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Abstract

A standard way of improving the robustness of speech recognition systems to noise
is model compensation. �is replaces a speech recogniser’s distributions over clean
speech by ones over noise-corrupted speech. For each clean speech component,model
compensation techniques usually approximate the corrupted speech distribution with
a diagonal-covariance Gaussian distribution. �is thesis looks into improving on this
approximation in two ways: �rstly, by estimating full-covariance Gaussian distribu-
tions; secondly, by approximating corrupted-speech likelihoods without any paramet-
erised distribution.

�e �rst part of this work is about compensating for within-component feature
correlations under noise. For this, the covariancematrices of the computed Gaussians
should be full instead of diagonal. �e estimation of o�-diagonal covariance elements
turns out to be sensitive to approximations. A popular approximation is the one that
state-of-the-art compensation schemes, likevts compensation, use for dynamic coe�-
cients: the continuous-time approximation. Standard speech recognisers contain both
per-time slice, static, coe�cients, and dynamic coe�cients, which represent signal
changes over time, and are normally computed from a window of static coe�cients.
To remove the need for the continuous-time approximation, this thesis introduces a
new technique. It �rst compensates a distribution over the window of statics, and then
applies the same linear projection that extracts dynamic coe�cients. It introduces a
number ofmethods that address the correlation changes that occur in noisewithin this
framework. �e next problem is decoding speed with full covariances. �is thesis re-
analyses the previously-introduced predictive linear transformations, and shows how
they can model feature correlations at low and tunable computational cost.

�e second part of this work removes the Gaussian assumption completely. It
introduces a sampling method that, given speech and noise distributions and a mis-
match function, in the limit calculates the corrupted speech likelihood exactly. For
this, it transforms the integral in the likelihood expression, and then applies sequen-
tial importance resampling. �ough it is too slow to use for recognition, it enables
a more �ne-grained assessment of compensation techniques, based on the kl diver-
gence to the ideal compensation for one component. �e kl divergence proves to
predict the word error rate well. �is technique also makes it possible to evaluate the
impact of approximations that standard compensation schemes make.
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Notation

Operators
argmaxxφ(x) �e value of x that maximises φ(x)
∗ Convolution
|·| Absolute value

Matrixes and vectors
A Matrix
ai =[A]i Row i ofA
aij =[A]ij Element (i, j) ofA
b Vector
bi Element i of b
I Identity matrix
0 Vector/matrix with all entries 0
1 Vector/matrix with all entries 1
|·| Determinant
‖·‖ Norm
Tr(·) Trace
A−1 Inverse
AT Transpose
A−T Inverse and transpose
diag(·) Matrix diagonalisation
exp(·) , log(·) , ◦ Element-wise exponentiation, logarithm,

multiplication

Distributions
p Real distribution
q Approximate distribution
p̃ Empirical distribution
E{a} Expected value of a
Ep{a} Expected value of a under p
Var{a} Variance of a
KL(p‖q) Kullback-Leibler divergence to p from q
H(p‖q) Cross-entropy of p and q
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contents

H(p) Entropy of p
1(·) Indicator function (Kronecker delta): evaluates to 1

if the argument is true and to 0 otherwise
δa(x) Dirac delta: distribution with non-zero density only

at x = a, where the density is in�nite, but∫
δa(x)dx = 1

a ∼ N (µa,Σa) a is Gaussian-distributed with mean µa and
covariance Σa

N (a; µa, Σa) Gaussian density evaluated at a
u ∼ Unif [a, b] u is uniformly distributed between a and b

Speech recognition signals
X Training data
Y Test data
U Hidden variables
y Observation feature vector
x Clean speech
n Additive noise
h Convolutional noise
α Phase factor
β Power of spectrum
·s Static feature vector
·∆, ·∆2 Vectors with �rst- and second- order dynamic

features
·e Extended feature vector
·log Log-mel-spectral feature vector
·[k] Spectral-domain signal
·[t] Time domain signal
f(·) Mismatch function
Jx, Jn Jacobian of mismatch function with respect to the

speech and noise

Speech recogniser parameters
m Speech recogniser component
µ(m) Mean of componentm
Σ(m) Covariance matrix of componentm
Λ(m) Precision matrix of componentm
W Word sequence
ε Empty symbol
θ Sub-phone state
m ∈ Ω(θ) Component in mixture for θ
γ
(m)
t Occupancy for componentm at time t
π
(θ)
m Weight of componentm in the mixture for θ
Mn Speech Model
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A Transformation
A Linear transformation
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H Linear transformation expressed on the model
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g Bias expressed on the model parameters
D Projection to static and dynamic coe�cients
L Log-likelihood
F Lower or upper bound
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t Time
w Window size
r Front-end component
r Base class
m ∈ Ω(r) Component associated with base class r
k Iteration
d Feature vector length
s Static feature vector length
k Fourier frequency
i Filter bin index

Monte Carlo
γ Integrand
π Normalised target distribution
Z Normalising constant
ρ Proposal distribution
u Sample
l Sample index
w Sample weight
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Chapter 1

Introduction

Automatic speech recognition is employed in many places. �e most popular operat-

ing system for personal computers, Microso�Windows, has shipped with a dictation

system for years. Google’s Android operating system for phones now supports using

speech to run commands and input text. Mobile phones in particular are likely to be

used in noisy places. �is tends to highlight that speech recognisers are more sensit-

ive to noise than humans: performance deteriorates quickly under noise that hardly

a�ects human speech recognition (Lippmann 1997).

�ere are two approaches to make speech recognisers more robust to noise. One

is to reconstruct the clean speech before it enters the speech recogniser. �e other is

to compensate the speech recogniser so it expects noise-corrupted rather than clean

speech.

�e �rst approach is called feature enhancement. Since it aims to reconstruct the

clean speech feature vectors and then passes them to the unchanged speech recog-

niser, it is usually fast. However, propagating just a point estimate of the clean speech

discards the information on the uncertainty of the estimate, which is important. For

example, loud noise can mask quiet speech completely. �ough this makes the clean

speech estimate meaningless, the speech recogniser treats it as the real clean speech,

which causes recognition errors.

�e other approach, model compensation, is the focus of this thesis. It has ob-

7



chapter 1. introduction

tained better performance than feature enhancement, especially under low signal-

to-noise ratios. Model compensation �nds a distribution over the noise-corrupted

speech. It computes this from a trained speech recogniser, which constitutes a model

of the training data, and an estimated model of the noise. Most model compensa-

tion methods replace each clean speech Gaussian with a corrupted speech Gaussian

with a diagonal covariance matrix. �is is an approximation. If the speech and noise

distributions were correct and the replacement distribution were the exact one, then

according to the Bayes decision rule the speech recogniser would yield the optimal

hypothesis.

�is work will therefore look into modelling the corrupted speech more precisely

thanwith a diagonal-covariance Gaussian. It will look into two di�erent aspects. First,

diagonalising covariance matrices neglects the changes in correlations between fea-

ture dimensions under noisy conditions. However, in reality, feature correlations do

change. For example, in the limit as the noise masks the speech, the correlations of the

input data become equal to those of the noise. �e �rst part of this thesis will there-

fore estimate full-covariance Gaussians.�e second part derives from the observation

that given a standard form for the relationship between the corrupted speech and the

speech and noise, the corrupted speech is not Gaussian even if the speech and noise

are. Rather than using a parameterised distribution, it will approximate the corrupted

speech likelihood directly, with a samplingmethod.�e following outlines the contri-

butions of this thesis. Publications that have arisen from the Ph.D. work are indicated

with “(published as van Dalen and Gales 2009b)”.

�e �rst part will �nd compensation that models correlation changes under noise.

�e obvious approach, which is to forgo the diagonalisation of estimated corrupted

speech covariances, will encounter two problems. �e �rst problem is that common

approximations to estimate parameters for dynamic coe�cients cause o�-diagonal ele-

ments of the covariance matrices to be misestimated. �ese dynamics indicate the

change in the signal from time slice to time slice. �ey are computed from a window

of per-time slice, static, coe�cients. �e state-of-the-art vts compensation scheme

8



uses the continuous-time approximation, which simpli�es computation by assuming

the dynamic coe�cients to be time derivatives. Chapter 5 will propose using distribu-

tions over vectors of all static features in a window, called extended feature vectors. It

proposes extendeddpmc (published as vanDalen andGales 2008) and extendedvts

(published as van Dalen and Gales 2009b;a; 2011). �ese compensation schemes, de-

rived from the dpmc and vts compensation schemes, compute the e�ect of the noise

on each time instance separately and then perform the mapping to statics and dy-

namics. �e more precise modelling enables speech recognisers to use full covariance

matrices to model correlation changes.

Having estimated full covariance matrices, decoding with full covariances is slow.

Chapter 6 will therefore propose a general mechanism to approximate one speech

recogniser parameterisation with another one. �is e�ectively trains the latter on pre-

dicted statistics of the former. Chapter 6.2 will re-analyse predictive transformations

(�rst introduced in van Dalen 2007; Gales and van Dalen 2007), as minimising the

Kullback-Leibler divergence between the two models. �is is used to convert full-co-

variance compensation into a tandem of a linear transformation and a diagonal bias

on the covariance matrices. Since the covariance bias is diagonal, once compensa-

tion has �nished, decoding will be as fast as normal. When combined with a scheme

that applies compensation to clusters of Gaussians at once, joint uncertainty decoding,

compensation is also fast. �e choice of the number of clusters provides a trade-o�

between compensation accuracy and decoding speed.�e combination of a compens-

ation scheme with extended feature vectors, joint uncertainty decoding, and predic-

tive linear transformations yields practical schemes for noise-robustness.

�e second part of this thesis is more theoretical. �e corrupted speech distribu-

tion is not Gaussian, even though most model compensation methods assume it is.

�ere has been no research on how good model compensation could be with speech

and noise models that modern recognisers use. Chapter 7 will therefore investigate

how well speech recognisers would cope with noise if they used the exact corrup-

ted speech distribution. It turns out that this is impossible: there is no closed form

9



chapter 1. introduction

for the corrupted speech distribution. However, a useful approach is to re-formulate

the problem. In practice, no closed form for the distribution is necessary: a speech

recogniser only needs likelihoods for the observation vectors in the data. �ese like-

lihoods can be approximated with a cascade of transformations and a Monte Carlo

method, sequential importance sampling. As the size of the sample cloud increases,

the approximation converges to the real likelihood. Section 7 will discuss this trans-

formed-space sampling (published as van Dalen and Gales 2010a;b) in detail.

In coming close to the real likelihood, transformed-space sampling becomes so

slow that implementing a speech recogniser with it is infeasible. It is, however, pos-

sible tomake amore �ne-grained assessment of speech recogniser compensation, with

a metric based on the kl divergence (section 7.4). In the limit, the new sampling

method will e�ectively give the point where the kl divergence is zero, which is oth-

erwise not known. �is calibration will make it possible to determine how far well-

known compensation methods are from the ideal. �is work will examine how well

the kl divergence predicts speech recogniser word error rate. It will compare di�er-

ent compensation schemes, and examine the e�ect of common approximations. �is

includes assuming the corrupted speech distribution Gaussian and diagonalising its

covariance matrix, and approximations to the mismatch function. �is illustrates that

the new method is an important new research tool.
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Background
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Chapter 2

Speech recognition

Speech recognition is the conversion of speech into text. “Text” heremeans a sequence

of written words. �is chapter will give an overview of speech recognition.

A speech recogniser �rst converts the incoming audio into a sequence of feature

vectors that each represent a �xed-duration time slice. Section 2.1 will discuss the

standard type of features that this thesis will use: mfccs. �e feature vectors serve as

observations to a generative probabilistic model, the topic of section 2.2, that relates

them to sequences of words. Section 2.3 will then explain how the acoustic part of

the model, the focus of this thesis, is trained. �e process of �nding the best word

sequence from the observation sequence, decoding, will be the topic of section 2.4.

2.1 Feature extraction

�e initial digital representation of an audio signal is a series of amplitude samples

expressing the pressure waveform at, say, 8 or 16 kHz. Speech recognisers apply a

number of transformations to translate the stream of samples into a sequence of low-

dimensional feature vectors. �e standard type of feature vector for a time instance

contains mel-frequency cepstral coe�cients (mfccs) extracted from one time slice

(section 2.1.1). Appended to these “static” coe�cients are dynamic coe�cients that

represent the changes in the static features (section 2.1.2).

13
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Figure 2.1Mel-spaced �lter bins. Alternate �lters are coloured di�erently.

2.1.1 Mel-frequency cepstral coefficients

�e objective of feature extraction is to represent the audio signal at discrete intervals

by a small number of features that are useful for speech recognition. �e proced-

ure that produces mel-frequency cepstral coe�cients (Davis and Mermelstein 1980)

�rst �nds coe�cients that indicate the energy in human-hearing-inspired frequency

bands. It then converts these into (usually 24) features that have decreasing relation

on the shape of the mouth and increasing relation with voice qualities, and retains

only the �rst (usually 13). �e following goes into more detail.

�e spacing of the feature vectors, usually 10ms, is chosen so that for one time

slice the spectrum can be assumed to be stationary. A Hamming window is applied

to a short time slice (of usually 25ms). A Fourier transformation of the signal wave-

form x[t] results in the spectrum X[k] representing the audio in that time slice. �e

phase information of the spectrum is then discarded by taking the magnitude, or a

power, of the spectrum. �e spectrum has a resolution higher than necessary for rep-

resenting the shape of spectrum for speech recognition. Triangular �lters (usually 24)

on a mel-scale, which imitates the varying resolution of the human ear, are therefore

applied. Figure 2.1 contains a depiction of �lters on themel-scale. Lower-indexed bins

14



2.1. feature extraction

are narrower, and span fewer frequencies, than higher-indexed bins. Describing �lter

bin i with �lter weightswik for frequencies k, the mel-�ltered spectrum with is

X̄i =
∑
k

wik|X[k]|β . (2.1)

Usual values for the power β are 1 (indicating the magnitude spectrum) or 2 (the

power spectrum). Filter bank coe�cients X̄i are called mel-spectral coe�cients.

�e next step is motivated by a source-�lter model. �e source models the vocal

cords, and the �lter models the mouth. Since in speech recognition, voice quality is

mainly irrelevant but the shape of the mouth is of interest, attributes in�uenced by

the source should be disregarded and attributes in�uenced by the �lter retained. In

the time domain, the �lter convolves the source signal; in the spectral domain, this

becomes multiplication. �en, the logarithm of each the �lter bank coe�cients is

found:

xlog = log



X̄1
...

X̄I


 , (2.2)

with log(·) denoting the element-wise logarithm. �e resulting vector xlog represents

the log-spectrum.

In this domain, the source and the �lter are additive. It is assumed that the �lter

determines the overall shape of the elements of xlog. To separate it from the source,

frequency analysis can be performed again, this time on xlog. �is uses the discrete

cosine transform (dct), which is a matrixC[I], the elements of which are de�ned as

cij =
√

2
I cos

(
(2j− 1)(i− 1)π

2I

)
. (2.3)

By taking the discrete cosine transform of xlog, an I-dimensional vector of mel-

frequency cepstral coe�cients xs[I] is found:

xs[I] = C[I]x
log. (2.4)

�e following step is to discard the higher coe�cients in the feature vector. Oneway of

viewing the e�ect of this is by converting back to log-spectral features. (In section 4.2
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chapter 2. speech recognition

this will actually be done to express the e�ect of noise.) Back in the log-spectral do-

main, higher-frequency changes from coe�cient to coe�cient, which are assumed to

relate to the source more than to the �lter, have been removed. Discarding the last

part of the mfcc feature vector therefore has the e�ect of smoothing the spectrum.

Truncating xs[I] to the �rst s elements,

xs[s] = C[s]x
log, (2.5)

whereC[s] is the �rst s rows ofC, and s ≤ I. For notational convenience, (2.5) will be
written as

xs = Cxlog. (2.6)

�ese features form the “cepstrum”. To represent the sequence of operations leading

to them in noun compound summary format, the features are called “mel-frequency

cepstral coe�cients” (mfccs).

mfccs are popular features in speech recognition. �e �rst coe�cient represents

a scaled average of the coe�cients in the log-spectral feature vector in (2.2). �is

coe�cient is o�en replaced by the normalised total energy in the �lter bank. However,

like most work on noise-robust speech recognition, this thesis will use feature vectors

with only mfccs.

2.1.2 Dynamic coefficients

It will be discussed in section 2.2 that the feature vectors will be modelled with a hid-

den Markov model (hmm). Hidden Markov models assume that given the sequence

of states that generate the feature vector, consecutive observations are independent.

�is implies that consecutive feature vectors generated by a single sub-phone are in-

dependent and identically distributed. �us, no information about changes over time

is encoded, other than through switching sub-phone states. To alleviate this problem,

consecutive feature vectors can be related by appending extra coe�cients that approx-

imate time derivatives (Furui 1986). Usually, “delta” and “delta-delta” coe�cients are
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2.1. feature extraction

included, representing feature velocity and acceleration, respectively. �ese dynamic

coe�cients lead to large improvements in recognition accuracy and are standard in

speech recognition systems.

As an approximation to time derivatives, linear regression over a window of con-

secutive frames is used. For exposition, assume a window±1 around the static feature
vector xst. �e dynamic coe�cients x∆t are then found by

x∆t =
[
− 1
2I 0

1
2I

]
xst−1

xst

xst+1

 = D∆xet , (2.7a)

where xet is an extended feature vector, which is a concatenation of the static coe�-

cients in a window, and D∆ is the projection from xet to x∆t . �en, a feature vector

with statics and �rst-order dynamics (“deltas”) is

xt =

 xst
x∆t

 =

 0 I 0

− 1
2I 0

1
2I



xst−1

xst

xst+1

 =

 Ds

D∆

 xet = Dxet , (2.7b)

whereDs projects xet to xst, andD projects xet to the �nal feature vector xt. With the

window of one time instance le� and one right, this uses simple di�erences between

static feature vectors.

In general, �rst-order coe�cientsx∆t are found from consecutive static coe�cients

xst−w, . . . , x
s
t+w by

x∆t =

∑w
i=1 i

(
xst+i − x

s
t−i

)
2
∑w
i=1 i

2
. (2.8)

Second-order coe�cients x∆2t are found analogously from x∆t−v, . . . , x∆t+v, and similar

for higher-order coe�cients. �e extended feature vector xet then contains the statics

in a window ±(w + v). �e transformation from xet to feature vector xt with these

higher-order terms remains linear, so that D in (2.7b) is straightforwardly general-

ised. �e feature vector with static and �rst- and second-order dynamic coe�cients
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θt−1 θt θt+1

Figure 2.2 Graphical model of a Markov model. Circles represent random vari-
ables.

(“deltas” and “delta-deltas”) is then computed with

xt =


xst

x∆t

x∆
2

t

 = Dxet , xet =


xst−w−v

...

xst+w+v

 . (2.9)

For exposition, however, this work assumes (2.7b).

2.2 Hidden Markov models

To describe the relation betweenword sequences and feature vector sequences, speech

recognisers use a generative model. �is is a joint distribution of word sequenceW

and feature vector sequence X, p(W,X). In such a model, the words generate feature

vectors, called observations. A problem is that a word has a variable duration, and

therefore the number of observation vectors it generates is also variable. To solve this,

a latent discrete sequence of �xed-interval units is introduced. �e observation at

time t is assumed generated by the state at time t, written θt. Denoting the sequence

of states withΘ,

p(X,W) =
∑
Θ

p(X|Θ)P(Θ,W) . (2.10)

�e distribution P(Θ|W) performs amapping from a sequence of words to a sequence

of states. To make training (section 2.3) and recognition (section 2.4) feasible, the

Markov property is assumed: the state at time t only depends on its predecessor, not

on further history. Figure 2.2 has a simple graphical model of this, with θt a random

variable that represents the active state at time t. Section 2.2.1.2 will give more detail

on how the transition probabilities are determined.
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2.2. hidden markov models

θt−1 θt θt+1

xt−1 xt xt+1

Figure 2.3 Graphical model of a hidden Markov model. �e shaded circles rep-
resent observed variables.

To include the acoustic information in this model, the feature vectors, represent-

ing the acoustics at time t, are attached. Given the state sequence, the feature vectors

are assumed independent. Because when training or decoding the feature vectors gen-

erated by the states are observed, but not the states themselves, the resulting model is

called a hidden Markov model (hmm). Figure 2.3 shows the graphical model. Two

important properties of the hmm are the Markov property, and the conditional inde-

pendence assumption: the observation at time t only depends on the state at time t.

�e arrow from state θt to observation xt in �gure 2.3 represents the state output

distribution. �is distribution, q(θ)(x), is usually a mixture of Gaussians:

q(θ)(x) =
∑
m

π
(θ)
m q

(m)(x),
∑
m

π
(θ)
m = 1, (2.11)

where π(θ)m is the mixture weight for mixture θ and componentm, and q(m) the com-

ponent’s Gaussian distribution. �is can also be expressed as a graphical model: see

�gure 2.4 on the following page. �e component that generates the observation is

indicated by a random variable mt. Figures 2.3 and 2.4 represent di�erent ways of

looking at the same speech recogniser, but showing the componentsmt explicitly as

in �gure 2.4 is useful for training, and making them implicit in the distribution of xt

for decoding.

Components are usually multi-variate Gaussians, which are parameterised with

mean µ(m)
x and covariance Σ(m)

x :

q(m)(x) = N
(
x; µ

(m)
x , Σ

(m)
x

)
=
∣∣2πΣ(m)

x

∣∣− 12 exp(− 1
2

(
x− µ

(m)
x

)T
Σ
(m)
x

−1(
x− µ

(m)
x

))
. (2.12)
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θt−1 θt θt+1

mt−1 mt mt+1

xt−1 xt xt+1

Figure 2.4 Graphical model of a hidden Markov model with mixture models as
output distributions.

Sometimes it is more useful to express the Gaussian in terms of the inverse covariance.

�is precision matrix will be writtenΛ(m)
x = Σ

(m)
x

−1
.

�e covariance is o�en constrained to be diagonal, so that one Gaussian requires

less data to estimate. �is does not model within-component correlations that are

there. To model some correlations while reducing the amount of training data re-

quired, structure can be introduced in covariances.�is will be the topic of section 3.3.

2.2.1 State sequences

To use hmms in a speech recogniser, it must de�ne probabilities for state sequences

and relate them to words. �at is, it must de�ne P(Θ,W) in (2.10). It is convenient to

write this distribution in terms of the prior distribution P(W) and the likelihood of

the state sequence P(Θ)W:

P(Θ,W) = P(W)P(Θ|W) . (2.13)

�e distribution over word sequences P(W) is called the language model.1 �e dis-

tribution P(Θ|W) performs a mapping from a sequence of variable-length words to

a sequence of �xed-length states. It is possible, if not very insightful, to describe this

mapping with a graphical model (Murphy 2002; Wiggers et al. 2010). A more insight-

ful method is to use weighted �nite state transducers.
1Whereas in linguistics speech is considered the only real form of language and spelling a confusing

artefact, in computational linguistics “language” refers to written text.
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2.2. hidden markov models

�us, section 2.2.1.1 will describe the language model in terms of a probabilistic

model, P(W) and section 2.2.1.2, will describe P(Θ|W) as a composition of weighted

�nite state transducers.

2.2.1.1 Language modelling

In the generative model in (2.10), the probability of each possible word sequence must

be de�ned. For tasks where the inputs are constrained, this is o�en straightforward.

For example, if a ten-digit phone number is expected, the probability of any such digit

sequence can be set to the same value, and any other word sequence can receive a

zero probability. For some tasks it is possible to set up a limited grammar. However,

if free-form input is expected, no word sequences are impossible, though some may

be improbable. Higher probabilities may be assigned to grammatical sentences (or

fragments) compared to ungrammatical utterances, and semantically likely sequences

compared to unlikely ones. �is is o�en done by training a statistical model on data.

A languagemodel can be seen as a probability distribution over word sequences. If

sentences are considered independently, the probability of a sentenceW = w1, . . . , wL

is2

P(W) = P(w1)P(w2|w1)P(w3|w1, w2) · · ·P(wL|w1, . . . , wL−1)

=

L∏
i=1

P(wi|w1, . . . , wi−1) . (2.14)

�is factors the probability of a word sequence into probabilities of each word condi-

tional on the word history, which can be trained from data.�e usual strategy is to ap-

ply maximum-likelihood estimation, which in this case sets probabilities of words for

a given word history proportional to its count in the training data. However, though

theremay be enough data to do this for zero-length histories, the last word depends on

all previous words, which most likely occur only once in the training data and never

in the test data. �is is an example of over-training: the trained model would assign a

2Boundary e�ects are ignored for simplicity.
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zero probability to most sentences. �e word history is therefore usually constrained

toN− 1 words:

P(wi|w1, . . . , wi−1) ' P(wi|wi−N+1, . . . , wi−1) . (2.15)

�is type of model is called anN-gram model, and a typical value forN is 3.

For N ≥ 2, usually not all word tuples have been seen in training data, so it is

o�en necessary to recursively back o� to data from a shorter word history, or to inter-

polate between N-gram models for di�erent values of N. A state-of-the-art back-o�

scheme is modi�ed Kneser-Ney (Chen and Goodman 1998). An alternative method

to guard against over-training is to apply Bayesian methods, where a prior over para-

meters keeps them from assigning all probability mass to seen events. An interesting

approach derives from a hierarchical Pitman–Yor process (Teh 2006).

2.2.1.2 Latent discrete sequence

To map words onto �xed-time units, words are converted to sequences of �xed-time

discrete states. �e state space can be described in various ways, but an insightful

one is as a network of states. A formalism that produces these networks (and can be

fast when embedded in a speech recogniser) is that ofweighted �nite state transducers.

Mohri et al. (2008) gives a good overview of how this works. �e following will brie�y

describe how to construct a state network for speech recognition.

A �nite-state automaton has discrete states that it switches between at each time

step. Which transitions are possible is speci�ed explicitly. Finite state transducers add

to each transition an input symbol and an output symbol. �ey are therefore able to

convert one type of symbol sequence into another. It is allowable for a transition to

either not input any symbol, or not to output any. An empty input or output is indic-

ated with “ε”. �is is useful if input and output sequences have di�erent lengths, as

when converting from words to states. Weighted �nite state transducers, �nally, add

weights to transitions. For the sake of clarity, the weights will here stand for probab-

ilities that are multiplied at each transition. �is section will use weighted �nite state

transducers to convert word sequences into state sequences.
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2.2. hidden markov models

Transducer Result Weight
Input sequence three two
Language model three two 0.01

Pronunciation lexicon θ r i: t u: 0.01

Sub-phones θ1 θ2 θ2 θ3 r1 r2 r3 r3 r3 i:1
i:1 i:2 i:3 t1 t2 t2 t2 t3 t3 u:1
u:1 u:2 u:2 u:2 u:3 u:3

5.8 · 10−20

Table 2.1 Conversions that the weighted �nite state transducers in �gure 2.5 on
the following page, applied a�er one another, may apply, starting from an input
sequence.

Figure 2.5 on the next page illustrates component weighted �nite state transducers

thatwhen composed can convert a sequence ofwords to a sequence of discrete equally-

spaced states. �e transducers in the chain translate between a number of alphabets.

�e output alphabet of the one must be the input alphabet of the other, et cetera. �e

arbitrarily numbered circles represent states. �e bold circles are start states, and the

double-bordered ones end states, which can, but do not necessarily, end the sequence.

�e arrows represent transitions. �eir labels consist of an input symbol, a colon (:),

an output symbol, a slash (/), and a transition weight (here, a probability).

Figure 2.5a contains a simple language model that can take digit sequences. Its

input and output symbols at each transition are equal. Table 2.1 shows the e�ect of

applying this transducer to a sample sequence (�rst and second rows): it merely com-

putes a weight. �is weight stands for the probability of the word sequence. It has

a weight of 0.1 for each word, and a transition from state 2 to 1, without consuming

or producing any symbols, to allow repetition. It is straightforward to use the same

ingredients to generate a representation of a �xed grammar, or of a probabilistic lan-

guage model trained on text data.

For a small vocabulary, it is possible to train the acoustics of every word from

audio separately. In the digit sequence example, this could be an option, if the data

contains enough examples of all words. However, in general words are mapped to a

sequence consisting of symbols from a smaller alphabet with a pronunciation diction-

ary. �ese sub-word units are supposed to represent the pronunciation of the words.
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1 2

zero:zero/0.1
one:one/0.1
two:two/0.1

nine:nine/0.1

...

ǫ:ǫ/1
(a) Simple language model for a digit se-
quence.

1

2

5

two:t/1 ǫ:u:/1

3 4
three:T/1 ǫ:r/1 ǫ:i:/1

· · ·

...

ǫ:ǫ/1
(b) Simple pronunciation lexicon: mapping words to
phones.

1

2 3 4

8

t:t1/1

ǫ:t1/0.8

ǫ:t2/0.2

ǫ:t2/0.7

ǫ:t3/0.3

ǫ:t3/0.5

ǫ:ǫ/0.5
5 6 7

T:T1/1
ǫ:T1/0.4

ǫ:T2/0.6

ǫ:T2/0.5

ǫ:T3/0.5

ǫ:T3/0.9
ǫ:ǫ/0.1

· · ·

...

ǫ:ǫ/1
(c)Mapping phones to sub-phones.

Figure 2.5 Component weighted �nite state transducers for building a speech re-
cognition network.
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However, standard linguistic units are usually considered to be at the wrong level of

detail. �ere are phonemes, which are supposed to encode an underlying represent-

ation. �us, the second c in “electric” and in “electricity” could be encoded with the

same symbol (see, e.g., Harris 1994), even though they are always pronounced di�er-

ently. On the other hand, phonetic transcriptions encode di�erences due to accents

and sheer chance. �us, it changes the transcription whether the last sound in a real-

isation of the word “hands” sounds like a z or a s, or changes halfway through (see,

e.g., Collins andMees 1999). It also encodes allophonic di�erences, like in realisations

of the l in the words “clear”, “voiceless’, and “e�ulgent”. Speech recognisers’ acoustic

models are powerful enough to deal with part of the pronunciation variability, and

it is also possible to encode sound context (see below). A level of transcription in

between phonemic and phonetic is therefore usually chosen for the sub-word units.

�ese units are referred to with the linguistically neutral term phone.

�e third row of table 2.1 shows what the mapping from a word sequence into a

sequence of phones produces. Figure 2.5b shows a weighted �nite state transducer

that performs the mapping. Because most words consist of more than one phone, the

transducer needs to generate output symbols without consuming any input; this is

indicated on the transitions by “ε” for the input symbol. It does not make a di�er-

ence in theory which transition on a deterministic path carries the non-empty input.

For performance reasons, practical speech recognisers will apply operations on the

transducer (for more details, see Mohri et al. 2008) to move the word symbol further

back. Since there is no pronunciation variation that needs encoding, the transducer

here is deterministic, with weights 1 throughout. It is, however, possible to include

alternative phone sequences for one word with the appropriate probabilities.

Movement of articulators is a continuous process. To represent the resulting change

in acoustics during the realisation of a phone, with discrete units, phones are split into

sub-phones. �ere must be a balance between time resolution of the acoustics and the

amount of training data available for each sub-phone. �e canonical number of sub-

phones per phone is therefore three.
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Figure 2.5c shows part of a weighted �nite state transducer that converts phones

(e.g. “θ”) into sub-phones (e.g. “θ2”). Since one phone generates more than one sub-

phone, many transitions take no input symbol, which is indicated with “ε”. Some

states have self-transitions, which produce the same sub-phone label every time they

are chosen. �is makes the transducer non-deterministic and allows the sub-phone

sequence to have varying lengths. Durationmodelling is not very sophisticated: com-

putational constraints practically dictate a geometric distribution for the sub-phone

duration on one path through the network.�e weight on a self-transition is the para-

meter of this geometric distribution.

�e bottom rowof table 2.1 contains an example sub-phone sequence derived from

the phone sequence. Each of the sub-phones produces one time slice, of which sec-

tion 2.2 will discuss the properties.

�ere are a number of additional steps in producing a real-world speech recog-

niser. One is to introduce context-sensitive phones.�is divides phones up depending

on previous and following phones, which is straightforward to implement as a �nite

state transducer. To combat the resulting explosion of the number of parameters, it

is usual to map phone or sub-phone models that share properties and acoustics into

equivalence classes. A decision tree is built that for each split picks from a list the

phonetically-inspired question that best separates the data. For example, an l like the

one in “e�ulgent” may be separated from other allophones of l if the question “Is the

next phone a consonant?” appears in the decision tree. Once the mapping into equi-

valence classes has been found, a �nite state transducer straightforwardly performs

the conversion.

Another trick, used for decoding, is to apply acoustic deweighting. �e acoustic

model’s probabilities have too great a dynamic range, so that they swamp out the lan-

guage model’s probabilities. �e usual work-around is to take the acoustic model’s

transition weights to a power smaller than 1 before multiplying them with the lan-

guage model’s.

�e discussion has so far considered separate transducers that take an input se-
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quence and produce an output sequence. However, when decoding, many paths must

be considered at the same time, through the whole cascade of transducers at once, and

it is the inverse transducers that are necessary. A transducer is inverted by exchanging

input and output symbols on all transitions. Following many paths in a cascade of

transducers is less easy.

Conceptually, the transducers are composed into one big transducer that con-

sumes a word sequence and non-deterministically produces a sub-phone sequence.

As long as the empty symbol ε is not considered, composing two transducers straight-

forwardly yields a new transducer. Its state space is the product space of the two trans-

ducers’. For transducers with ε-transitions, performing composition is less straight-

forward, but possible (Mohri et al. 2008). It is also o�en bene�cial to determinise and

minimise the transducers so that, for example, words in the pronunciation lexicon

share states as much as possible. �ese operations are generic, but it is also possible to

use algorithms for speci�c network types (e.g. Dobrišek et al. 2010). It is possible to

expand the whole network for a system with a large vocabulary and language model.

However, this o�en requires muchmemory. Alternatively, though it is non-trivial, the

composition operation can be performed on the �y, by introducing �lters (Oonishi

et al. 2009; Allauzen et al. 2009), some of which are necessary for correct operation,

and some increase decoding speed. Transducer composition is an associative opera-

tion. �is allows some of the composition operations to be performed o�-line, and

the resulting network to be stored, and the rest to be done on the �y.

It is possible to express training a speech recogniser and decoding with it as opera-

tions on weighted �nite state transducers. �is requires setting up a linear transducer,

with states that represent times, and transitions that convert all sub-phones into the

feature vector found between these times, with the correct probabilities. However, this

is not the most enlightening way of looking at this. �e following section will use the

active sub-phone at any given time as a random variable, probabilities of sequences of

which are governed by the fully composed weighted �nite state transducer.
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2.3 Training

Speech recognisers, like most statistical models in machine learning, are trained on

data. �e criterion used to optimise the parameters is usually the likelihood. �is is

sometimes followed by discriminative training. However, since in this work the noise

model must be estimated on unlabelled data, maximum-likelihood estimation will be

used. �is is only consistent if the speech model is generatively trained, so this thesis

will only use maximum-likelihood estimation for the speech model.

�e objective is usually to �nd themodel parameters that maximise the likelihood

of the labelled training data. Section 2.3.2 will discuss maximum-likelihood estima-

tion and its instantiation for models with hidden parameters, expectation–maximi-

sation. Section 2.3.3 will discuss how expectation–maximisation is applied to speech

recognisers.

Maximum-likelihood estimation, which normally uses training data, can be ex-

tended in two ways that will be important for this work. First, it is possible to adapt

the model parameters to unlabelled audio that is to be recognised rather than labelled

data. �is will be the topic of chapter 3. Second, chapter 6 will introduce predictive

methods, which train parameters not from data, but on predicted distributions.

�e generalisation of methods that implement maximum-likelihood estimation

to training distributions requires an unusual presentation. �e training data will be

written as a distribution of samples, an empirical distribution, which will be the topic

of section 2.3.1.

2.3.1 Empirical distributions

It is o�en useful to approximate distributions by a number of samples. In this work,

these approximations will be called empirical distributions. If p is the real distribution

over u, then its empirical approximation p̃ is de�ned by L samples u(l):

p ' p̃ =
1

L

∑
l

δu(l) , (2.16)
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where δu(l) indicates a Dirac delta at u(l). Sometimes, the samples will be weighted.

�is work will use empirical distributions for two purposes.

�e �rst is in the well-knownMonte Carlo family of algorithms. Asmodels inma-

chine learning get more complicated, it quickly becomes infeasible to perform exact

inference. Sometimes distributions can be approximated parametrically, with a choice

of forms and types of approximation (e.g. Minka 2005). Monte Carlo algorithms, on

the other hand, replace a parameterised distribution by an empirical distribution ac-

quired by sampling from it. Appendix a.4 discusses Monte Carlo methods that ap-

proximate integrals. However, even for message passing in general graphical models,

distributions can be represented with samples (Dauwels et al. 2006). For example,

Gibbs sampling (Geman and Geman 1984) can then be seen as loopy belief propaga-

tion (Frey and MacKay 1997) with single-sample messages.

�emain use for empirical distributions in the next sections, however, is to repres-

ent training data. Data points (in thiswork: audio recordings of speech utterances) can

be interpreted as samples from a stochastic process. �is stochastic process, speech

production, is hard to approximate and arguably impossible to model exactly. �e

next section will interpret maximum-likelihood estimation using the empirical dis-

tribution representing the training data, where every utterance is a data point.

2.3.2 Maximum-likelihood estimation

Training speech recogniser parameters, whether on thousands of hours of data with

transcriptions, or a few parameters for adaptation on a few seconds, usually applies

maximum-likelihood estimation or an approximation. �is sets the model paramet-

ers to maximise the likelihood of the training data. �e distribution that the model

represents will be written qX , and one training data point X . For mathematical con-

venience, the maximisation of the likelihood is usually rephrased as a maximisation

of the log-likelihood, which will be written L(·). �e log-likelihood of data point X
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according to qX is

L(X , qX ) , logqX (X ). (2.17)

�e likelihood of a set of independent and identically distributed data points {X (l)} is

the product of the likelihoods of the points, so the log-likelihood of that set is the sum

of the individual log-likelihoods:

log
∏
l

qX
(
X (l)

)
=
∑
l

logqX
(
X (l)

)
. (2.18)

In chapter 6, methods trained on data with maximum-likelihood estimation will

be generalised to train on distributions. It is therefore useful at this stage to write the

training data as a distribution. �is empirical distribution p̃(X ) has a Dirac delta at
each point in the training set, as in (2.16). �e log-likelihood of the training data can

then be written

L(p̃, qX ) ,
∫
p̃(X ) logqX (X )dX . (2.19)

Maximum-likelihood estimation then �nds

q̂X = argmax
qX

L(p̃, qX ). (2.20)

Maximum-likelihood estimation invites over-�tting of the training data, which

endangers generalisation. To guard against this, Bayesian approaches are possible,

which factor in a prior over the parameters. However, because of the temporal struc-

ture of speech recognisers, using a distribution over parameters is not feasible and

must be approximated (Watanabe et al. 2004). Instead, speech recognition therefore

uses techniques that control the amount of data that parameters are trained on.

Many learning problems in statistical pattern processing have unobserved, hid-

den, variables. Finding the parameters of the distributions over both the hidden and

the observed parameters thatmaximise the likelihood is o�en intractable. An iterative

algorithm that approximates the maximum-likelihood solution is expectation–maxi-

misation (em) (Dempster et al. 1977).
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2.3.2.1 Expectation–maximisation

Expectation–maximisation increases the log-likelihood L of the observations by op-

timising a lower boundF of the likelihood. �is section will introduce the algorithm

by writing it in terms of the empirical distribution. Appendix a.3 gives a derivation

and proof of convergence. �e two stages of the expectation–maximisation algorithm

are the expectation stage and the maximisation stage. �e expectation stage optim-

ises the lower bound, making it equal to the log-likelihood. �e maximisation stage

optimises the model parameters.

