1 may be described by,
77: (E7 f’ S’ F’ G) (F.l)

where,

E is a topological space called the total space,

S is a topological space called the base space,

f is a continuous mapping f : E — S called the projection,

F is a topological space called the fibre,

G is an effective left tranformation group of F' called the bundle group.

In this thesis, S has a global coordinate system and the bundle is described by the trivi-

alisation S x F. The bundle group is then the group of transition functions which map
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from one trivialisation to another. An example of a fibre bundle in this thesis is 1 which

exists in the space of scalar functions.

An important variety of fibre bundle for this thesis is the vector bundle where the fibre is
a real vector space, i.e. any linear space over the field of real numbers R. The real vector

bundle 7y, of bundle rank § may be summarised by,
Nvee = (E, f, S, R?, GL(6, R)) (F.2)

where E, f and S are as described above, the fibre F' is R® and the bundle group is
GL(4, R), the general linear group of degree 0 over R. This is essentially the group of all

d x ¢ invertible matrices over R (see Section 63.B of [50]).

F.2 Summary of notation for fibre bundles

The fibre bundle 7; lies within the space of scalar functions L(p). The structure of a fibre

anchored at point py € S(6) with coordinate vector 6y is as follows.

e S(r,a): the fibre without an interpretation but with coordinates 7 € L(r) = R and

a € L(a) = R’ and where § = dim(L(a)) = oo.

e S (1, @; <, 6p): this is identical to S (T, @) except it is given an interpretation in terms
of its anchor point 6, and the scalar function ¢ used to define the fibre, where ¢
initially varies over L(O) x L(0; S). A fixed O; € L(O) then yields the scalar field g
over L(0;S). The definitions of both ¢ and ¢ can be extended from the coordinate

space of the base manifold S(@) to the coordinate space of the fibre bundle.

. 5’(7’,04; 0,$,60): a submanifold of S’(T, «;¢,0p) where a« € L(e;p), and where
L(a; o) ensures all components of a are zero which are isomorphic to a/tJ7 r > p.

As 0 — 09, SV’(Tva; 0, 67 00) — Sv’(’r: aaéa 00)

° S’(T, a;0,¢,0): a submanifold of 5’(7, «; ¢, 0) corresponding to the points ‘reach-

able’ from any O, € L(O) through the mapping defined on the scalar field g.
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If 7 is kept constant, then the 7 transfers from the left to the right of the semicolon. For

example,

S(r, @; <, 6y) = S(e;7.5,60) (F.3)

T=T' T=T'

Further constraints on the form of a give the following submanifolds.

o S(7,05¢,0',8,): asubmanifold of S(7, a; <, 8y) where o € L(o; @, 8,) which implies
for j; ={1,...n}, Vi,

i=1

o S(r,a;¢d,<,80',0,): asubmanifold of S(7, a; <, 6, 8,) where o € L(eg; cd, S, 6, 6),
and where L(a;cd, S, 0',0,) C L(c; @', 0,). This implies 8’ is within the convergence

domain of ¢ about 6.

An identical form of notation is applied to the corresponding denormalisation S(7, o) and

statistical model S(a). Similar notation is also applied to the subspaces within the fibres
51(1,0)

of the vector bundle 7. For example, there is an isomorphism, L (1,0;5¢d, 5, 6',0,) =

S(t,0:¢d, <, 6, 0y).

F.3 Intersecting fibres

It is possible that two fibres, defined at different points on the base manifold of the
same fibre bundle, intersect. A knowledge of the intersection of fibres is valuable, for
example in ascertaining whether the selection of a point on the base manifold for a fibre
seriously restricts the set of possible solutions for estimating points in the bundle. This has
consequences for ‘fibre hopping’ described in Section 3.5.3.1. Let two points on the base
manifold S(0@) have coordinate vectors (6)y and (62)o. Without loss in generality, the

analysis is restricted to fibres within L(p). Two fibres are extended and points selected,

Py € S(as; 01,5, (61)o) (F.5)
Py € S(a;0,5,(62)0) (F.6)
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These two points coincide in terms of their output over L(O) if the following equality

holds YO, € L(O),

DY (M) (0) ()7 = Dlen) = YD (1)), (01)(a2) 9" — D(exz)

r=0 j1...jr =0 j1...jr

(F.7)

where the notation is as described for the Taylor expansion in Section 3.3. The two points
p} and pl, are distributions but only have the same semantic meaning as points on the base

manifold if the scalar function is the log likelihood, i.e. ¢ = Inp(Oy; 0).
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Appendix G

Error analysis

This section contains a brief analysis of experimental errors and the measure of statistical

significance applied in this thesis.