�e statisticalmodelwhose parameters are trainedwill be denotedwithqUX (U ,X ),
which is a distribution over the hidden variable U and observed variablesX . Margin-

alising out over the hidden variables gives the distribution over the observed variables:

qX (X ) =
∫
qUX (U ,X )dU (2.21a)

�e log-likelihood for one data point is then

L(X , qUX ) , log
∫
qUX (U ,X )dU . (2.21b)

�e lower bound that expectation–maximisation maximises is de�ned for a single

data point X as

F(X , ρ, qUX ) ,
∫
ρ(U |X ) log qUX (U ,X )

ρ(U |X ) dU . (2.21c)

Compared toL, its lower boundF explicitly takes an extra parameter, ρ, which is the

distribution over the hidden variables U for each data point X .
Expectation–maximisation is an iterative algorithm. An initial parameter setting

q
(k−1)
UX (U ,X )must be given. �e expectation stage of expectation–maximisation op-

timises the distribution over the hidden parameters ρ. Appendix a.3.1 shows that the

optimal setting for ρ makes the lower bound equal to the log-likelihood. ρ is then

equal to the posterior distribution of the hidden variables given the old parameter
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setting:

ρ(k)(U |X ) := q(k−1)U |X (U |X ) = q
(k−1)
UX (U ,X )
q
(k−1)
X (X )

. (2.22)

�emaximisation step now sets themodel parametersqUX tomaximise the lower

bound evaluated on the whole training data, written as an empirical distribution as

in (2.19):

q
(k)
UX := argmax

qUX

∫
p̃(X )

∫
ρ(k)(U |X ) logqUX (U ,X )dUdX . (2.23)

It is o�en possible to perform this maximisation analytically. If not, generalised em

may be used, which merely requires a new value of q(k)UX that improves the lower

bound. Appendix a.3 proves that in both cases the likelihood increases at least as

much as the lower bound. �e full em iteration therefore causes the likelihood to con-

verge to a maximum.

Another way of looking at the optimisation in the maximisation step is as min-

imising the kl divergence to the inferred distribution over the complete data (the ob-

served variables aswell as the hiddendata).�is distributionp combines the empirical

distribution and the approximation to the distribution of the hidden variables:

p(U ,X ) = p̃(X )ρ(k)(U |X ) . (2.24)

Minimising the kl divergence of the model qUX to p can be written as

argmin
qUX

KL(p‖qUX ) = argmin
qUX

∫ ∫
p̃(X )ρ(k)(U |X ) log p̃(X )ρ

(k)(U |X )
qUX (U ,X )

dUdX

= argmax
qUX

∫
p̃(X )

∫
ρ(k)(U |X ) logqUX (U ,X )dUdX , (2.25)

which is exactly the expression in (2.23).

Many generative statisticalmodels, including standard speech recognisers, consist

of a distribution over the hidden variables, and one over the observed variables given

the hidden ones. qUX then factorises as

qUX (U ,X ) = qU (U)qX |U (X |U) . (2.26)
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�e logarithm of this in the maximisation in (2.23) then becomes a sum, so that the

two distributions can be optimised separately:

logqUX (U ,X ) = logqU (U) + logqX |U (X |U) ; (2.27a)

q
(k+1)
U := argmax

qU

∫
p̃(X )

∫
ρ(U |X ) logqU (U)dUdX ; (2.27b)

q
(k+1)
X |U := argmax

qX |U

∫
p̃(X )

∫
ρ(U |X ) logqX |U (X |U)dUdX . (2.27c)

All the distributions that this thesis will apply expectation–maximisation to will have

this form.

2.3.3 Baum–Welch

�e instantiation of expectation–maximisation for hmms is also called Baum–Welch

training because it was introduced (Baum et al. 1970) before its generalisation. �e

discussion of expectation–maximisation in section 2.3.2.1 denoted the set of hidden

variables with U and the observed variables X . Applying this to speech recognition,

the hidden variables are the sub-phone state and the component at every time in-

stance: U = {θt,mt}. �e observed variables X consist of the feature vectors for

one utterance {xt}1...TX , and, for training, transcriptionsW of the audio.3 Assuming

the transcriptions are given at the word level, the weighted �nite state transducer for

the language model is replaced by a simple word sequence for each utterance. �is

constrains the state space, so that it is feasible to keep the distribution of the hidden

variables for one utterance in memory. �e empirical distribution p̃(X ) has Dirac
deltas at the utterances in the training data with their transcriptions.

�e expectation step of em �nds a distribution ρ(U |X ) over the hidden variables

for an utterance.�emost convenient form for ρwill drop out of the derivation below.

For speech recognisers, themodel factorises as a distribution over the hidden variables

and a distribution over the observed variables given the hidden ones. Once the dis-

tribution ρ has been found, the two factors are optimised separately as in (2.27). How
3For decoding, there will be no transcriptions.
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to train qU , the state transitions and the mixture weights, is well-known (e.g. Bilmes

1998) and will not be discussed here. How to train qX |U , though also well-known, will

become important for estimating adaptation transformations in section 3 and later, so

it will be discussed here in detail.

�e form thatqX |U takes for speech recognition is the product of the likelihood for

componentGaussians for every time t. Letq(m) represent the distribution of compon-

entm, of which the parameters are to be trained. �e likelihood of one data point X ,
of length TX , given a setting for the hidden variables U is

qX |U (X |U) =
TX∏
t=1

∑
m

1(mt = m)q(m)(xt), (2.28)

where 1(·) is the indicator function, or Kronecker delta, which is 1when its argument

is true and 0 otherwise. Here,
∑
m 1(mt = m)merely selects the correct component.

�erefore, the log-likelihood given U is

logqX |U (X |U) =
TX∑
t=1

∑
m

1(mt = m) logq(m)(xt). (2.29)

�e inner integral in (2.27c), the expected log-likelihood under the distribution over

the hidden variables ρ, then is∫
ρ(k)(U |X ) logq(k)X |U (X |U)dU =

∫
ρ(k)(U |X )

TX∑
t=1

∑
m

1(mt = m) logq(m)(k)(xt)dU

=
∑
m

TX∑
t=1

[∫
ρ(k)(U |X ) 1(mt = m)dU

]
logq(m)(k)(xt). (2.30)

As section 2.3.2.1 has discussed, the expectation step of expectation–maximisation

sets ρ to the posterior of the hidden variables using the old model parameters. �e

value of the integral, in square brackets in the last expression, can therefore be seen

as the posterior marginal probability of componentm at time t. For training q(m), it

is all that is necessary to know of the distribution of the hidden parameters. It will be

written γ(m)
t with

γ
(m)
t ,

∫
ρ(U |X ) 1(mt = m)dU , (2.31a)
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and the summed component occupancy over the whole training data

γ(m) ,
∫
p̃(X )

TX∑
t=1

γ
(m)
t dX . (2.31b)

Finding the component–time posterior γ(m)
t uses the forward–backward algorithm

(Baum et al. 1970). �is is an instantiation of the belief propagation algorithm (Pearl

1988), which �nds the posterior distribution of random variables in a graphical model

by message-passing between adjacent variables. In hmms, the forward probability is

the distribution ofmt−1 given observations x1 . . . xt−1. �e distribution ofmt given

observations x1 . . . xt can be computed from the forward message and the observed

xt. �e backward probability is the distribution ofmt+1 given xt+2 . . . xT . Together

with the observed xt+1 this yields the distribution ofmt given xt+1 . . . xT . Multiply-

ing the forward and backward probability for time t yields the distribution ofmt given

x1 . . . xT , which is the component–time posterior γ(m)
t . Since forward and backward

probabilities are computed recursively from opposite ends of the sequence, either the

forward or the backward probabilities are required in the reverse order from the one

in which they are computed. For a state space of size Θ, the natural implementa-

tion of the forward-backward algorithm therefore usesO(T ·Θ) space andO(T ·Θ)
time. To deal with long sequences, it is also possible to cache the probabilities only

at intervals and reduce the space requirement to O(Θ log T) at the cost of requir-

ingO(Θ · T · log T) time (Murphy 2002). However, in practice longer utterances also

contain more words and thus more states. To deal with this, pruning is used: forward

and backward probabilities below a threshold are set to zero.

Having computedγ(m)
t , themaximisation step instantiates (2.27c), rewritten using

(2.30) and (2.31a):

qX |U := argmax
qX |U

∫
p̃(X )

∑
m

TX∑
t=1

γ
(m)
t logq(m)(xt)dX . (2.32)

�is maximisation is used for training the output distributions’ parameters. When

training all speech recogniser parameters, the expectation andmaximisation steps are

applied iteratively. Chapter 3 and section 4.7 will discuss adaptation within this same
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framework. �ere is usually enough training data to train all parameters of Gaussians

directly.

�e parameters of each Gaussian can be estimated separately. �e instantiation of

(2.27c) for training speech recognition parameters sets the parameters of each com-

ponent to maximise its expected log-likelihood under the distribution ofmt:

q(m) := argmax
q(m)

∫
p̃(X )

TX∑
t=1

γ
(m)
t logq(m)(xt)dX . (2.33)

Taking the derivative of the integral to be maximised, the distribution q(m) ∼

N
(
µ(m),Σ(m)

)
is maximised when

µ(m) =
1

γ(m)

∫
p̃(X )

TX∑
t=1

γ
(m)
t xtdX ; (2.34a)

Σ(m) =

(
1

γ(m)

∫
p̃(X )

TX∑
t=1

γ
(m)
t xtx

T
t dX

)
− µ(m)µ(m)T. (2.34b)

2.4 Decoding

�e purpose of a speech recogniser is to convert audio into text. With the audio to be

recognised represented by feature vector sequenceX and the word sequence denoted

withW, Bayes’ rule relates �nding the most likely word sequence Ŵ to the generative

model in (2.10):

Ŵ = argmax
W

P(W|X) = argmax
W

P(W,X)

p(X)

= argmax
W

P(W,X) = argmax
W

P(W)p(X|W) . (2.35a)

Since 1/p(X) does not depend on W, when decoding it is a constant factor in the

maximand and can be ignored. Section 2.2 has discussed the form of the generat-

ive model P(W,X). To �nd the most likely word sequence, the sub-phone state se-

quenceΘ should be marginalised out, as in (2.10):

Ŵ = argmax
W

P(W)
∑
Θ

p(X|Θ)P(Θ|W) . (2.35b)
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However, this marginalisation turns out to be computationally infeasible. �erefore,

the sum in (2.35b) is replaced by a max operator. Rather than �nding the best word

sequence, speech recognisers therefore �nd the word sequence corresponding to the

best sub-phone state sequence.

Ŵ ' argmax
W

P(W)max
Θ
p(X|Θ)P(Θ|W) . (2.35c)

Note that if p(X|Θ) is o� by a factor, this does not in�uence the maximisation. �is

property is o�en useful in speech recogniser adaptation.

�is sequence can be computed with the Viterbi algorithm (Viterbi 1982), which

is a dynamic programming algorithm. �e following describes it brie�y. �e property

of the network it needs is the Markov property discussed in section 2.2: the variables

at time t depend only on the variables at time t, and not on anything before that. �is

means that if the best possible path that ends in sub-phone θ at time t goes through θ ′

at time t−1, it contains the best path ending inθ at time t−1. Finding the best paths to

all states at one time therefore only requires the best paths to all states at the previous

time.�e task of �nding the best path to a �nal state at the �nal time therefore becomes

a recursion backwards through time.

An approximation that increases decoding speed is pruning.�is removes unlikely

states from the set of paths at every time step. It de�nes a pruning beam, the di�erence

in log-likelihood between the most likely state and the least likely state to be allowed

through. Pruning does introduce search errors, so setting the pruning beam gives a

trade-o� between speed and accuracy.

To assess speech recogniser performance, the word error rate (wer) is o�en used.

�is metric gives the distance from the reference transcription. It is the lowest num-

ber of deletions, insertions, and substitutions required to transform the reference tran-

scription into the result of the speech recognition, as a fraction of the number of words

in the transcription.
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2.5 Summary

�is chapter has described the structure of a speech recogniser, and how to use it.

Section 2.1 has discussed how the audio is converted into feature vectors that form the

observations to a probabilistic model. �e in�uence of the noise on feature vectors

extracted from noisy data will be derived from this (in section 4.2.1). Section 2.2 has

discussed the structure of the generative model. How this model is trained with ex-

pectation–maximisation was the topic of section 2.3. Similar methods will be applied

for adaptation and noise model estimation (chapter 3 and section 4.7). However, in

the maximisation step the parameters will then be constrained so that they can be

robustly estimated on limited amounts of data. Section 2.4 has discussed decoding,

which will be used for the experiments (chapter 8).
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Chapter 3

Adaptation

Speech recognisers are o�en employed in di�erent environments to the one they were

trained on. �ere may be, for example, di�erences in speaker, speaking style, accent,

microphone, and, the topic of this thesis, background noise. �is mismatch could be

resolved by retraining the recogniser in the new environment. Re-training the model

on data that is to be recognised is called adaptation. However, usually too little data

is available to robustly train all parameters, and it is unlabelled. To deal with this,

the model parameters are usually constrained. Section 3.1 introduces the concept of

adaptation and general strategies. Section 3.2 discusses training linear transformations

of speech recogniser parameters. Linear transformations for covariance modelling

while training are mathematically similar and will therefore be the topic of section 3.3.

3.1 Unsupervised adaptation

�is thesis will denote an utterance from the training environment with X , with ob-

servations xt. An utterance to be recognised, which is from a di�erent environment,

will be written Y with observations yt. �e adaptation methods that this chapter will

introduce are general and can adapt a speech recogniser to many types of di�erence

between environments. In chapter 4 about methods for noise-robustness, X will ex-

plicitly be assumed noise-free, clean, data, and Y noise-corrupted.
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If su�cient training data and the correct transcriptions were available, the mis-

match between the environment the recogniser was trained in and the environment it

is used in could be resolved by retraining the recogniser in the new environment. One

approach would be to apply maximum a posteriori (map) training to the speech re-

cognition parameters (Gauvain and Lee 1994). �ere is no conjugate prior density for

an hmm with mixtures of Gaussians, but if mixture weights and component paramet-

ers are assumed independent, maximum a posteriori estimates for them can be found.

�e main problem with this is that each Gaussian’s parameters are re-estimated sep-

arately, so that to have an e�ect, su�cient data must be observed for each Gaussian.

map adaptation of speech recognition parameters is therefore ill-suited to scenarios

with limited adaptation data.

An alternative is to constrain the parameters to a subspace, by only training a

transformation of the speech recognition parameters that itself has fewer parameters

than the speech recogniser. Ideally, decoding with adaptation would jointly optim-

ise the word sequence and speech recogniser transformation that maximises, for ex-

ample, the likelihood. If L is the function that is to be optimised with respect to word

sequenceW and speech recogniser transformation A, and Y is the adaptation data,

then the joint optimisation can be written as

(
Ŵ, Â

)
:= argmax

W,A
L(Y,W,A). (3.1)

It is possible to approximate this by estimating Â for a number of hypotheses (Mat-

sui and Furui 1998; Yu and Gales 2007). However, this is slow. �e normal approach

therefore uses coordinate ascent and interleaves optimising word sequence W and

optimising speech recogniser transformation Â. As an approximation to optimising

the word sequence, decoding as discussed in section 2.4 is applied. Optimising the

speech recogniser transformation normally uses expectation–maximisation or gener-

alised expectation–maximisation. By controlling the number of parameters, the need

for Bayesian schemes is avoided. One form of speech recogniser transformation is an

a�ne transformation of parameters of output distributionsq(m), which section 3.2will
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θt−1 θt θt+1

mt−1 mt mt+1

yt−1 yt yt+1

A

Figure 3.1 Directed graphical model of a speech hidden Markov model with
A transforming the parameters of the component-conditional distribution. �e
yt are observations from a di�erent environment than the xt in �gure 2.4 on
page 20.

discuss. Methods speci�cally for noise-robustness, whichwill be the topic of chapter 4,

can also be seen as adaptation if a noise model is estimated.

Figure 3.1 shows a graphical model of the speech hmm with a transformation,

where the observations from the training environment xt in �gure 2.4 have been re-

placed by those from the recognition environmentyt. yt depends not only onmt, but

also onA. �e component output distribution q(m)(xt) is replaced with q(m)(yt|A).
q(m)(yt|A) can have various forms, some of which section 3.2 will discuss, but all can

be seen as transforming the parameters of the component output distribution. Note

that the transformation does not a�ect mt, nor the state transitions. For decoding,

the algorithm from section 2.4 still applies, except that the output distributions are

replaced by their transformed versions.

Figure 3.2 on the following page gives a �ow diagram for unsupervised estima-

tion of a transformation. First, the recogniser uses an initial transformation (o�en the

identity transformation) to �nd a transcription hypothesisW that probably has many

errors. To estimate the transformation, the distribution over the component sequence

is found (the expectation step of expectation–maximisation). In the maximisation

step, this can then be used to decrease the mismatch between the component distri-
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Audio data

Decode

Expectation

HypothesisW Final hypothesis

Maximisation

Posteriors γ(m)
tTransformationA

Figure 3.2 Unsupervised adaptation.

bution and the actual observations. (�is will be discussed in greater detail below.) In

the short loop in �gure 3.2 the expectation step immediately follows. Running round

this loop implements expectation–maximisation or generalised expectation–maximi-

sation. �e new transformation A is therefore guaranteed not to decrease the likeli-

hood in the joint maximisation in (3.1). It is also possible to replace the hypothesis

with a new one by running the decoder with the latest estimate of the transformation

(the long loop). Since decoding only �nds the state sequence, not the word sequence,

with the highest likelihood (see section 2.4), the new hypothesis is not guaranteed to

yield a better likelihood. If it does, then it is a step towards the joint maximisation

in (3.1). A�er a small number of iterations, this process can stop and yield the �nal

hypothesis.

�e expectation step �nds the distribution of the hidden variables. As when train-

ing a recogniser, this distribution is represented by component–time posteriors γ(m)
t .

�e maximisation step �nds the best transformation, in a process similar to training

output distributions, but using the hypothesis on adaptation utterances Y rather than

training utterancesX . �e expression is very similar to (2.32), but rather than directly

estimating the output distribution’s parameters, the transformationA is estimated by

42



3.1. unsupervised adaptation

maximising

A(k) := argmax
A

∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t logq(m)(yt|A)dY. (3.2)

�e empirical distribution p̃(Y) here is assumed to represent utterances from a ho-

mogeneous part of the training data.

Unsupervised estimation o�en works well even if the initial hypothesis contains

many errors. �e key to this is controlling the number of parameters that are trained

on a given amount of data. Gaussian components are usually grouped in clusters that

share one transformation. �e grouping is normally hierarchical, in a regression class

tree (Leggetter 1995; Gales 1996; Haeb-Umbach 2001). When performing adaptation,

the tree is pruned so that the resulting leaf nodes have enough data for robust estima-

tion of the transformation. �e leaf nodes of an unpruned tree result in a component

clustering into base classes 1 . . . R. For the methods that this thesis will introduce (in

chapter 6), the amount of adaptation data will be irrelevant, so base classes will feature

most prominently. Estimating the transformations is completely separate per class, so

to keep notation from being cluttered, the notation in sections 3.2 and 3.3 will assume

one class.

3.1.1 Adaptive training

�e discussion of adaptation has so far assumed that the speech recogniser model is

trained on homogeneous and noise-free data, and that that the test data is di�erent

from that. In reality, the training data o�en has di�erent speakers, and sometimes

is even explicitly multi-environment (for example, di�erent noise data may be arti�-

cially added to the audio), to try and capture the di�erent environments the recogniser

might be employed in.

It is possible to use the graphical model with transformations, in �gure 3.1, when

training as well. For every set of homogeneous utterances (for example, utterances

from one speaker, or from one noise environment, or just for one utterance) a trans-

formation is trained to maximise its likelihood. �e speech recogniser parameters are
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then re-estimated to maximise the average likelihood over all speakers. �e speech

recogniser and the transformation are optimised iteratively. �is creates a canonical

speech recognisermodel, which, unlike a normally trained one, does not represent the

training data without the transformation. It is a conceptually pleasing property that

it uni�es the model for training and testing. However, it creates a chicken-and-egg

problem: the speech recogniser does not represent the data without a transformation

and there is nowell-de�ned initial setting for the transformationwithout a hypothesis.

�ere is therefore no clear starting point for the interleaved estimation of transforma-

tion and hypothesis. �is can be solved by using a conventionally-trained recogniser

initially, and only then using the adaptively-trained one with an appropriate trans-

formation, or using a heuristically determined initial transformation.

Some schemes that apply adaptive training introduce an extra stochastic variable

that represents the identity of the speaker or cluster of speakers. �is includes speaker

adaptive training (Anastasakos et al. 1996) and cluster adaptive training (Gales 2000).

Somemore recent adaptive training schemes (Liao and Gales 2007; Kalinli et al. 2010;

Flego and Gales 2009; Kim and Gales 2010) have found improvements from using

transformations on speech recognisers with a standard form of speech recogniser ad-

aptation.

3.2 Linear adaptation

Linear adaptation methods are instantiations of adaptation as discussed in section 3.1.

A graphical model was given in �gure 3.1 on page 41: the distribution of observa-

tionsyt dependon the component generating it,mt, and the transformationA. Trans-
formation A changes the parameters of Gaussian component m, which models the

training data:

p(m)(x) = N
(
x; µ

(m)
x , Σ

(m)
x

)
. (3.3a)
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�e parameters of transformed distributionq(m)(y|A) represents the found data with

q(m)(y|A) = N
(
y; µ

(m)
y , Σ

(m)
y

)
. (3.3b)

�e general form of transformation that will be considered is an a�ne transformation{
H,g
}
to the mean vector, and a linear transformationH ′ to the covariance matrix:

µ
(m)
y := Hµ

(m)
x − g; (3.3c)

Σ
(m)
y := H ′Σ

(m)
x H ′T. (3.3d)

�e �rst adaptation method that applied an explicitly ml-estimated a�ne transform

was maximum-likelihood linear regression (mllr) (Leggetter and Woodland 1995),

which only adapts the parameters of the mean. Since the main interest in adaptation

transformations for this thesis is in modelling correlations for noise-robustness, the

following sections will focus on two di�erent forms. �e �rst, cmllr (Gales 1998a)

constrains the mean and covariance transformations to be the same. �e second only

transforms the covariance (Neumeyer et al. 1995; Gales andWoodland 1996). Per class,

both have in the order of d2 parameters, which means that about 1000 frames are

required to train them robustly.

3.2.1 Constrained transformation

Constrained mllr (cmllr) constrains the linear transform applied to the mean and

covariance to be equal. �us, the likelihood for componentm becomes

q(m)(y|A) = N
(
y; Hµ

(m)
x − g, HΣ

(m)
x HT

)
. (3.4a)

H can be diagonal (Digalakis et al. 1995) or full (Gales 1998a). �e latter shape is of

most interest for this work since it can model some feature correlations. One of its

useful properties is that this can alternatively be written as a transformation of the

observations: A = {A,b} whereA = H−1 and b = −H−1g (Gales 1998a):

q(m)(y|A) = |A| · N
(
Ay+ b; µ

(m)
x , Σ

(m)
x

)
. (3.4b)
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�is means that each observation vector is transformed before being passed to the

Gaussian components. In practice, components are usually clustered into classes based

on their distance to each other, with a di�erent transformation for each class (see

section 3.1). In e�ect, cmllr then performs a piecewise linear transformation of the

observations. In terms of the implementation, models can calculate the observation

likelihood on the appropriately transformed feature vector. Transforming y to R par-

allel feature vectorsA(r)y+b(r) can be computationally cheaper compared to trans-

forming the parameters of each Gaussian. For a diagonal transformation matrix, this

depends on the number of feature vectors to be transformed and the number of com-

ponents: transforming one feature vector has the same complexity as transforming

one component. If the transformation matrix is full, transforming one feature vector

costs O
(
d2
)
time, whereas transforming one covariance matrix costs O

(
d3
)
time.

Additionally, transforming the features means that the original diagonal covariance

matrices can be used, so that no extra memory is required to store the models and the

likelihood computation is not slowed down much.

�e interest here is in a method that works for diagonal covariance matrices, so

that decoding is cheap. �is allows for the row-wise optimisation algorithm in Gales

(1998a). Estimating transformations for full covariancematrices, with a generalisation

of the row-wise algorithm (Sim and Gales 2005) or gradient optimisation (Ghoshal

et al. 2010), will not be discussed. Covariance matrix entries are denoted with σ(m)
x,ii .

�e maximisation step implements (3.2) with the likelihood calculation in (3.4b).

A derivation of the optimisation is in section b.1.1. What is interesting here is the

statistics that this optimisation requires. (Section 6.2.1 will discuss how to train the

same form of transformation from predicted statistics. �e only di�erence will be the

form of the statistics.) �e required statistics from the adaptation data are γ, k(i), and

G(i) with (from (b.5))

γ ,
∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t dY ; (3.5a)
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k(i) ,
∫
p̃(Y)

∑
m

µ
(m)
x,i

σ
(m)
x,ii

TY∑
t=1

γ
(m)
t

[
yT
t 1

]
dY ; (3.5b)

G(i) ,
∫
p̃(Y)

∑
m

1

σ
(m)
x,ii

TY∑
t=1

γ
(m)
t

ytyT
t yt

yT
t 1

dY. (3.5c)

�e optimisation algorithm then maximises the likelihood with respect toA per row.

It iterates over each row a number of times. �e likelihood is therefore guaranteed

not to decrease, which makes the overall process an instantiation of generalised ex-

pectation–maximisation. If the transformation matrix A is constrained to a block-

diagonal shape, the likelihood expression factorises into likelihoods for these blocks

of coe�cients. �ey can therefore be optimised separately. In the extreme case, A is

constrained to be diagonal, and the optimisation is separate for each dimension. �e

optimisation procedure then yields the globalmaximum immediately, so that iterating

is not necessary, and the process is an instantiation of expectation–maximisation. �e

�nal transformation is equivalent to the one described in Digalakis et al. (1995), which

applies it in model space, though with an iterative method.

For the full-transformation case, the computational complexity of this algorithm

is dominated by the cost of calculating the cofactors and the inverse of G(i), which

is necessary for each row. �e latter costs O
(
d3
)
per matrix (with d the dimension

of the feature vector). A naive implementation of the former costsO
(
d3
)
per matrix

per iteration, but using the Sherman-Morrisonmatrix inversion lemma this can be re-

duced toO
(
d2
)
(Gales and van Dalen 2007). �us, for R transforms and L iterations,

the cost of estimating the transforms isO
(
RLd3 + Rd4

)
.

3.2.2 Covariance adaptation

Covariance mllr (Neumeyer et al. 1995; Gales and Woodland 1996; Gales 1998a) up-

dates only the covariances of the component Gaussian. It was originally proposed to

be used in combination with mean mllr. �e likelihood of transformed Gaussian
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componentm becomes

q(m)(y|A) = N
(
y; µ

(m)
x , HΣ

(m)
x HT

)
. (3.6a)

As in the constrained case, this is better expressed with the inverse transformation

A = H−1, so that

q(m)(y|A) = |A| · N
(
Ay; Aµ

(m)
x , Σ

(m)
x

)
. (3.6b)

It may not be immediately obvious why this is a better formulation than (3.6a). Nor-

mally, the covariancematrixΣ(m)
x is diagonal. Storing the updated covarianceHΣ(m)

x HT

would therefore require extra storage, whereas storingAµ(m)
x does not. An evenmore

important reason in this work, which will use a variant of covariance mllr to speed

up decoding, is that computing the likelihood is faster with the form in (3.6b) than

with the form in (3.6a), again because of the diagonal covariance matrix.

�e derivation is in appendix b.2.1. Just like for cmllr, section 6.2.2 will compute

the same form of transformation but from predicted statistics. �e form of the stat-

istics are therefore of most interest here. �e statistics from the adaptation data are γ

andG(i) with

γ ,
∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t dY ; (3.7a)

G(i) ,
∫
p̃(Y)

∑
m

1

σ
(m)
x,ii

TY∑
t=1

γ
(m)
t

(
yt − µ

(m)
x

)(
yt − µ

(m)
x

)T
dY. (3.7b)

γ here is the same as for cmllr (in (3.5a)); G(i) is similar to part of (3.5c) but uses

yt − µ
(m)
x instead of yt.

Similarly to cmllr, the optimisation is row-wise, and this again implements gen-

eralised expectation–maximisation. Just as for cmllr, calculating the inverse ofG(i)

and �nding the cofactors are necessary for each rowupdate and form themain compu-

tational cost.�erefore, estimating transforms forR classes inL iterations isO
(
RLd3 + Rd4

)
,

with d the size of the feature vector. Covariance mllr also needs to transform all

model means, which takesO
(
Md2

)
.
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3.3. covariance modelling

3.3 Covariance modelling

�e second type of transformation in this chapter aims to model the training data

correlations better rather than to resolve a mismatch between training and test data.

�ese transformations are normally trained during speech recognition training. Com-

putational cost and data sparsity are therefore not as problematic as in adaptation, and

component parameters can also be updated. �is section will denote the observations

from training datawithx. In terms of themathematics, however, there is no signi�cant

di�erence with adaptation transformations. Training more sophisticated correlation

models again uses expectation–maximisation. In chapter 6.2, they will be applied to

speed up decoding with correlation compensation for noise-robustness in much the

same way as transformations for adaptation will be.

Traditionally, speech recognisers make the assumption that the coe�cients of one

feature vector are independent. In that case, Gaussian distributions can have diagonal

covariancematrices, robust estimates for which need less data than full ones. Also, it is

expensive to compute the likelihood of a full-covariance Gaussian. However, real data

does show within-component correlations. �ere are various techniques to improve

modelling of correlations while for robustness restricting the number of extra para-

meters to be trained. It is possible to derive a structured form of covariancemodelling

from factor analysis (Gopinath et al. 1998; Saul and Rahim 2000):

Σ(m) = AT
[p]A[p] + Σ

(m)
diag. (3.8)

�e loading matrix A[p] can be speci�c to the component, but for p small that yields

little extra modelling power, whereas as p becomes equal to the number of features d,

as many parameters are introduced as with full covariances. Alternatively, a gener-

alisation of this (Rosti and Gales 2004) ties A[p] over all components in a base class.

�is reduces the number of parameters to be trained compared to full covariances.

For small p the Sherman–Morrisson–Woodbury formula can make the likelihood

computation e�cient. However, to attain good modelling, the loading matrices are

normally tied across many components and p is large, which makes decoding as slow

49



chapter 3. adaptation

as with full covariance matrices.

�e following sections will discuss two di�erent types of correlation modelling

that require fewer parameters to be estimated and allow faster decoding than full cov-

ariancematrices.�e �rst formmodels precisionmatrices, inverse covariancematrices

(section 3.3.1). �e second form to be discussed (section 3.3.2) are projection schemes,

which choose dimensions that discriminate best and reduce the dimensionality of the

data.

3.3.1 Structured precision matrices

It is possible to model the precisionmatrices, the inverse covariance matrices, directly

as a weighted sum of basis matrices (Olsen and Gopinath 2004; Axelrod et al. 2002;

Vanhoucke and Sankar 2004; Sim and Gales 2004):

Σ(m)−1 =
∑
i

π
(m)
i Bi, (3.9)

where Bi is a basis matrix for modelling the precision matrices. �e advantage of

modelling the precision matrices rather than covariance matrices is decoding speed.

�e resulting likelihood calculation is

q(m)(x) ∝ exp
(
− 1
2(x− µ

(m))
T
Σ(m)−1(x− µ(m))

)
(3.10)

= exp
(∑

i

π
(m)
i

(
− 1
2x

TBix+ µ
(m)TBix−

1
2µ

(m)TBiµ
(m)
))
. (3.11)

Since xTBix and Bix do not depend on the component, it is possible to cache them

and share the result between components.

A more restricted, but e�ective, form of precision matrix modelling is semi-tied

covariance matrices (Gales 1999). Each basis matrix is of rank 1, and components in

one base class share as many basis matrices as there are feature dimensions. It can

therefore be written in a di�erent form, where components have diagonal covariance

matrices that share one rotation matrix per base class. �e algorithm �nds a trans-

formation that results in a feature space in which a diagonal covariance matrix is a
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more valid assumption than in the original feature space. �e covariance matrix in

the transformed space will be denoted with Σ̃(m)
x,diag. �e expression for the likelihood

is

q(m)(x) = N
(
x; µ

(m)
x , HΣ̃

(m)
x,diagH

T
)
. (3.12a)

Just like for covariancemllr, in (3.6a), the e�ective covariance is a component-speci�c

diagonal covariance in a space speci�ed by a transformation H. �e transformation

is tied over all components in a base class. (Again, the dependence on the base class

is not written since the optimisation is separate for each base class.) Unlike for cov-

ariance mllr, data sparsity is not a problem, because all training data is used, so that

component-dependent covariance Σ̃(m)
x,diag is estimated as well as the transformation.

To improve decoding speed, it is again useful to describe the covariance transforma-

tion by its inverse,A = H−1, so that the likelihood is expressed

q(m)(x) = |A| · N
(
Ax; Aµ

(m)
x , Σ̃

(m)
x,diag

)
. (3.12b)

�e estimation ofA and Σ̃(m)
x,diag is iterative. First,A is estimated, with the same form

of statistics and procedure as covariance mllr. �en, Σ̃(m)
x,diag is straightforwardly set

to the maximum-likelihood estimate. As for cmllr and covariancemllr, the interest

here is in the statistics that estimation requires. A derivation is in section b.3.1. Stat-

istics that do not change when component covariances are updated are γ, again, and

the sample covariance for componentm,W(m):

γ ,
∫
p̃(X )

∑
m

TX∑
t=1

γ
(m)
t dX ; (3.13a)

W(m) ,
1

γ(m)

∫
p̃(X )

TX∑
t=1

γ
(m)
t

(
xt − µ

(m)
x

)(
xt − µ

(m)
x

)T
dX . (3.13b)

�e statistics G(i) are of the same form as for covariance mllr, in (3.7b). �ey de-

pend on σ̃(m)
x,ii , diagonal element i of Σ̃(m)

x,diag, which for semi-tied covariance matrices

is updated in every iteration.

G(i) ,
∑
m

γ(m)

σ̃
(m)
x,ii

W(m). (3.13c)
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function Estimate-Semi-Tied-Covariance-Matrices({W(m), γ(m)}, γ)
for all componentsm do

Initialise Σ̃(m)
x,diag ← diag

(
W(m)

)
InitialiseA← I

repeat
G(i) ←∑m

1

σ̃
(m)
x,ii

γ(m)W(m)

A← Estimate-Covariance-MLLR(γ,G(i))
for all componentsm do
Σ̃
(m)
x,diag ← diag

(
AW(m)AT

)
until convergence
return

{
Σ̃
(m)
x,diag

}
,A

Algorithm 1�e maximisation step of expectation–maximisation for estimating
semi-tied covariance matrices.

�e estimation procedure is given in algorithm 1. Σ̃(m)
x,diag is initialised to the di-

agonalised original covariance, diag
(
W(m)

)
, and A to the identity matrix I. In the

�rst step, the transformation A is updated in the same way as is done for covariance

mllr transforms, described in section 3.2.2. However, the current estimate for the

covariance, which changes every iteration, is used. �e statistics must therefore be

re-computed for every iteration. In the second step, Σ̃(m)
x,diag is set to the maximum-

likelihood diagonal covariance in the feature space given by A. �is process is re-

peated until convergence. Both steps are guaranteed not to decrease the likelihood.

�is is therefore a generalised expectation–maximisation algorithm.

Because decoding with semi-tied covariance uses diagonal-covariance Gaussians,

it is almost as fast as decoding with plain diagonal-covariance Gaussians. Adjusting

the number of base classes that transformations are computed for allows a trade-o�

between the number of parameters and the accuracy of the covariance model.

Just like for cmllr and covariance mllr, the computational complexity of this

algorithm is dominated by the cost of calculating the cofactors and the inverse ofG(i).

�e former costs O
(
d2
)
(with d the dimension of the feature vector) per dimension

per iteration. �e latter costs O
(
d3
)
per dimension. �us, for R transforms, K outer
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loop iterations, and L inner loop (of estimating A) iterations, the cost of estimating

the transforms isO
(
RKLd3 + RKd4

)
.

3.3.2 Maximum likelihood projection schemes

A projection of feature vectors onto a di�erent overall feature space, as opposed to a

component-speci�c one, can also improve speech recogniser performance. �is no-

tion motivates the �nal step of computingmfccs (in (2.6)), which aims to decorrelate

the featureswith a discrete cosine transform, and then reduces the dimensionality.�e

same goes for deriving dynamic features from a window of static features (in (2.7b)).

�ese two projection schemes have an intuitive motivation. �is section, however,

discusses data-driven approaches to decorrelation and dimensionality reduction that

can be applied in combination with or instead of the projections for dct and dynamic

coe�cients.

Linear discriminant analysis (lda) (Fukunaga 1972) is a standard linear projec-

tion scheme that transforms the feature vectors to maximise between-class distance

and minimise with-class correlation. For speech recognisers, the classes are usually

Gaussian components. �e transformation is supposed to make the assumption that

the components have diagonal covariance matrices more reasonable. An alternative

projection scheme that does not assume that the component covariances are equal,

but does not optimise the feature space to be diagonal, is heteroscedastic discrimin-

ant analysis (Saon et al. 2000).

Heteroscedastic linear discriminant analysis (hlda) (Kumar 1997) is a method

that �nds the best projection as well as a transformation that improves the diagonal

covariance approximation. It �nds a projectionA[p] that projects the d-dimensional

original feature space to p-dimensional subspace of useful features. �e parameters

for the (d − p)-dimensional nuisance subspace are tied over all components in the
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base class. �us

A =

 A[p]

A[d−p]

 , (3.14)

so that the base class-speci�c transformed feature vector is

x̂ = Ax =

 A[p]x

A[d−p]x

 . (3.15)

�e new parameters for componentm become

µ̂(m) =

 µ̂(m)
[p]

µ̂[d−p]

 =

A[p]µ
(m)

A[d−p]µ

 ; (3.16)

Σ̂(m) =

 Σ̂(m)
[p] 0

0 Σ̂[d−p]

 , (3.17)

where µ is the global mean, and

Σ̂
(m)
[p] = diag

(
A[p]W

(m)AT
[p]

)
; (3.18)

Σ̂[d−p] = diag
(
A[d−p]ΣA

T
[d−p]

)
. (3.19)

whereW(m) is the actual covariance within components, and Σ is the global covari-

ance. �e transformation is found with maximum-likelihood estimation. Details of

the process are in Kumar (1997).

Because the nuisance dimensions have been tied over all components in the base

class, the component likelihood computation can be split up into a global Gaussian

and a component-speci�c one:

q(m)(x) =
∣∣A∣∣N(x; µ̂(m), Σ̂(m)

)
=
∣∣A∣∣N(A[d−p]x; µ̂[d−p], Σ̂[d−p]

)
N
(
A[p]x; µ̂

(m)
[p] , Σ̂

(m)
[p]

)
, (3.20)

which reduces the computational complexity because for one observation the �rst

Gaussian is constant. Since a constant factor does not in�uence decoding (see sec-

tion 2.4), the determinant and the �rst Gaussian do not normally have to be computed.
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An useful property of hlda is that it �nds a model for the complete feature space,

not just for the useful dimensions. �is allows for a generalisation, multiple hetero-

scedastic linear discriminant analysis (mhlda) (Gales 2002), which �nds a separate

hlda-like transformation for each base class. (�e determinant and the �rst Gaussian

in (3.20) then do a�ect decoding, so they do have to be computed.) At the same time,

it is also an generalisation of semi-tied covariance matrices that reduces the feature

dimensionality.

3.4 Summary

�is chapter has discussed the general mechanism of speech recogniser adaptation.

Section 3.1 has described how the usual approach, given unlabelled adaptation data,

iterates between decoding and estimating a transformation of the recogniser. Methods

for noise-robustness that the next chapter will discuss can be cast in the same frame-

work when the noise is estimated (section 4.7). Section 3.2, however, has discussed ad-

aptation without a model of the environment, but with linear transformations. �ey

can therefore adapt to many types of mismatch, and by placing the transformations in

the right places in the likelihood equation, they are essentially as fast to decode with

as without. A similar scheme, semi-tied covariance matrices, discussed in section 3.3,

can be used while training to model covariances, and similarly hardly reduces decod-

ing speed. Section 6 will train both types of linear transformations from predicted

distributions (for example, over noise-corrupted speech) rather than adaptation data.

55





Chapter 4

Noise-robustness

�is chapter will discuss methods that make speech recognisers robust to noise. Sec-

tion 4.1 will present a number of strategies for noise-robustness. Compared with the

generic adaptation methods discussed in chapter 3, they need less adaptation data.

�is is possible since they make stronger assumptions about the mismatch between

training and test environments. �e assumptions are the model of the noise and how

it in�uences the incoming feature vectors. �ey will be the topic of section 4.2. Sec-

tion 4.3 will then describe the resulting corrupted speech distribution. It has no closed

form, so it needs to be approximated. Section 4.4 will discuss speci�c methods of

model compensation, which replace the recogniser’s clean speech distributions with

distributions over the corrupted speech. Rather than using precomputed paramet-

erised distributions, it is possible to approximate the noise-corrupted speech likeli-

hoods only as the observations come in. �is will be the topic of section 4.5. Sec-

tion 4.6 will discuss an alternative model-based scheme that reconstructs the clean

speech before passing it to the recogniser. Section 4.7 will describe methods to es-

timated the noise model parameters can be estimated in an adaptation framework as

described in section 3.1.
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4.1 Methods for noise-robustness

�ere are two categories of approaches for making speech recognisers robust to noise.

Feature enhancement aims to reconstruct the clean speech before it enters the speech

recogniser, and is therefore relatively fast. Model compensation, on the other hand,

aims to perform joint inference over the clean speech and the noise, and is slower but

yields better accuracy. If input frommultiplemicrophones is available, then it is some-

times possible to reconstruct the signal from a source at a speci�c location. However,

this work will consider the general case where only the input from one microphone is

available.

Feature enhancement can work on any representation of the audio signal that is

available in a speech recogniser. For example, the spectrum is sometimes used. Spec-

tral subtraction (Boll 1979) requires the spectrum of the noise to be given, and assumes

the noise is stationary. Alternatively, it is possible to �nd a minimummean square er-

ror estimate of the speech and the noise (Ephraim 1990). �is requires probabilistic

models of the speech and the noise. It is possible to formulate these in the spectral

domain, and assume all spectral coe�cients independent. �ough this assumption

is true for Gaussian white noise, this type of noise is not normally found outside of

research papers. For speech, the assumption is particularly unhelpful.

�erefore, approaches to feature enhancement that work on the log-mel-spectrum

or the cepstrum have over the past two decades become successful. �ough it makes

formulating the interaction of speech and noise harder, it makes the models of speech

and noise that assume independence between dimensions more accurate. To �nd the

minimummean square error estimate of the clean speech, its distribution is normally

assumed independent and identically distributed, o�en as a mixture of Gaussians. A

joint distribution of the clean and the corrupted speech then needs to be derived. �is

normally applies the same methods that model compensation does. Section 4.6 will

discuss this.

However, thisworkwill focus onmodel compensation, which replaces a speech re-

cogniser’s distributions over clean speech by ones over noise-corrupted speech. Con-
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4.2. noise-corrupted speech

ceptually, a speech recogniser is a classi�er that takes an observation sequence as input

and classi�es it as belonging to one of a set of word sequences. �e Bayes decision rule

for classi�cation says that the best choice for labelling observations is the one with the

highest probability. �e probability is factorised into the prior probability of the label,

and the likelihood, the probability of the observations given the label. If the prior and

the likelihood are the true ones, then the Bayes decision rule produces the optimal

classi�cation. Speech recognisers essentially implement this rule.

Assuming that the speech and noise distributions are the true ones, decoding with

the exact distributions for the corrupted speech would therefore yield the best recog-

niser performance. �e objective of feature enhancement, reconstructing the clean

speech, may be useful where the clean speech is required, for example, as a prepro-

cessing step before passing the signal to humans. However, as a preprocessing step for

speech recognition, it gives no guarantees about optimality under any assumptions.

�is thesis will therefore aim to �nd accurate corrupted speech distributions formodel

compensation.

4.2 Noise-corrupted speech

Noise can be described as the change to the clean speech signal before the speech

recogniser receives it. It is possible to identify a number of di�erent types of noise.

�e most obvious is that background noise may be added to the signal. �is will

be called “additive noise” and denoted by n. It can be represented by its time-domain

signal. It will be assumed independent of the speech. Second, due to the properties of

the microphone and other elements of the channel, some frequencies may be ampli-

�ed and others reduced. �is can be represented by convolution in the time domain.

�e convolutional noise will be writtenh andwill be assumed constant and independ-

ent of the additive noise and the speech. �e environment model with additive and

convolutional noise has been standard for model-based noise-robustness since it was

introduced (Acero 1990). �ese two types of noise will be handled explicitly in this
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work.

Other forms of noise need to be handled separately, with approaches that may

well be combinable with the approaches from this thesis. One type of noise is non-

linear distortion, for example, gain distortion or clipping. Another is reverberation,

resulting from the characteristics of the room that the microphone is in. Noise also

in�uences how people speak. To help the listener decode the message, people alter

their speaking style in noisy conditions. �is is called the Lombard e�ect (Junqua and

Anglade 1990) and it has turned out to be hard to model.

As section 2.1 has discussed, speech recognisers preprocess the time-domain sig-

nal to produce feature vectors at �xed intervals. It is the in�uence of the noise on these

feature vectors that is of interest for making speech recognisers robust to noise. �e

function representing the observation vector that results from vectors for the speech,

the additive noise, and the convolutional noise is called the mismatch function. �e

following sections will �nd an expression for this in�uence in the log-spectral domain,

the cepstral domain, and for dynamic features. �e noise will bemodelled in the same

domain as the speech. Just like in chapter 3, the observations from the training data

will be written x and the ones from the recognition data y. In the context of noise-

robustness, x is the noise-free, clean, speech, and y the noise-corrupted speech.

�e observation distribution, the distribution that results from combining dis-

tributions of the speech and the noise through the mismatch function, is what most

methods for noise-robustness in this thesis aim to model. Section 4.3 will �nd the

exact expression.

4.2.1 Log-spectral mismatch function

�e relationship between the corrupted speech, the clean speech and the noise is cent-

ral to noise-robust speech recognition. �e term mismatch function (Gales 1995) or

interaction function (Kristjansson 2002) is o�en used for the function that takes the

speech and noise signals and returns the corrupted speech signal.�is section will de-

rive a mismatch function in terms of speech recogniser feature vectors. Many speech
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recognisers use feature vectors in the cepstral domain, which was described in sec-

tion 2.1.1. Cepstral features are related to log-spectral features by the discrete cosine

transform (dct), which is a linear transformation. �e reason the cepstral domain is

o�en preferred is that the dct goes a long way to decorrelating the features within a

feature vector. For the purpose of modelling the interaction between speech, noise,

and observations, however, the log-spectral domain has an advantage: the interaction

is per dimension. Chapter 7 will need the log-spectral domain; the speech recogniser

experiments in chapter 8will use the cepstral domain.�e followingwill therefore ini-

tially derive the relation for log-spectral features. �e conversion to cepstral feature

vectors is then found by converting to and from log-spectral features, in section 4.2.2.

�e derivation will rewrite the mismatch function by going through the steps for

feature extraction described in section 2.1 in parallel for di�erent feature vectors. It

will assume the power spectrum (β = 2), as is o�en done; appendix c.2 generalises it

to other factors. It follows Deng et al. (2004); Leutnant and Haeb-Umbach (2009a;b).

In the time domain, the relationship between the corrupted speech y[t], the clean

speech x[t], the additive noise n[t], and the convolutional noise h[t] is simply (Acero

1990)

y[t] = h[t] ∗ x[t] + n[t], (4.1)

which in the frequency domain (a�er applying a Fourier transformation) becomes a

relation between complex numbers:

Y[k] = H[k]X[k] +N[k]. (4.2)

To �nd the power spectrum, the absolute value of this complex value is squared:

|Y[k]|2 = |H[k]X[k] +N[k]|2

= |H[k]|2|X[k]|2 +|N[k]|2 + 2|H[k]X[k]N[k]| cos θk, (4.3)

where θk is the angle in the complex plane between H[k]X[k] and N[k]. �is relates

to the phase di�erence at frequency k between the clean speech and the noise. Since
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there is no process in speech production that synchronises the phase to background

noise, this angle is uniformly distributed, so that the expected value of the cosine of

the angle is

E{cos θk} = 0. (4.4)

To extract coe�cients for speech recognition, the next step is to reduce the num-

ber of coe�cients, by applying I �lter bins to the power-spectral coe�cients. �ere

are usually 24 triangular bins. As in (2.1), let wik specify the contribution of the kth

frequency to the ith bin. �e mel-�ltered power spectrum is then given by coe�-

cients Ȳi:

Ȳi =
∑
k

wik|Y[k]|2

=
∑
k

wik

(
|H[k]|2|X[k]|2 +|N[k]|2 + 2|H[k]X[k]||N[k]| cos θk

)
. (4.5)

Because this is a weighted average and the expectation of the term with cos θk is 0, as

shown in (4.4), the cross-term of the speech and the noise is o�en dropped. �ough

retaining this term complicates the derivation, here (4.5) will be used as is.

�is value of the mel-�ltered power spectrum for the corrupted speech can be

de�ned in terms of values of the clean speech, the additive noise, and the convolutional

noise in the same domain:

X̄i =
∑
k

wik|X[k]|2 ; N̄i =
∑
k

wik|N[k]|2 ; H̄i =
∑
k

wik|H[k]|2 . (4.6)

�e rewrite requires an approximation and the introduction of a random variable.

First, the convolutional noise H[k] is assumed equal for all k in one bin, so that for

any frequency k in bin i,

H̄i '|H[k]|2 . (4.7)

�en, replacing the terms in the right-hand side of (4.5) yields

Ȳi =
∑
k

wik|Y[k]|2 = H̄iX̄i + N̄i + 2αi
√
H̄iX̄iN̄i, (4.8a)
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where a new random variable αi indicating the phase factor is de�ned as

αi ,

∑
kwik|H[k]||X[k]||N[k]| cos θk√

X̄iN̄i
. (4.8b)

�e next subsections will �nd properties of αi that are independent of the spectra of

the sources: �rst, that αi is constrained to [−1,+1], and then that its distribution is

approximately Gaussian.

�e mel-power-spectral coe�cients are usually converted to their logarithms so

that ylogi = log
(
Ȳi
)
, xlogi = log

(
X̄i
)
, nlog

i = log
(
N̄i
)
, and hlogi = log

(
H̄i
)
. �e

mismatch expression in the log-spectral domain trivially becomes

exp
(
y
log
i

)
= exp

(
x
log
i + hlogi

)
+ exp

(
n
log
i

)
+ 2αi exp

(
1
2

(
x
log
i + hlogi + nlog

i

))
.

(4.9)

�is relationship is per coe�cient i of each feature vector. Section 4.2.2 will express

the mismatch function in terms of mel-cepstral feature vectors, which are linearly-

transformed log-spectral vectors. It is therefore useful to write the mismatch between

log-spectral vectors. �e relationship between the speech vector xlog, the additive

noise nlog, the convolutional noise hlog, and the observation ylog in the log-spectral

domain is

exp
(
ylog

)
= exp

(
xlog + hlog

)
+ exp

(
nlog

)
+ 2α ◦ exp

(
1
2

(
xlog + hlog + nlog

))
,

(4.10a)

where exp(·) and ◦ denote element-wise exponentiation and multiplication respect-

ively. To express the observation as a function of the speech and noise, using log(·)
for the element-wise logarithm,

ylog = log
(
exp
(
xlog + hlog

)
+ exp

(
nlog

)
+ 2α ◦ exp

(
1
2

(
xlog + hlog + nlog

)))
, f(xlog,nlog,hlog,α). (4.10b)
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�e symmetry between the clean speech and the additive noise will be important in

this work. However, other work o�en uses a di�erent form. (4.10b) is o�en rewritten

to bring out the e�ect of the noise on the clean speech, as in (4.10c), or on the channel-

�ltered speech, as in (4.10d):

ylog = xlog + log
(
exp
(
hlog

)
+ exp

(
nlog − xlog

)
+ 2α ◦ exp

(
1
2

(
hlog + nlog − xlog

)))
(4.10c)

= xlog + hlog + log
(
1+ exp

(
nlog − xlog − hlog

)
+ 2α ◦ exp

(
1
2

(
nlog − xlog − hlog

)))
. (4.10d)

In all cases, α encapsulates the phase di�erence between the two signals that are ad-

ded (channel-�ltered speech and noise) in one mel-bin. �e phase information is

discarded in the conversion to the log-spectral domain, so that with speech and noise

models in that domain, the phase factorα is a randomvector, the distribution ofwhich

will be discussed below.

Before going into the properties of the phase factor term, it is worth identifying

a split in the literature on the model for the phase factor. Traditionally (Gales 1995;

Moreno 1996; Acero et al. 2000), the phase factor term has been ignored. Some papers

(Deng et al. 2004; Leutnant and Haeb-Umbach 2009a) have gone into mathematical

depth to get as close as possible to the real mismatch. For example, they show the

elements of α to be between −1 and +1.

Other papers have been more pragmatic. A�er all, in practice, model compensa-

tion for noise robustness is a form of adaptation to the data. �e parameters that in

theory make up the noise model are usually estimated from the data, with the aim to

maximise the likelihood of the adapted model (section 4.7 will discuss this in more

detail). �e di�erence between traditional linear transformation methods and meth-

ods for model compensation is therefore the space to which the adapted model are

constrained. In both cases, it could be argued that the best choice for this space is the

one that yields the lowest word error rate, which is not necessarily the mathematically

correct one. �e mismatch function is one element that determines this space.
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In this vein, it is possible to show that the optimal value for the phase factor is

the mathematically inconsistent αi = 2.5 for the aurora 2 corpus (Li et al. 2009).

What has really happened is that the mismatch function has been tuned. �e possib-

ility of tuning the mismatch function to assume the features use a speci�c power of

the spectrum (e.g. the magnitude or power spectrum) had been noted before (Gales

1995). Setting the phase factor to 2.5 has a very similar e�ect to assuming the power

of the spectrum used to be 0.75 (Gales and Flego 2010). �is parameter setting im-

proves performance for aurora 2, but not for other corpora (Gales and Flego 2010).

�is illustrates that adjusting arbitrary parameters in the mismatch function, in e�ect

adjusting the space in which the optimal adaptedmodel is sought, can have an impact

on word error rate in some cases.

However, the following will analyse properties of the phase factor distribution

mathematically.

4.2.1.1 Properties of the phase factor

Two important observations about αi, which was de�ned in (4.8b), can be made.

First, it is possible to determine the range of αi (Deng et al. 2004). Since a cosine

is constrained to [−1, 1], from (4.8b) the following inequality holds:

|αi| ≤
∑
kwik|X[k]||N[k]|√

X̄iN̄i
. (4.11)

It is possible towrite the fraction in (4.11) as a normalised inner product of two vectors.

�e vectors are X̃i and Ñi, with entries

X̃ik =
√
wik|X[k]| ; (4.12a)

Ñik =
√
wik|N[k]| . (4.12b)

�en,
√
X̄i in (4.11) can be written as the norm of X̃i, so that∑
kwik|X[k]||N[k]|√

X̄iN̄i
=

∑
k

√
wik|X[k]|

√
wik|N[k]|∥∥X̃∥∥∥∥Ñ∥∥ =

X̃T
i Ñi∥∥X̃∥∥∥∥Ñ∥∥ , (4.13)
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which is a normalised inner product of two vectors with non-negative entries, which

is always in [0, 1]. �e inequality in (4.11) then shows that αi is constrained to [−1, 1]:

|αi| ≤
X̃T
i Ñi∥∥X̃∥∥∥∥Ñ∥∥ ≤ 1. (4.14)

Second, an approximation can decouple the distribution of αi from the values of

|X[k]| and|N[k]| (Leutnant andHaeb-Umbach 2009a). Removingmagnitude-spectral

terms from the equation is useful because they are not usually modelled individually

in speech recognisers. �e assumption is that for one frequency bin i, all |X[k]| have
the same value, and similar for all |N[k]|. Since the bins overlap, this is known to be

exactly true only if|X[k]| is equal for all k. However, especially for the narrowest bins i,
the lower ones (see section 2.1.1), it may be a reasonable approximation. By dividing

both sides of the fraction in (4.8b) by |X[k]| and |N[k]|, assuming that they are equal

for all k, αi is approximated as

αi =

∑
kwik|X[k]||N[k]| cos θk√∑
kwik|X[k]|2

∑
kwik|N[k]|2

'
∑
kwik cos θk√(∑
kwik

)(∑
kwik

) =

∑
kwik cos θk∑

kwik
, (4.15)

αi can thus be approximated as a weighted average of cosines over independently

distributed uniform variables θk. �e distribution that this model produces is close

to the empirical distribution on various combinations of noises and signal-to-noise

ratios on the aurora 2 corpus (Leutnant and Haeb-Umbach 2009a).

�e distribution of the phase factor �e distribution ofαi is most easily viewed by

sampling from it. Drawing a sample is straightforward if three assumptions are used.

Since there is no process in speech production that synchronises the speech phasewith

the noise phase at a speci�c frequency, the phase θk is uniformly distributed and in-

dependent of noise and speech. Also, the phase is assumed independently distributed

for di�erent frequencies k. �irdly, the distribution of αi is approximated as in (4.15),

removing the in�uence of particular value of the speech and noise signals.
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procedure Draw-αi-Sample(i)
for frequency k for whichwik 6= 0 do

sample θk ∼ Unif [−π,+π];
compute υk = cos θk.

Compute the sample αi =
∑
kwikυk∑
kwik

.

Algorithm 2 Drawing a sample from p(αi).

0

1

2

p
(υ

k
)

−1 0 1

υk = cos(θk)

Figure 4.1 �e distribution of υk = cos θk for one frequency k (a�er Leutnant
and Haeb-Umbach 2009b).

Algorithm 2 shows how to sample from αi. Samples for θk are drawn independ-

ently for all frequencies in one bin. �is yields samples for cosθk, which will be called

υk. A sample for p(αi) can be drawn by taking the weighted average over these.

It is also possible to �nd a parametric distribution of υk = cos θk. It can be shown

to be (Leutnant and Haeb-Umbach 2009a;b)

p(υk) =


1

π
√
1−υ2k

,
∣∣υ2k∣∣ ≤ 1,

0, otherwise.
. (4.16)

�is distribution is pictured in �gure 4.1.

�e distribution ofαi is a weighted average of distributions over theυks in the bin.

As the number of frequencies goes up, the central limit theorem means that the dis-
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α0

(a) Bin 0 is the narrowest, so that α0
has the least Gaussian-like distribu-
tion.

0
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p
(α

2
3
)

−1 −0.5 0 0.5 1
α23

(b) Bin 23 is the widest, so that α23
has the most Gaussian-like distribu-
tion.

Figure 4.2�e distribution of αi for di�erent mel-�lter channels i (—), and their
Gaussian approximations (- - ).

tribution of αi becomes closer to a Gaussian (Deng et al. 2004). For lower-frequency

bins, the number of frequencies that is summed over is smaller, so the distribution

of αi is expected to be further away from a Gaussian. �is e�ect can be seen in �g-

ure 4.2, which shows the distributions for two values of i. �ese distributions were

found by sampling many times from αi using algorithm 2 on the preceding page. �e

dashed lines showGaussian approximations. Forα0, the Gaussian is least appropriate,

but still a reasonable approximation.

�e covariance of the Gaussian can be set to the secondmoment of the real distri-

bution. It can be shown that, again assuming that all spectral coe�cients in one �lter

bin are equal, that (Leutnant and Haeb-Umbach 2009a)

σ2α,i , E
{
α2i
}
=

∑
kw

2
ik

2
(∑

kwik
)2 . (4.17)

�is gives values very close to the actual variance ofαi on various subsets of aurora 2

(Leutnant and Haeb-Umbach 2009a). �is work will therefore approximate the dis-
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tribution of αi as a truncated Gaussian with

p(αi) ∝

 N
(
αi; 0, σ

2
α,i

)
αi ∈ [−1,+1];

0 otherwise.
(4.18)

Evaluating this density at any point requires the normalisation constant 1/
∫+1
−1N (α; 0, σ2)dα,

which could be approximatedwith an approximation to theGaussian’s cumulative dis-

tribution function. However, it is straightforward to draw samples from this distribu-

tion, by sampling from the Gaussian and rejecting any samples not in [−1,+1].

4.2.2 Cepstral mismatch function

�e recognition experiments in this thesis will use cepstral (mfcc) features. To con-

vert the log-spectral mismatch function in (4.10b) to the cepstral domain, the feature

vectors must be converted to and from log-spectral feature vectors. �is uses the dct

matrixC (analogously to (2.6)):

ys = Cylog. (4.19a)

�is converts a log-spectral feature vector into a cepstral-domain one. As discussed in

section 2.1, the dctmatrix is normally truncated, so that the cepstral feature vectorys

is shorter than the log-spectral one ylog. Converting from ys to ylog therefore incurs

smoothing of the coe�cients: high-frequency changes from coe�cient to coe�cient

disappear. �e pseudo-inverse of the truncated dctmatrix is performed by the trun-

cated transpose of the matrix, which will be written C−1. �e reconstructions of the

speech and the additive and convolutional noise are then

xlog ' C−1xs; nlog ' C−1ns; hlog ' C−1hs. (4.19b)

Substituting (4.10b) and then (4.19b) into (4.19a) yields the cepstral-domainmismatch

function:

ys ' Clog
(
exp
(
C−1(xs + hs)

)
+ exp

(
C−1ns

)
+ 2α ◦ exp

(
1
2C

−1
(
xs + hs + ns

)))
, f(xs,ns,hs,αs). (4.20)

69



chapter 4. noise-robustness

4.2.3 Mismatch function for dynamic coefficients

As section 2.1.2 has discussed, speech recogniser feature vectors normally contain

static as well as dynamic features. Dynamics features represent the change over time

of the static features. A mismatch function is required for dynamic features to com-

pensate model parameters. �e dynamics features y∆t are a linear combination of

static features in a window. As in section 2.1.2, the window will be assumed ±1 for
exposition. �e dynamic coe�cients of the corrupted speech are

y∆t = D∆


ys
t−1

ys
t

ys
t+1

 = D∆


f(xst−1,n

s
t−1,h

s
t−1,αt−1, )

f(xst,n
s
t,h

s
t,αt, )

f(xst+1,n
s
t+1,h

s
t+1,αt+1, )

 , (4.21)

where D∆ projects an extended feature vector to dynamic features. �e speci�c in-

stance of this form where the dynamics are computed as the di�erence between the

statics at time t + w and t − w (“simple di�erences”) was used in Gales (1995) for

noise-robustness.

However, usually an approximation is used: the continuous-time approximation

(Gopinath et al. 1995). �e approximation assumes that the dynamic coe�cients are

actual derivatives with respect to time:

y∆t '
∂f(xst,n

s
t,h

s
t,αt, )

∂t
. (4.22)

Section 4.4.2 will discuss how this approximation is used for speech recogniser com-

pensation with the state of the art vector Taylor series approximation.

4.3 The corrupted speech distribution

Section 4.1 has argued that if the models of the clean speech and the noise, and the

mismatch function are the correct ones, decoding with the true corrupted-speech dis-

tribution would yield the optimal recogniser performance. Later sections will discuss

speci�c methods for model compensation, and model-based feature enhancement.

�is section discusses how the speech and noise models can be combined to �nd a
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p (x|θ)

p (n)

Convolution p (y)

Figure 4.3 Model combination: a schematic view.

θt−1 θt θt+1

xt−1 xt xt+1

yt−1 yt yt+1

nt−1 nt nt+1

θnt−1 θnt θnt+1

Figure 4.4 Model combination: a speech hmm with states θt and a noise hmm
with states θnt generate feature vectors that combine to form observations yt.

model for the noise-corrupted speech. �is process is called model combination, and

is pictured in �gure 4.3. �is section will assume the speech to be modelled by an

hmm. It would be possible to model the noise with a hiddenMarkov model that is in-

dependent of the speech. �is allows for as much structure for the noise as the speech

model does. Figure 4.4 depicts a graphical model that combines a speech hmm with

a noise hmm. As in section 2.2, the speech states θt generate feature vectors xt. In

this model, the noise states θnt similarly generate feature vectorsnt. �ey combine to

form observation vector yt.

Using this model directly results in a two-dimensional model containing a state
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θt−1 θt θt+1

xt−1 xt xt+1

yt−1 yt yt+1

nt−1 nt nt+1

Figure 4.5 Model combination with a simpli�ed noise model compared to �g-
ure 4.4: the noise feature vectors are independent and identically distributed.

for every pair of the clean speech and noise state (θt, θnt). For recognition, a “three-

dimensional Viterbi decoder” (Varga and Moore 1990) can be used (the third dimen-

sion is time). A problem is that the number of states in the resultingmodel explodes to

the product of the number of states in the clean speech and noise models. Increasing

the number of states is undesirable since it slows down decoding. Another problem

is that unlike the speech model, the noise model is usually not known in advance and

usually has to be estimated from test data. (Section 4.7 will discuss this in greater

detail.) A noise model with fewer parameters can be estimated robustly on less data.

It is therefore standard to model the noise as independent and identically distrib-

uted. Figure 4.5 depicts that: the noise at each time instance is independent. �e

number of states in the hmm that results from combining this model for the speech

and the noise is the same as of the original, clean speech, hmm. To keep the number

of parameters low, the prior over the noise feature vectors nt is usually restricted to

be one Gaussian for the additive noise, and the convolutional noise is assumed �xed:

n ∼ N (µn,Σn) ; h = µh. (4.23)

�is work will therefore use the noise modelMn = {µn,Σn,µh}. Section 4.7 will

discuss the structure of its parameters and how to estimate them.

Per time frame, the noise is assumed independent and identically distributed and
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4.3. the corrupted speech distribution
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Figure 4.6 �e corrupted speech distribution for speech x ∼ N (10.5, 36) noise
n ∼ N (4, 1), and phase factor α = 0.

the speech is independent and identically distributed given sub-phone θ. �e phase

factor is assumed independent of the noise and speech, and independent and identic-

ally distributed per time frame, as in (4.15). None of those variables are directly ob-

served. For decoding, it is therefore possible to marginalise them out and directly

describe the distribution of the observation vector given the sub-phone. �is can be

performed in either the log-spectral domain (with mismatch function f as in (4.10b))

or the cepstral domain (with mismatch function f as in (4.20)). Given vectors for the

speech, noise, and the phase factor, the observation vector is fully determined by the

mismatch function. Denoting vectors in the appropriate domain with y, x,n,h,α,

the distribution of the observation vector is

p(θ)(y) = p(y|θ)

=

∫
p(y|x)p(x|θ)dx (4.24a)

=

∫ ∫ ∫
p(y|x,n,h)p(h)dhp(n)dnp(x|θ)dx (4.24b)

=

∫ ∫ ∫ ∫
δf(x,n,h,α)(y)p(α)dαp(h)dhp(n)dnp(x|θ)dx (4.24c)

=

∫ ∫ ∫ ∫
δf(x,n,h,α)(y)p(x,n,α,h|θ)dαdhdndx. (4.24d)

where δf(x,n,h,α)(y) is the Dirac delta at f(x,n,h,α). �is expression is exact. (It is
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still valid if α is �xed: then p(α) is a Dirac delta at the �xed value.) However, since

the mismatch function f is non-linear, for non-trivial distributions for x,n,h,α, like

Gaussians, the expression does not have a closed form. Figure 4.6 shows a one-dimen-

sional example of the corrupted speech distribution for Gaussian speech and noise.

�e topic of much of this thesis will discuss how to best approximate the distribution.

4.3.1 Sampling from the corrupted speech distribution

Expressing the corrupted speech distribution parametrically is normally not possible.

However, if distributions for x, n, h, and α are available, then it is straightforward to

draw samples y(l) from the distribution. �is applies Monte Carlo to the expression

in (4.24d). �e joint distribution p(x,n,h,α|θ) is replaced by an empirical version

by sampling each variable from its prior:

x(l) ∼ p(x|θ) ; n(l) ∼ p(n) ; h(l) ∼ p(h) ; α(l) ∼ p(α) . (4.25a)

�e empirical distribution over these then becomes

p̃(x,n,h,α|θ) =
1

L

∑
l

δx(l),n(l),h(l),α(l)((x,n,h,α)) . (4.25b)

By substituting this in in (4.24d), the empirical distribution over y becomes

p̃(y|θ) =
1

L

∑
l

δf(x(l),n(l),h(l),α(l))(y) , (4.26a)

where through the Dirac delta in (4.24d) the observation samples are de�ned by the

mismatch function applied to the samples of x,n,h,α:

y(l) = f
(
x(l),n(l),h(l),α(l)

)
. (4.26b)

Sampling from the corrupted speech distribution will be used in this work to train

parametric distributions (dpmc and idpmc) in section 4.4.1, and to examine how well

approximated distributions match the actual distribution in section 7.4.
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θt−1 θt θt+1

yt−1 yt yt+1

Figure 4.7 Model compensation: the speech and noise in the graphical model in
�gure 4.5 have been marginalised out.

θt−1 θt θt+1

mt−1 mt mt+1

yt−1 yt yt+1

Figure 4.8 �e conventional implementation of model compensation: each com-
ponent is compensated separately.

4.4 Model compensation

Integrating out the speech and noise, in (4.24), leads to the graphical model in �g-

ure 4.7. It is a simple hmm. �is has the useful property that the structure is the same

as that of a normal speech recogniser for clean speech (in �gure 2.3 on page 19), with

the state output distribution nowmodelling the corrupted speech. In an implementa-

tion, this means that if the corrupted speech can be approximated with the same form

of model as clean speech uses, the speech parameters in the original speech recog-

niser can be replaced by estimated corrupted speech parameters. �is is calledmodel

compensation.

For computational reasons the compensation is normally performed per Gauss-

ian mixture component rather than per sub-phone state. Figure 4.8 show a graphical

model for this, which has the same structure as the model in �gure 2.4 on page 20.
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Model compensation normally approximates (4.24) with a Gaussian:

q(m)(y) = N
(
y; µ

(m)
y , Σ

(m)
y

)
. (4.27)

�is Gaussian then replaces the clean speech Gaussian in the original speech recog-

niser (in (2.12)). �is Gaussian,N
(
µ
(m)
x ,Σ

(m)
x

)
, also gives the clean speech statistics.

As section 4.3 has shown, given standard speech and noise distributions, the cor-

rupted speech distribution has no closed form. Model compensation methods there-

foreminimise the kl divergence between the predicted distributionp(m) in (4.24) and

the Gaussian q(m):1

q(m) := argmin
q(m)

KL
(
p(m)

∥∥q(m)
)

= argmin
q(m)

∫
p(m)(y) logq(m)(y)dy. (4.28)

�e observation vector y contains static coe�cients ys and dynamic coe�cients y∆.

It is o�en harder to estimate compensation for dynamics. (Indeed, most of chapter 5

will be dedicated to that subject.) Not all compensationmethods that the next sections

will discuss also compensate dynamic parameters.

�ere is a range of model compensation schemes that produce Gaussians, includ-

ing the log-normal approximation (Gales 1995), Jacobian compensation (Sagayama

et al. 1997), the unscented transformation (Hu and Huo 2006; van Dalen and Gales

2009b), and a piecewise linear approximation to the mismatch function (Seltzer et al.

2010). Only the following schemes will be be discussed in this work. dpmc, which

section 4.4.1 will discuss, approximates the predicted distribution p(m) by sampling,

and trains the optimal Gaussian on that. A variant is iterative dpmc, which also uses

samples, but trains mixtures of Gaussians rather than single Gaussians. �e state-of-

the-art scheme, which will be the topic of section 4.4.2, applies a vector Taylor series

(vts) approximation to the mismatch function, so that the resulting predicted distri-

bution becomes Gaussian. Section 4.4.3 will describe a scheme that speeds up com-

pensation by �nding compensation per base class rather than per component. Finally,
1In chapter 6, this type of schemewill be interpreted as an instantiation of predictivemethods, which

approximate a predicted distribution.
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4.4. model compensation

section 4.4.4 will discuss single-pass retraining, which trains a speech recogniser on

arti�cially corrupted speech to �nd the ideal compensation in some sense.

4.4.1 Data-driven parallel model combination

Data-driven parallel model combination (dpmc) (Gales 1995) approximates the distri-

butions with samples and applies the correct mismatch function. AGaussian assump-

tion is made only when training the corrupted speech distribution on the samples. In

the limit, it �nds the optimal Gaussian distribution for the corrupted speech.

�e original algorithm did not use phase factor α; however, the generalisation to

include this term is straightforward. dpmc represents the predicted distribution p(m)

by an empirical version p̃(m). Section 4.3.1 has discussed how to �nd this distri-

bution by sampling. �e empirical distribution has L delta spikes at positions y(l)

(see (4.26a)):

p̃(m)(y) =
1

L

∑
l

δy(l)(y) . (4.29)

�e parametric distribution for the corrupted speech that dpmc �nds is chosen to

minimise the kl divergence with the empirical distribution p̃, approximating (4.28)

with

q(m) := argmin
q
KL
(
p̃(m)

∥∥q)
= argmax

q

∫
p̃(m)(y) logq(y)dy

= argmax
q

∑
l

logq(y(l)). (4.30)

�is is equivalent to �nding the maximum-likelihood setting for q(m) from the sam-

ples. Standard dpmc �nds a Gaussian distribution for the corrupted speech:

q(m)(y) = N
(
y; µ

(m)
y , Σ

(m)
y

)
. (4.31a)
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�e maximum-likelihood setting for its mean and covariance parameters are set to:

µ
(m)
y := Ep̃(m){y} =

1

L

L∑
l=1

y(l); (4.31b)

Σ
(m)
y := Ep̃

{
yyT
}
− µ

(m)
y µ

(m)
y

T
=

(
1

L

L∑
l=1

y(l)y(l)T

)
− µ

(m)
y µ

(m)
y

T
, (4.31c)

where Ep̃{·} denotes the expectation under p̃.

�is allows the static parameters to be compensated. In previous work on dpmc

a method for compensating the dynamic parameters was proposed (Gales 1995). �is

approach is only applicable when simple di�erences (linear regression using a window

of one time instance le� and one right) are used. It uses the mismatch function for

simple di�erences from section 4.2.3: by modelling the static coe�cients from the

previous time instance to the feature vector, xst−1, the dynamic coe�cients for the

noise-corrupted speech can be found using2

y
∆(k)
t = f

(
x
∆(l)
t + x

s(l)
t−1,n

∆(k)
t + n

s(l)
t−1,h

s
)
− f
(
x
s(l)
t−1,n

s(l)
t−1,h

s
)
. (4.32)

However, this form of approximation cannot be used for the linear-regression-based

dynamic parameters, which is the form in modern speech recognisers.

In the limit as the number of samples goes to in�nity, dpmc yields the optimal

Gaussian parameters given a mismatch function and distributions for the speech,

noise, and phase factor. However, as a large number of samples are necessary to ro-

bustly train the noise-corrupted speech distributions, it is computationally expensive.

Figure 4.9a on the next page shows an example of the corrupted speech distribu-

tion and the dpmc approximation in one dimension. Even for the one-dimensional

case, the corrupted speech can have a bimodal distribution that is impossible tomodel

with one Gaussian, as the �gure shows. Iterative dpmc (idpmc) also �nds a para-

metric distribution that is close to the empirical distribution, but the distribution is

a mixture of Gaussians associated with a speech recogniser state rather than a single

Gaussian. �is allows it to model the multi-modal nature of the corrupted speech
2Normalisation of dynamic parameters is ignored for clarity of presentation.
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(a) dpmc, with one component.
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(b) idpmc with four components.

Figure 4.9dpmc and idpmc in one dimension. �e corrupted speech distribution
for speech x ∼ N (10.5, 36) and noise n ∼ N (4, 1).
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distribution. �e word “iterative” in the name of the scheme refers to the iterations of

expectation–maximisation necessary to train amixture ofGaussians. To draw corrup-

ted speech samples, the procedure in section 4.3.1 is applied again, but now the clean

speech model is a state-conditional gmm. Analogously to (4.30), the approximation

is3

q(θ) := argmin
q(θ)

KL
(
p̃(θ)

∥∥q(θ))
= argmin

q(θ)

∫
p̃(θ)(y) logq(θ)(y)dy

= argmin
q(θ)

∑
l

logq(θ)(y(l)). (4.33)

�e corrupted speech gmm is then trained on the samples, without reference to the

clean models, and is not restricted to have the same number of components as the

clean speech gmm. Let the sub-phone-conditional distribution be de�ned

q(θ)(y) ,
∑

m∈Ω(θ)

πmq
(m)(y), (4.34)

whereΩ(θ) is the set of components in the mixture of Gaussians for θ.

Training mixtures of Gaussians from samples is similar to expectation–maximi-

sation. It works iteratively, as follows. At iteration k, �rst the hidden distribution, the

posterior responsibilities of each component, is computed for each sample:

ρ(k)(m, l) :=
π
(k−1)
m q(m)(k−1)

(
y(l)
)∑

m ′∈Ω(θ) π
(k−1)
m ′ q(m

′)(k−1)
(
y(l)
) . (4.35a)

3In section 6.1.2 this will be analysed in terms of a predictive method, as an approximation of (6.9).
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�e new parameters for the mixture distribution are then trained with maximum

likelihood using the distribution over the hidden variables. �e component weights,

means, and covariances for iteration k become

π
(k)
m :=

1

L

∑
l

ρ(k)(m, l); (4.35b)

µ
(m)(k)
y :=

1∑
l ρ

(k)(m, l)

∑
l

ρ(k)(m, l)y(l); (4.35c)

Σ
(m)(k)
y :=

(
1∑

l ρ
(k)(m, l)

∑
l

ρ(k)(m, l)y(l)y(l)T
)
− µ

(m)(k)
y µ

(m)(k)
y

T
.

(4.35d)

Initialisation for training Gaussian mixture models is o�en a problem. However, in

this case, dpmc provides a sensible initial setting with the number of components

equal to the original state-conditional mixture. To increase the number of compon-

ents, “mixing up” can be used, which progressively increases the number of compon-

ents. �e component with the largest mixture weight is split into two components

with di�erent o�sets on the means, and a few iterations of expectation–maximisation

training are run. �is is repeated until the mixture has the desired number of com-

ponents.

Figure 4.9 on page 79 shows how the approximation becomesmore accurate when

the number of Gaussians increases. In the limit as the number of GaussiansM goes

to in�nity, and the components are trained well, the mixture of Gaussians becomes

equal to the real distribution.

However, this requires each component to be trained well, for which it needs suf-

�cient samples. When increasing the number of componentsM, the number of total

samples Lmust increase by at least the same factor. An iteration of expectation–maxi-

misation takes O(ML) time, so in e�ect this is O(M2). Additionally, the number of

iterations of mixing up, which needs a number of iterations of expectation–maximi-

sation at each step, increases linearly withM. In practice, then, the time complexity of

idpmc is at leastO(M3).�is becomes impractical very quickly, especially since com-

pared to �gure 4.9, which shows only a one-dimensional example, many components
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may be required to model the distribution well in a high-dimensional space.

4.4.2 Vector Taylor series compensation

Vector Taylor series (vts) compensation (Moreno 1996; Acero et al. 2000; Deng et al.

2004) is a standard method that is faster than dpmc. Rather than approximating the

noise-corrupted speech distribution directly, it applies a per-component vector Taylor

series approximation to the mismatch function f in (4.20). �e most important result

of this is that, given Gaussians for the clean speech, the noise, and the phase factor,

the predicted noise-corrupted speech also becomesGaussian. vts compensation does

not aim to minimise any criterion, like the kl divergence.

�e �rst-order vector Taylor series approximation to themismatch function fwith

expansion point (xs0,ns
0,h

s
0,α0) is

f
(m)
vts (x

s,ns,hs,α) = f(xs0,n
s
0,h

s
0,α0)

+ J
(m)
x (xs − xs0) + J

(m)
n (ns − ns

0) + J
(m)
h (hs − hs

0) + J
(m)
α (α− α0), (4.36a)

where the Jacobians for the clean speech, additive noise, and phase factor are

J
(m)
x =

∂ys

∂xs

∣∣∣∣
xs0,n

s
0,h

s
0,α0

; J
(m)
n =

∂ys

∂ns

∣∣∣∣
xs0,n

s
0,h

s
0,α0

;

J
(m)
h =

∂ys

∂hs

∣∣∣∣
xs0,n

s
0,h

s
0,α0

; J
(m)
α =

∂ys

∂α

∣∣∣∣
xs0,n

s
0,h

s
0,α0

. (4.36b)

Appendix c.1 gives expressions for these in terms of the expansion points. If the ex-

pansion point of the speech is much larger than that of the noise, the speech will dom-

inate, so that the Jacobian for the speech J(m)
x (in (c.3) and (c.5)) will tend to I. �e

Jacobian for the noise J(m)
n will then tend to 0. Conversely, under high noise condi-

tions, J(m)
x will tend to 0, and J(m)

n will tend to I.

An aspect that o�en goes unmentioned but is of importance is compensation of

dynamic parameters. �is usually uses the continuous-time approximation (Gopinath

et al. 1995), discussed in section 4.2.3, which approximates the dynamic parameters.

However, to model the in�uence of the phase factor α on the dynamics, the dynamic
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part of its covariance, Σ∆α is required. Rather than �nding it, previous work has as-

sumed the phase factor 0 (Acero et al. 2000), or �xed to a di�erent value, like 1 (Liao

2007) or 2.5 (Li et al. 2007). Assuming α �xed causes α∆ to be zero by de�nition.