G.1 Sources of errors

Possible sources of error and error estimates are listed, split where appropriate between
those for the experiments on the toy/Deterding vowel dataset and the ISOLET dataset.
The list is not exhaustive and the error estimates are subjective, so the analysis is simply
a guide. In this list, the term ‘verification by inspection’ implies the source code was
carefully inspected in a ‘line-by-line’ manner. The term ‘inspection by effect’ implies the
source code was principally verified by its effect on experimental results. Hence the list is

as follows.

1. Programming errors: Minimal risk expected for implementing algorithms since the

trends in the experimental results were largely explainable.

e Toy/Deterding: 2% error: MATLAB code verified by inspection, C code verified
by effect.
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e ISOLET: 2% error: C code verified by effect.
2. Numerical errors: Errors arising in implementation.

e Toy/Deterding: 1% error: C code verified principally by effect, MATLAB code
verified by inspection. MATLAB provides robust functionality.

e ISOLET: 1% error: C code verified principally by effect. The task is data

intensive and sufficient robustness for all situations is unlikely.

3. Experimental settings: The large number of experiments introduces the possibility

of errors in the experimental parameters.

e Toy/Deterding: 5% error with regard to individual experiments; 1% error with

regard to experimental trends.

e ISOLET: 1% error with regard to individual experiments; < 1% error with

regard to experimental trends.

4. Shell script errors: Shell scripts were used significantly, both to control the exper-
iments and to prepare and process data files. The scripts were often highly com-
plicated and performed many operations that could otherwise be embedded directly
into C code. The shell scripts minimised the degree of human interaction or prepa-
ration or analysis of data files. The scripts contained frequent error checks and were

written in bash, awk and perl.
e Toy/Deterding: 2% error: Scripts verified by inspection.
e ISOLET: 4% error: Scripts verified by effect.
5. NFS and file system errors: The experiments were computationally expensive and

the scripts required the creation and processing of many small files. The burden on

the file server was intense.
e Toy/Deterding: < 1% error: Shell scripts should have detected some errors.
The effect on experimental trends should be minimal.

e ISOLET: 1%: Each experiment was split into chunks and processed simulta-

neously on different processors. There was also a known and observed, but
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deemed low-risk, problem in which two data streams written to two large files
were accidentally interchanged. Again the shell script should have detected

some errors, and the effect on experimental trends should again be minimal.

6. Errors in detailing, tabulating, plotting and analysing results: 1%

Errors can be divided into systematic and random errors [110]. Systematic errors have
a systematic influence on experimental results, whereas random errors have a random
and unpredictable effect. Since computers are deterministic, most errors encountered can
be repeated, though some programming errors or numerical errors may not. The errors
detailed above may include both types of errors. The division of errors into systematic
and random errors does not affect their analysis with respect to propagation. According
to [110], the error AZ for a quantity Z = XY, assuming the errors AX and AY are

independent, is estimated as,

AZN\? AX\?2 AY\?2
(7) = (%) +(5) (G-1)
Assuming the errors listed above are independent and are propagated in this manner, the
error estimate for each toy/Deterding experimental result is 6% and for the experimental
trends is 3%, and the error estimate for each ISOLET experimental result is 5% and for
the experimental trends is also 5% (in these calculations, an error estimate of < 1% is

taken as 1%).

G.2 McNemar’s test

A more objective analysis of errors via confidence levels is applied to the ISOLET exper-
iments in this thesis, but not to the experiments on the artificial or the Deterding vowel
data which are intended for illustrating concepts. The confidence levels are based on Mc-
Nemar’s test as detailed and referenced in [40]. Each confidence level gives a measure of
belief that the two relevant classifiers have different probabilities of error, and that any
observed difference in their test error rates is not due solely to random effects. The con-

fidence level is calculated solely on the noncommon errors made by the two classifiers. If
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the two classifiers have the same probability of error, then noncommon errors may result
from random influences, but the number of noncommon errors should be evenly balanced
between the two classifiers. The probability P of the difference being due to chance effects
is measured, assuming errors are i.i.d. among test samples, using a binomial distribution
and a percentage confidence level for a sincere difference of 100(1 — P) reported'. This test
is useful for both large and small datasets. However it should be noted that the confidence
level is only dependent on the number of noncommon errors, not on the total number of er-
rors or on the total number of samples in the test set. The confidence level is therefore less
reliable if the number of noncommon errors in absolute terms is small, or if test samples
are not representative of the underlying distribution. Unfortunately the small test sets for
the ISOLET task introduce unreliability to the values of confidence levels. Furthermore,
the sources of error listed for the ISOLET experiments in Section G.1 include sources of
both random and systematic errors, while the confidence levels only accomodate sources
of random error. Despite this, the confidence levels reported for the ISOLET experiments

give some quantitative and objective, and so useful though insufficient, analysis of errors.

! As detailed in [40], McNemar’s original x? test applies a normal approximation to the binomial

distribution and a continuity correction factor.
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