A phase factor distribution has previously only been used for feature enhancement

(Deng et al. 2004), where no distribution over dynamics is required. �e following

will therefore assume that α = 0.

As discussed in section 2.1.2, when extracting feature vectors from audio, deltas

and delta-deltas are computed from a window of static feature vectors. However, they

aim to indicate time derivatives of the static coe�cients.�e continuous-time approx-

imation (see section 4.2.3) assumes that they are in fact time derivatives:

y∆t '
dys

dt

∣∣∣∣
t

; x∆t '
dxs

dt

∣∣∣∣
t

; n∆t '
dns

dt

∣∣∣∣
t

; h∆t '
dhs

dt

∣∣∣∣
t

. (4.37)

Combining this approximation and the vts approximation in (4.36a), the dynamic

coe�cients become

y∆t '
dys

dxs
dxs

dt

∣∣∣∣
t

+
dys

dns

dns

dt

∣∣∣∣
t

+
dys

dhs

dhs

dt

∣∣∣∣
t

' J(m)
x x∆t + J

(m)
n n∆t + J

(m)
h h∆t . (4.38)

�is uses the same Jacobians as the linearisation of the statics. �e analogous expres-

sion for the delta-deltas yields

y∆
2

t ' J(m)
x x∆

2

t + J
(m)
n n∆

2

t + J
(m)
h h∆

2

t . (4.39)

For clarity of notation, the following will only write �rst-order dynamics.

Having linearised the in�uence of both the static and the dynamic coe�cients,

the observation feature vector that results can be written as a mismatch function for

static and dynamic coe�cients: f(m)
vts (x,n,h). It applies (4.36a) for the static coe�-

cients and (4.38) for the dynamic coe�cients. f(m)
vts is a sum of linearly transformed

independently Gaussian distributed variables. �ese are also Gaussian. For example,

for the clean speech statics:

J
(m)
x (xs − xs0) ∼ N

(
J
(m)
x (µ

s(m)
x − xs0), J

(m)
x Σ

s(m)
x J

(m)
x

T
)
, (4.40)
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Figure 4.10 vts compensation in one dimension. �e corrupted speech distribu-
tion for speech x ∼ N (10.5, 36) and noise n ∼ N (4, 1).

and similar for the dynamics, and for the noise.

�e linearised mismatch function f(m)
vts replaces f in the delta function in (4.24c).

�e approximation for y then is the sum of the mismatch function at the expansion

point and the two Gaussians (this assumes the convolutional noise h is �xed):

q(m)(y) :=

∫ ∫
δ
f
(m)
vts (x,n,µh)

(y)N (n; µn, Σn) dnN
(
x; µ

(m)
x , Σ

(m)
x

)
dx

= N
(
y; µy, Σy

)
. (4.41)

�e parameters µy,Σy consist of parameters for the static and dynamic coe�cients.

Compensation for the static parameters applies (4.36a):

µ
s(m)
y := f(xs0,n

s
0,µh, 0) + J

(m)
x (µ

s(m)
x − xs0) + J

(m)
n (µsn − n

s
0); (4.42a)

Σ
s(m)
y := J

(m)
x Σ

s(m)
x J

(m)
x

T
+ J

(m)
n Σs

nJ
(m)
n

T
, (4.42b)

and compensation for dynamics applies (4.38):

µ
∆(m)
y := J

(m)
x µ

∆(m)
x + J

(m)
n µ∆n ; (4.42c)

Σ
∆(m)
y := J

(m)
x Σ

∆(m)
x J

(m)
x

T
+ J

(m)
n Σ∆n J

(m)
n

T
. (4.42d)

Because in the mel-cepstral domain the Jacobians are non-diagonal, the covariance

matrices Σs(m)
y and Σ∆(m)

y are full even when the covariances of the clean speech and
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the noise are assumed diagonal. �e expansion points are usually set to the means of

the distributions for the clean speech and the additive noise, so that the terms (µs(m)
x −

xs0) and (µsn − n
s
0) in (4.42a) vanish. �e mean of the statics in (4.42a) then becomes

µ
s(m)
y := f

(
µ
s(m)
x ,µsn,µ

s
h, 0
)
. (4.43)

Figure 4.10 on the preceding page illustrates a vts approximation to the corrupted

speech distribution. �e approximation is reasonable, but not the same as the max-

imum likelihood Gaussian in �gure 4.9a on page 79.

�e parameters for the feature vector with statics and dynamics in (4.41) then are

the concatenation of the parameters of the parts in (4.42):

µ
(m)
y :=

 µs(m)
y

µ
∆(m)
y

 ; Σ
(m)
y :=

Σs(m)
y 0

0 Σ
∆(m)
y

 . (4.44)

SinceΣs(m)
y andΣ∆(m)

y are full, the overall corrupted speech covarianceΣ(m)
y is block-

diagonal. However, the block-diagonal structure is not normally applied for decoding,

because of two problems. First, it is computationally expensive. Second, the continu-

ous-time approximation for the dynamic parameters does not yield accurate block-

diagonal compensation (section 8.1.1.1 will show this). �erefore, the standard form

of vts compensation is

q(m) := N
(
y; µ

(m)
y , diag

(
Σ
(m)
y

))
, (4.45)

where diag(·) denotes matrix diagonalisation.

�e most obviously useful e�ect of linearising the mismatch function is that the

corrupted speech turns out Gaussian. �ere are also other advantages that arise from

�xing the expansion points, so that the relationship between speech, noise, and cor-

rupted speech becomes linear per component. �e means of the noise model can be

estimatedwith a �xed-point iteration (Moreno 1996) and the variance with a gradient-

descent-based scheme (Liao 2007). Alternatively, since the �rst-order approximation

makes the noise, speech, and corrupted speech jointly Gaussian, an em approach (Kim

et al. 1998; Frey et al. 2001b; Kristjansson et al. 2001) can be used. Section 4.7 will give
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more details. Also, it is possible to use adaptive training with it (Liao and Gales 2007;

Kalinli et al. 2009). �ese aspects make vts compensation very useful in practice.

Compared to using a distribution over α, assuming it constant has two e�ects on

the approximated distribution of the statics. One is that the term J(m)
α ΣαJ

(m)
α

T
drops

out from the covariance expression in (4.44). Since the entries of the phase factor

covariance are small, this decreases the variances only slightly. Since Σα is constant

across components and J(m)
α changes only slightly between adjacent components, dis-

crimination is hardly a�ected.

If α is equal to its expected value, 0, then the mean of the compensated Gaussian

does not change compared to when α is assumed Gaussian. If α is set to a higher

value, the mean is overestimated. Also, Jacobians J(m)
x and J(m)

n move closer to 1
2I

(see appendix c.1 for the expressions).

In practice,α is o�en assumed �xed but the noise model is estimated. �is should

subsume many of the e�ects that using a phase factor distribution would have had.

�is includes a wider compensated Gaussian and overestimation of the mode.

�ere are other ways of approximating the corrupted speech distribution with a

Gaussian. One possibility is to approximate the mismatch function with a second-

order vector Taylor series approximation (Stouten et al. 2005; Xu and Chin 2009b),

and estimate the Gaussian to match the second moment of the resulting distribution.

Another approximation that has recently attracted interest is the unscented transform-

ation (Julier and Uhlmann 2004). �is approximation draws samples like dpmc, but

it the samples are chosen deterministically, and if the mismatch function were linear,

then it would yield the exact distribution, just like vts. It has been applied to feature

enhancement (Shinohara and Akamine 2009), without compensation for dynamics,

and model compensation (Li et al. 2010), with the continuous-time approximation.

Yet another approach approximates the mismatch function with a piecewise linear

approximation (Seltzer et al. 2010), the parameters of which are learned from data.

Whatever the di�erences between how these methods deal with the mismatch func-

tion, they all approximate the corrupted speech distribution with a diagonal-covari-

86



4.4. model compensation

θt−1 θt θt+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 4.11 Joint uncertainty decoding: the noise is subsumed in p(y|x).

ance Gaussian. When applying maximum-likelihood estimation to estimate the noise

model (see section 4.7), the di�erences between these compensation methods come

down to slight variations in the parameterisation. For example, Li et al. (2010) �nds

that compensation with the vts and the unscented transformation yields the same

performance when parameters for both are correctly optimised. Rather than looking

into all these variations, this thesis will look into full-covariance Gaussian (chapter 5)

and non-Gaussian (chapter 7) distributions.

4.4.3 Joint uncertainty decoding

�e model compensation schemes discussed so far incur considerable computational

cost, since they compensate components individually. Away of overcoming this prob-

lem is to apply compensation at a di�erent level. It is possible to describe themismatch

between the clean speech and the corrupted speech as a joint Gaussian of the speech

and the observation. �is is called joint uncertainty decoding (jud) (Liao 2007). Fig-

ure 4.11 contains a graphical model for this. �e in�uence of the noise is subsumed in

the link between x and y. �e joint distribution is de�ned x
y

 ∼ N

µx
µy

 ,
 Σx Σxy

Σyx Σy

 . (4.46)

If stereo data with parallel clean speech and corrupted speech is available, then this

distribution can be trained directly (Neumeyer and Weintraub 1994; Moreno 1996).
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However, this means the scheme cannot adapt to new noise environment. More gen-

eral schemes estimate a noise model and apply a form of model compensation. Most

of the parameters of this joint distribution can be found with a model compensation

scheme that takes a clean speech Gaussian and produces a corrupted speech Gauss-

ian, like vts or dpmc. �e cross-covariance Σyx, however, needs an extension. Sec-

tion 4.4.3.1 will discuss how to estimate a joint distribution with vts and dpmc. �e

only approximation that this requires is the one that the original model compensa-

tion method applies. However, no additional approximation is necessary to �nd the

corrupted-speech distribution for one speech recogniser component: it drops out as

Gaussian. �e following derivation will show that.

A useful property of a joint Gaussian is that the conditional distribution of one

variable given the other one is also Gaussian. �is is a known result, which is derived

in appendix a.1.3. �e distribution of the observation given the clean speech p(y|x)

therefore becomes

p(y|x) = N
(
y; µy + ΣyxΣ

−1
x

(
x− µx

)
, Σy − ΣyxΣ

−1
x Σxy

)
= N

(
y; µy +A

−1
jud

(
x− µx

)
, Σy −A

−1
judΣxy

)
=
∣∣Ajud

∣∣N(Ajudy; Ajudµy + x− µx, AjudΣyA
T
jud − Σx

)
, (4.47a)

with

Ajud = ΣxΣ
−1
yx . (4.47b)

For the component-conditional distribution of the corrupted speech, joint uncertainty

decoding uses the expression for model compensation given in (4.24a). �e environ-

ment model p(y|x) is replaced by the one in (4.47a). �e component distribution for

the corrupted speech that results from convolving this conditional with the compon-

ent distribution of the clean speech is Gaussian. It can be written as a base-class-spe-

ci�c transformation of the clean speech parameters: an a�ne transformation of the

observation and a bias on the covariance:

q(m)(y) ,
∫
p(y|x)p(x|m)dx
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=

∫
N
(
y; µy +A

−1
jud

(
x− µx

)
, Σy − Σx

)
· N
(
x; µ

(m)
x , Σ

(m)
x

)
dx

=

∫ ∣∣Ajud

∣∣ · N(Ajudy; Ajudµy + x− µx, AjudΣyA
T
jud − Σx

)
· N
(
x; µ

(m)
x , Σ

(m)
x

)
dx

=
∣∣Ajud

∣∣ · N(Ajudy+ µx −Ajudµy;

µ
(m)
x , Σ

(m)
x +AjudΣyA

T
jud − Σx

)
=
∣∣Ajud

∣∣ · N(Ajudy+ bjud; µ
(m)
x , Σ

(m)
x + Σbias

)
, (4.48a)

with

Ajud = ΣxΣ
−1
yx ; (4.48b)

bjud = µx −Ajudµy; (4.48c)

Σbias = AjudΣyA
T
jud − Σx. (4.48d)

If the joint distribution has full covariance, Ajud and Σbias are also full. However,

if Σbias is full, the covariance matrices used for decoding become full as well, even

if they were diagonal before being compensated. �is means that decoding is slower.

Conceivably,Σbias could simply be diagonalised, but this yields bad speech recogniser

performance (Liao and Gales 2005). A solution is to �nd a joint distribution with di-

agonal covariances and cross-covariances, so thatAjud andΣbias drop out as diagonal.

�is is the approach taken in Liao and Gales (2006). Section 6.3 will discuss how to

generate fullAjud and Σbias and convert them into a form that is faster in decoding.

Normally, joint uncertainty decoding associates every componentm of the speech

recogniser hmm with one base class r, each with a di�erent Gaussian joint distribu-

tion. Note that a regression class tree is not necessary if the joint Gaussians are es-

timated with a compensation method, because the number of parameters in the noise

model does not varywhen the regression class tree is expanded.�e speech recogniser

components in one base class are close in acoustic space. Joint uncertainty decoding

therefore can be viewed as partitioning the acoustic space and approximating the en-

vironment properties for each partition.
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Since the model compensation scheme is applied to all components in one base

class at once, it is faster than applying model compensation separately per compon-

ent. Varying the number of base classes gives a trade-o� between computational cost

and accuracy. If every base class contains just one speech recogniser component, then

the number of components is equal to the number of base classes, and the compens-

ation is exactly equal to if the compensation scheme had been applied directly to the

components.

4.4.3.1 Estimating the joint distribution

Any model compensation scheme that takes a clean speech Gaussian and produces a

corrupted speech Gaussian, like vts or dpmc, can be used to �nd most of the para-

meters of the joint distribution in (4.46). �e parameters of the clean speech µx,Σx

can be found from the clean training data. �ey can be derived from the distribution

of all components in a base class, which is the obvious choice for joint uncertainty de-

coding. �e parameters of the corrupted speech that a model compensation method

�nds give µy and Σy. �at only leaves Σyx = Σ
T
xy to be estimated.

With dpmc Finding the joint distribution with dpmc (Xu et al. 2006) extends the

algorithm for model compensation with dpmc straightforwardly. �e following only

considers static parameters; section 5.4 will �nd a joint distribution over statics and

dynamics.

Section 4.3.1 has discussed how to draw samples y(l) from the noise-corrupted

speech distribution. To train the joint distribution, sample pairs of both the clean

speech and the corrupted speech are retained. �e empirical distribution has L delta

spikes at positions (x(l),y(l)), analogous to (4.29):

(x(l),y(l)) ∼ p(m)(x,y); p̃(x,y) =
1

L

∑
l

δ(x(l),y(l)). (4.49)

Just like in (4.31), the parameters are set tomaximise the likelihood of the resulting dis-

tributions on the samples. However, for the joint distribution in (4.46), the mean and
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covariance parameters are set at once to the mean and covariance of the tuple (x,y)

under the empirical distribution:µx
µy

 := Ep̃


 x
y

 =
1

L

L∑
l=1

 x(l)
y(l)

 ; (4.50a)

 Σx Σxy

Σyx Σy

 := Ep̃


 x(l)
y(l)

 x(l)
y(l)

T
−

µx
µy

µx
µy

T

=

1
L

L∑
l=1

 x(l)
y(l)

 x(l)
y(l)

T
−

µx
µy

µx
µy

T

. (4.50b)

With vts As in section 4.4.2, the vector Taylor series approximation by itself only

�nds compensation for the static parameters. For the dynamic parameters, an addi-

tional approximation, the continuous-time approximation, is necessary. (Section 5.4

will estimate the joint distribution without that approximation.)

How to estimate the corrupted speech parameters µy,Σy was discussed in sec-

tion 4.4.2, in (4.44). Since the speech is independent of the noise, and the mismatch

function in (4.36a) is linearised, the cross-covariance of the speech and the observa-

tion does not contain any noise terms, so that (Moreno 1996; Xu et al. 2006):

Σs
yx ' E

{(
fvts(x

s,ns,hs, 0) − µsy
)(
xs − µsx

)T}
= E
{
Jx
(
xs − µsx

)(
xs − µsx

)T}
= JxΣ

s
x. (4.51a)

�e cross-covariance for the dynamics follows in the same manner from the approx-

imation of the corrupted speech dynamic coe�cients in (4.37):

Σ∆yx ' E
{(
y∆ − µ∆y

)(
x∆ − µ∆x

)T}
= E
{
Jx
(
x∆ − µ∆x

)(
x∆ − µ∆x

)T}
= JxΣ

∆
x . (4.51b)

Similarly to (4.44), the cross-covariance of the feature vector with statics and dy-

namics then is the concatenation of the parameters of the parts:

Σyx :=

Σs
yx 0

0 Σ∆yx

 . (4.51c)
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Alternatively, it is possible to use di�erent approximations to �nd the joint distri-

bution. �is includes the methods that were mentioned at the end of section 4.4.2:

second-order vts (Xu and Chin 2009b), the unscented transformation (Xu and Chin

2009a), and the trained piecewise linear approximation should also be applicable to

estimating the joint. However, the �nal shape of the joint distribution is still the same,

with the diagonal blocks. When the noise is estimated, this limits the amount of im-

provement di�erent techniques can yield. Section 5.4 will discuss how to estimate a

full-covariance joint distribution.

4.4.4 Single-pass retraining

Single-pass retraining (Gales 1995) is a technique that takes a speech recogniser trained

on clean speech and retrains it for corrupted speech. It requires stereo data, a parallel

corpus of clean speech and exactly the same speech in the noisy acoustic environment.

Stereo data is only available in laboratory conditions, for example, when noise is ar-

ti�cially added to clean speech. Also, it is unlikely that in practical situations clean

speech data is available but not preferred over noise-corrupted speech data as input to

a speech recogniser. Single-pass retraining is therefore not a practical technique itself,

but one that more practical compensation techniques can be compared to.

Single-pass retraining trains a speech recogniser with expectation–maximisation

as normally, but between the expectation step and the maximisation step of the last

iteration it replaces the clean audio with arti�cially corrupted audio that is exactly

aligned. One utterance in the stereo data will be denoted (X ,Y), with X the clean

data, and Y the corrupted data. �e empirical distribution representing the whole

training data will be denoted with joint distribution p̃(X ,Y).
�e expectation step of em yields a distributionρ(U |X ), based on the clean speech,

as in normal training. However, the speech recogniser that is trained is not a dis-

tribution over clean observations qUX , but a distribution over the corrupted speech

observations qUY . Just as in normal speech recogniser training, this distribution fac-

torises into a distribution over the hidden variables qU and a distribution over the
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observations given the distribution of the hidden variables, here qY |U .

�e optimisation of the former has the same e�ect as normal training, in (2.27b),

since the observations do not directly enter into the equation. �e latter, however,

maximises the likelihood of Y rather than X . Adapted from (2.27), then, the optim-

isation in the last iteration, K, is given by

q
(K)
U := argmax

qU

∫
p̃(X ,Y)

∫
ρ(U |X ) logqU (U)dUd(X ,Y); (4.52a)

q
(K)
Y |U := argmax

qY|U

∫
p̃(X ,Y)

∫
ρ(U |X ) logqY |U (Y |U)dUd(X ,Y). (4.52b)

Again, p̃(X ) is represented by component–time occupanciesγ(m)
t , found on the clean

speech. �e output distributions q(m) are then trained on the corresponding corrup-

ted speech vectors (similar to (2.32)):

q
(k)
Y |U := argmax

qY|U

∫
p̃(X ,Y)

∑
m

TX∑
t=1

γ
(m)
t logq(m)(yt)d(X ,Y). (4.53)

It is interesting to relate this tomodel compensation.�e clean training data p̃(X )
represents samples from the real distribution of the speech.�e corrupted utteranceY
corresponding to each clean speech utteranceX , found by arti�cially adding the noise,
is drawn from a distribution p(Y |X ) representing the mismatch. Single-pass retrain-

ing therefore e�ectively trains a speech recogniser on a non-parametric distribution

of the noise-corrupted speech that results from combining non-parametric distribu-

tions for the clean speech and the noise. �is is in contrast with dpmc, discussed in

section 4.4.1, which, even though it represents the corrupted speech with an empir-

ical distribution as an intermediate step, assumes parametric distributions for both

clean speech and noise, and a known mismatch function. If there is enough data to

train the distributions robustly, single-pass retraining yields the optimal parameters

for component distributions. A single-pass retrained speech recogniser therefore re-

�ects the corrupted data better than model compensation methods that estimate the

same formof component distribution could, because they derive fromparametric rep-

resentations of the speech and the noise. �is work will therefore compare model

93



chapter 4. noise-robustness

compensation methods against a single-pass retrained speech recogniser, which gives

the ideal compensation for a form of output distribution.

Single-pass retraining is normally applied only in the last iteration of speech recog-

niser training. With additional training iterations, on just the noisy data, the component–

time alignments would shi�, and the state model of the speech and that of the noise

cease to be independent. Inmodel compensation, the speech and noisemodels are as-

sumed independent (see �gure 4.4). When training reference recognisers, this work

will therefore not apply additional training iterations a�er single-pass retraining.

4.4.4.1 Assessing the quality of model compensation

Normally, word error rates are used to evaluate the performance of speech recogni-

tion systems. However, this does not allow a detailed assessment of which aspects

of the compensation process are working well and which poorly. An alternative ap-

proach is to compare compensated systems’ distributions to their ideal counterparts.

A well-known tool for estimating the distance between two distributions is the Kull-

back-Leibler (kl) divergence, discussed in appendix a.2. �e only work that has used

the kl divergence to investigate the performance of model compensation methods

is Gales (1995). However, it will turn out that the kl divergence can help to assess

compensation quality with a much �ner granularity than word error rates alone.

Auseful comparisonmethod is the occupancy-weighted average of the component-

for-component kl divergence of the compensated system to the single-pass retrained

system (Gales 1995). If p(m)is a Gaussian of the single-pass retrained system, and q(m)

is the corresponding Gaussian of the compensated system, then this metricD is

D ,
1∑

m γ
(m)

∑
m

γ(m)KL
(
p(m)

∥∥q(m)
)
. (4.54)

γ(m) is the occupancy of componentm in the last training iteration, for both the com-

pensated and the single-pass retrained system. Apart from being an obvious measure

of compensation quality over a whole speech recognition system, it is also propor-

94



4.5. observation-dependent methods

tional to the expression (in (6.7)) that this thesis will analyse predictive methods such

as model compensation methods as aiming to optimise.

Another useful attribute of this form of metric is pointed out in appendix a.2. De-

pending on the structure of the covariance matrices, it is possible to assess the com-

pensation per coe�cient or block of coe�cients. When diagonal covariance matrices

are used, each dimension may be considered separately. �is allows the accuracy of

the compensation scheme to be assessed for each dimension. Similarly, block-diag-

onal compensation can be examined per block of coe�cients.

4.5 Observation-dependent methods

Section 4.4 has discussed model compensation methods, which approximate the cor-

rupted speech with a parameterised distribution. �is section will describe twometh-

ods that use a di�erent approach: they start the computation only when the obser-

vation has been seen. �e Algonquin algorithm (section 4.5.1) extends the vts ap-

proximation by iteratively updating the expansion point. It comes up with a di�erent

Gaussian for each clean speech Gaussian for each observation. It is also possible to

approximate the integral over the speech and noise using a piecewise linear approx-

imation (section 4.5.2).

4.5.1 The Algonquin algorithm

�e “Algonquin” algorithm (Frey et al. 2001a; Kristjansson and Frey 2002) is an exten-

sion to vts compensation, which updates the expansion point given the observation.

�is thesis will view the algorithm from a di�erent slant than the original presenta-

tion. �e original presentation extended model-based feature enhancement to per-

form variational inference, which section 4.6.2 will discuss. �is section, on the other

hand, will discuss how Algonquin iteratively updates its approximation to the corrup-

ted speech distribution for one speech Gaussian, in line with the rest of this chapter.

At the same time, the algorithm updates an approximation to the the posterior of the
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clean speech and the noise, which will come in useful in section 7.2.

�e most important conceptual addition of the Algonquin algorithm is that it

takes into account the observation vector. In the following discussion, when an ac-

tual observation is meant it will be indicated withyt. Whereas vts linearises the mis-

match function at the expansion point given by themeans of the prior distributions of

the speech and the noise, the Algonquin algorithm updates the expansion point iter-

atively, �nding the mode of the posterior of the speech and the noise. It can therefore

be seen as an iterative approach to �nding the Laplace approximation to the posterior.

For the presentation of the Algonquin algorithm, the convolutional noise will be

assumed zero and not written. (As long as it is assumed Gaussian, as in the original

paper, the extension is trivial.) Feature vectors will be written x,n,y, but they can

stand for any type of feature vectors that there exists a linearisable mismatch func-

tion for. �e original presentation assumed just static coe�cients, but a feature vector

with statics and dynamics can be used. Section 5.3.4 will introduce a version that uses

“extended” feature vectors.

�e Algonquin algorithm uses a approximation of the environment model com-

pared to the one discussed in chapter 4.2, in (4.24c). �e in�uence of the phase factor

on the observation is captured by a Gaussian around the mode of the distribution for

given x and n. �us, that distribution is approximated as

p(y|x,n) =

∫
δf(x,n,α)(y)p(α)dα ' N (y; f(x,n), Ψ) , (4.55)

where f(x,n) , f(x,n, 0), andΨ is the �xed covariance that models the uncertainty

around the mismatch function.

Figure 4.12 on the next page shows a one-dimensional example. �e prior of the

speech and the noise is given in the le� panel.�eir posterior distribution a�er having

seen an observation yt is in the right panel. �is posterior will be approximated with

a Gaussian centred on its mode.

To deal with the non-linearity in the mismatch function, it is linearised (as in vts

compensation).�eAlgonquin algorithm iteratively updates the linearisation point to

themode of the posterior distribution.�e linearisation point in iterationk is denoted
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(a)�e prior distribution p(x, n).
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(b) �e posterior p(x, n|y = 9).

Figure 4.12�e Algonquin-derived distribution of the clean speech and noise for
x ∼ N (10, 1); n ∼ N (9, 2); ψ = 0.04; y = 9.

by
(
x
(k)
0 ,n

(k)
0

)
. �e linearised mismatch function in iteration k is

f
(k)
vts(x,n) = f

(
x
(k)
0 ,n

(k)
0

)
+ J

(k)
x

(
x− x

(k)
0

)
+ J

(k)
n

(
n− n

(k)
0

)
, (4.56)

where the Jacobians are

J
(k)
x =

dy

dx

∣∣∣∣
x
(k)
0 ,n

(k)
0

; J
(k)
n =

dy

dn

∣∣∣∣
x
(k)
0 ,n

(k)
0

. (4.57)

For the �rst iteration k = 0, the linearisation point is set to (µx,µn), so that the mis-

match function is equivalent to the one used in vts compensation in (4.36a), leaving

out the phase factor.

Using the linearised mismatch function in (4.56), the speech, the noise, and the

observation become jointly Gaussian:

q(k)



x

n

y


 = N



x

n

y

 ;


µx

µn

µ
(k)
y

 ,

Σx 0 Σ

(k)
xy

0 Σn Σ
(k)
ny

Σ
(k)
yx Σ

(k)
yn Σ

(k)
y


 . (4.58)
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Note that the parameters of the marginal of x and n (µx, µn, Σx, and Σn) are given

by the prior and do not depend on the iteration k. On the other hand, the covari-

ance of the observation and the cross-covariances are found through the linearised

mismatch function, which changes with every iteration. �ose parameters are found

as follows. Using the linearised mismatch function and assuming the error N (0,Ψ)

of the mismatch function, the distribution of the corrupted speech is Gaussian y ∼

N
(
µ
(k)
y ,Σ

(k)
y

)
with parameters similar to those for vts compensation in (4.42):

µ
(k)
y := E

{
f
(k)
vts(x,n)

}
= f
(
x
(k)
0 ,n

(k)
0

)
+ J

(k)
x

(
µx − x

(k)
0

)
+ J

(k)
n

(
µn − n

(k)
0

)
;

(4.59a)

Σ
(k)
y := E

{(
f
(k)
vts(x,n) − µy

)(
f
(k)
vts(x,n) − µy

)T}
+Ψ

= E
{
J
(k)
x

(
x− µx

)(
J
(k)
x

(
x− µx

))T
+ J

(k)
n

(
n− µn

)(
J
(k)
n

(
n− µn

))T}
+Ψ

= J
(k)
x E
{(
x− µx

)(
x− µx

)T}
J
(k)
x

T
+ J

(k)
n E
{(
n− µn

)(
n− µn

)T}
J
(k)
n

T
+Ψ

= J
(k)
x ΣxJ

(k)
x

T
+ J

(k)
n ΣnJ

(k)
n

T
+Ψ. (4.59b)

�e cross-covariance between the speech and the observation and between the noise

and the observation can be derived similarly:

Σ
(k)
yx := E

{(
f
(k)
vts(x,n) − µy

)(
x− µx

)T}
= E
{(
J
(k)
x

(
x− µx

))(
x− µx

)T}
= J

(k)
x E
{(
x− µx

)(
x− µx

)T}
= J

(k)
x Σx; (4.60a)

Σ
(k)
yn := J

(k)
n Σn. (4.60b)

Note that the original implementation (Frey et al. 2001a; Kristjansson 2002) diagon-

alised the covariances and the cross-covariances. �is requires that the Jacobians are

diagonalised too, otherwise the relationship between speech, noise, and observation

is invalid.

Assuming the joint distribution of the speech, noise, and observations in (4.58),

the posterior distribution of the speech and the noise conditioned on an observa-

tion yt follows from a standard result (derived in appendix a.1.3, (a.10c)). �is ap-
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4.5. observation-dependent methods

proximation to the posterior distribution will be written q(k):

q(k)

 x
n

 ∣∣∣∣∣∣yt
 = N

( x
n

 ;

µx
µn

+

Σ(k)
xy

Σ
(k)
ny

Σ(k)
y

−1
(yt − µ

(k)
y ),

Σx 0

0 Σn

−

Σ(k)
xy

Σ
(k)
ny

Σ(k)
y

−1[
Σ
(k)
yx Σ

(k)
yn

])
. (4.61)

Note that the speech and noise priors are not correlated, but the posteriors are.

Algonquin sets the expansion point for the next iteration to the mean of this ap-

proximation to the posterior:

x
(k+1)
0 = µx + Σ

(k)
xy Σ

(k)
y

−1
(y− µ

(k)
y );

n
(k+1)
0 = µn + Σ

(k)
ny Σ

(k)
y

−1
(y− µ

(k)
y ), (4.62)

so that the expansion point is updated at every iteration, and the Gaussian approxim-

ation to the posterior is moved. �ere is no guarantee that the mode of the approx-

imation converges to the mode of the real posterior: the algorithm may overshoot. A

damping factor could be introduced for this, but this appears to slow down conver-

gence without bene�t (Kristjansson 2002).

A�er K iterations, the Gaussian approximation q to the distribution of y is found

from (4.58) and (4.59):

q
(K)
yt (y) = N

(
y; µ

(K)
y , Σ

(K)
y

)
= N

(
y; f

(
x
(K)
0 ,n

(K)
0

)
+ J

(K)
x

(
µx − x

(K)
0

)
+ J

(K)
n

(
µn − n

(K)
0

)
,

J
(K)
x ΣxJ

(K)
x

T
+ J

(K)
n ΣnJ

(K)
n

T
+Ψ

)
. (4.63)

Figure 4.13 on the following page shows a one-dimensional simulation of the Al-

gonquin algorithm in (x, n)-space. �e le� panel shows the prior of the clean speech

and the additive noise, and the right panel the Algonquin approximation to the pos-

terior. Note again that the priors of the clean speech and noise are not correlated, but

the posterior is.

Algonquin applied to the model compensates each Gaussian separately for each

observation. It is not clear from the original presentation that this happens, so it is
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Figure 4.13 Iterations of Algonquin.

proven in appendix d. �e problem with using this Gaussian approximation is that

the e�ective distribution is not normalised. Even though q in (4.63) is a normalised

Gaussian if estimated iteratively for oneyt, in practice it would be estimated and then

applied to the same observation yt. �us, in general,

∫
q(yt)dyt 6= 1. (4.64)

However, Algonquin applied to the model compensates each Gaussian separately for

each observation. �e output distribution is therefore optimised di�erently for each

component, and there is no reason to assume their densities at one position can be

compared in the way decoding normally does. �e original Algonquin algorithm

works around the problem that q(yt) is not a normalised distribution by �nding the

minimum mean square error estimate of the clean speech. Section 4.6.2 will discuss

this.
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4.5.2 Piecewise linear approximation

�e compensation methods in the previous sections have used a single Gaussian to

represent the observationdistribution. However, the actual observations are notGauss-

ian distributed even when the speech and noise are. It is possible to approximate the

integral that gives the likelihood of the observation. Myrvoll and Nakamura (2004)

use a piecewise linear approximation for this as a step in estimating the noise model

for feature enhancement. Like for the Algonquin algorithm, themodel for the interac-

tion of the speech, noise, and observation the original work uses is somewhat simpler

than the one in section 4.2. �e following will adhere to the original presentation,

because it provides good insight in both the main idea and the main limitation.

�e main idea is to transform the integral over the speech and the noise into an-

other space. It then becomes easier to apply a piecewise linear approximation. �e

main limitation is that the method works on a single dimension, and uses log-spec-

tral domain coe�cients. In the log-spectral domain, coe�cients are highly correlated.

Appendix e.2 shows that it is theoretically possible to perform the transformation of

the integral in more dimensions. However, if the piecewise linear approximation in

the one-dimensional case requires 8 line segments, the d-dimensional case requires

8d plane segments. �is makes the scheme infeasible for correlated feature vectors.

In one dimension, the scheme works as follows. Speech x, noise n, and observa-

tion y are assumed deterministically related, with

exp(y) = exp(x) + exp(n) , (4.65a)

which is equivalent to (4.9) where the convolutional noise and the phase factor are

assumed 0. If y is observed to be yt, and x is changed, n automatically changes too. A

substitute variableu is therefore introduced to replace both x andn in the integration

in the likelihood expression. It is de�ned

u = 1− exp(x− yt) , (4.65b)
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so that (see section e.1 for details)

n = yt + log(u) ; (4.65c)

x = yt + log(1− u) . (4.65d)

Given a speech coe�cient, the distribution of the observation can be written in terms

of the distribution of the noise. As this is a transformation of the variable of a probab-

ility distribution, it is a standard result (see section a.1.1) that a Jacobian is introduced:

p(yt|x) =

∣∣∣∣∂n(x, yt)∂yt

∣∣∣∣p(n(x, yt)) , (4.66)

where p(n(x, yt)) is the prior of n evaluated at the point implied by the setting of x

and yt.

�e likelihood of yt can be expressed as an integral over x. It follows from (4.65a)

that x < yt. It can then be transformed into an integral over u ∈ [0, 1] as follows:

p(yt) =

∫yt
−∞ p(yt|x)p(x)dx

=

∫yt
−∞
∣∣∣∣∣ ∂n(x, y)∂y

∣∣∣∣
yt

∣∣∣∣∣p(n(x, yt))p(x)dx
=

∫ 1
0

∣∣∣∣∣ ∂n(x, y)∂y

∣∣∣∣
yt

∣∣∣∣∣p(n(u, yt))
∣∣∣∣∂x(u, yt)∂u

∣∣∣∣p(x(u, yt))du, (4.67)

where p(n(u, yt)) is the prior of n evaluated at the point implied by the setting of u

and yt, and similar for p(x(u, yt)).

Appendix e gives the complete derivation. �e likelihood can be rewritten

p(yt) = exp
(
1

2
σ2n +

1

2
σ2x − µn − µx + 2yt

)
∫ 1
0

N
(
log(u); µn − σ2n − yt, σ2n

)
N
(
log(1− u); µx − σ2x − yt, σ2x

)
du.

(4.68)

�e variables of the two Gaussian, log(u) and log(1− u), can be approximated with

piecewise linear functions. Myrvoll and Nakamura (2004) use 8 line segments. For

any observation yt, the expression then becomes a sum of integrals of a �xed factor

times an integral over a Gaussian, for which well-known approximations exist.
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�is derivation crucially depends on the assumption that coe�cients can be con-

sidered separately. To model the likelihood well, the priors p(x) and p(n) need to

model correlations between coe�cients. In the cepstral domain where correlations

are not usually modelled, they become more important as the signal-to-noise ratio

drops (Gales and van Dalen 2007). But any generalisation of the derivation to vec-

tors of cepstral coe�cients will need to convert to log-spectral vectors anyway, and

turn diagonal-covariance priors into full-covariance ones. Note that though Myrvoll

and Nakamura (2004) give the derivation for log-spectral coe�cients, they apply the

method to cepstral coe�cients.

Appendix e.2 gives the generalisation of the algorithm in Myrvoll and Nakamura

(2004) to d-dimensional log-spectral vectors. It turns out that the integral in (4.68)

becomes an integral over [0, 1]d. �is means that the 8 line segments for the single-

dimensional case become 8d hyperplanes. It is infeasible to apply this to a standard

24-dimensional log-spectral feature space. Section 7.3 will therefore use a similar idea

but a di�erent transformation and a di�erent approximation to the integral. It will

use a Monte Carlo method, sequential importance resampling, to approximate the

integral.

4.6 Model-based feature enhancement

As section 4.1 has discussed, a faster but less principled technique for noise-robustness

than model compensation is feature enhancement. �e objective of feature enhance-

ment is to reconstruct the clean speech. An advantage of this is that it sidesteps issue

of �nding compensation for dynamics. Early schemes used spectral subtraction (Boll

1979). However, knowledge of the clean speech and noise distributions make a statist-

ical approach possible (Ephraim 1992). �e distributions of the noise and especially

the speech are best given in the log-spectral or cepstral domain. Usually, a minimum

mean square error (mmse) estimate of the clean speech given an observation yt is
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found (Ephraim 1990):

x̂ = E{x|yt} . (4.69)

�is requires p(x|y), and therefore p(x), a model for the speech, which is simpli�ed

from a speech recogniser. Normally, a mixture of Gaussians is used for the joint dis-

tribution of the clean and corrupted speed: x
y

 ∼
∑
r

π(r)N

µ(r)x

µ
(r)
y

 ,
Σ(r)

x Σ
(r)
xy

Σ
(r)
yx Σ

(r)
y

 . (4.70)

�e parameters of this joint distribution can be found with the methods described in

section 4.4.3.1. Given the model in (4.70), the estimate in (4.69) is found by margin-

alising out the front-end component identity. It is a known result, which is derived in

appendix a.1.3, that from a joint Gaussian the distribution of one variable conditioned

on another is Gaussian with parameters

x|y, r ∼ N
(
µ
(r)
x + Σ

(r)
xy Σ

(r)
y

−1
(y− µ

(r)
y ),Σ

(r)
x − Σ

(r)
xy Σ

(r)
y

−1
Σ
(r)
yx

)
(4.71)

�e expected value of the clean speech for one component is the mean of the condi-

tional distribution in (4.71):

x̂ =
∑
r

P(r|yt) E{x|yt, r}

=
∑
r

P(r|yt)

(
µ
(r)
x + Σ

(r)
xy Σ

(r)
y

−1
(yt − µ

(r)
y )

)
. (4.72)

�e posterior responsibilitiesP(r|yt) are foundwith the component-conditionalmar-

ginal distribution of y:

P(r|yt) ∝ P(r)p(yt|r) = π(r)N
(
yt; µ

(r)
y , Σ

(r)
y

)
. (4.73)

�is can be written as a a�ne transformation {At,mmse,bt,mmse} that depends

on the observation vector. It is a linear interpolation between a�ne transformations{
A

(r)
mmse,b

(r)
mmse

}
that can be precomputed with

A
(r)
mmse = Σ

(r)
xy Σ

(r)
y

−1
; b

(r)
mmse = µ

(r)
x −A

(r)
mmseµ

(r)
y . (4.74)
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�e estimate of the clean speech then becomes

x̂ = At,mmseyt + bt,mmse, (4.75)

where the interpolationweights are given by components’ posterior probabilitiesP(r|yt):

At,mmse =
∑
r

P(r|yt)A
(r)
mmse; bt,mmse =

∑
r

P(r|yt)b
(r)
mmse. (4.76)

When decoding with the clean speech estimate x̂ as the input vector for speech

recogniser, the likelihood for componentm is computed with

q(m)(yt) = p
(m)(x̂) = p(m)

(
At,mmseyt + bt,mmse

)
. (4.77)

It is possible to write this as a transformation of the whole speech recogniser which is

di�erent for every observation vector. However, this transformation does not have a

probabilistic interpretation.

4.6.1 Propagating uncertainty

A problem that has been recognised (Arrowood and Clements 2002; Stouten et al.

2004a) is that the clean speech estimate x̂ is a point estimate which does not carry any

information about its uncertainty. A number of approaches have been suggested. It

is possible to propagate the uncertainty of the posterior p(x|y, r) of the clean speech

reconstruction (Arrowood and Clements 2002; Stouten et al. 2004a). �is uses the

covariance of the Gaussian conditionals in (4.71), and e�ectively computes likelihoods

as

q(m)(yt) =

∫
p(x|yt)p

(m)(x)dx, (4.78)

which is not mathematically consistent (Gales 2011).

An alternative is to propagate the conditional distribution p(yt|x) (Droppo et al.

2002):

q(m)(yt) =

∫
p(yt|x)p

(m)(x)dx, (4.79)

105



chapter 4. noise-robustness

where

p(yt|x) =
∑
r

P(r|x)p(yt|x, r) . (4.80)

�e problem with this is that the component posterior P(r|x) depends on the clean

speech, because it is conditioned on latent variable and must therefore be approxim-

ated.

4.6.2 Algonquin

So far, the joint mixture of Gaussians in (4.46) has been assumed �xed. If the joint

was trained on stereo data, then this is sensible. However, if it was estimated with

vts, then the linearisation points may not be optimal. Section 4.5.1 has introduced

Algonquin formodel compensation, which iteratively updates the linearisation points

towards the mode of the posterior given the observation. �e original Algonquin

algorithm (Frey et al. 2001a) applies feature enhancement, which �nds the minimum

mean square error estimate of the clean speech. Algonquin extends this idea by at the

same time as updating the observation distributions, �nding an approximation to the

component posteriors of the mixture of Gaussians.

�e algorithm replaces the static joint distribution in (4.46) by an approximation

(Kristjansson 2002)

x,n,y ∼
∑
r

π(m) · p(x,n|r) · q(r)(k)(y|x,n) . (4.81)

At each iteration k, the component-dependent observation distribution q(r)(k) is up-

dated by re-estimating the expansion point as in section 4.5.1. �e component distri-

bution of the speech and the noise is Gaussian, and q(r)(k) is assumed Gaussian be-

cause of themismatch function.�erefore, the posterior distributionq(k)(m)(x,n|yt)

of the speech and the noise given the observation also becomes Gaussian. Its mean

gives the expansion point for the next iteration.
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A�er a number of iterations, themmse estimate for the clean speech is found ana-

logously to (4.72)

x̂ =
∑
r

q(r) · E
{
q(r)(k)(x|yt)

}
, (4.82a)

where the expectation is the mean of the Gaussian posterior. �e posterior respons-

ibilities q(r) are found with, analogously to (4.73),

q(r) ∝ π(m)q(r)(k)(yt). (4.82b)

4.7 Noise model estimation

�e discussion so far has assumed that a distribution of the noise is known. In practice,

however, this is seldom the case. �e noise model must therefore be estimated. �e

usual approach is to apply expectation–maximisation in an unsupervised-adaptation

framework discussed in section 3.1. �e aim then is to optimise the noise model para-

meters to improve the likelihood using the form of model compensation that is used

for decoding.

Conceptually, thismoves the interface of themodel with the real world. It does not

matter any more whether the noise model matches the actual noise. What matters is

that the parameters can be estimated robustly and that they allow the resulting model

to match the real world reasonably well. Discrepancies between the model and the

real process therefore become allowable: the noise model estimate can absorb some

of the mismatch.

�e noise modelMn = {µn,Σn,µh} comprises the parameters of the additive

noise, assumed Gaussian with N (µn,Σn), and the convolutional noise µh, which is

assumed constant. �e parameters are of the form

µn =

µsn
0

 ; Σn =

 diag(Σs
n) 0

0 diag
(
Σ∆n
)
 ; µh =

µsh
0

 . (4.83)

�e expected value of the dynamic coe�cients of the additive noise are zero because

this work assumes that the noise model has no state changes. Since the convolutional
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noise is assumed constant, its dynamic parameters are also zero. �e noise covariance

is normally assumed diagonal, just like for clean speech Gaussians. With standard

feature vectors, with 13 statics and 13 delta and 13 delta-delta coe�cients, the noise

model has only 65 parameters, as opposed to cmllr’s 1560 per class. �is means that

methods for noise-robustness can adapt to a few seconds of data, in situations where

applying cmllr decreases performance (for a comparison, see Flego and Gales 2009).

�ough noise model estimation can conceptually be seen as adaptation, the gen-

eric derivation is di�erent from the derivation of adaptation in section 3.1. �e noise

is explicitly a hidden variable distributed according to some distribution, whose para-

meters must be trained. Training uses expectation–maximisation (see section 2.3.2.1)

(Rose et al. 1994). Here, the hidden variables U consist not only of the component

sequencemt, but also the sequence of the noise vectors nt and ht. �e expressions

for the expectation and maximisation steps are (a�er (2.22) and (2.27b))

ρ(k) := q
(k)
U |Y ∝ q

(k)
UY ; (4.84a)

q
(k)
U := argmax

qU

∫
p̃(Y)

∫
ρ(k)(U |Y) logqU (U)dUdY. (4.84b)

For noise estimation, the posterior distribution over the hidden variables is a joint

distribution over the components and the noise vectors, which can be expressed as

ρ(U |Y) = ρ
(
{mt,nt,ht}

∣∣Y)
= ρ
(
{mt}

∣∣Y)ρ({nt,ht}∣∣{mt},Y
)
. (4.85)

�e distribution over the components, ρ
(
{mt}

∣∣Y), is the same as for speech recog-

niser training, and again it is su�cient to keep component–time occupancies γ(m)
t .

�e distribution over the noise consists of a distribution for each component. �e

relationship between the noise and the noise-corrupted speech is non-linear. �is

relationship is captured by qY |U , which the computation of the hidden variable pos-

terior in (4.84a) uses (see section 2.3.2.1). �e posterior distribution of the noise for

one componentmt is ρ
(
{nt,ht}

∣∣{mt},Y
)
therefore does not have a closed form.

Noise estimation is of practical value. It is therefore not surprising thatmostmeth-

ods that have been proposed work on a practical compensation method, which lin-
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earises of the mismatch function. �is is mostly either vts compensation or joint

uncertainty decoding. Methods use either of two ways of approximating the hidden

variable posterior. Some �x the linearisation of the in�uence of the noise on the ob-

servation to make computing the parameters possible. Others approximate the real

posterior given the mismatch function with numerical or Monte Carlo methods, but

apply the linearisation when compensating anyway. Neither is guaranteed to yield an

increase of the likelihood.

4.7.1 Linearisation

Both vts compensation and joint uncertainty decoding linearise the in�uence of the

noise (and the other sources) on the corrupted speech. It is possible to �nd a newnoise

model estimate that is guaranteed not to decrease the likelihood as long as the vts ex-

pansion point of the noise is �xed. However, the linearisation depends on the noise

model: the expansion point of the additive noise is normally set to the noisemean (see

section 4.4.2). As soon as the expansion point changes, therefore, the guarantee drops

away. �is can lead to oscillations. However, it is always possible to evaluate the result

of the likelihood function before accepting a new noise model estimate. �en, a back-

o� strategy can decrease the step size until the likelihood does increase. Alternatively,

the noise model mean and the noise expansion point can be disconnected, so that the

guarantee about the likelihood remains valid, even though the vts approximation be-

comes less close to the real distribution. Schemes that combine these strategies adapt-

ively are possible. �e actual estimation of the new parameters can work in two ways:

either by setting up a joint Gaussian distribution of noise and corrupted speech, yield-

ing a factor analysis-style solution, or by iteratively optimising the likelihood function

directly.

Since the additive noise is assumed Gaussian, the linearisation makes the additive

noise and the noise-corrupted speech jointly Gaussian for each speech component

(independently introduced by Kim et al. 1998; Frey et al. 2001b). �is results in a
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distribution of the formn
y

 ∣∣∣∣∣∣m ∼ N

µn
µy

 ,
 Σn Σny

Σyn Σy

 . (4.86)

�is has only been used for statics, but dynamic compensation with the continuous-

time approximation yields a linearised relationship of noise and observation too, so

the principle can be extended to vectors with statics and dynamics.

From this joint distribution, the distribution of the noise conditional on an ob-

servation y is also Gaussian (see appendix a.1.3). �is yields a factor analysis-style

solution for the optimal noise distribution for each time instance and component.

However, �nding the convolutional noise parameters is not possible in this frame-

work if the convolutional noise is assumed constant, because the posterior distribution

of it cannotmove from its prior estimate. It is possible to assume a convolutional noise

covariance while estimating the parameters and then ignore it when compensating,

but that again yields no guarantee of �nding the optimal likelihood.

A greater problem, however, is that some blocks of the joint distribution in (4.86)

are usually diagonalised. �e noise estimate is usually constrained to have a diagonal

covariance, and so is the resulting corrupted speech covariance. Diagonalising the

corrupted speech covariance, however, happens a�er compensation. Since it is not an

intrinsic property of the process, it cannot be reversed. To infer a distribution over n

from a given value ofy, the joint distribution needs to be valid. In the case of the joint

Gaussian, the cross-covariance Σyn must be diagonal as well. Diagonalising Σyn is

equivalent to diagonalising Jn. �us, this assumes that the relationship between noise

and corrupted speech is per coe�cient. However, as section 4.4.2 has pointed out, the

Jacobian that gives that relationship is not diagonal. If it is constrained to be diagonal

in estimation, this, again, must be applied in compensation as well for the estimation

process to yield a guaranteed improvement in likelihood. However, diagonalising the

Jacobian is an additional approximation that reduces the quality of the compensation.

An alternative is to directly optimise the noise model parameters. �e static noise

means can be updated at the same time using a �xed-point iteration (Moreno 1996).
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4.7. noise model estimation

�e additive noise covariance, however, is more complex to estimate. It is possible

to estimate it on the parts of the waveform known to contain noise without speech.

Another options is to use gradient ascent to �nd an estimate for the additive noise

variance for vtswith the continuous-time approximation (Liao andGales 2006).�is

needs to be alternated with the estimation of the noise mean. �is scheme does allow

the convolutional noise to be estimated, and it does not require the Jacobians to be

diagonalised. �is is the approach that this work will take. �e resulting noise model

estimate maximises the likelihood of model compensation with vts. �us, the para-

meters do not necessarily correspond to the actual noise or to a consistent sequence

of static observations.

4.7.2 Numerical approximation

It is possible to �nd a numerical approximation to the hidden variable posterior. Myr-

voll and Nakamura (2003) propose a method that uses a consistent approximation

for estimation and compensation (see section 4.5.2), which does not apply the vector

Taylor series approximation. However, it assumes all dimensions independent, and it

is not feasible to generalise it to multiple dimensions (see appendix e).

Alternatively, it is possible to approximate the noise posterior with an empirical

distribution (Faubel and Klakow 2010).�e empirical noise posterior is acquired with

importance sampling (see appendix a.4.2). Samples n(l)
t are drawn from the noise

prior for the previous iteration. �ey are then re-weighted to give an approximation

to the noise posterior ρ(nt|Y).4 Since the noise is assumed identically distributed, the

number of samples required per time frame is low. Faubel and Klakow (2010) apply

this per dimension, but it may be possible to extended the method to more dimen-

sions. However, note that this method improves the likelihood under the assumption

that the exact distribution (given themismatch function) is used. �is has the advant-

age over using the vts assumption that no overshoot happens because of the linear-
4Faubel and Klakow (2010) uses Parzen windows to approximate the importance weights, but this

can be replaced by a straightforward analytical solution. �e required expression is (4.66) with x and n
exchanged.
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isation. However, in practice, a di�erent form of compensation will be applied, so that

the method does not optimise the likelihood for the actual form of compensation.

4.8 Summary

�is chapter has discussed existing approaches for noise-robust speech recognition.

Section 4.2.1 has derived the mismatch function, which relates the speech, noise, and

the corrupted speech. �is resulted (in section 4.3) in an expression for the corrup-

ted speech which has no closed form. Model compensation, the topic of section 4.4,

approximates the corrupted speech distribution with a parameterised density. �e

state-of-the-art vts compensation �nds one corrupted speech Gaussian for one clean

speech Gaussian.�e Gaussian is diagonalised, because of the imprecise estimation of

the o�-diagonals and decoding speed. �ese two issues will be dealt with in chapters

5 and 6, respectively. �e methods in section 4.5 use a di�erent approach: they �nd

a di�erent approximation to the corrupted speech distribution for every observation.

�is philosophy will also apply to the scheme that chapter 7 will introduce. Section 4.6

has described model-based feature enhancement, which only uses a linear transform-

ation to the feature vector. Section 4.7 then cast methods for noise-robustness in an

adaptation framework, by estimating the noise model. �e interesting aspect is that a

standard noise model has only 65 parameters, as opposed to at least 1560 for cmllr.

�is means that methods for noise-robustness need far less adaptation data than gen-

eral adaptation methods.
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Chapter 5

Compensating correlations

�is chapter will describe the �rst contribution of this thesis.1

�e previous chapter has described model compensation methods. �ey diag-

onalise the Gaussians they produce, because the o�-diagonals are more sensitive to

approximations. For the state-of-the-art vts compensation, the continuous-time ap-

proximation it applies for the dynamic coe�cients will turn out problematic.

�is chapter will propose a new approach for compensating the dynamic paramet-

ers so that the correlations can be estimated accurately, which, section 5.1 will show,

is important. Section 5.2 will then explain how the dynamic coe�cients can be ex-

pressed as a linear transformation over a vector with all static feature coe�cients in

a window. When a distribution over this “extended” feature vector is known, then

the distribution of the static and dynamic parameters can o�en be found by linearly

transforming the parameters of the distribution over the extended feature vector. Sec-

tion 5.2.2 will explore under which conditions this is valid. In the same fashion as

standard model compensation, there is a range of schemes, that section 5.3 will intro-

duce, that can be used to combine the extended clean speech and noise distributions

1Extended dpmc, and its application to joint uncertainty decoding, was introduced in van Dalen
and Gales (2008). Extended vtswas introduced in van Dalen and Gales (2009b;a; 2011). Van Dalen and
Gales (2010a;b) mentioned brie�y the form in which this chapter will present them, with a distribution
for the phase factor. Extended idpmc also got only a brief mention. �is thesis newly introduces the
extended Algonquin algorithm.
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to yield the extended corrupted speech distribution. In particular, section 5.3.3 will in-

troduce “extended vts”, a faster method that approximates the mismatch function for

each time instance with a vector Taylor series. Section 5.4 will discuss how to estimate

extended parameters for joint uncertainty decoding, which compensates a base class

at a time. Section 5.5 will discuss how to �nd robust estimates for speech and noise

distributions over extended feature vectors, which havemore parameters than normal

ones. Estimates for the extended noise distribution can be found from estimates for

statics and dynamics. Alternatively, because the o�-diagonals can now be estimated,

an expectation–maximisation approach is possible.

5.1 Correlations under noise

Feature correlations change under noise. Figure 5.1 on the next page shows the overall

correlations of the zeroth and �rst cepstral coe�cients in Toshiba in-car data from

di�erent noise conditions (for details, see section 8.1.3). �e di�erences in the orient-

ation of the ellipses indicate di�erences in correlations. How this comes about can

be seen by considering feature correlations of only speech, and of only noise. If the

feature space is optimised to reduce correlations for clean speech, whichmfccs make

an attempt to do, correlations will appear under noise. However, in the limit as the

noise masks the speech, the correlation pattern will be that of the noise. It is therefore

important for noise-robustness that these correlations are modelled.

�ough correlations could be modelled with full covariance matrices, speech re-

cogniser distributions are normally assumed Gaussian with diagonal covariance ma-

trices. �is is true for the clean speech distributions and so ingrained that methods

for noise-robustness are proposed without even mentioning that diagonalisation is

performed (Kim et al. 1998; Acero et al. 2000). When estimating corrupted-speech

distributions on stereo data, full covariance matrices have been shown to increased

performance (Liao and Gales 2005). However, stereo data is seldom available.

To compensate for correlation changes under noise in realistic scenarios, a noise

116



5.1. correlations under noise
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Figure 5.1 Overall correlations of the zeroth and �rst cepstral coe�cients in
Toshiba in-car data (see section 8.1.3) for di�erent noise conditions.

model must be estimated, and full-covariance compensation computed with a model

compensation method like vts, discussed in section 4.4.2. As mentioned in that sec-

tion, vts compensation is normally diagonalised. �is is for two reasons: decoding

speed, and compensation quality. Chapter 6 will introduce forms of compensation

that model correlations but are fast to decode with. �is chapter will look into the

quality of compensation for correlations. �e estimates for full-covariance Gaussi-

ans are expected to be more sensitive to approximations in the compensation process

than for diagonal covariance matrices. In particular, and section 8.1.1.1 will show this

by comparing against a single-pass retrained recogniser, the continuous-time approx-

imation, which standard vts compensation uses for dynamic coe�cients and was in-

troduced in section 4.2.3, does not provide good compensation.

In hmm-based speech recognition systems, dynamic features (usually delta and

delta-delta coe�cients) are appended to the static features to form the feature vectors

(see section 2.1.2). �e continuous-time approximation makes the assumption that

the dynamic coe�cients are the time derivatives of the statics. For vts, the form of

compensation for the dynamic parameters is then closely related to the static para-

meters. �ough compensation with the continuous-time approximation can generate
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block-diagonal covariance matrices (as section 4.4.2 has shown), the estimates are not

accurate enough to yield an increase in performance.

An advantage of the continuous-time approximation is that it is possible to �nd

compensation for any form of dynamic parameters, both those computed with linear

regression and with simple di�erences. A scheme for dynamic parameter compensa-

tionwithdpmc stores extra clean speech statistics (see section 4.4.1), but is only applic-

able to simple di�erences. As section 2.1.2 has mentioned, state-of-the-art speech re-

cognisers compute dynamic parameters with linear regression. Another scheme that

attempts to improve compensation by using additional statistics, but in the log-spec-

tral domain, is described in de la Torre et al. (2002). However, as section 5.3.3.1 will

show, this approach involves approximations that negate any potential improvements

and basically yields the same form as the continuous-time approximation. �ough

there are known limitations to the use of the continuous time approximation, it is still

the form used in the vast majority of model compensation schemes (Acero et al. 2000;

Liao and Gales 2007; Li et al. 2007).

5.2 Compensating dynamics with extended feature

vectors

�is section will describe an alternativemethod to using the continuous-time approx-

imation for compensating the dynamic model parameters. �e key intuition is that

the dynamic coe�cients are a linear combination of consecutive static feature vectors.

�us, it is possible to model the e�ect of the noise separately per time instance, and

only then combine the time instances. �is applies the same linear transformation

that speech recognisers apply to �nd dynamic coe�cients from a range of statics. At

which point in the process it is valid to apply the linear transformation depends on

the details of the compensation methods. �is will become clear in this section.

For simplicity, a window of ±1 and only �rst-order dynamic coe�cients will be

considered. An extended feature vector ye
t , containing the static feature vectors in the
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surrounding window, is given by ye
t =

[
ys
t−1

T ys
t
T ys

t+1
T
]T
.2 �e transformation of

the extended feature vector ye
t to the standard feature vector with static and dynamic

parameters yt can be expressed as the linear projection D that was introduced in

section 2.1.2 (analogous to (2.7b)):

yt =

 ys
t

y∆t

 =

 0 I 0

− I
2 0

I
2



ys
t−1

ys
t

ys
t+1

 = Dye
t , (5.1a)

�e second row ofD applies the transformation from a window of statics to yield the

standard delta features. Similarly,

xt = Dx
e
t ; nt = Dn

e
t ; ht = Dh

e
t ; αt = Dα

e
t , (5.1b)

where extended feature vectors ·et all contain consecutive static feature vectors ·st−1, ·st, ·st+1.
�e form of their distributions will be discussed in section 5.5.

Model compensation, described in section 4.4, approximates the predicted distri-

bution of the noise-corrupted speech for one component (from (4.24d); the depend-

ency on the component will not be written in this chapter)

p(y) =

∫ ∫ ∫ ∫
δf(x,n,h,α)(y)p(x,n,h,α)dαdhdndx. (5.2)

To model the e�ect of the noise on each time instance separately, an extended mis-

match function fe can be de�ned as

fe(xet ,n
e
t ,h

e
t ,α

e
t) =


f(xt−1,nt−1,ht−1,αt−1)

f(xt,nt,ht,αt)

f(xt+1,nt+1,ht+1,αt+1)

 , (5.3a)

where f(·) is the per-time instance mismatch function de�ned in (4.20). Section 4.2.3

has given the mismatch function for dynamics, which used a projection matrixD∆.

2It is straightforward to extend this to handle both second-order dynamics and linear-regression
coe�cients over a larger window of±w, so that ye

t =
[
ys
t−w

T . . . ys
t+w

T
]T.
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�e full noise-corrupted speech vector with statics and dynamics can be found with

projection matrixD:

yt = Df
e(xet ,n

e
t ,h

e
t ,α

e
t). (5.3b)

To use this to express the distribution over the corrupted speech, the integral in (5.2)

is rewritten in terms of extended feature vectors:

p(y) =

∫ ∫ ∫ ∫
δDfe(xe,ne,he,αe)(y)p(x

e,ne,he,αe)dαedhednedxe. (5.3c)

It is possible to approximate the quadruple integral in (5.3c) by sampling. �e Dirac

delta yields corresponding samples with statics and dynamics, in a similar way to

standard dpmc in section 4.4.1. Extended dpmc and extended iterative dpmc, which

sections 5.3.1 and 5.3.2 will introduce, train on these samples.

However, dpmc (not iterative dpmc) can also be viewed from a di�erent perspect-

ive, which corresponds to the original presentation (in van Dalen and Gales 2008). It

will turn out possible to estimate a Gaussian over extended feature vectors, and only

then convert to a Gaussian over standard feature vectors with statics and dynamics.

�is will allow section 5.3.3 to introduce extended vts, a method that applies a vector

Taylor series approximation for every time instance of extended feature vectors. Ex-

tended vts therefore has a reasonable time complexity.�e following will detail how a

Gaussian over extended feature vectors can be converted into one over statics and dy-

namics. Section 5.2.2 will prove under what condition optimising a distribution over

extended feature vectors is equivalent to optimising one over statics and dynamics.

5.2.1 The extended Gaussian

It is interesting to look at the structure of a Gaussian distribution over extended fea-

ture vectors,ye ∼ N
(
µey,Σ

e
y

)
. �emeanµey of the concatenation of consecutive static

feature vectors is simply a concatenation of static means at time o�sets−1, 0,+1. For

the corrupted speech, these will be written µsy−1 ,µ
s
y0
,µsy+1 . �e covariance Σe

y con-

tains the covariance between statics at di�erent time o�sets. �e covariance between
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o�sets −1 and +1, for example, is written Σy−1y+1 . �us, the full parameters of the

extended distribution are

µey =


µsy−1

µsy0

µsy+1

 ; Σe
y =


Σs
y−1y−1

Σs
y−1y0

Σs
y−1y+1

Σs
y0y−1

Σs
y0y0

Σs
y0y+1

Σs
y+1y−1

Σs
y+1y0

Σs
y+1y+1

 . (5.4)

An extended vector and its equivalent with statics and dynamics are related with

y = Dye. AsD is a linear transformation, if the distribution of the extended corrup-

ted speech ye
t is assumed Gaussian, then the extended corrupted speech distribution

can be transformed to a distribution over statics and dynamics with

y = Dye ∼ N
(
Dµey,DΣ

e
yD

T
)

(5.5)

�e internal structure of thematrices will have rami�cations for how to store statistics

and how to compensate distributions. For example, the covariance in (5.5), substitut-

ing Σe
y from (5.4) andD from (5.1a), can be expressed as

Σy = DΣ
e
yD

T =

 0 I 0

− I
2 0

I
2



Σs
y−1y−1

Σs
y−1y0

Σs
y−1y+1

Σs
y0y−1

Σs
y0y0

Σs
y0y+1

Σs
y+1y−1

Σs
y+1y0

Σs
y+1y+1



0 − I

2

I 0

0 I
2

 . (5.6)

5.2.2 Validity of optimising an extended distribution

It would be interesting to �nd under what conditions optimising the distribution over

extended feature vectors of the noise-corrupted speech, for example, the Gaussian

in section 5.2.1, optimises the distribution over statics and dynamics. �e standard

feature vector ywith statics and dynamics is related to the extended feature vector ye

by (repeated from (5.1a))

y = Dye. (5.7)

�e distribution qe over extended feature vectors would therefore approximate a dis-

tribution similar to the one in (5.3c). �ere, the integrals were over extended feature
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vectors, and the resulting distribution over standard feature vectors. Alternatively, as

in section 5.2.1, the resulting distribution is over extended feature vectors as well:

pe(ye) =

∫ ∫ ∫ ∫
δfe(xe,ne,he,αe)(y

e)p(xe,ne,he,αe)dαedhednedxe. (5.8)

�e question that the following will answer is under what conditions approximating

pe (in (5.8)) with qe is equivalent to optimising the approximation q to p (in (5.3c))

directly:

q̂ := argmin
q
KL(p‖q) ; (5.9a)

q̂e := argmin
qe

KL(pe‖qe) . (5.9b)

To relate distributions over y and ye, the determinant of the Jacobian of the con-

version is necessary. Since the relation is linear, this would be the determinant ofD

if it were square. As a trick, extra dimensions can be appended onto y to increase its

dimensionality. �ese irrelevant dimensions are similar to the “nuisance” dimensions

for hlda (discussed in section 3.3.2). �ey will be written y(), and the vector with

these appended y+, so that

y+ =

 y
y()

 . (5.10)

Similarly, the projection D from extended feature vectors to ones with statics and

dynamics is extended:

D+ =

 D
D()

 . (5.11)

Provided D+ is full-rank, it is irrelevant what entries D() has exactly, because it is

merely a mathematical construct. �en,

y+ = D+y
e. (5.12)

�e distributions p and its approximation q are similarly extended:

p+(y+) = p(y) · p()
(
y()

∣∣y) ; q+(y+) = q(y) · q()
(
y()

∣∣y) (5.13)
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Again, it is irrelevant how the distribution over the nuisance dimensions p() is de�ned

or what its approximation q() is optimised to. In any case, the distributions over ex-

tended feature vectors and over standard feature vectors plus nuisance dimensions are

related by the determinant of the Jacobian (a well-known equality, in (a.1)):

pe(ye) = |D+| · p+(y+); qe(ye) = |D+| · q+(y+). (5.14)

�e question now is whether when qe is optimised, q is optimised in the process.

�is can be taken in twoparts.�e �rst question iswhether optimisingqe is equivalent

to optimising q+. �is is the case since |D| is constant, so that it drops out of the

optimisation, when it is rewritten with (5.14):

q̂e = argmax
qe

∫
pe(ye) log(qe(ye))dye

= argmax
qe

∫ ∣∣∣D−1
+

∣∣∣|D+|p+(y+) log(|D+|q+(y+))dy+

= argmax
qe

∫
p+(y+) log(q+(y+))dy+. (5.15a)

�e second part of the question is when optimising q+ also optimises q. To express

this, substitute (5.14) into (5.15a):

q̂e = argmax
qe

∫
p+(y+) log(q+(y+))dy+

= argmax
qe

∫
p(y) ·

∫
p()
(
y()

∣∣y) log(q(y) · q()(y()

∣∣y))dy()dy

= argmax
qe

[ ∫
p(y) log(q(y))dy

+

∫
p(y)

∫
p()
(
y()

∣∣y) log(q()(y()

∣∣y))dy()dy

]
. (5.15b)

�erefore, if the parameters of q and q() can be set independently, then �nding the

optimal qe means �nding the optimal q.

For a Gaussian qe, the parameters of q and q() can indeed be set independently.

Appendix a.1.3 details the well-known composition of a multi-variate Gaussian into

the marginal of some dimensions (here, y) and a conditional of the other variables

(here, y()) given the �rst set. �e projectionD+ changes the parameter space, so that
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this factorisation is not explicit when optimising qe. However, since the projection

is full-rank, the optimisation in one feature space gives the optimal parameters in

another feature space, and the argument still applies. �is therefore proves that it is

possible to optimise a Gaussian over the extended corrupted speech distribution and

convert it to a distribution over statics and dynamics.

5.3 Compensating extended distributions

�e following will introduce four ways of estimating an extended distribution for ye.

�e �rst, extended dpmc, uses sampling. Its variant, extended iterative dpmc, �nds

a mixture of Gaussians. A faster scheme, extended vts, applies a vector Taylor series

approximation to every time instance. Extended Algonquin uses the same approxim-

ation, but iteratively updates the expansion point.

�ey all assume that the extended speech xe and noise ne are Gaussian, and that

the convolutional noise he is constant. �e elements of α are assumed Gaussian dis-

tributed but constrained to [−1,+1]. Section 5.5 will discuss the form of parameters

for their distributions.

It would be possible to apply the extended feature vector approach to other ap-

proaches that �nd Gaussian compensation. Indeed, an appendix of van Dalen and

Gales (2009a) uses the unscented transformation to �nd a Gaussian extended cor-

rupted speech distribution. However, as pointed out at the end of section 4.4.2, the

di�erence between model compensation schemes that come up with the same form

of distribution largely disappears when the noise model is estimated. �emodels then

di�er only in the exact parameterisation that the optimisation uses. �e only schemes

that this thesis will introduce that �nd one �xedGaussian for the corrupted speech are

therefore extended dpmc, a sampling scheme that in the limit produces the optimal

Gaussian, and extended vts, based on the state-of-the-art vts.
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5.3.1 Extended DPMC

�e �rst method of �nding a Gaussian for the extended corrupted speech distribu-

tion is extended dpmc (edpmc). It derives from the integral of the exact expression

for the extended corrupted speech distribution analogously to standard dpmc (sec-

tion 4.4.1). However, there is also a second perspective on dpmc, which converts

samples to standard feature vectors immediately and trains a distribution on those.

�e �rst perspective ties in with extended vts, which section 5.3.3 will introduce. �e

second perspectivemakes it possible to extend the algorithm tomixtures of Gaussians,

for extended iterative dpmc (section 5.3.2).

�e �rst perspective on dpmc �nds an extended corrupted speech Gaussian. It

derives from the integral over extended feature vectors in (5.8):

pe(ye) =

∫ ∫ ∫ ∫
δfe(xe,ne,he,αe)(y)p(x

e,ne,he,αe)dαedhednedxe. (5.16)

Extendeddpmc approximates this by representing this distributionpe by an empirical

distribution p̃e. To �nd the empirical distribution, sample tuples (xe(l),ne(l),he(l),αe(l))

can be drawn from the extended distributions of the clean speech, noise, and phase

factor. �ese are joint samples over consecutive feature vectors, so that (again, assum-

ing a window±1)

x
e(l)
t =


x
s(l)
t−1

x
s(l)
t

x
s(l)
t+1

 ; n
e(l)
t =


n
s(l)
t−1

n
s(l)
t

n
s(l)
t+1

 ; h
e(l)
t =


h
s(l)
t−1

h
s(l)
t

h
s(l)
t+1

 ; α
e(l)
t =


α
s(l)
t−1

α
s(l)
t

α
s(l)
t+1

 .
(5.17)

�e distribution of the extended feature vectors over the corrupted speech ye is then

de�ned by applying the mismatch function on each time instance, as in (5.3a). �e

mismatch function f for the static parameters in (4.10b) (for log-spectral feature vec-

tors) or (4.20) (for cepstral feature vectors) is applied to each time o�set. �is yields
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an extended corrupted speech sample ye(l):

y
e(l)
t =


y
s(l)
t−1

y
s(l)
t

y
s(l)
t+1

 =


f(x

s(l)
t−1,n

s(l)
t−1,h

s(l)
t−1,α

s(l)
t−1)

f(x
s(l)
t ,n

s(l)
t ,h

s(l)
t ,α

s(l)
t )

f(x
s(l)
t+1,n

s(l)
t+1,h

s(l)
t+1,α

s(l)
t+1)

 . (5.18)

�e empirical distribution then has delta spikes at the positions of these samples:

p̃e =
1

L

∑
l

δ
y
e(l)
t

. (5.19)

�is approximation can be substituted in for pe in (5.9b):

q̂e := argmin
qe

KL(p̃e‖qe)

= argmax
qe

∫
p̃e(ye) logqe(ye)dye

= argmax
qe

1

L

∑
l

logqe(ye). (5.20)

�is is equivalent to �nding a maximum-likelihood solution on the samples, which

has a well-known procedure for many distributions. For a Gaussian q ∼ N
(
µey,Σ

e
y

)
,

maximum-likelihood estimates of the extended corrupted speech parameters µey and

Σe
y can then be found with

µey =
1

L

L∑
l=1

ye(l); (5.21a)

Σe
y =

(
1

L

L∑
l=1

ye(l)
[
ye(l)

]T)
− µeyµ

e
y
T. (5.21b)

�e samples have been generated from distributions in which the time instances are

correlated. �erefore, the time instances in the corrupted speech sample will also be

dependent. �e cross-correlations of Σe
y (with the structure in (5.4)) will therefore be

estimated correctly.

Having thus found Gaussian parameters for the extended corrupted speech dis-

tribution, distributions over statics and dynamics can be found with (5.5):

y = Dye ∼ N
(
Dµey,DΣ

e
yD

T
)
. (5.22)
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In the limit as the number of samples goes to in�nity, this �nds the optimal Gaussian

for the corrupted speech distribution.

An alternative perspective on dpmc gives less insight in the cross-correlations

of the corrupted speech distribution but allows other distribution than Gaussians to

be trained from the samples. It is possible to directly express the corrupted speech

distribution with statics and dynamics while integrating over extended distributions

(from (5.3c)):

p(y) =

∫ ∫ ∫ ∫
δDfe(xe,ne,he,αe)(y)p(x

e,ne,he,αe)dαedhednedxe. (5.23)

Note that the Dirac delta has a projectionD added, so that the delta spike is directly in

the standard domain. �e Monte Carlo approximation of this integral is very similar

to that of the �rst perspective on dpmc. Extended corrupted speech samples ye(l) are

found exactly as in (5.18), but then immediately converted to samples with statics and

dynamics:

y(l) = Dye(l). (5.24)

�e empirical distribution then is similar to p̃e in (5.19):

p̃ =
1

L

∑
l

δ
y
(l)
t

=
1

L

∑
l

δ
Dy

e(l)
t

. (5.25)

�is distribution is in the domain with statics and dynamics, so that the proced-

ure from here follows that of standard dpmc, in section 4.4.1. �e parameters of

Gaussian q are trained on samples y(l)
t in exactly the same way. Substituting (5.24)

into (4.31),

µy :=
1

L

L∑
l=1

y(l) =
1

L

L∑
l=1

Dye(l); (5.26a)

Σy :=

(
1

L

L∑
l=1

y(l)y(l)T
)
− µyµ

T
y =

(
1

L

L∑
l=1

Dye(l)ye(l)TDT

)
− µyµ

T
y . (5.26b)

�is is equal to the parameters of dpmc viewed from the �rst perspective (combining

(5.21) and (5.22)). As section 5.2.2 has proven, this is because qe, and therefore q,
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is Gaussian, and D is a linear projection. �e next section will introduce extended

iterative dpmc, which trains a mixture of Gaussians rather than one Gaussian, using

the second perspective.

5.3.2 Extended IDPMC

Extended iterative dpmc is an extension of dpmc to train a mixture of Gaussians, as

iterative dpmc is to dpmc (see section 4.4.1). It should be possible to train a mixture

of Gaussians over extended feature vectors, and convert each of the Gaussians to be

over standard vectors with statics and dynamics a�erwards. However, as section 5.2.2

has shown, there is a requirement for this to be equivalent to optimising the distri-

bution in the standard domain. When the extended distribution is transformed to a

distribution with as many dimensions, some of which are the statics and dynamics,

and the rest the nuisance dimensions, the distribution over the nuisance dimensions

must be separate from the other distribution. In the case of a mixture of Gaussians,

the nuisance dimensions are not allowed to depend on the hidden variable which in-

dicates which component has produced the observation. �is would mean that while

training the mixture of Gaussians, some dimensions, in a di�erent feature space, must

be tied across components. A more straightforward way of deriving iterative dpmc

is from the second perspective on dpmc, which converts each sample to the standard

domain (in (5.24)) �rst, and then trains the distribution on those samples.

Training amixture of Gaussians from extended samples without tying dimensions

is not guaranteed to be optimal, whereas training it on samples with statics and dy-

namics is.�is is straightforward to see from the procedure of training iterativedpmc.

Trainingmixtures of Gaussians uses expectation–maximisation, with in each iteration

assigns responsibilities (component-sample posteriors) to train the parameters of each

Gaussian.�e iteration is guaranteed not to decrease the likelihood, i.e. not to increase

the kl divergence with the empirical distribution. Since recognition uses statics and

dynamics, it is the likelihoods in that domain that the responsibilities should be com-

puted for to optimise the kl divergence between p and q.
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Extended iterative dpmc, then, uses the samples y(l), found with (5.24). Training

the mixture of Gaussians then applies exactly the iteration in (4.35):

ρ(k)(m, l) :=
π
(k−1)
m q(m)(k−1)

(
y(l)
)∑

m ′∈Ω(θ) π
(k−1)
m ′ q(m

′)(k−1)
(
y(l)
) ; (5.27a)

π
(k)
m :=

1

L

∑
l

ρ(k)(m, l); (5.27b)

µ
(m)(k)
y :=

1∑
l ρ

(k)(m, l)

∑
l

ρ(k)(m, l)y(l); (5.27c)

Σ
(m)(k)
y :=

(
1∑

l ρ
(k)(m, l)

∑
l

ρ(k)(m, l)y(l)y(l)T
)
− µ

(m)(k)
y µ

(m)(k)
y

T
.

(5.27d)

Analogously to idpmc, a good initial setting for extended idpmc, which this thesis

will use, is extended dpmc. To increase the number of components, it will again ap-

ply “mixing up”: the component with the greatest mixture weight is split into two

components. �en, a few iterations of expectation–maximisation are run, and the

procedure is repeated until the desired number of components has been reached.

In the limit as the number of componentsM and the number of samples L go to

in�nity, the modelled distribution of the corrupted speech can become equal to the

real one. However, as explained in section 4.4.1, to train the mixture model well, the

parameters of each component need to be trained on a large enough portion of the

samples. �erefore, as the number of componentsM is increased, Lmust grow faster

thanM. One iteration of expectation–maximisation takesO(LM) time. �e number

of iterations of mixing up and expectation–maximisation increases linearly withM.

In practice, therefore, the time complexity of idpmc is at leastO
(
M3
)
.

It is important to realise the di�erence with normal training of speech recognisers,

where the amount of training data is limited, and the number of components is there-

fore limited. Here, an unlimited number of samples can be generated within machine

limitations, and a high number of components can be chosen. To represent the noise-

corrupted speech as well as possible, a much larger number of samples is useful than is

usually required for training a speech recogniser, especially to estimate full covariance
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matrices. However, it is not a priori clear how many Gaussians is enough to correctly

represent the corrupted speech distribution in 39 dimensions. �e experiments in

section 8.2, which will model the distribution as exactly as possible, will increase the

number of components, and therefore the number of samples, to the machine limits.

5.3.3 Extended VTS

Another method of �nding Gaussian compensation adapts vts compensation (sec-

tion 4.4.2) to extended feature vectors. Just like the �rst presentation of extended

dpmc in section 5.3.1, extended vts (evts) will approximate the extended corrup-

ted speech with a Gaussian, and then convert the Gaussian to the standard domain.

Section 5.2.1 has shown that, if the approximation is Gaussian, minimising the kl di-

vergence between the extended distribution and its approximation is equivalent to

optimising the kl divergence in the standard domain with static and dynamic fea-

tures.

Since the extended feature vector is a concatenation of static feature vectors, it

is possible to use a linearised version of the static mismatch function for each time

o�set to yield an overall mismatch function for ye. �is alleviates the need for the

continuous-time approximation for dynamics, so that no distribution over dynamics

is required for the phase factor. It is possible to de�ne a distribution for the exten-

ded phase factor αe. �e elements of αe are approximately Gaussian distributed but

constrained to [−1,+1] (see section 5.5.3). To simplify the distribution ofys, the con-

straint can be ignored, so that αe ∼ N (0,Σe
α).

An extension to static compensation using vts can be used to �nd the exten-

ded corrupted speech distribution. �e �rst-order vector Taylor series approximation

in (4.36a) is applied to each time instance separately. �us the expansion point f0r

each time instance is given by the static means at the appropriate time o�sets. �ese

are obtained from the extended distributions distributions over the clean speech xe,

noise ne, and the phase factor αe. �us, using the form of the vts approximation in
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(4.36a) per time instance:

fevts(x
e
t ,n

e
t ,h

e
t ,α

e
t) ,


ft−1,vts(xt−1,nt−1,ht−1,αt−1)

ft,vts(xt,nt,ht,αt)

ft+1,vts(xt+1,nt+1,ht+1,αt+1)



=


f
(
µsx−1 ,µ

s
n−1
,µsh−1 , 0

)
+ Jx−1

(
xst−1 − µ

s
x−1

)
+ Jn−1

(
ns
t−1 − µ

s
n−1

)
+ Jα−1

αs
t−1

f
(
µsx0 ,µ

s
n0
,µsh0 , 0

)
+ Jx0

(
xst − µ

s
x0

)
+ Jn0

(
ns
t − µ

s
n0

)
+ Jα0α

s
t

f
(
µsx+1 ,µ

s
n+1
,µsh+1 , 0

)
+ Jx+1

(
xst+1 − µ

s
x+1

)
+ Jn+1

(
ns
t+1 − µ

s
n+1

)
+ Jα+1

αs
t+1

 ,
(5.28)

where the o�set-dependent Jacobians are given by

Jx−1 =
dys

dxs

∣∣∣∣
µsn−1

,µsx−1
,µsh−1

,0

; Jx0 =
dys

dxs

∣∣∣∣
µsn0

,µsx0
,µsh0

,0

;

Jx+1 =
dys

dxs

∣∣∣∣
µsn+1

,µsx+1
,µsh+1

,0

, (5.29)

and similar for Jn and Jα. Note that Jx0 is equal to the Jacobian for standard vts

in (4.36b).

As in standard vts (in (4.41)), approximating the corrupted speech distribution

works by substituting the vector Taylor series approximation of the mismatch func-

tion. Again, using this approximation, the extended corrupted speech distribution

drops out as Gaussian. �e approximation qe to the extended corrupted speech dis-

tribution then is

qe(ye) :=

∫ ∫ ∫
δfevts(xe,ne,he,αe)(y

e)p(xe,ne,he,αe)dαednedxe

=

∫ ∫ ∫
δfevts(xe,ne,he,αe)(y

e)N
(
xe; µex, Σ

e
x

)
N (ne; µen, Σ

e
n)N (αe; µeα, Σ

e
α) dα

e dne dxe

, N
(
ye; µey, Σ

e
y

)
. (5.30)

�is Gaussian is found by compensating each block of themean and covariance separ-

ately with the appropriately linearised mismatch function. �e structure of the para-
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meters of qe is (repeated from (5.4))

µey =


µsy−1

µsy0

µsy+1

 ; Σe
y =


Σs
y−1y−1

Σs
y−1y0

Σs
y−1y+1

Σs
y0y−1

Σs
y0y0

Σs
y0y+1

Σs
y+1y−1

Σs
y+1y0

Σs
y+1y+1

 . (5.31)

�e parameters of this extended corrupted speech distribution can be found by com-

puting expectations over the Gaussians. �e mean for time o�set +1, for example,

uses the linearisation for that time instance:

µsy+1 = E
{
ft+1,vts(x

s
t+1,n

s
t+1,h

s
t+1,α

s
t+1)
}
= f
(
µsx+1 ,µ

s
n+1
,µsh+1

)
. (5.32)

�e covariancematrixΣe
y requires the correlations between all time o�sets in the win-

dow. �e covariance between o�sets 0 and+1, for example, uses the linearisations for

time instances 0 and +1:

Σs
y0y+1

= E
{
(ft,vts(x

s
0,n

s
0,h

s
0,α

s
0) − µy0)(ft+1,vts(x

s
+1,n

s
+1,h

s
+1,α

s
+1) − µy+1)

T}
= E
{(
Jx0(x

s
t − µ

s
x0
) + Jn0(n

s
t − µ

s
n0
) + Jα0α

s
t

)
(
Jx+1(x

s
t+1 − µ

s
x+1

) + Jn+1(n
s
t+1 − µ

s
n+1

) + Jα+1
αs
t+1

)T}
= Jx0Σ

s
x0x+1

JTx+1 + Jn0Σ
s
n0n+1

JTn+1 + Jα0Σ
s
α0α+1

JTα+1
. (5.33)

�is is applied for each of the possible time o�set blocks in Σe
y. �us, each block

(t, t ′) in the covariance matrix combines Jacobians at time o�sets t and t ′ and cross-

covariances of the speech, noise, and phase factor for t and t ′. �is is the main di�er-

ence between standard vts (which uses the continuous-time approximation) and ex-

tendedvts. Section 5.3.3.1 will examine standardvts in the light of this. Section 5.3.3.2

will discuss the time complexity of extended vts.

5.3.3.1 Relationship with VTS

It is interesting to examine the relationship between standard vts and extended vts

described in the previous section. It is possible to describe the mismatch function for
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the dynamic coe�cients of standard vts, which uses the continuous-time approxim-

ation for the dynamic coe�cients, in terms of extended vts. To be able to compare

with standard vts at all, the phase factor has to be assumed 0.

�e approximation that standard vts uses for the static coe�cients is exactly the

same as the one extended vts uses for the statics at the centre time o�set. �erefore,

the compensated static mean and covariance that standard vts �nds are the same as

the ones extended vts �nds for time o�set 0. However, dynamic parameter compens-

ation with standard vts uses the continuous-time approximation.�is uses the vector

Taylor series expansion point of the static coe�cients for all the dynamic coe�cients.

When the vector Taylor series expansion uses the same clean speech and noise means

µsx0 ,µ
s
n0

and thus the same Jacobian J0 for all time o�sets in (5.28), it becomes
ys
t−1

ys
t

ys
t+1

 '

f
(
µsx0 ,µ

s
n0
,µsh0 , 0

)
+ Jx0

(
xst−1 − µ

s
x0

)
+ Jn0

(
ns
t−1 − µ

s
n0

)
f
(
µsx0 ,µ

s
n0
,µsh0 , 0

)
+ Jx0

(
xst − µ

s
x0

)
+ Jn0

(
ns
t − µ

s
n0

)
f
(
µsx0 ,µ

s
n0
,µsh0 , 0

)
+ Jx0

(
xst+1 − µ

s
x0

)
+ Jn0

(
ns
t+1 − µ

s
n0

)
 . (5.34)

�is approximation results in the following when substituted in the expression for

computing dynamic coe�cients in (2.8):

y∆t =

∑w
τ=1 τ(y

s
t+τ − y

s
t−τ)

2
∑w
τ=1 τ

2

=

∑w
τ=1 τ

(
Jx0x

s
t+τ + Jn0n

s
t+τ − Jx0x

s
t−τ − Jn0n

s
t−τ

)
2
∑w
τ=1 τ

2

=
Jx0
∑w
τ=1 τ

(
xst+τ − x

s
t−τ

)
+ Jn0

∑w
τ=1 τ

(
ns
t+τ − n

s
t−τ

)
2
∑w
τ=1 τ

2

= Jx0x
∆
t + Jn0n

∆
t . (5.35)

�is is exactly the same expression as the continuous-time approximation when ap-

plied to vts compensation (in (4.37)). Extended vts compensation therefore becomes

equivalent to standard vts compensation when the expansion point is chosen equal

for all time o�sets. Extended vts performs the transformation from extended to

standard parameters a�er compensation. �is allows extended vts to use a di�er-

ent vector Taylor series expansion point for every time o�set to �nd more accurate

compensation.
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vts evts
Statistics diag. block-d. striped full
Decoding diag. block-d. diag. full

Jacobians s3 es3

Compensation d∆s2 d∆s3 e2s2 e2s3

Projection — d∆se2 d∆
2
s2e2

Table 5.1Computational complexityO(·) per component for compensation with
vts and with extended vts, for diagonal blocks and for full blocks.

5.3.3.2 Computational cost

Compensation with extended vts is more computationally expensive than vts with

the continuous-time approximation. �is section examines the di�erences in detail.

�e computational complexity per component will be expressed in terms of the size

of the static feature vector s (typically 13), the total width of the window e = 4w +

1 (typically 9), and the number of orders of statics and dynamics d∆ (typically 3).

Since the calculation of the covariance matrices dominates the computation time, the

analysis will not explicitly consider the means.

Table 5.1 gives a comparison of the computational complexity for the three oper-

ations that can be distinguished in extended vts compensation. �e �rst one is com-

puting the Jacobian of themismatch function, which takesO
(
s3
)
. Standard vts com-

pensation uses one linearisation point per component, and therefore needs to compute

the Jacobian only once. Extended vts, however, uses a di�erent linearisation point for

all e time o�set in the window, and computes a Jacobian for each of these.

Compensation of the covariance matrix is done one s × s block at a time. �e

expression for standard vts (see (4.42b)) is of the form:

Σs
y := JxΣxJ

T
x + JnΣnJ

T
n . (5.36)

�e expression for extended vts compensation has the same form (but di�erent vari-

ables) for each block of the covariance matrix. It has time complexity O
(
s2
)
if the

blocks for the noise Σs
n, the clean speech Σs

x and the corrupted speech Σs
y are diag-

onal. For standard vts, this happens when the covariances for statistics and decoding
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are all diagonal; for extended vts, when the blocks in the covariance matrices for

statistics are diagonal (“striped”), and covariances for decoding are diagonal. When

either the statistics or compensation uses full covariancematrices, then compensation

takes O
(
s3
)
. For vts, the d∆ blocks along the diagonal are compensated; for exten-

ded vts, for the 12e(e+1) blocks in the extended covariance matrix. �e row labelled

“Compensation” in table 5.1 summarises this.

Extended vts projects the compensated distribution onto the standard feature

space with statics and dynamics. Since the blocks of the projection matrixD are di-

agonal, computing one entry of the resulting covariance matrix Σe
y = DΣe

yD
T takes

O
(
e2
)
. For diagonal-covariance decoding, d∆s entries need to be computed; for full-

covariance decoding, d∆2s2.

�us for full-covariance compensation, the computational complexity of evts is

signi�cantly higher than standard vts. However, in practice per-Gaussian compensa-

tion is o�en too costly evenwhen the standard version of vts is used. Joint uncertainty

decoding (jud) (Liao 2007, section 4.4.3) addresses this by computing compensation

per base class rather than per Gaussian component. Section 5.4 will detail how to �nd

a joint distribution using extended vts. Chapter 6 will deal with another important

issue: the computational cost of decoding. If full-covariance compensation is found,

joint uncertainty decoding still compensates for changes in the correlations by decod-

ing with full covariance matrices. �is is slow. Predictive linear transformations can

solve this issue by applying transformation to the feature vectors that eliminate the

need to decode with full covariance matrices.

5.3.4 Algonquin with extended feature vectors

Section 4.5.1 has discussed the Algonquin algorithm, which applies a vector Taylor

series approximation but iteratively updates the expansion point to �t the observation

better. �is used the joint distribution of the sources, the speech and the noise, and

the observation. �e way it was originally presented, it only acted on the static part

of feature vectors. �is is all that is necessary for feature enhancement. �e covari-
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ance matrix of the observation was supposed to be diagonal. To make the process

consistent, the relation between the sources and the observation must then also be

assumed independent, which is an additional approximation. If this approximation

is to be removed, then the observation covariance must be full, which runs into the

same problem as for standard vts compensation: compensation for dynamics, which

applies the continuous-time approximation, is not accurate enough.

However, it is possible to apply the Algonquin algorithm to extended feature vec-

tors so as not to rely on the continuous-time approximation. �is makes it possible

to express the in�uence that one coe�cient in the speech vector, for example, has

on another coe�cient in the observation vector. �e main intuition is that once the

mismatch function is linearised for a component, the extended speech and noise vec-

tors and the observation vector with statics and dynamics are jointly Gaussian. �e

following will detail how this intuition can be used to �nd an extended Algonquin

algorithm.

Extended vts applies the mismatch function per time instance. One way of view-

ing the resulting transformation from extended speech and noise to extended obser-

vation vectors is as a function fevts de�ned in (5.28):

ye ' fevts(xe,ne,he,αe). (5.37)

Just like in the original Algonquin algorithm, the phase factor will not be assumed

to have a distribution, but assumed 0, and instead the uncertainty will be modelled

with an error termN (0,Ψ) on the observation. Also, for notational convenience, the

convolutional noise he will again be omitted. It is handled the same as the additive

noise ne. �e linearised mismatch function fe(k)vts at iteration k relates the extended

vectors of the sources to the extended observation vectorye, which in turn is related to

the observation vectorwith statics and dynamics by the linear projectionD as in (5.1a),

plus error termN (0,Ψ). �is implies that if xe andne are Gaussian, xe,ne andy are
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jointly Gaussian, similarly to (4.58):

q
(k)
yt



xe

ne

y


 = N



xe

ne

y

 ;


µex

µen

µ
(k)
y

 ,

Σe
x 0 Σ

(k)
xy

0 Σe
n Σ

(k)
ny

Σ
(k)
yx Σ

(k)
yn Σ

(k)
y


 . (5.38)

µex, µen, Σe
x, andΣe

n are taken directly from the priors of the speech and the noise. �e

Jacobians that related the extended speech and noise with the observation with statics

and dynamics, y, are

J
(k)
x =

dy

dx

∣∣∣∣
x
(k)
0

=
dy

dye

dye

dx

∣∣∣∣
x
(k)
0

= D


J
s(k)
x−1 0 0

0 J
s(k)
x0 0

0 0 J
s(k)
x+1

 ; (5.39a)

J
(k)
n =

dy

dn

∣∣∣∣
n
(k)
0

=
dy

dye

dye

dn

∣∣∣∣
n
(k)
0

= D


J
s(k)
n−1 0 0

0 J
s(k)
n0 0

0 0 J
s(k)
n+1

 . (5.39b)

�e parameters of the joint distribution that depend on the linearisation at iteration k

are then

Σ
(k)
yx = J

e(k)
x Σe

x; (5.40a)

Σ
(k)
yn = J

e(k)
n Σe

n; (5.40b)

Σ
(k)
y = J

e(k)
x Σe

xJ
e(k)
x

T
+ J

e(k)
n Σe

nJ
e(k)
n

T
+Ψ. (5.40c)

Having set up the joint distribution in (5.38), the Algonquin algorithm proceeds

as in section 4.5.1. From the joint distribution, each observation gives a Gaussian ap-

proximation of the posterior distribution of the extended speech and the noise. �e

expansion point is set to the mean of this distribution, which yields a newly linearised

mismatch function fevts, and therefore a new joint distribution. A�er a few iterations

of this process, the expansion point should be centred on the actual posterior of the

speech and the noise. �e advantage of applying this to extended feature vectors is

that the distribution of the corrupted speech with dynamic coe�cients can be mod-

elled with a full covariance matrix. �e original algorithm diagonalised the corrupted
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speech distribution. Tomake the joint distribution valid, the Jacobians must then also

be assumed diagonal, which is an additional approximation compared to vts com-

pensation. Using extended feature vectors, compensation is of good enough quality

to �nd full covariance matrices.

5.4 Extended joint uncertainty decoding

Section 4.4.3 has discussed joint uncertainty decoding, which applies a compensation

method to a base class at once. �e Gaussian joint distribution can be estimated us-

ing any model compensation method, with an appropriate extension. Given the joint

distribution per base class, it is possible to compensate the components in that base

class more quickly than by applying the compensation method on each component

separately.

Applying extended vts to each component is slower than normal vts. �ere-

fore, applying extended vts per base class leads to an even greater increase in speed

than applying standard vts per base class. However, one of the important aspects of

extended vts is that it can generate full-covariance compensation. �is leads joint

uncertainty decoding to produce full-covariance compensation as well, which slows

down decoding. �erefore, section 6.3 will present predictive linear transformations,

which enable fast decoding from full-covariance joint uncertainty decoding. �is sec-

tion will produce joint Gaussian distributions with extended dpmc and extended vts

(repeated from (4.46)):  x
y

 ∼ N

µx
µy

 ,
 Σx Σxy

Σyx Σy

 . (5.41)

Since this joint distribution over statics and dynamics is Gaussian, like in section 5.2,

�nding the optimal extended Gaussian distribution and then converting it yields the

optimal distribution over statics and dynamics. �e extended joint distribution is xe
ye

 ∼ N

µex
µey

 ,
 Σe

x Σ
e
xy

Σe
yx Σ

e
y

 . (5.42)
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5.4. extended joint uncertainty decoding

To transform the joint distribution over extended feature vectors in (5.41) into the one

in (5.42), the relation between the joint vectors applies to the Gaussian: x
y

 =

D 0

0 D

 xe
ye

 . (5.43)

�erefore, the same transformation can be applied to the joint extended distribution

in (5.42):  x
y

 ∼ N

Dµex
Dµey

 ,
 DΣe

xD
T DΣe

xyD
T

DΣe
yxD

T DΣe
yD

T

 . (5.44)

Given these parameters per base class, decoding uses the same form as standard joint

uncertainty decoding, in section 4.4.3.

�e rest of this section will therefore estimate the parameters of the joint extended

distribution in (5.42). Just like for standard joint uncertainty decoding, the original

compensation methods (here, extended dpmc and extended vts) already provide the

clean and corrupted speech marginals xe ∼ N (µex,Σ
e
x) ,y

e ∼ N
(
µey,Σ

e
y

)
. �e clean

speech is given, and the corrupted speech Gaussian is what a model compensation

method �nds. �e cross-covariance Σe
xy is what the extension needs to �nd.

With extendeddpmc Section 4.4.3.1 has detailed how to �nd a standard joint distri-

bution with dpmc. �e procedure for producing an extended joint distribution with

extended dpmc is analogous.

Section 5.3.1 has discussed how to draw extended samples ye(l) from the noise-

corrupted speech distribution. To train the joint distribution, sample pairs of both

the clean speech and the corrupted speech are retained. �e empirical distribution

has L delta spikes at positions (xe(l),ye(l)), analogous to (5.19):

p̃(xe,ye) =
1

L

∑
l

δ(xe(l),ye(l)). (5.45)

Just like in (5.21), the parameters of the Gaussian are set to minimise the kl diver-

gence to the empirical distribution. �is is equivalent to maximising the likelihood

139



chapter 5. compensating correlations

of the resulting distributions on the samples. However, for the joint distribution, the

mean and covariance parameters are set at once to the mean and covariance of the

tuple (x,y) under the empirical distribution:

µex
µey

 :=
1

L

L∑
l=1

 xe(l)
ye(l)

 ; (5.46a)

 Σe
x Σ

e
xy

Σe
yx Σ

e
y

 :=

1
L

L∑
l=1

 xe(l)
ye(l)

 xe(l)
ye(l)

T
−

µex
µey

µex
µey

T

. (5.46b)

With extended vts When �nding the joint distribution with extended dpmc, the

estimating of the cross-covariance is implicit. When using extended vts for the same

purpose, however, the structure of the cross-covariance has to be considered. It is

analogous to (5.4):

Σe
yx =


Σs
y−1x−1

Σs
y−1x0

Σs
y−1x+1

Σs
y0x−1

Σs
y0x0

Σs
y0x+1

Σs
y+1x−1

Σs
y+1x0

Σs
y+1x+1

 . (5.47)

�e blocks of this can each be found analogously to (5.33). For example, for the cross-

covariance between the corrupted speech at time instance 0 and the clean speech at

time instance +1, noting that the clean speech is assumed independent of the noise

and the phase factor,

Σs
y0x+1

= E
{
(fvts(x

s
0,n

s
0,h

s
0,α

s
0) − µy0)

(
xt+1 − µx+1

)T}
= E
{(
Jx0(x

s
t − µ

s
x0
) + Jn0(n

s
t − µ

s
n0
) + Jα0α

s
)(
xst − µ

s
x+1

)T}
= Jx0Σ

s
x0x+1

. (5.48)

�e equivalent computation can be performed for all blocks of Σe
yx. �is gives the

complete joint distribution in (5.42).
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5.5 Extended statistics

A practical issue when compensating extended feature vectors is the form of the stat-

istics for the clean speech and the noise. For standard vts, the clean speech statistics

are usually taken from the recogniser trained on clean speech and the noise model is

usually estimated with maximum-likelihood estimation, as discussed in section 4.7.

In contrast, extended vts and extended dpmc require distributions over the extended

clean speech and noise vectors. As these have more parameters than standard statist-

ics, robustness and storage requirements need to be carefully considered. Amodel for

the phase factor is also needed.

5.5.1 Clean speech statistics

Model compensation schemes, such as vts, use the Gaussian components from the

uncompensated system as the clean speech distributions. For extendedvts and exten-

ded dpmc, however, distributions over the extended clean speech vector are required.

For one extended clean speech Gaussian N (µex,Σ
e
x), the parameters are of the same

form as in 5.4:

µex =


µsx−1

µsx0

µsx+1

 ; Σe
x =


Σs
x−1x−1

Σs
x−1x0

Σs
x−1x+1

Σs
x0x−1

Σs
x0x0

Σs
x0x+1

Σs
x+1x−1

Σs
x+1x0

Σs
x+1x+1

 . (5.49)

In common with standard model compensation schemes, when there is no noise the

compensated system should be the same as the original clean system trained with ex-

pectation–maximisation. To ensure that this is the case single-pass retraining (Gales

1995) should be used to obtain the extended clean speech distributions. Here the same

posteriors (associatedwith the complete data set for expectation–maximisation) of the

last standard clean speech training iteration (with static and dynamic parameters) are

used to accumulate extended feature vectors around every time instance.

Another problem with using the extended statistics is ensuring robust estimation.

�e extended feature vectors contain more coe�cients than the standard static and
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dynamic ones. Hence, the estimates of their distributions will be less robust and take

up more memory. If full covariance matrices for Σe
x are stored and used, both �rst-

and second-order dynamic parameters usewindowwidths of±2, and there are s static
parameters, this requires estimating a 9s×9s covariancematrix for every component.

�is ismemory-intensive and singularmatrices and numerical accuracy problems can

occur. One solution is to reduce the number of Gaussian components or states in the

system. However, the precision of the speech model then decreases. Also, this makes

it hard to compare the performance of compensation with extended vts and standard

vts.

An alternative approach is to modify the structure of the covariance matrices, in

the same fashion as diagonalising the standard clean speech covariance model. To

maintain some level of inter-frame correlations, which may be useful for computing

the dynamic parameters, each block is diagonalised. �is yields the following struc-

ture:

Σe
x =


diag

(
Σs
x−1x−1

)
diag

(
Σs
x−1x0

)
diag

(
Σs
x−1x+1

)
diag

(
Σs
x0x−1

)
diag

(
Σs
x0x0

)
diag

(
Σs
x0x+1

)
diag

(
Σs
x+1x−1

)
diag

(
Σs
x+1x0

)
diag

(
Σs
x+1x+1

)
 . (5.50)

For each Gaussian component, the ith element of the static coe�cients for a time in-

stance is then assumed correlated with only itself and the ith element of other time

instances. �is causes Σe
x to have a striped structure with only 45s parameters rather

than 9s(9s + 1)/2 for the full case. �is type of covariance matrix will be called

“striped”. It is a simple instantiation of structured precision matrix modelling,3 dis-

cussed in section 3.3.1, with the special attribute that when there is no noise it will still

yield the standard static and dynamic clean speech parameters.

3A stripedmatrix can be expressed as a block-diagonalmatrix transformed by a permutationmatrix.
�is can straightforwardly be expressed in terms of basis matrices.
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5.5.2 Noise model estimation

A noise model with extended feature vectors is necessary to perform compensation

with extended vts. �is noise model is of the formMe
n = {µen,Σ

e
n,µ

e
h}, with para-

meters

ne =


ns
t−1

ns
t

ns
t+1

 ∼ N



µsn−1

µsn0

µsn+1

 ,

Σs
n−1n−1

Σs
n−1n0

Σs
n−1n+1

Σs
n0n−1

Σs
n0n0

Σs
n0n+1

Σs
n+1n−1

Σs
n+1n0

Σs
n+1n+1


 ; (5.51)

he =


hs
t−1

hs
t

hs
t+1

 =


µsh−1

µsh0

µsh+1

 . (5.52)

In this thesis, and the majority of other work, the noise model consists of a single

Gaussian component. �e distribution for each time o�set therefore is by de�nition

the same. �is means that the extended means for the additive and convolutional

noise simply repeat the static means. �e structure of the extended covariance Σe
n is

also known. Since the noise is assumed identically distributed for all time instances at

the same distance, the correlation between time instances is always the same. �us, all

diagonals of the covariance matrix repeat the same entries. LetΣs
n0
,Σs

n1
,Σs

n2
indicate

the cross-correlation between noise that is 0, 1, or 2 time instances apart.�e extended

noise model then has the following form:

µen =


µsn

µsn

µsn

 ; Σe
n =


Σs
n0
Σs
n1
T Σs

n2
T

Σs
n1
Σs
n0
Σs
n1
T

Σs
n2
Σs
n1
Σs
n0

 ; µeh =


µsh

µsh

µsh

 . (5.53)

In theory these noise parameters could be found using maximum likelihood estim-

ation. However, this would make the noise estimation process inconsistent between

standard vts and extended vts. It would be useful to use the standard noise estima-

tion schemes and map the parameters to the ones in the extended forms above. �is

has the additional advantage of limiting the number of parameters to be trained, thus

ensuring robust estimation on small amounts of data. �ese standard noise paramet-

143



chapter 5. compensating correlations

ers are (repeated from (4.83))

µn =

µsn
0

 ; Σn =

 diag(Σs
n) 0

0 diag
(
Σ∆n
)
 ; µh =

µsh
0

 . (5.54)

�e extended noise means are straightforward functions of the static means of

the standard noise model (5.54). Similarly, Σs
n0
, the covariance between noise 0 time

instances apart, is the static noise covariance Σs
n. Computing the o�-diagonals of the

extended covariance, however, is not as straightforward. �e next subsections will

discuss two forms of extended noise covariance from the standard noise covariance:

the diagonal form, and a smooth reconstruction.

A simple way of reconstructing the extended noise covariance from a standard

noise model assumes that the noise is uncorrelated between time instances. �is is

done by setting the o�-diagonal elements are set to zero, which yields

Σe
n =


Σs
n 0 0

0 Σs
n 0

0 0 Σs
n

 . (5.55)

�is only uses the static elements of the estimated noise covariance. For very low

signal-to-noise ratio (snr) conditions this form of extended noise distribution will

not yield the standard noise distributions for the dynamic parameters.

Another option is to use the dynamic parameters of the noise model to �nd a

reconstruction of the extended noise covariance from (5.54). A problem is that the

mapping from the extended feature domain to statics and dynamics is straightforward,

but the reverse mapping is under-speci�ed. �e standard feature vector nt is related

to one in the extended domain ne
t (analogously to (5.1a)):

nt =

 ns
t

n∆t

 =

 0 I 0

− I
2 0

I
2



ns
t−1

ns
t

ns
t+1

 = Dne
t . (5.56)

To reconstruct ne
t from nt, extra constraints are necessary as D is not square, and

therefore not invertible.�ese constraints should yield an extended feature vector that
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represents a plausible sequence of static feature vectors. �e Moore-Penrose pseudo-

inverse of D could be used. However, this would result in the ne
t with the smallest

norm. For the three-dimensional example used here, the reconstruction would set

ne
t−1 = −ne

t+1 without any reference to the value of the static coe�cients ns
t. �us,

the Moore-Penrose pseudoinverse might lead to reconstructions with large changes

in coe�cients from one time to the next.

�e need for smooth changes from time instance to time instance can be used as

additional constraints. �us the aim is to �nd a smooth reconstruction whilst satis-

fying the constraints to yield the standard static and dynamic distributions. To im-

plement this constraint, rows representing higher-frequency changes are added toD

and zeros added tont to indicate their desired values. �e extension of the projection

matrixD, E, can then be made invertible. �us
ns
t

n∆t

0

 = Ene
t ; E−1


ns
t

n∆t

0

 = ne
t . (5.57)

For the extra rows of E, the corresponding rows from the discrete cosine transform

(dct) matrix are appropriate, since they indicate higher-order frequencies and are

independent. �e entries of aN×N dctmatrixC are given by (see (2.3))

cij =

√
2

N
cos

(2j− 1)(i− 1)π

2N
. (5.58)

�e form of E,D with dct-derived blocks appended, is:

E =


0 I 0

− I
2 0 I

2

c31I c32I c33I

 . (5.59)

Because the dynamicmean of the additive noise is zero,E−1µn is equal to the extended

mean in (5.53) (and similar for the convolutional noise). To reconstruct the extended

covarianceΣe
n from a standard noise model, the cross-covariance between statics and

dynamics can be ignored, and the higher-order covariance terms set to zero to make
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the reconstruction as smooth as possible. �is results in the following expression:
Σs
n

Σ∆n

0

 = EΣe
nE

T = E


Σs
n0
Σs
n1
T Σs

n2
T

Σs
n1
Σs
n0
Σs
n1
T

Σs
n2
Σs
n1
Σs
n0

ET, (5.60)

where the empty entries on the le�-hand side are ignored. �is is a system with

three sets of matrix equalities, which can be simply solved.4 In this work, the estim-

ated noise covariance matrix Σn is diagonal, so that Σs
n0
,Σs

n1
,Σs

n2
are also diagonal.

�is results in a striped matrix for Σe
n.

5.5.2.1 Zeros in the noise variance estimate

An additional issue that can occur when estimating the noise model using maximum

likelihood, is that noise variances estimates for some dimensions can become very

small, or zero. �ough this value may optimise the likelihood, it does not necessarily

re�ect the “true” noise variance. �is can lead to the following problem in compens-

ation.

One problem for the small noise variance estimates is that the clean speech silence

models are never really estimated on silence. In practice, even for clean speech there

are always low levels of background noise. �us, the estimated noise is really only re-

lative to this clean background level. At very high snrs the noise may be at a similar

level to the clean silence model. �is will cause very small noise variance values. An-

other problem results from the form of the covariance matrix compensation. For the

static parameters this may be written as (repeated from (4.42b))

Σ
s(m)
y := J

(m)
x Σ

s(m)
x J

(m)
x

T
+ J

(m)
n Σs

nJ
(m)
n

T
. (5.61)

At low snrs J(m)
x → 0 and J(m)

n → I, so the corrupted distribution tends to the noise

distribution. Conversely, at high snrs, J(m)
x → I and J(m)

n → 0, as the corrupted

speech distribution tends to the clean speech distribution. �e impact of this when

estimating the noise covariance matrix Σs
n in high snr conditions is that changes in

4�is implicitly sets Σs
n0 to Σs

n.
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the form of the noise covariance matrix have little impact on the �nal compensated

distribution.

When vts with the continuous-time approximation, along with diagonal corrup-

ted speech covariance matrices, is used during both noise estimation and recognition

then the process is self-consistent. However if the noise estimates are used with evts

to �nd full compensated covariance matrices this is not the case. �is slight mismatch

can cause problems. To address this issue a back-o� strategy can be used. When the

estimated noise variance has very low values rather than using full compensated cov-

ariancematrices, diagonal compensated variances can be used. �is will occur at high

snrs, where the correlation changes compared to the clean speech conditions should

be small. In this condition little gain is expected from full compensated covariance

matrices.

5.5.2.2 Estimating an extended noise model

An alternative approach to address this problem is to make the noise estimation and

decoding consistent for evts. �is would mean: estimating the parameters of the

extended noise distribution directly. Some of the methods in section 4.7.1 can be ex-

tended. �e most important di�erence with the circumstances in that section is that

now the compensated components have full covariances. Section 4.7.1 discussed two

types ofmethods: one typemodelled the noise as a hidden variable in the expectation–

maximisation framework, and the other directly optimised the noise model. Directly

optimising the noise model has become harder, because of the full covariance matri-

ces. However, the biggest problem with seeing the noise as a hidden variable was the

inconsistency arising from the diagonalisation. Since the resulting component distri-

butions are not diagonalised any more, this ceases to be a problem. �is section will

sketch how estimation of the extended noise distribution could proceed.

Just like in section 4.7, training uses expectation–maximisation (see section 2.3.2.1).

Here, the hidden variables U consist of the component sequencemt and the sequence

of extended noise vectors ne
t and he

t . At an abstract level, the expressions for the ex-
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pectation and maximisation steps are the same as in (4.84):

ρ(k) := q
(k)
U |Y ∝ q

(k)
UY ; (5.62a)

q
(k)
U := argmax

qU

∫
p̃(Y)

∫
ρ(k)(U |Y) logqU (U)dUdY. (5.62b)

For simplicity, assume only additive noise. �e expectation step again is approximate:

the linearisation of the mismatch function from the last iteration is used. With ex-

tended feature vectors, each time instance is linearised separately. For time instance

t + 1, for example, the in�uence of ns
t+1 on ys

t+1 is de�ned by Jnt+1 . �e extended

feature vectorye
t , which consists of time instancesys

t−w . . .y
s
t+w, is related to the ob-

servation with statics and dynamics with another linear projectionD. �e in�uence

of the extended noise vector on the observation vector with statics and dynamics is

therefore linear. �e details of the relationship are the same as for extended Algon-

quin (see section 5.3.4). Both the noise and the observation are modelled Gaussian

per componentm, so that their relation can be expressed as a joint distribution:

ne

y

 ∣∣∣∣∣∣m ∼ N

 µen

µ
(m)(k)
y

 ,
 Σe

n Σ
(m)(k)
ny

Σ
(m)(k)
yn Σ

(m)(k)
y

 , (5.63)

where Σny is the cross-covariance of the extended noise vector and the conventional

observation vector. None of the blocks of the covariance matrix is diagonal. �e

posterior distribution of the noise vector for component m at time t, ρ(m)
t (ne

t) =

ρ
(
ne
t

∣∣yt,mt

)
, is then Gaussian. Its parameters can be found as in appendix a.1.3.

In the maximisation step, the noise parameters are set to the empirical mean and

covariance of ρ. �is requires summing over all time slices and components and

weighting the distributions by the posterior component–time occupancyγ(m)
t de�ned

in (2.31a):

µ
e(k)
n := Eρ{ne} =

1∫
p̃(Y)TYdY

∫
p̃(Y)

TY∑
t=1

∑
m

γ
(m)
t Eρ(m)

t

{ne}dY ; (5.64a)
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Σ
e(k)
n := Eρ

{
neneT

}
− µ

e(k)
n µ

e(k)
n

T

=

(
1∫

p̃(Y)TYdY

∫
p̃(Y)

TY∑
t=1

∑
m

γ
(m)
t Eρ(m)

t

{
neneT

}
dY
)

− µ
e(k)
n µ

e(k)
n

T
.

(5.64b)

Additionally, the convolutional noise should be estimated, and the structure of the

noise model must be constrained. �is work does not investigate this. Instead, the

extended noise model will derive from a noise model estimated with standard vts.

By using the same noise estimates for both vts and evts, only di�erences in the com-

pensation process are examined, rather than any di�erences in the noise estimation

process. It should be emphasised that the results presented for evtsmay a slight un-

derestimate of the possible performance if a fully integrated noise estimate was used.

5.5.3 Phase factor distribution

�e phase factorαe is assumed to have independent dimensions (within and between

time instances). It is

αe =


αs
t−1

αs
t

αs
t+1

 , (5.65)

where every dimension is independent and distributed as in 4.18:

p(αi) ∝

 N
(
αi; 0, σ

2
α,i

)
αi ∈ [−1,+1];

0 otherwise.
(5.66)

5.6 Summary

�is chapter has described the �rst contribution of this thesis. It has extended model

compensation methods from chapter 4 to produce full-covariance compensation.

�e most important insight is that full covariance matrices require higher-quality

compensation for dynamics. �is claim will be validated in section 8.1.1.1. Section 5.2
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chapter 5. compensating correlations

has therefore shown how from a distribution over the statics in a window (an extended

feature vector) a distribution over dynamics can be found. �is uses the same linear

projection that feature extraction uses. Section 5.3 has introduced instances of com-

pensation methods that model the e�ect of the noise separately for each time instance

in the extended feature vector. �ey are therefore capable of generating accurate full

covariance matrices. Section 5.5.2 has shown how to �nd an extended noise model

from a standard noise model, so that model compensation with extended feature vec-

tors needs as little adaptation data as standard model compensation.

�e same principle of compensation can apply to a base class at once: section 5.4

has detailed how joint uncertainty decoding can be extended. �e choice of the num-

ber of base classes gives a trade-o� between speed and accuracy. However, decoding

with full covariance Gaussians is still slow. �e next chapter will present approxima-

tions to deal with this.
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Chapter 6

Predictive transformations

�is chapter will describe the second contribution of this thesis.1

�e previous chapter has introduced methods of model compensation that need

little data to train, but �nd full-covariance model compensation, which it is slow to

decode with. �is chapter will introduce predictive methods, which approximate a

distribution predicted with one model with another, di�erently parameterised model.

For example, this enables fast transformations to be trained from full-covariance com-

pensation.

Section 6.1 will formalise predictive methods. �ey can combine the advantages

of one method and those of another. For example, section 6.2 will introduce predic-

tive linear transformations, which like their adaptive versions (which were discussed

in sections 3.2 and 3.3) allow fast decoding. �e interesting aspect for this work is

that they canmodel correlations without the computational burden of full-covariance

1�ough van Dalen (2007); Gales and van Dalen (2007) introduced predictive linear transforma-
tions, they derived the predicted statistics by intuition. �is chapter introduces a rigorous framework for
predictive transformation. Additionally, this chapter will introduce a number of new schemes. Front-
end cmllr schemes, joint work with Federico Flego, in section 6.4 were published as van Dalen et al.
(2009). Section 6.3.5 will newly introduce predictive hlda.

Since the introduction of predictive linear transformations, a number of variants of speci�c trans-
formations have been proposed. Xu et al. (2009) used joint uncertainty decoding in a di�erent feature
space for estimating predictive cmllr transforms. �is chapter will give the theoretical underpinnings
for this. Another interesting line of work combines predicted statistics with statistics from data (Flego
and Gales 2009; Breslin et al. 2010)
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θt−1 θt

xt−1 xt

yt−1 yt

nt−1 nt

(a) �e predicted noise-corrup-
ted speech, from �gure 4.5 on
page 72.

θt−1 θt

yt−1 yt

(b) Compensated hidden
Markov model, from �gure 4.7
on page 75.

Figure 6.1 Model compensation as a predictive method: the predicted corrupted
speech is approximated with a standard hmm.

Gaussians. Section 6.3 will use full-covariance joint uncertainty decoding (discussed

in section 5.4) as the predicted distribution.

Another use of the predictive framework is for fast feature transformations. Un-

like conventional feature transformations for noise-robustness, which aim to recon-

struct the clean speech, the methods that section 6.4 will introduce aim to model the

corrupted speech distribution.

6.1 Approximating the predicted distribution

Predictive methods are methods that train parameterised distributions from distribu-

tions predicted with another model. �is is useful when it is impossible or impractical

to use the formermodel.�is sectionwill introduce the general framework for predic-

tive methods. It will give a formalisation of predictive transformations as minimising

the kl divergence between the predicted distributions and the model set.

For example, section 4.4 has introduced model compensation, which approxim-

ates the predicted model for the corrupted speech. Figure 6.1a shows that predicted
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θt−1 θt

xt−1 xt

yt−1 yt

(a) Predicted corrupted speech
with joint uncertainty decoding.

θt−1 θt

yt−1 yt

A

(b)AhiddenMarkovmodel with
a linear transformation.

Figure 6.2 Predictive linear transformations: a jud-compensated hmm is ap-
proximated with a linear transformation.

model, which results in an integral (in (4.24)) that has no closed form. Figure 6.1b

shows the approximated model. �e abstract idea of interpreting model compensa-

tion as a predictive method was proposed in Gales (1998b).

In many cases, it is possible to sample from the predicted distribution, and train

the approximated distribution from those samples. Indeed, extended dpmc (see sec-

tion 5.3.1) drops out when the parameters of all Gaussians of the approximate distri-

bution are trained separately, and extended iterative dpmcwhen the state-conditional

mixtures of Gaussians are trained. �ese schemes are slow but in the limit yield the

optimal parameters for their parameterisations.

Faster predictive methods, such as speech recogniser transformations, are pos-

sible. Section 6.2 will introduce an application of the predictive framework that �nds a

speech recogniser transformation that approximates another distribution. Predictive

transformations could be estimated with Monte Carlo. However, this would negate

the reason for estimating transformations, which is speed. Figure 6.2a shows a graph-

ical model for joint uncertainty decoding, a fast compensation method discussed in

section 4.4.3. Section 6.3 will discuss how to �nd an approximation to this with linear

transformations (discussed in 3.2), depicted in �gure 6.2b. �is combines the advant-

ages of joint uncertainty decoding, which needs little data to adapt but can generate
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full-covariance compensation (see section 5.4), and linear transformations, which are

fast in decoding.

�e rest of this sectionwill discuss the general framework of predictive transform-

ations. �ey are estimated by minimising the kl divergence between the predicted

distributions and the target transformation of the model set. Section 6.1.1 will intro-

duce a form of predicted distribution that predicts and approximates distributions per

component (normally, a Gaussian). �is is the form that most model compensation

methods presented in the chapter use, and will be the form used in the rest of this

work. However, it is also possible to approximate the distributions per sub-phone

state. �e formal derivation of this will be introduced in section 6.1.2. Iterative dpmc,

introduced in section 4.4.1, is the only method in this thesis that applies this.

6.1.1 Per component

�e idea of predictive transformations is that they are analogous to adaptive trans-

formations, but are estimated on predicted statistics rather than statistics from data.

Section 2.3.2.1 wrote the maximisation step of expectation–maximisation as minim-

ising the kl divergence between the inferred distribution of the complete data and the

model to be trained. Here, the idea is to minimise a kl divergence in the same way,

but between the predicted distribution and the model.

�e predicted distribution over the hidden variables U and test data observa-

tions Y will be written

p(U ,Y) = p(U)p(Y |U) . (6.1)

For speech recognition, U is the component sequence {mt}, which no transforma-

tion method in this thesis changes. p(Y |U) consists of the predicted component-

conditional distributions p(m). �is replaces the empirical distribution from data and

the inferred distribution over the hidden parameters in (2.24) on page 32, which was

p(U ,X ) = p̃(X )ρ(U |X ).
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6.1. approximating the predicted distribution

�e distribution to be trained is qUY , which for speech recognition factorises into

a distribution over the hidden variables qU , and one over the observed variables given

the hidden ones qY |U (as in (2.26)):

qUY(U ,Y) = qU (U)qY |U (Y |U) . (6.2)

Of these, only qY |U , the component-conditional distributions q(m), will be trained, so

that

argmin
qUY

KL(p‖qUY) = argmin
qUY

∫ ∫
p(U ,Y) log p(U ,Y)

qUY(U ,Y)
dYdU

= argmin
qY|U

∫ ∫
p(U)p(Y |U) log p(U)p(Y |U)

qU (U)qY |U (Y |U)
dYdU

= argmin
qY|U

∫ ∫
p(U)p(Y |U) log p(Y |U)

qY |U (Y |U)
dYdU . (6.3)

In this case, theminimisation is performed per component distribution, so thatU rep-

resents just the component identitym, and Y just the observation y it generates. �e

output distribution qY |U factorises per time step, so that the expression becomes

argmin
qY|U

KL(p‖qUY) = argmin
qY|U

∫∑
m

p(m)p(m)(y) log
p(m)(y)

q(m)(y)
dy

= argmin
qY|U

∑
m

p(m)KL
(
p(m)

∥∥q(m)
)
. (6.4)

A maximum-likelihood estimate of the prior distribution on the component can be

found from the training data.�e expectation step of expectation–maximisation gives

the total component occupancy γ(m), which in (2.31b) was de�ned as

γ(m) ,
∫
p̃(X )

TX∑
t=1

∫
ρ(U |X ) 1(mt = m)dUdX . (6.5)

�e maximum-likelihood estimated prior of the component is

p(m) :=
γ(m)∑
m ′ γ

(m ′)
. (6.6)

�is can straightforwardly be substituted into (6.4). However, the normalisation term

1/
∑
m ′ γ

(m ′) does not make a di�erence for the minimisation. �erefore, and be-
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cause without the normalisation theminimand turns out to be easier to relate to trans-

formations trained on data, the minimisation in (6.4) will be written

argmin
qY|U

KL(p‖qUY) = argmin
qY|U

∑
m

γ(m)KL
(
p(m)

∥∥q(m)
)
. (6.7)

�e objective of predictive transforms, then, turns out to be to minimise the occu-

pancy-weighted kl divergence between the predicted component distributions and

the distributions used for decoding. For the model compensation methods that were

discussed in the previous chapters, the parameters of each component distributionq(m)

were independent, so that the optimisation (in (4.28)) was separate for each compon-

ent. For the predictive linear transformations that section 6.2 will introduce, however,

the component distributions q(m) cannot be optimised separately, because they share

parameters. �e weighting by training data occupancy γ(m) therefore is necessary.

�e per-component kl divergence consists of the entropy of p(m) and the cross-

entropy of p(m) and q(m) (see appendix a.2), of which only the cross-entropy can be

optimised. To solve (6.7), it therefore su�ces to �nd

argmin
qY|U

KL(p‖qUY) = argmin
qY|U

∑
m

γ(m)H
(
p(m)

∥∥q(m)
)

= argmax
qY|U

∑
m

γ(m)

∫
p(m)(y) logq(m)(y)dy. (6.8)

�e minimisation of the cross-entropy turns into a maximisation of something that

can be interpreted as the expected log-likelihood.

6.1.2 Per sub-phone state

�e discussion so far has assumed that the hidden variables are componentsm. How-

ever, it is also possible to match the decoding process more closely. Section 2.4 has

discussed how Viterbi decoding �nds a state sequence Θ, and marginalises out over

the component sequencesM. Finding a transformed distribution that minimises the

per-component kl divergence is o�en sub-optimal compared to minimising a per-

state kl divergence. �e following �rst presents the expression for the per-state op-
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timisation, and then amethod to approximate this for the speci�c case of twomixture

models.

By following the derivation in section 6.1.1, but using the sub-phone state se-

quenceΘ = {θt} as the hidden variablesU and per-sub-phone output distributions for

the predictions and approximations, pY |U =
{
p(θ)
}
, qY |U =

{
q(θ)
}
, the expression

to optimise becomes (analogous to (6.7)):

argmin
qY|U

KL(p‖qUY) = argmin
qY|U

∑
θ

γ(θ)KL
(
p(θ)

∥∥q(θ)), (6.9)

where γ(θ) is the sub-phone occupancy, p(θ) is the predicted distribution for state θ,

and q(θ) the transformed speech recogniser model for that state.

For the case where p(θ) and q(θ) are mixture models, this expression normally has

no analytic solution. However, assuming that it is possible to compute and improve

the divergence between pairs of components of the mixtures, the divergence between

pairs of components of themixtures, the divergence between sub-phone state pairs can

be improved starting from the per-component one (Yu 2006;Dognin et al. 2009).�is

uses the upper bound on the cross-entropy presented in section a.2.2. A�er �nding

the tightest upper bound,qY |U is set to improve the upper bound by setting variational

parameters. �is process can be repeated a number of times to iteratively improve the

bound.

To apply this, (6.9) must be written as a minimisation of only one half of the kl

divergence, the cross-entropyH
(
p(θ)

∥∥q(θ)), which is analogous to (6.8):

argmin
qY|U

KL(p‖qUY) = argmin
qY|U

∑
θ

γ(θ)H
(
p(θ)

∥∥q(θ)). (6.10)

�is is the minimisation that iterative dpmc approximates with a sampling method

(in (4.33)).�e following will optimise an upper bound on this. For simplicity of nota-

tion, it will assume that the components of themixture distributionp(θ) are not shared

with other distributions p(θ ′), and similar for components of q(θ). �e algorithm is

straightforward to extend to the general case.
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�e distributionsp(θ) andq(θ) are assumedmixture distributionswith component

setsΩ(θ) and Ω̃(θ):

p(θ)(y) =
∑

m∈Ω(θ)

π
(θ)
m p

(m)(y); q(θ)(y) =
∑

n∈Ω̃(θ)

ω
(θ)
n q

(n)(y). (6.11)

�e sub-phone occupancy can be written as the sum of the occupancies of the com-

ponents:

γ(θ) =
∑

m∈Ω(θ)

γ(m). (6.12)

�e algorithm for �nding the upper bound to the cross-entropy between twomix-

tures (Yu 2006;Hershey andOlsen 2007) is discussed in appendixa.2.2.�e algorithm

optimises a probabilistic mapping between the components from one mixture and

components from the other mixture. �is mapping is represented by variational para-

meters φ(m)
n , with (repeated from (a.16))∑

n

φ
(m)
n = 1, φ

(m)
n ≥ 0. (6.13)

Appendixa.2.2 shows that the cross-entropy betweenmixtures can be upper-bounded

by a function of the sub-weights and the kl divergence between all component pairs.

�e expression is given in (a.17b). Applied to one sub-phone state pair it is

H
(
p(θ)

∥∥q(θ)) ≤ ∑
m∈Ω(θ)

∑
n∈Ω̃(θ)

π
(θ)
m φ

(m)
n

(
H
(
p(m)

∥∥q(n))+ log
φ
(m)
n

ω
(θ)
n

)
, F

(
p(θ), q(θ),φ

)
. (6.14)

To �nd an upper bound on the kl divergence of the whole model set, this can be

substituted in the expression optimised in (6.10):∑
θ

γ(θ)H
(
p(θ)

∥∥q(θ))
≤
∑
θ

γ(θ)

 ∑
m∈Ω(θ)

∑
n∈Ω̃(θ)

π
(θ)
m φ

(m)
n

(
H
(
p(m)

∥∥q(n))+ log
φ
(m)
n

ω
(θ)
n

)
, F

(
pY |U , qY |U ,φ

)
. (6.15)
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function Optimise-Predictive-Distribution(pY |U )
Initialise qY |U
repeat

for allm,n do
φ
(m)
n ← ω

(θ)
n exp(−H(p(m)‖q(n)))∑

n ′ ω
(n ′) exp(−H(p(m)‖q(n ′)))

qY |U ← argmaxqY|U F
(
pY |U , qY |U ,φ

)
until convergence
return qY |U

Algorithm 3 Optimising the upper bound to kl divergence to a predicted distri-
bution for mixture models.

Optimising the state-for-state kl divergence works as in algorithm 3. �e initial-

isation for approximate distributionqY |U could be the component-for-component op-

timum, or another setting. �e variational parameters are then optimised to tighten

the upper bound as in (a.20), a�erwhich the upper bound is improved by settingqY |U .

Both these steps are guaranteed not to increase the cross-entropy, so iterating over

them �nds a local optimum.

Since for most of the methods in the rest of this thesis, the components of the

predicted distribution and its approximation both derive from the same clean speech

component, the component-for-component optimisation from the previous section

will be used most. It is interesting to see how the component-for-component optim-

isation relates to the state-for-state optimisation. It is straightforward to set parameters

φ
(m)
n so that (6.15) is equal to the component-for-component kl divergence in (6.7)

(repeated from (a.21)):

φ
(m)
n =


1, m = n;

0, m 6= n.
. (6.16)

Since the inequality in (6.15) still holds under this setting, optimising the component-

for-componentkldivergence gives is an upper boundon the optimal state-for-statekl

divergence with variational parameters φ(m)
n . It is called thematched-pair bound (see

section a.2.2 and Hershey and Olsen 2007). �is means that even when optimising
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the component-for-component kl divergence, this optimises an upper bound on the

state-for-state kl divergence, which is consistent with the decoding process.

6.2 Predictive linear transformations

Adaptive linear transformations have been discussed in section 3.2. �ey do not have

a model of the environment, but restrict the number of parameters that need to be

trained, compared to training a full speech recogniser, by estimating linear trans-

formations. However, they still require more data than methods for noise-robust-

ness. However, decoding is o�en hardly slowed down at all. For examples, cmllr

(section 3.2.1) transforms every observation feature by a small number of transforma-

tions, which is fast. It then feeds the di�erently-transformed feature vectors to di�er-

ent groups of components.

No such tricks are possible for model compensation methods. Methods that �nd

Gaussian compensation, like standard vts and extended vts, apply a di�erent trans-

formation to each component. Converting them into fewer linear transformations,

however, could leverage the fast adaptation of extended vts, and the fast decoding of

linear transformations.

As section 3.1 has discussed, adaptationuses expectation–maximisation.�emax-

imisation step is equivalent to minimising the kl divergence between the empirical

distribution and the modelled distribution. �e framework of predictive transforma-

tions, introduced in section 6.1, approximates one distribution by another, also min-

imising thekl divergence between them.�at the optimisation in both cases is similar

makes converting adaptive transformations into predictive transformations relatively

straightforward. �e derivation of, for example, predictive cmllr, runs parallel to the

derivation of standard cmllr. �e main di�erence will be that the statistics from data

will be replaced by predicted statistics.

Predictive transformations approximate a predicted distribution p. �e approx-

imate distribution qY |U over observed variables Y given hidden variables U is set to
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(repeated from (6.7) and (6.8)):

argmin
qY|U

KL(p‖qUY) = argmin
qY|U

∑
m

γ(m)KL
(
p(m)

∥∥q(m)
)

= argmin
qY|U

∑
m

γ(m)H
(
p(m)

∥∥q(m)
)

= argmax
qY|U

∑
m

γ(m)

∫
p(m)(y) logq(m)(y)dy, (6.17)

whereγ(m) is the total occupancy on the training data for componentm. Linear trans-

formations are de�ned by a set of transformationsA, one of which acts on each com-

ponent. �e output distribution of transformed componentm is written q(m)(y|A).
�e optimisation in (6.17) then becomes

A := argmin
A

∑
m

γ(m)KL
(
p(m)

∥∥q(m)
)

= argmax
A

∑
m

γ(m)

∫
p(m)(y) logq(m)(y|A)dy. (6.18)

�is expression is similar to the optimisation for adaptive linear transformations in (3.2):

A(k) := argmax
A

∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t logq(m)(yt|A)dY. (6.19)

Alternatively, the per-state kl divergence could be optimised using the technique

in section 6.1.2. �is would require interleaving the optimisation of the variational

parameters of the upper bound on the kl divergence per state, and the optimisation

of the transformation. Since the upper bound (in (6.15)) is a linear combination of

the per-component cross-entropies, optimising the transformation still has the form

in (6.18). For clarity, therefore, the following will use that form.

Both predictive cmllr and predictive covariance mllr derive from (6.18) in the

same way as their adaptive versions derive from (6.19). It will turn out the only change

is in the statistics, which are predicted rather than gathered fromdata.�is is conveni-

ent, because the procedure for estimating the transformations presented in chapter 3.2

can be re-used. It is also satisfying, because the predicted statistics that drop out cor-

respond to the intuitive expressions. �ey are the same as Gales and van Dalen (2007)

derived by intuition.
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Onedi�erence between the adaptive linear transformations and the predictive ver-

sions is in the regression classes. Adaptation needs to carefully control for the avail-

able amount of data. One tool for this is a regression class tree that expands nodes as

long as there is enough data to train the corresponding transformation robustly. For

predictive transformations, on the other hand, there is a predicted distribution, para-

meterised for the instantiations in this thesis. �is corresponds to an in�nite amount

of data, so that data sparsity is not an issue.

An interesting case is when there is only one component in a base class. If addi-

tionally the predicted distributions are Gaussian, then the algorithms for predictive

cmllr and predictive semi-tied covariance matrices will �nd a transformation that

sets q(m) exactly equal to p(m). �e choice of the number of base classes therefore

gives a trade-o� between speed and accuracy.

Since each component is assigned to one base class only, the optimisation expres-

sions for each base class are independent. All of the derivations in the next sections

will therefore simplify notation by assuming only one base class, and summing over all

components. To convert these into expressions that do use base classes, the sums over

components should only by over components in the base class that the transformation

is estimated for.

6.2.1 Predictive CMLLR

Predictive cmllr (pcmllr) uses the exact same form of transformation that cmllr

uses. It is called “constrained” because the linear transformation of the means and

covariances are equal. �ere is also a bias on the mean. As section 3.2.1 has shown,

this can be written with the inverse transformation, which then works on the feature

vector. �e likelihood computation becomes (as in (3.4b))

q(m)(y|A) = |A| · N
(
Ay+ b; µ

(m)
x , Σ

(m)
x

)
, (6.20)

whereµ(m)
x andΣ(m)

x are Gaussian parameters for the clean speech.�ough for clarity

of notation it will not be written explicitly here, there is normally a set of R transform-
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ations
{
A(r),b(r)

}
, one for each base class (in the adaptive case, regression class).

Each component is assigned to one base class. A fast implementation can therefore

transform each observation vector yt into R transformed versionsA(r)yt +b
(r) and

pass each component the appropriately transformed versions. �e determinant
∣∣A(r)

∣∣
in (6.20) can be precomputed. �is makes decoding fast, both for the adaptive and

predictive versions of cmllr.

�e algorithm for predictive cmllr turns out to be the same as that for adaptive

cmllr. Appendix b.1.2 derives this. Both are expressed in terms of the same statistics,

but the di�erence is in how these statistics are acquired. For the predictive version

they are

γ ,
∑
m

γ(m); (6.21a)

k(i) ,
∑
m

γ(m)µ
(m)
x,i

σ
(m)
x,ii

[
Ep(m)

{
yT
}
1

]
; (6.21b)

G(i) ,
∑
m

γ(m)

σ
(m)
x,ii

 Ep(m)

{
yyT
}
Ep(m){y}

Ep(m)

{
yT
}

1

 . (6.21c)

�e form of the statistics for predictive cmllr is intuitively related to the form of the

statistics for the adaptive version, in (3.5). γ is the total occupancy, which for adaptive

cmllr is found from the distribution over the hidden variables, and here is derived

from the clean training data. k(i) is a function of the expected value of the predicted

distribution; its equivalent in (3.5b) can be viewed as the mean observation vector for

componentm under the empirical distribution, and similarly forG(i).

6.2.2 Predictive covariance MLLR

Covariance mllr (see section 3.2.2) is a technique that tries to �nd the best covari-

ance transformation to model the data. Since the overall aim of this chapter is to �nd

transformations that help model correlations without the decoding cost of full cov-

ariances, a predictive variant of covariance mllr should be useful. �e derivation of

predictive covariance mllr follows the same structure as that of predictive cmllr,
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in the previous section. �e kl divergence between the predicted distributions and

the transformed speech recogniser is minimised. �is will result in the same expres-

sion as for adaptive covariance mllr, but with the statistics replaced by the predicted

equivalents.

�e transformed likelihood is exactly the one in (3.6b):

q(m)(y|A) = |A| · N
(
Ay; Aµ

(m)
x , Σ

(m)
x

)
. (6.22)

As explained in section 3.2.2, this expression transforms feature and means, because

that makes decoding faster than transforming the covariance with the inverse.

�e derivation of predictive covariancemllr is in appendix b.2.2. As for predictive

cmllr, the only change is in the statistics, which again are intuitively related to those

for the adaptive version in (3.7):

γ ,
∑
m

γ(m); (6.23a)

G(i) ,
∑
m

γ(m)

σ
(m)
x,ii

Ep(m)

{(
y− µ

(m)
x

)(
y− µ

(m)
x

)T}
. (6.23b)

6.2.3 Predictive semi-tied covariance matrices

Predictive covariance mllr does not change the mean, nor the covariance matrices

beyond the linear transformation it applies. However, it is possible to adjust the cov-

ariancematrices as well as the linear transformation that is applied to them. Semi-tied

covariance matrices, discussed in section 3.3.1, do exactly that, for the training data. It

is possible to train the same transformation on predicted statistics. �e derivation is

analogous to the one for standard semi-tied covariance matrices.

�e likelihood expression for predictive semi-tied covariance matrices is analog-

ous to (3.12b):

q(m)(y) = |A| · N
(
Ay; Aµ

(m)
y , Σ̃

(m)
y,diag

)
. (6.24)
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�is expression is similar to the one for predictive covariance mllr, in (3.6b). It also

uses a transformationA to �nd a feature space in which diagonal covariance matrices

are used. However, there are two important di�erences. First, the mean is µ(m)
y (in-

stead of µ(m)
x ): it is set to the mean of the predicted corrupted speech distributions.

�is is not explicitly necessary for standard semi-tied covariance matrices, since they

are normally trained on the clean training data. �e second di�erence is that, just

like with normal semi-tied covariance matrices, the component covariance is also re-

estimated, and here indicated by Σ̃(m)
y,diag. For standard semi-tied covariance matri-

ces, the reason covariances could be re-estimated was that the training data was used

(rather than test data, as for adaptation transformations). Without data sparsity, over-

training was not a problem. For the predictive version, the training data statistics will

be replaced by predicted statistics, so that over-training is again not a problem.

�e three types of parameters to be estimated are µ(m)
y , Σ(m)

y , andA. �e means

are straightforwardly estimated. Even when it is transformed byA, y is transformed

by the same matrix, so thatAµy is still the mean, in the transformed space. �e cov-

ariances, on the other hand, are diagonal, and ifA changes, then they are sub-optimal,

and vice versa. �ey will therefore, like for standard semi-tied covariance matrices,

be estimated in an iterative fashion. Every step is guaranteed to not decrease the kl

divergence, so that the algorithm �nds a local optimum.

�e full derivation is in b.3.2. �e statistics required are (repeated from (b.42))

W(m) , Ep(m)

{(
y− µ

(m)
y

)(
y− µ

(m)
y

)T}
; (6.25a)

γ ,
∑
m

γ(m); (6.25b)

G(i) ,
∑
m

γ(m)

σ̃
(m)
y,ii

W(m). (6.25c)

Given the statistics, the process of estimating the component parameters and the

transformations is basically the same as for standard semi-tied covariance matrices,

in section 3.3.1. In addition, the means are �rst estimated. �e complete process is

given in algorithm 4.
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function Predictive-Semi-Tied-Covariance-Matrices({p(m), γ(m)}, γ)
for all componentsm do
µ
(m)
y ← Ep(m){y}

W(m) ← Ep(m)

{(
y− µ

(m)
y

)(
y− µ

(m)
y

)T}
Σ̃
(m)
y,diag ← diag

(
W(m)

)
A← I

repeat
G(i) ←∑m

γ(m)

σ̃
(m)
y,ii

W(m)

A← Estimate-Covariance-MLLR(γ,G(i))
for all componentsm do
Σ̃
(m)
y,diag ← diag

(
AW(m)AT

)
until convergence
return

{
µ
(m)
y , Σ̃

(m)
y,diag

}
,A

Algorithm 4 Estimating predictive semi-tied covariance matrices.

�is scheme is computationally expensive, because it alternates over updating A

and Σ̃(m)
y,diag, and updatingA requires iterating over its rows. An alternative is to update

only A, by stopping a�er the call to Estimate-Covariance-MLLR in algorithm 4.

�e form of the likelihood is then the same as in (6.24), but the covariancematrices on

themodels are diagonalised predicted covariances in the original feature space, unlike

covariancemllr, where the original covariance matrices are retained. A is optimised

for this feature space. �is form will be referred to as “half-iteration predictive semi-

tied”.

6.3 Correlation modelling for noise

Section 6.2 has presented predictive linear transform agnostic to the form of the pre-

dicted distribution. Indeed, they can be trained from any distribution that yields the

required statistics. �is work applies predictive linear transformations to methods for

noise-robustness. However, since the introduction of the general framework (Gales

and van Dalen 2007), other forms of predictive transformations have been proposed,
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like vtln (Breslin et al. 2010).

�is sectionwill con�ne itself to estimating predictive linear transformations from

joint uncertainty decoding as discussed in sections 4.4.3 and 5.4. �e advantage of the

form of distribution that joint uncertainty decoding predicts is that the components

are Gaussian-distributed, and that it uses base classes.

�e statistics that the predictive methods from the previous chapter require are

straightforwardly expressed in terms of the means and covariances of the compon-

ent distributions. As discussed in section 4.3, the real noise-corrupted speech distri-

butions do not have a closed form. Model compensation methods normally already

approximate the component distributions as Gaussians, so that no additional approx-

imations are required to �nd the statistics from joint uncertainty decoding.

�at joint uncertainty decoding shares compensation parameters across a whole

base class is particularly useful if the predictive transform uses the same base class.

It will turn out to be possible to express the statistics that joint uncertainty decoding

predicts in a component-dependent part that can be computed o�-line, and a base-

class-dependent part that changes with the noise parameters. Accumulating statistics

from all components is therefore not necessary at run-time. �is saves storage space

and computation time.

�is section will use the convention that base classes for joint uncertainty decod-

ing and for predictive transformations are the same. As before, since the estimation

is per base class, the notation will assume only one base class. �e distribution for

componentm that joint uncertainty decoding predicts was given in (4.48a):

p(m)(y) =
∣∣Ajud

∣∣ · N (Ajudy+ bjud; µ
(m)
x , Σ

(m)
x + Σbias

)
, (6.26)

where Ajud, bjud, and Σbias are computed from the joint distribution of the clean

speech and the observation as in section 4.4.3. Of particular interest is the case where

Σbias is full, to compensate for changes in feature correlations, which arises when the

joint distribution has a full covariance.

�e predictive transformations in this section will use the predicted distribution
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of the jud-transformed observation ŷ,

ŷ = Ajudy+ bjud. (6.27)

Other options are possible (e.g. Xu et al. 2009; 2011), because jud compensation can

be written without feature transformation, but with the inverse transformation on the

mean and covariance. However, from joint uncertainty decoding with a full trans-

formation and full covariance bias, predictive cmllr could �nd the exact same max-

imum likelihood solution (it would if it found the global optimum). Predictive covari-

ance mllr keeps the original covariance Σx, so transforming it to a di�erent feature

space �rst would defeat the purpose. Predictive semi-tied covariance matrices could,

just like predictive cmllr, �nd the same solution in whatever feature space, as long as

the the means are re-estimated as in section 6.2.3.

�e statistics that the predictive transforms require from the predicted distribu-

tions consist solely of the following elements, which are straightforward to derive from

the Gaussian in (6.26):

Ep(m){ŷ} = µ
(m)
x ; (6.28a)

Varp(m){ŷ} = Σ
(m)
x + Σbias; (6.28b)

Ep(m)

{
ŷŷT
}
= Σ

(m)
x + Σbias + µ

(m)
x µ

(m)
x

T
. (6.28c)

�e next sections will discuss instantiations of the predictive versions of cmllr, co-

variance mllr, and semi-tied covariance matrices. In each case, it will turn out to be

possible to express the statistics so that most of the accumulation can be performed

o�-line. �is is because in (6.28) the statistics derived from the clean speech compon-

ent, µ(m)
x and Σ(m)

x , do not depend on the noise model, whereas Σbias does depend

on the noise model, but not on the component distributions.
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6.3.1 Predictive CMLLR

Predictive cmllr trained on joint uncertainty decoding results in the following like-

lihood calculation:

q(m)(y) =
∣∣Acmllr

∣∣ · ∣∣Ajud

∣∣ · N(Acmllr

(
Ajudy+ bjud

)
+ bcmllr; µ

(m)
x , Σ

(m)
x

)
.

(6.29)

Compared to (6.26), this lacks covariance bias Σbias. To make up for that, Acmllr

and bcmllr are trained to minimise the kl divergence with p in (6.26). �is uses stat-

istics k(i) andG(i) de�ned in (6.21) in section 6.2.1. Using (6.28), they become

k(i) ,
∑
m

γ(m)µ
(m)
x,i

σ
(m)
x,ii

[
Ep(m)

{
ŷT
}
1

]
=
∑
m

γ(m)µ
(m)
x,i

σ
(m)
x,ii

[
µ
(m)
x

T
1

]
; (6.30a)

G(i) ,
∑
m

γ(m)

σ
(m)
x,ii

 Ep(m)

{
ŷŷT
}
Ep(m){ŷ}

Ep(m)

{
ŷT
}

1


=
∑
m

γ(m)

σ
(m)
x,ii

(Σ(m)
x + Σbias + µ

(m)
x µ

(m)
x

T)
µ
(m)
x

µ
(m)
x

T
1

 . (6.30b)

It is interesting that k(i) does not depend on the parameters of joint uncertainty de-

coding. It can therefore be computed o�-line and cached in its entirety. G(i), on the

other hand, does depend on a jud parameter: Σbias. However, it can be rewritten to

be largely cacheable:

G(i) =
∑
m

γ(m)

σ
(m)
x,ii

(Σ(m)
x + µ

(m)
x µ

(m)
x

T)
µ
(m)
x

µ
(m)
x

T
1


︸ ︷︷ ︸

cached

+

Σbias 0

0 0

∑
m

γ(m)

σ
(m)
x,ii︸ ︷︷ ︸

cached

.

(6.30c)

�is completely removes the need to iterate over components at run-time. Since there

is a G(i) for every dimension i, the total computational cost per base class for com-

puting them isO
(
Rd3

)
.
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6.3.2 Predictive covariance MLLR

Predictive covariancemllr results in the following likelihood calculationwhen trained

on joint uncertainty decoding:

q(m)(y) =
∣∣Amllrcov

∣∣ · ∣∣Ajud

∣∣
· N
(
Amllrcov

(
Ajudy+ bjud

)
; Amllrcovµ

(m)
x , Σ

(m)
x

)
. (6.31)

�e transformation Amllrcov on the features and on the means is equivalent to the

inverse transformation on the covariance, as discussed in section 3.2.2.

Compared to the distribution p(m) in (6.26) that q(m) aims to approximate, this

lacks the covariance biasΣbias. �erefore,Amllrcov is trained to make up for that. �is

allows decoding to use unchanged diagonal covariances while still modelling some

of the predicted correlations. Training predictive covariance mllr uses statisticsG(i)

de�ned in (b.22) in section 6.2.2. Using (6.28), and noting that the mean of ŷ is µ(m)
x ,

they become

G(i) ,
∑
m

γ(m)

σ
(m)
x,ii

Ep(m)

{(
ŷ− µ

(m)
x

)(
ŷ− µ

(m)
x

)T}
=
∑
m

γ(m)

σ
(m)
x,ii

Varp(m){ŷ}

=
∑
m

γ(m)

σ
(m)
x,ii

(
Σ
(m)
x + Σbias

)
. (6.32a)

Just like for predictive cmllr trained on joint uncertainty decoding, this expression

can be written so that iterations over the components can be cached. �is works sim-

ilarly to (6.30c):

G(i) ,
∑
m

γ(m)

σ
(m)
x,ii

Σ
(m)
x︸ ︷︷ ︸

cached

+Σbias

∑
m

γ(m)

σ
(m)
x,ii︸ ︷︷ ︸

cached

. (6.32b)

�e total on-line cost of computing G(i) for all dimensions i is therefore O
(
Rd3

)
.

�is does not depend on the number of components. �e model means also need to

be transformed, byAmllrcov, the complexity of which does depend on the number of

components: O
(
Md2

)
.
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6.3.3 Predictive semi-tied covariance matrices

Predictive semi-tied covariancematrices, when trained on statistics predicted by joint

uncertainty decoding, result in the following likelihood expression:

q(m)(y) =
∣∣Ast

∣∣ · ∣∣Ajud

∣∣ · N(Ast

(
Ajudy+ bjud

)
; Astµ

(m)
x , Σ̃

(m)
y,diag

)
. (6.33)

As in the case of predictive covariance mllr, the transformationAst is equivalent to

the inverse transformation on the covariance matrix. Semi-tied covariance matrices

mean to �nd a feature space, speci�ed byAst, in which a diagonal covariancematrix is

a reasonable assumption. Unlike for covariancemllr, the component covariances are

also adapted to minimise the kl divergence with the predicted distribution. Ast and

the Σ̃(m)
y,diag are estimated in an iterative process.

�e di�erence with the predicted distribution, in (6.26), is that the covariance

matrix Σ̃(m)
y,diag is diagonal. �e transformation Ast needs to make up only for the

o�-diagonal entries of the covariance matrix, unlike for predictive covariance mllr,

which has a similar form, but uses the original covariance matrices. Training pre-

dictive semi-tied covariance matrices uses statistics µ(m)
y ,W(m) and G(i) de�ned in

(6.25). Using (6.28), µ(m)
y andW(m) become

µ
(m)
y , Ep(m){ŷ} = µ

(m)
x ; (6.34a)

W(m) , Ep(m)

{(
ŷ− µ

(m)
y

)(
ŷ− µ

(m)
y

)T}
= Varp(m){ŷ}

= Σ
(m)
x + Σbias. (6.34b)

G(i) can be de�ned in terms of this, exactly as in (6.25c):

G(i) ,
∑
m

γ(m)

σ̃
(m)
y,ii

W(m). (6.34c)

�ese statistics can again be formulated in such a way that the on-line computational

cost is less than for a direct implementation. �is assumes that the original speech
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covariance matrices Σ(m)
x are diagonal. G(i) can be written

G(i) =
∑
m

γ(m)

σ̃
(m)
y,ii

Σ
(m)
x︸ ︷︷ ︸

O(Md)

+Σbias

∑
m

γ(m)

σ̃
(m)
y,ii︸ ︷︷ ︸

O
(
M+ d2

)
. (6.35a)

�e total cost of �nding these for d dimensions and R base classes isO
(
Md2 + Rd3

)
.

A similar optimisation can be applied to the covariance update in (b.40):

Σ̃
(m)
y,diag := diag

(
AW(m)AT

)
= diag

(
A
(
Σ
(m)
x + Σbias

)
AT
)

= diag
(
AΣ

(m)
x AT

)︸ ︷︷ ︸
O
(
d2
) + diag

(
AΣbiasA

T
)︸ ︷︷ ︸

O
(
d3
) . (6.35b)

Since the le�-hand term is component-dependent, it needs to be computed separately

for each component. However,Σ(m)
x is diagonal and the result is constrained to be di-

agonal, so that the cost per component is onlyO
(
d2
)
.�e right-hand term is the same

for a whole base class, but since Σbias is full, the calculation takes O
(
d3
)
. �e over-

all complexity of updating Σ̃(m)
y,diag for allM components in R base classes is therefore

O
(
Md2 + Rd3

)
.

For the full scheme, the complexities are multiplied by the number of outer iter-

ations K. �e half-iteration scheme for predictive semi-tied covariance matrices only

�nds a transformation matrix Ast and only initialises the covariances Σ̃(m)
y,diag, apart

from adding the covariance bias, which isO(Md).

6.3.4 Computational complexity

Table 6.1 on the next page details the time requirements for the approximations to

joint uncertainty decoding discussed in the previous sections. �e naive implementa-

tion for calculating the cofactors takesO
(
Rd4

)
per iteration, but using the Sherman-

Morrisonmatrix-inversion lemma this can be reduced toO
(
Rd3

)
per iteration (Gales

and van Dalen 2007). InvertingG(i) takes O
(
Rd4

)
per iteration.2 In all cases, by al-

2 By using the average of the diagonal of Σ̃(m)
y,diag rather than di�erent σ̃(m)

y,ii for 1 ≤ i ≤ d, it is
possible to reduce this toO

(
Rd3

)
(Gales and van Dalen 2007) at the cost of some loss in accuracy. �is

has not been shown in the table.
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cmllr mllr co-
variance

Half
semi-
tied

Full
semi-
tied

Estimation
Statistics Rd3 Rd3 Md2 + Rd3 K(Md2 + Rd3)

InvertingG(i) Rd4 Rd4 Rd4 KRd4

Calculating ci LRd3 LRd3 LRd3 KLRd3

Compensation
Features TRd2 TRd2 TRd2 TRd2

Means 0 Md2 Md2 Md2

Variances 0 0 Md KMd2

Table 6.1 �e complexity of estimating predictive transforms from joint uncer-
tainty decoding. d is the size of the feature vector;M is the number of compon-
ents; R is the number of base classes; L is the number of inner iterations; K is the
number of outer iterations (see section 3.3.1 on page 50).

lowing for diagonal covariances on the models compensated for noise, the complexity

associated with decoding T observations with joint uncertainty decoding is reduced

by a factor of d.

6.3.5 Predictive HLDA

�is chapter has so far presented predictive methods that start with a predicted distri-

bution over feature vectors with statics and dynamics. �ose distributions will have

been derived from distributions over extended feature vectors as in chapter 5. �e

conversion from extended feature vectors, or distributions over them, to ones with

statics and dynamics used a linear transformation D. �e predictive linear trans-

formations in this chapter have estimated another linear feature transformations A.

An interesting avenue would be to not assume projection D and replace the pair of

transformationsA·D, of which onlyA is estimated, by one transformation that at the

same time reduces the feature dimensionality and transforms to a good feature space

for noise at the same time.

To formulate distributions over the feature space with reduced dimensionality, a

square Jacobian is necessary. Dimensionality reduction therefore needs, at least math-
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ematically, to �nd a new feature space of the same dimensionality. Some of those

dimensions are useful dimensions, which are used for discrimination, and some are

nuisance dimensions, the distributions over which should be tied over all components

so they do not discriminate. �is requirement was also an issue for estimating an ap-

proximate distribution over extended feature vectors. As section 5.2.2 has discussed,

this is only equivalent to optimising in the projected space under certain conditions.

Extended idpmc (section 5.3.2), for example, which estimates mixtures of Gaussians,

explicitly bypassed the issue and estimates parameters directly on samples with statics

and dynamics. �is trick does not apply here, so the nuisance dimensions must be

handled explicitly.

�is section will therefore sketch how to apply heteroscedastic linear discriminant

analysis (Kumar 1997), discussed in section 3.3.2, to extended feature vectors.�is will

be called “predictive hlda”. �is explicitly splits the feature transformation up in use-

ful and nuisance dimensions, and ties the distribution over the nuisance dimensions.

Both heteroscedastic linear discriminant analysis (hlda) and semi-tied covariance

matrices can be seen as instances ofmultiplehlda (mhlda). mhlda ishldawith dif-

ferent transformations for di�erent classes; semi-tied covariance matrices is mhlda

without dimensionality reduction. �e scheme sketched here could straightforwardly

be extended to multiple base classes.

�e likelihood calculation for predictive hlda is similar to the one for predictive

semi-tied covariance matrices (in (6.24)):3

q(m)(ye) = N
(
Aye; µ̃

(m)
y , Σ̃

(m)
y,diag

)
. (6.36)

�e two di�erences are that this expression uses extended feature vectorsye, and that

A is a non-square matrix that reduces the dimensionality as well as �nding a feature

space in which it is a decent approximation to make Σ̃(m)
y,diag diagonal.

hlda needs statistics similar to semi-tied covariance matrices; analogously, pre-

dictive hlda needs statistics similar to predictive semi-tied covariance matrices, but
3�e factor|A| in (6.24) does not need to be computed if there is only one base class, like here, since

it a�ects all likelihood equally.
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over extended feature vectors. Denoting the predicted distribution for componentm

with pe(m), the predicted covariance for componentm is (analogous to (6.34b))

W(m) , Epe(m)

{
yeyeT

}
− Epe(m){ye} Epe(m){ye}T. (6.37)

Given the statistics, following the procedure for computing semi-tied covariance ma-

trices would yield a transformation that aims to �nd an optimal square linear trans-

formation. hlda on the other hand applies dimensionality reduction as well. Unlike

with predictive semi-tied covariance matrices, the new component parameters must

be derived directly from the extended statistics. �e means, for example, are set to the

transformed mean of the predicted distribution:

µ̃
(m)
y := AEpe(m){ye} , (6.38a)

and the component covariance matrices use (6.37):

Σ̃
(m)
y,diag := diag

(
AW(m)AT

)
. (6.38b)

Optimising the transformation A as in Kumar (1997) yields an interesting vari-

ant of predictive linear transformations that transforms the extended feature space

as well as selecting useful features from it. For noise-corrupted speech, this makes

intuitive sense. Some features may be completely masked under low signal-to-noise

ratios. Predictive hlda will then transform the feature vector used for recognition so

as to replace those features by more useful features for that speci�c noise condition.

However, predictive hlda could also be applied to distributions predicted from other

models.

6.4 Front-end PCMLLR

Predictive linear transformations are �exible. �is thesis has motivated their use from

the perspective of reducing the computational load of decoding with full covariances.

However, predictivecmllr�nds a component-dependent feature transformation, and
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chapter 6. predictive transformations

it is possible to use this for approximating diagonal-covariance predicted distribu-

tions. �is section will apply pcmllr-like transformations to features without refer-

ence to the component identity.4 An interesting practical consequence will be that the

resulting transformation can be similar to that of model-based feature enhancement

(see section 4.6), but is motivated di�erently. Whereas feature enhancement aims to

reconstruct the clean speech, here, the transformations aim to minimise the kl diver-

gence between the predicted distribution and the e�ective speech recogniser distri-

bution. �is uses more precise information about the clean speech distribution, the

speech recogniser components rather than the front-end components. Many statistics

can again be cached, so that this is computationally very e�cient.

�e framework of predictive transformations can also be used to speed up com-

pensation for noise with diagonal covariance matrices. �e methods in this section

will derive from predictive cmllr, which, like standard cmllr, applies a compon-

ent-dependent feature transformation to the observation vector. �e transformation

that both forms of cmllr �nd is a set of a�ne transformations for each base class r:

A = {A(r)} =
{
A(r),b(r)

}
. To keep the notation uncluttered, this thesis has not ex-

plicitly written the dependency on the base class, but this section will, because it will

be vital. Both adaptive and predictive cmllr decode with (from (6.20), with the base

class explicit)

q(m)(y|A) =
∣∣A(r)

∣∣ · N (A(r)y+ b(r); µ
(m)
x , Σ

(m)
x

)
. (6.39a)

Each of the components is assigned one base class r, and only one feature transforma-

tionA(r) is estimated for a base class. �erefore, which transformationA(r) is chosen

from the set of transformations depends on the component. However, it is also pos-

sible to �nd a transformation that takes the observation into accountwhenminimising

the kl divergence to the e�ective decoding distribution from the predicted noise-cor-

rupted speech distribution. �is could make the transformation more appropriate for

the acoustic region that the observation is in.
4�e work in this section, section 6.4, is joint work with Federico Flego, published as van Dalen

et al. (2009).
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6.4. front-end pcmllr

�e next sections will introduce methods of �nding a component-independent

transformationAt =
{
At,bt

}
at each time instance t. �e distribution of compon-

entm becomes

q(m)(yt) =
∣∣At∣∣ · N(Aty+ bt; µ

(m)
x , Σ

(m)
x

)
. (6.39b)

�e simplest scheme estimates a global transformation. It is equivalent to pre-

dictive cmllr with the number of base classes set to R = 1. �is makes the scheme

trivially independent of the component. It is interesting as a baselinemethod, because

themethods that this section will introduce all reduce to it when there is only one base

class. �e optimisation in (6.18) becomes

A := argmin
A

∑
m

γ(m)KL
(
p(m)

∥∥q(m)
)
. (6.40)

Section 6.4.1 will introduce a method that re-trains the transformation with pre-

dictive cmllr for every feature vector. Section 6.4.2 will introduce two methods that

estimate the base class posterior to combine precomputed transformations.

6.4.1 Observation-trained transformation

�e global transformation estimated with (6.40) gives an optimal overall transforma-

tion. However, when the observation is known, the distribution over the component

identity can be approximated better. A scheme that estimates one pcmllr transform

from the posterior predicted distribution will be called “observation-trained pcmllr”.

To give a more robust estimate of the component distribution, the update of the

component distribution is not performed per component, but per base class. To do

this, the component occupancy is factorised into the occupancy of the base class γ(r)

and the occupancy of the component given the base class:

γ(m) = γ(r)

(
γ(m)

γ(r)

)
, γ(r) =

∑
m∈Ω(r)

γ(m), (6.41a)

whereΩ(r) is the set of all components in a base class.
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chapter 6. predictive transformations

�e base class occupancy can be replaced by a weight estimated using the obser-

vation yt. An obvious choice is the posterior of the front-end mixture of Gaussians,

P(r|yt). E�ectively, the posterior distribution of the corrupted speech vector y given

the observation becomes

p(y|yt) =
∑
r

P(r|yt)P(y|r) . (6.41b)

�e base class posterior then replaces the prior base class occupancy in (6.41a):

P(m|yt) := P(r|yt)

(
γ(m)

γ(r)

)
=
P(r|yt)

γ(r)
γ(m). (6.41c)

Each of the componentsm of the speech recogniser gmm is weighted or deweighted

by the same amount as its associated front-end component r, so that (6.40) becomes

At := argmin
A

∑
r

P(r|yt)

γ(r)

∑
m∈Ω(r)

γ(m)KL
(
p(m)

∥∥q(m)
)
. (6.41d)

At in (6.41d) is retrained for every feature vector. Apart from the weighting, this is the

same expression as the optimisation for generic predictive transformations in (6.18).

�e algorithm therefore is the same as for predictive cmllr discussed in section 6.2.1,

but with modi�ed statistics. �ey are similar to (6.21), with the component occupan-

cies γ(m) replaced by their posteriors P(m|yt) in (6.41c):

k(i) ,
∑
r

P(r|yt)

γ(r)

∑
m∈Ω(r)

γ(m)µ
(m)
x,i

σ
(m)
x,ii

[
Ep(m)

{
yT
}
1

]
; (6.42a)

G(i) ,
∑
r

P(r|yt)

γ(r)

∑
m∈Ω(r)

γ(m)

σ
(m)
x,ii

 Ep(m)

{
yyT
}
Ep(m){y}

Ep(m)

{
yT
}

1

 . (6.42b)

If implemented directly, it is computationally expensive to accumulate these statistics.

However, given that speech recogniser components are weighted a whole base class

at a time, the necessary statistics are weighted sums of per-base class statistics, inside

the sums
∑
m∈Ω(r) . �ese per-base class statistics are exactly the same as the statistics

that standard cmllr (predictive and adaptive) uses, in (6.21), to estimate per-base

class transformations. �e number of base classes is normally only a fraction of the

number of back-end components, so computing the statistics in (6.42b) is fast.
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6.4. front-end pcmllr

6.4.2 Posterior-weighted transformations

Rather than estimating a global transform, whether using the speech recogniser com-

ponent priors or their updated versions in (6.4.1), it is possible to estimate a set of

transforms appropriate to regions of the acoustic space with pcmllr, and from those

construct a transformation that is observation-speci�c. A simple way of doing this is

to pick the transformation associated with the most likely front-end component:

At := A(r∗), r∗ = argmax
r

P(r|yt) . (6.43)

�is scheme, “hard-decision pcmllr”, yields a piecewise linear transformation of the

feature space.

A more sophisticated approach is similar to front-end cmllr (Liao and Gales

2005). �is interpolates the transforms, each optimised to minimise the kl diver-

gence to the predicted back-end distributions in an acoustic region. �e front-end

component posterior is an approximate measure of how likely an observation is to

have been generated by a back-end component associated with front-end compon-

ent r. �e transformation becomes

At =
∑
r

P(r|yt)A
(r); (6.44a)

bt :=
∑
r

P(r|yt)b
(r). (6.44b)

�is will be called “interpolated pcmllr”. �e form of the compensation is then the

same as for model-based feature enhancement (see section 4.6), so that decoding is

equally fast. However, interpolated pcmllr is properly viewed as transforming the

models, aiming to minimise the kl divergence between the predicted distributions

and the speech recogniser models, rather than reconstructing the clean speech. Post-

processing of the transformed observation as if it represents the clean speech is there-

fore not possible.
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chapter 6. predictive transformations

6.5 Summary

�is chapter has described the second contribution of this thesis. It has introduced

a general framework for approximating one speech recogniser parameterisation with

another. Its objective is to minimise the kl divergence to a predicted distribution.

�is framework of predictive methods subsumes model compensation methods. Sec-

tion 6.2 has derived a number of new predictive versions of linear transformations

that chapter 3 had discussed. Section 6.3 has detailed how to approximate joint uncer-

tainty decoding with full covariances (from section 5.4). �is combines joint uncer-

tainty decoding’s ability to train on limited data and linear transformations’ ability to

model correlations without reducing decoding speed. �e resulting chain of methods

(extended vts, joint uncertainty decoding, and predictive semi-tied covariance ma-

trices) is what this thesis proposes as a feasible compensation scheme for real-world

speech recognition.

To show o� the versatility of predictive transformations, section 6.4 has intro-

duced a number of schemes based o� predictive cmllr, which apply only feature

transformations, but make the resulting speech recogniser match the predicted dis-

tributions as well as possible.
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Chapter 7

Asymptotically exact likelihoods

�is chapter will present the third contribution of this thesis, which is more theoret-

ical.1

Section 4.1 has argued that using the exact corrupted speech distribution would

lead to optimal classi�cation. Given standard models for the speech, noise, and mis-

match function, the distributions of the corrupted speech does not have a closed form.

Model compensation methods therefore approximate it with a parameterised distri-

bution, usually a Gaussian. Even for amixture of full-covariance Gaussians, estimated

as in section 5.3.2, the number of Gaussians required to approximate the real distri-

bution well may be high, and the complexity is essentially cubic in that number. No

previous work has investigated how well speech recognition would perform without

parameterised distributions.

�is chapter will introduce a sampling method that, given distributions over fea-

ture vectors for the speech and the noise and a mismatch function, in the limit calcu-

lates the corrupted speech likelihood exactly. What the method yields, therefore, is an

upper bound on model compensation. Section 7.1 will introduce the model that this

chapter assumes. Section 7.2 will discuss how to approximate the distribution with

importance sampling from a Gaussian over the speech and noise. However, when

1 �is work has been published as van Dalen and Gales (2010b) and a summary in van Dalen and
Gales (2010a).
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chapter 7. asymptotically exact likelihoods

applied to more than a few dimensions this becomes infeasible. Section 7.3 will there-

fore �rst transform the integral in one dimension, and apply importance sampling. It

will then introduce factorisations for the multi-dimensional integrand, and approx-

imate the integral with sequential importance sampling. �is scheme is too slow to

implement in a speech recogniser. An alternative metric for assessing model com-

pensation methods, more �ne-grained than word error rates, would be how closely

model compensation methods match the distribution they approximate. Section 7.4

will therefore introduce a method to compute the kl divergence up to a constant of

the approximation of the corrupted speech distribution to the real distribution.

7.1 Likelihood evaluation

�is section uses a di�erent approach to approximating the corrupted speech distribu-

tion from standardmodel compensation. Model compensationmethods, like the ones

discussed in section 4.4, �nd a parameterised approximation for the corrupted speech

distribution for recognition. However, no expression for the full density is needed:

while recognising speech only likelihoods for vectors that are observed are required.

�erefore, similarly to the methods in section 4.5, in this section the likelihood is ap-

proximated for a speci�c observationyt. For simplicity of notation, the convolutional

noise will be assumed zero in this section.2 Substituting yt for y in (4.24b),

p(yt) =

∫ ∫
p(yt|n, x)p(n)dnp(x)dx (7.1)

Since, given yt, this is essentially of the form

p(yt) =

∫
φ(n, x)p(n, x)d(x,n), (7.2)

where the desired quantity is the integral of test function φ under distribution p, the

obvious approachwould be to apply one of a number of standard approaches to solving

this form of problem.
2 In the mismatch function in (4.10a) the convolutional noise just causes an o�set on the speech

signal.
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7.1. likelihood evaluation

Laplace’s method may be used. �is approximates the complete integrand by pla-

cing a Gaussian q on its mode. �is is not possible analytically, but the Algonquin

algorithm (see section 4.5.1) approximates this with an iterative algorithm. However,

this does not yield any guarantee about the resulting likelihood.

Another approach would seem to �nd a variational lower-bound q to the in-

tegrand. An obstacle to this, however, is the form of the test function φ(n, x) =

p(yt|n, x). It represents the probability that corrupted speech vector yt is generated

from clean speech and noise vectors x,n. �ough the phase factor introduces some

uncertainty about thismapping,most values forx andn are incompatible for givenyt,

and φ(n, x) is then 0. It is therefore not possible to lower-bound the integrand with

a Gaussian, and not obvious which other distribution (the shape of the integrand will

be detailed in section 7.2, and depicted in �gure 7.1a on page 187) to choose.

A third approach may be to approximate the integral with Monte Carlo. (7.2) is

written in a form that makes it obvious how to do so. It is straightforward to sam-

ple (n, x) from the prior p(n, x). However, the shape of p(n, x) is not always a

good match for the shape of φ, so that most samples are drawn in vain. To alle-

viate this problem, it is possible to use importance sampling, which is discussed in

appendix a.4.2, to evaluate the integral over φ(n, x)p(n, x) at once. Why sampling

from p(n, x) is so ine�cient will also be analysed from this perspective.

Importance sampling requires a proposal distribution, the distribution that the al-

gorithmdraws from instead of the actual distribution. Itmakes up for the di�erence by

assigning each sample a weight. �e proposal distributions needs to match the target

density well, otherwise the weights will have a high variance, and too many samples

will be required to arrive at a good estimate. �e number of samples required grows

exponentially with the number of dimensions.

To apply importance sampling, the proposal distribution will be either the prior,

which reduces to straightforward Monte Carlo, or an Algonquin-derived approxima-

tion of the posterior. Both essentially use a joint Gaussian distribution over the speech

and the noise.�e prior distribution is o�en far away from the integrand, but even the
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Algonquin-generatedGaussian cannot approximate the curved integrandwell.�ere-

fore, the number of samples required makes it infeasible to use this approximation.

Section 7.3 will then introduce a transformation of the integrand. �e integral over x,

n, and α can then be expressed as an integral over substitute variable u and α. �is

new expression is still exact, but more amenable to being approximated with import-

ance sampling. A�er considering the one-dimensional case, the higher-dimensional

space will use the same techniques for each dimension, and apply sequential import-

ance resampling.

�is chapter will focus on one Gaussian for the speech and one for the noise:

x ∼ N (µx,Σx) ; (7.3a)

n ∼ N (µn,Σn) . (7.3b)

�e mismatch function is the one given in (4.10a). �is mismatch function uses a

state-of-the-art model of the phase factor (see section 4.2.1.1). However, all that the

scheme relies on is that it is possible to draw samples from the phase factor distribu-

tion. Any other distribution for p(α) can be plugged in as long as it can be sampled

from.

In this work, the speech and noise are modelled with Gaussians. However, dif-

ferent distributions would be possible, provided the form of the distributions satis�es

two requirements. First, a proposal distributionmust be found that is su�ciently close

to the one-dimensional distribution that importance sampling is possible. Second, a

reasonable approximation must be available for the marginal of one dimension given

settings for a subset of all other dimensions. ForGaussians, both of these requirements

will appear to be possible, though far from straightforward, to ful�l. One aspect that

makes the second requirement hard is that the speech and noise will bemodelled with

correlated dimensions, through full covariances.

Since the speech and noise priors are full-covariance Gaussians, it make little dif-

ference whether they represent cepstral or log-spectral features: the domains are re-

lated by a linear transformation, the dct (see section 2.1). In the log-spectral domain,

the mismatch function works dimension per dimension (see section 4.2.1), so this
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7.2. importance sampling over the speech and noise

chapter will assume log-spectral domain speech and noise priors. �e vectors in this

chapter will consist of just statics, and will be denoted with x,n,α,y.

�e main di�erence with earlier work with a similar aim is that here, the speech

and noise priors have full covariance matrices, so that dimensions can not be treated

separately. Myrvoll and Nakamura (2004) used a piecewise linear approximation in

one dimension, which, as section 4.5.2 has shown, does not generalise to multiple

dimensions. At the same conference as work in this thesis was presented (van Dalen

and Gales 2010a), Hershey et al. (2010) independently introduced a similar strategy.

As will be discussed in section 7.3.1.3, it also treats dimensions separately.

�e aim of the method that this chapter will introduce is the opposite of that of

single-pass retraining (see section 4.4.4), though both can be seen as idealmodel com-

pensation. Single-pass retraining does not use speech and noise distributions or a

mismatch function, but it does assume that the corrupted speech is Gaussian. �e

method in this chapter assumes the speech and noise priors to be Gaussian, and the

mismatch function to be given, but does not assume a form of distribution of the cor-

rupted speech.

7.2 Importance sampling over the speech and noise

�is section presents the �rst approach, which is to approximate the integration over x

andn. Importance sampling requires that the integrand can be evaluated at any point

(x,n). For this, part of the observation likelihood needs to be rewritten more expli-

citly. �e corrupted speech likelihood is ((4.24b) and (4.24c) with yt substituted for

y, as in (7.1)):

p(yt) =

∫ ∫
p(yt|x,n)p(n)dnp(x)dx (7.4a)

=

∫ ∫ ∫
δf(x,n,α)(yt)p(α)dαp(n)dnp(x)dx. (7.4b)

�e value of the observation vector yt is not deterministic given the speech and the

noise, because the phase factor α is a random variable. However, α is deterministic
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given x, n, and yt, so that p(yt|x,n) can be written in terms of the distribution of

the phase factor. �e phase factor that a speci�c setting of x, n, and yt implies will be

written α(x,n,yt). It is a standard result (in appendix a.1.1 and, e.g., Bishop 2006,

11.1.1) that transforming the space of a probability distribution requires multiplying by

the determinant of the Jacobian:

p(yt|x,n) =

∣∣∣∣∣ ∂α(x,n,y)∂y

∣∣∣∣
yt

∣∣∣∣∣ · p(α(x,n,yt)) , (7.5)

where p(α(x,n,y)) denotes the density of p(α) at the value of α implied by x, n,

and y.

�e value of the phase factor as a function of the other variables follows from (4.9).

�e relation is de�ned per coe�cient (i.e. frequency bin) i of the variables:

αi =
exp

(
y
log
i

)
− exp

(
x
log
i

)
− exp

(
n
log
i

)
2 exp

(
1
2x

log
i + 1

2n
log
i

) , (7.6a)

and its partial derivative with respect to yi is

∂α(xi, ni, yi)

∂yi
=

exp
(
y
log
i

)
2 exp

(
1
2x

log
i + 1

2n
log
i

) . (7.6b)

�e diagonal elements of the Jacobian ∂α(x,n,y)
∂y are given by these partial derivatives

with respect to yi. �e o�-diagonal entries of the Jacobian are 0.

�e the distribution of the corrupted speech in (7.4a) can then be written as

p(yt) =

∫ ∫
p(yt|x,n)p(n)dnp(x)dx

=

∫ ∫ ∣∣∣∣∣ ∂α(x,n,y)∂y

∣∣∣∣
yt

∣∣∣∣∣ · p(α(x,n,yt))p(n)dnp(x)dx
=

∫ ∫{(∏
i

exp
(
y
log
t,i

)
2 exp

(
1
2x

log
i + 1

2n
log
i

)) · p(α(x,n,yt))p(n)p(x)}dndx
,
∫ ∫
γ(x,n)dndx. (7.7)

�is expression is exact. �ough the integrand, the expression in curly braces and de-

noted with γ, is now straightforward to evaluate at any given point (x,n) if p(α)
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(a)�e distribution p(yt|x, n).
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(b)�e distribution p(x, n, yt).

Figure 7.1�e distribution of the clean speech and noise for x ∼ N (10, 1); n ∼

N (9, 2); α ∼ N (0, 0.04); yt = 9.

can be evaluated, the integral has no closed form. It can, however, be approxim-

ated using importance sampling with γ as the target density. Importance sampling

requires a proposal distribution that is close to the target. Figure 7.1a illustrates a one-

dimensional version of the density p(yt|x, n). �e density lies around the curve that

relates x and n for given α and yt, shown as a dashed line. �is curve is given by

exp(x) + exp(n) = exp(yt). �at the sum of the exponents of x and n is �xed causes

a bend in the curve. Figure 7.1b shows the density in �gure 7.1amultiplied by the priors

of x and n, which gives p(x, n, yt) = γ(x, n).

Importance sampling uses a proposal distribution ρ, which it draws L samples

(x(l),n(l)) from and weights them to make up for the di�erence between proposal

and target densities. �is integral to be approximated is the normalisation constant

of γ. �e derivation is in appendix a.4.2, and in particular (a.43b), but intuitively it
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(a)�e prior p(x,n).
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(b) Gaussian approximation to the
posterior p(x,n|yt).

Figure 7.2�e distribution of the clean speech and noise for x ∼ N (10, 1); n ∼

N (9, 2); α ∼ N (0, 0.04); y = 9.

can be written as∫ ∫
γ(x,n)dxdn =

∫ ∫
γ(x,n)

ρ(x,n)
ρ(x,n)dxdn '

L∑
l=1

γ(x(l),n(l))

ρ(x(l),n(l))
, (7.8)

(x(l),n(l)) ∼ ρ.

�e fraction of the target and proposal densities, γ/ρ, gives the weight of the samples.

�is weight makes up for the di�erence between the two densities.

To approximate the integral under γ, this section considers two options for the

proposal distribution: the prior, and the Algonquin approximation to the posterior.

Both are Gaussian.

A priori, the speech and the noise are independent. Given Gaussian prior distri-

butions for p(x) and p(n) (in (7.3a) and (7.3b), respectively), their joint prior becomes x
n

 ∼ N

µx
µn

 ,
Σx 0

0 Σn

 . (7.9)
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�is Gaussian is shown as white lines on top of the actual posterior of x and n in

�gure 7.2a on the facing page.

An alternative approach would be to use the Gaussian approximation to the pos-

terior that the Algonquin algorithm (presented section 4.5.1) �nds. Unlike the one

in (7.9), this distribution does not model the speech and the noise as independent.

Figure 7.2b shows it superimposed on the actual posterior.

�e main problem areas for either Gaussian as proposal distribution are the re-

gions of space where proposal and target do not match well. Where the proposal dis-

tribution has a higher value than the target distribution, more samples will be drawn

that are assigned lower weights: a waste of computational time. Conversely, where the

proposal distribution is much lower than the target distribution, samples will seldom

be drawn, and when they do, they are assigned high weights. In this case, the number

of samples that needs to be drawn to get su�cient coverage becomes very high.

�ese two problems are exacerbated by high dimensionality: for every dimension,

either of these cases can occur.�e probability that neither problem arises for a sample

decreases exponentially, so that the number of samples required increases exponen-

tially. Both approximations shown in �gure 7.2 su�er from this problem, so that it is

not feasible to apply them to a 24-dimensional log-spectral problem. �e next section

will therefore transform the space so that the target distribution per dimension can be

approximated better.

7.3 Importance sampling in a transformed space

�e problemwith the scheme in the previous section is the hard-to-approximate bend

in the distribution of x and n given yt. �is section will overcome this by transform-

ing the space, and then approximating the integral. Conceptually, this is similar to

Myrvoll and Nakamura (2004), which was discussed in section 4.5.2. However, there

the approximation was constrained to one dimension. Here, the mismatch function

contains an extra variable (the phase factor), a di�erent transformation is used, and
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the approximation uses sequential importance sampling. Initially, a one-dimensional

space will be considered. Section 7.3.2 will discuss how to generalise this to the multi-

dimensional case and how to deal with the additional complications that arise.

7.3.1 Single-dimensional

In one dimension, the mismatch function is ((4.9) without indices and with yt sub-

stituted for y)

exp
(
y
log
t

)
= exp

(
xlog
)
+ exp

(
nlog

)
+ 2α exp

(
1
2x

log + 1
2n

log
)
. (7.10)

As discussed in section 4.2.1.1 on page 65, α is a weighted average of cosines of the

angle between the signals of the frequencies in one bin, and as such constrained to be

between −1 and +1.

Since this equality relates four variables deterministically, if three are known, then

in many cases the fourth is known as well. �e objective of this section is to �nd an

approximation to p(yt) for a given observation yt. Since four variables are linked de-

terministically and one is known (yt), the integration will be over two variables. �is

was also the case in section 7.2. �ere, the obvious choice of integrating over x and n

did not work out well because of the shape of the density in (x, n)-space. �is sec-

tion introduces a variable u that represents a pair (x, n) given yt and α. Changing u

traverses the curve in (x, n)-space, so that the bend is not a problem any more. �e

integral will then be over α and the new variable u.

A property of (7.10) that complicates the derivation of the transformed integral is

that when three variables are known, the fourth can in some cases have two values.

(7.10) is quadratic in exp
(
1
2x
)
and exp

(
1
2n
)
, so it can have two solutions for x and n.

�is can be seen in �gure 7.3 on the facing page, which shows how x and n are related

for various values of α. For n = 10, α = 0.99, for example, x has two solutions.

However, for given yt and α, it is possible to de�ne one variable that unambigu-

ously identi�es a point on the curve. �e substitute variable will be called u with

u = n− x. (7.11)
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Figure 7.3�e relation between clean speech x and additive noise n for yt = 9

and evenly-spaced values of α.
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n

Figure 7.4�e region of the (x, n) that the integral is explicitly derived for: x ≤ n.

�e value of u is related to the signal-to-noise ratio. If u is a large negative number,

x is close to yt and n is large and negative. �is represents a very low signal-to-noise

ratio. �e converse is true if u is a large positive number: then n is close to yt and x

is large and negative.

�is substitution will be used to de�ne an integral that yields p(yt). First, p(yt|·)
will be re-expressed using p(n|·) or p(x|·). Since neither of these variables is known
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deterministically for all values of the other variables, the integral will be partitioned in

two parts. n has one possible value given a setting for (x, yt, α)when x is constrained

to be smaller than n, which is the shaded region in �gure 7.4 on the previous page.

In the complementary region, x has one possible value given �xed (n, yt, α). �e

likelihood can be written as a sum of both these regions:

p(yt) = p(yt, x ≤ n) + p(yt, n < x) . (7.12)

Because of the symmetry between these two regions, only the derivation for the region

x ≤ n will be given explicitly. �e derivation for n < x is analogous.

�e additive noise that follows from setting the variables x, yt, α will be denoted

with n(x, yt, α). �is is deterministic in the region where x ≤ n. �e variable of

the probability distribution will be changed from yt ton. �is requires multiplication

by a Jacobian (see section a.1.1 on page 255 or, for example, Bishop 2006, 11.1.1). �is

Jacobian, the partial derivative of n with respect to y and keeping x and α �xed, will

be written ∂n(x,y,α)
∂y , and be evaluated at yt.

p(yt, x ≤ n|x, α) =
∣∣∣∣∣ ∂n(x, y, α)∂y

∣∣∣∣
yt

∣∣∣∣∣ · 1(x ≤ n) · p(n(x, yt, α)) . (7.13)

Here, 1(·) denotes the indicator function, which evaluates to 1 if its argument is true,

and 0otherwise. p(n(x, yt, α)) is the probability distribution ofn evaluated atn(x, yt, α),

the value of n corresponding to the setting of (x, yt, α).

�e evaluation of the half of the likelihood for x ≤ n can then be rewritten with

(7.13) and by then replacing the variable of the integration by u. �e predicate x ≤ n
is equivalent to 0 ≤ u, which can be expressed using bounds on the integral.

p(yt, x ≤ n) =
∫
p(α)

∫
p(x)p(yt, x ≤ n|x, α)dxdα

=

∫
p(α)

∫
p(x) ·

∣∣∣∣∣ ∂n(x, y, α)∂y

∣∣∣∣
yt

∣∣∣∣∣ · 1(x ≤ n) · p(n(x, yt, α))dxdα
=

∫
p(α)

∫∞
0

∣∣∣∣∂x(u, yt, α)∂u

∣∣∣∣ ·
∣∣∣∣∣ ∂n(x, y, α)∂y

∣∣∣∣
yt,x(u,yt,α)

∣∣∣∣∣
· p(x(u, yt, α)) · p(n(u, yt, α)) dudα. (7.14)
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Here, p(x(n, yt, α)) is the probability distribution of x evaluated at x(n, yt, α), the

value of x corresponding to the setting of (n, yt, α). Appendix f.1 on page 304 gives

the derivations for the Jacobians in (7.14), and x(u, yt, α) and n(u, yt, α) for the re-

gion x ≤ n. From (f.7c) the product of the Jacobians is −1. By substituting 1 for

the absolute value of the product of the Jacobians in (f.7c) into (7.14), one half of the

likelihood in (7.12) becomes

p(yt, x ≤ n) =
∫
p(α)

∫∞
0

∣∣∣∣∂x(u, yt, α)∂u

∣∣∣∣ ·
∣∣∣∣∣ ∂n(x, y, α)∂y

∣∣∣∣
yt,x(u,yt,α)

∣∣∣∣∣
p(x(u, yt, α))p(n(u, yt, α)) dudα

=

∫
p(α)

∫∞
0

p(x(u, yt, α))p(n(u, yt, α))dudα. (7.15a)

�e integral of u is over the area where 0 ≤ u, i.e. where x ≤ n. �e equivalent

integration over the region where u < 0 could be derived by exchanging x andn, and

replacing u with −u. Applying this to all derivations in section f.1 on page 304 and

to (7.15a) yields the other half of the likelihood in (7.12). Because of the symmetry of

n and x and because the Jacobians cancel out, the result is identical to (7.15a) save for

the range of u:

p(yt, n < x) =

∫
p(α)

∫ 0
−∞p(x(u, yt, α))p(n(u, yt, α))dudα. (7.15b)

�e sum of (7.15a) and (7.15b) yields the total likelihood of yt. �e integrand will be

called γ.

p(yt) = p(yt, x ≤ n) + p(yt, n < x)

=

∫
p(α)

∫∞
−∞p(x(u, yt, α))p(n(u, yt, α))dudα

,
∫
p(α)

∫
γ(u|α)dudα (7.16)

,
∫ ∫
γ(u,α)dudα. (7.17)

�us the integral has been expressed in terms of u and α, rather than x and n as

in (7.7). �is derivation is exact and holds for any form of priors for the speech and

193



chapter 7. asymptotically exact likelihoods

noise p(x) and p(n). Just like a�er rewriting p(yt) in (7.7), the integrand can be eval-

uated at any given point (u,α), assuming that p(α) can be evaluated, but the integral

has no closed form. �e outer integral is straightforward to approximate with plain

Monte Carlo (see section a.4 on page 268). �is works by drawing samples α(l) from

p(α) and averaging over sampling approximations for the inner integral given α(l).

�e problem with approximating the inner integral is that it is impossible to draw

samples from γ(u|α). �erefore, importance sampling is necessary. �is requires a

proposal distribution ρ(u|α) that it is possible to draw samples from, and is close to γ.

Section a.4.2 on page 269 gives a detailed description of importance sampling. How-

ever, intuitively the double integral can be replaced by a summation over L samples

α(l) from p(α) and corresponding samples for u(l) drawn from ρ(u|α(l)):

∫
p(α)

∫
γ(u|α)dudα =

∫
p(α)

∫
γ(u|α)

ρ(u|α)
ρ(u|α)dudα

' 1

L

L∑
l=1

∫
γ
(
u
∣∣α(l)

)
ρ
(
u
∣∣α(l)

)ρ(u∣∣α(l)
)
du (7.18a)

' 1

L

L∑
l=1

γ
(
u(l)
∣∣α(l)

)
ρ
(
u(l)
∣∣α(l)

) , (7.18b)

α(l) ∼ p(α) , u(l) ∼ ρ
(
u
∣∣α(l)

)
.

�e next section will detail the shape of γ(u|α(l)) and �nd appropriate forms for

ρ(u|α(l)) for it.

7.3.1.1 The shape of the integrand

To apply importance sampling, a proposal distribution is required, whichwill be tailored

to the parameters of the target distribution. As discussed in section 7.2, it is important

that the proposal distributionmatches the integrand closely, or too many samples will

be required for a good approximation. �is section will �nd proposal distributions

with well-matching shapes. �e scaling of the density graphs in this section will be

arbitrary.
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−0.5
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α

−10 −5 0 5
u

Figure 7.5�e density of γ(u,α) = p(α)γ(u|α) for yt = 9, x ∼ N (7, 1) , n ∼

N (4, 4) , σ2α = 0.13.

So far, the derivation has not assumed any speci�c distributions for x or n, and

has been valid for any distribution. However, for di�erent distributions, di�erent pro-

posal functions are required. With Gaussian for the speech and noise, the integrand

becomes

γ(u,α) = p(α)N (x(u,α, yt); µx, σ
2
x)N (n(u,α, yt); µn, σ

2
n)

, p(α)γ(u|α) . (7.19)

Figure 7.5 gives an example of the target distribution γ(u,α). As shown in (7.18b),

samples for one dimension, α, can be directly drawn from the distribution for α. It is

the other dimension, u, that requires importance sampling, and therefore a proposal

distribution ρ. �e following examples will assume the mode of p(α), α = 0, and

consider representative shapes for γ(u|α = 0).

γ(u|α) consists of a factorN (x(u,α, yt); µx, σ
2
x) related to the clean speech and

a factor N (n(u,α, yt); µn, σ
2
n) related to the noise. Both terms are Gaussians, but

the variables of the Gaussians (x and n) are non-linear functions of u. Figure 7.6 on

the following page depicts the relationship between x and n. Di�erent values of u

represent di�erent positions on the curve. When u is negative, n tends towards u and
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u = −5

u = 0
u = 5

Figure 7.6 Values of x, n for yt = 9, α = 0, and varying u. At the top of the
frameN (x; µx, σ

2
x) in γ; rightN (n; µn, σ

2
n).

x tends towards yt. When u is positive, x tends towards −u and n tends towards yt.

Around u = 0 there is a so� cut-o�. �is graph provides an intuitive connection to

noise masking schemes, which assume that either the speech or the noise dominates

(Klatt 1976; Holmes and Sedgwick 1986). �is would yield a curve with a sharp angle,

so that in all cases either the speech of the noise is equal to the observation.

�e two factors of γ(u|α) are the Gaussians depicted on top and on the side of the

graph. �ey are evaluated at the appropriate values of x and n. When the Gaussians

are plotted with respect to u, the so� cut-o� leads to a Gaussian distribution that is

in�nitely extended on one side. Figure 7.7 illustrates the shape of the two factors. As

u tends to −∞, x tends to yt. In this example, as u → −∞,N (x(u,α, yt); µx, σ
2
x)

therefore tends to

N (x(u,α, yt); µx, σ
2
x)→ N (yt; µx, σ

2
x) = N (9; 7, 1) = e−2/

√
2π ' 0.054.

(7.20)

N (x(u,α, yt); µx, σ
2
x) in �gure 7.7 on the next page therefore is a Gaussian-like dis-

tribution with a so� cut-o� on its le� tail, so that it converges to a non-zero constant.

Analogously,N (n(u,α, yt); µn, σ
2
n) is Gaussian-like but cut o� at its right tail, where
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0
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0.2
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−15 −10 −5 0 5 10
u

N (x(u,α, yt); µx, σ
2
x)

N (n(u,α, yt); µn, σ
2
n)

Figure 7.7 �e factors of γ(u|α = 0) separately. For yt = 9, x ∼ N (7, 1) , n ∼

N (4, 4).

it converges to a non-zero constant.

Figure 7.8 on the following page shows examples for the three types of shape of

γ(u|α = 0). Each time, the le� graph contains the shape of the two factors, and the

right graph their product. Figure 7.8a uses the example from �gure 7.7. �e integrand,

the product of two cut-o� Gaussians, is bimodal. When u tends to ±∞, one term of

γ tends to a non-zero constant, but the other one tends to 0. γ therefore tends to 0 as

well.3

In �gure 7.8b, µx > yt, so that the graph ofN (x(u,α, yt); µx, σ
2
x) is cut o� right

of its maximum. �e product is similar to N (n(u,α, yt); µn, σ
2
n), except that the

right tail goes to zero. �e result is almost Gaussian.

In the last example, �gure 7.8c, both µx and µn are greater than yt, so that both

Gaussians are cut o� before their maximum. �eir product has a lop-sided Gaussian-

like shape around the point of the so� cut-o�, by de�nition u = 0.

3�ismust be true also because
∫
γ(u|α = 0)du is equal top(yt) evaluated at a point, which cannot

be in�nite if either σ2x or σ2n is non-zero.
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(a) N (x(u, 0, yt); 7, 1),N (n(u, 0, yt); 4, 4); their product γ(u|α).
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(b) N (x(u, 0, yt); 9.5, 1),N (n(u, 0, yt); 4, 4); their product γ(u|α).
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(c) N (x(u, 0, yt); 9.5, 1),N (n(u, 0, yt); 10, 10); their product γ(u|α).

Figure 7.8 γ(u|α = 0) for di�erent cases: le� the two factors, right their product.
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7.3.1.2 Importance sampling from the integrand

A proposal distribution that it is simple to draw a sample from is a Gaussian mixture

model. To �nd a mixture of Gaussian densities that approximates γ, the three types

of γ from �gure 7.8 are considered separately. Because γ has these di�erent shapes,

the approximation will be di�erent for each of these cases. the proposal distributions

must be de�ned over u, so that it is useful to �nd the value of u corresponding to a

speci�c setting of x, α, and yt (and n, α, and yt). �is will be denoted u(x, α, yt)

(and u(n,α, yt)). �e expressions are derived in appendix f.4, (f.25) and (f.26f).

Figure 7.9 on the next page shows the proposal distributions. �eir magnitudes

are scaled to equalise the areas under the target and proposal densities. �e proposal

distribution is chosen di�erently depending on the mean of the terms of γ as follows:

1. µx < yt and µn < yt. �is produces a shape of γ as in �gure 7.8a. �e shape of

γ being close to the product of two Gaussians, a Gaussian mixture model with

the parameters of these twoGaussianswould forma good proposal distribution.

As a proposal distribution, a mixture of two Gaussians is chosen with means at

the approximate modes, and covariances set to σ2x and σ2n, respectively. �ese

Gaussians are illustrated in �gure 7.9a.�ey approximate the termsN (n(u,α, yt); µn, σ
2
n)

andN (x(u,α, yt); µx, σ
2
x) with

N
(
u; u(µn, α, yt), σ

2
n

)
; (7.21a)

N
(
u; u(µx, α, yt), σ

2
x

)
. (7.21b)

As was seen in �gure 7.7 on page 197, each Gaussian is essentially scaled by the

extended tail of the other one. �e weights of the Gaussians of the proposal

distribution can be set to the value that the tail of the other one converges to,

which can be computed as in (7.20):

πn ∝ N (yt; µx, σ
2
x); (7.22a)

πx ∝ N (yt; µn, σ
2
n). (7.22b)
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(a) Proposal (gmm) for yt = 9, x ∼ N (7, 1) , n ∼ N (4, 4).
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(b) Proposal (one Gaussian) for yt = 9, x ∼ N (9.5, 1) , n ∼ N (4, 4).
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(c) Proposal (one Gaussian) for yt = 9, x ∼ N (9.5, 1) , n ∼ N (10, 10).

Figure 7.9 �e proposal distribution for γ(u|α) for di�erent cases: le� the com-
ponents of the proposal distribution, right γ (solid line) and proposal distribution
ρ (dashed line, scaled so the area under the curve matches).
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�ese weights are normalised so that they sum to 1. �e distribution becomes

ρ(u) = πnN
(
u; u(µn, α, yt), σ

2
n

)
+ πxN

(
u; u(µx, α, yt), σ

2
x

)
. (7.23)

2. µx > yt and µn < yt (or its mirror image, µx < yt and µn > yt). Figure 7.8b

on page 198 has shown thatN (x(u,α, yt); µx, σ
2
x) is cut o� before its peak, and

converges to its maximum in the limit as u → −∞. �is results in a Gaussian

distribution except for one tail. �e proposal distribution is therefore set to this

Gaussian:

ρ(u) = N
(
u; u(µn, α, yt), σ

2
n

)
. (7.24)

Figure 7.9b on the facing page shows the near-perfect match of this proposal

distribution.

3. µn > yt and µx > yt. Both terms of γ are cut o� before their peaks, resulting

in a shape as in �gure 7.8c on page 198. �e product is a distribution around

u = 0 with Gaussian-like tails, one derived from N (n(u,α, yt); µn, σ
2
n) and

another one derived fromN (x(u,α, yt); µx, σ
2
x). �e proposal distribution is

therefore set to a Gaussian with mean 0. Its variance is set to the largest of the

variances of the speech and the noise:

ρ(u) = N
(
u; 0, max(σ2n, σ2x)

)
. (7.25)

As �gure 7.9c on the facing page shows, this provides good coverage but over-

estimation on part of the space. �is means that some samples will receive a

very low weight.

�us, by transforming the space of the integration from (x, n) to (u,α), much

better proposal distributions for importance sampling can be found than in (x, n)-

space, like in section 7.2. �e sample weights will therefore vary less, so that good

approximations to the integral will be found with a much smaller number of samples.

�e next section will extend the techniques applied in this chapter to the multi-di-

mensional case.
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7.3.1.3 Related method

At the same time as van Dalen and Gales (2010a), a similar method was proposed

(Hershey et al. 2010). �ere are three di�erences. First, the model is di�erent: nomel-

bins are used, so that the phase factor model in this work e�ectively is replaced by a

per-frequency cosine of the angle between speech and noise in the complex plane (see

section 4.2.1.1). Also, the variable transformation is di�erent. �e biggest di�erence,

however, is that the method treats dimensions as independent. It therefore fails to

take into account the correlations in the distributions of the speech and noise. �e

next section will introduce multi-dimensional sampling. �e strategy it uses may also

apply to the method in Hershey et al. (2010).

7.3.2 Multi-dimensional

In this chapter, the log-spectral domain is used. �is has the advantage that the inter-

action between the speech and the noise can be modelled separately per dimension.

However, there are strong correlations between log-spectral coe�cients. �erefore,

the Gaussian priors for the speech and the noise have full covariance matrices. �is

section will build on the techniques used in the previous section. It will generalise

the transformation of the integral to multi-dimensional (u,α). Rather than standard

importance sampling, it will then apply sequential importance resampling to approx-

imate the integral.

�e relations between the single-dimensional variables in the previous section

hold per dimension for the multi-variate case. �e substitute variable u that is in-

troduced to represent a point (x,n) given observation yt and phase factor vector α

is therefore de�ned as

u = n− x. (7.26)

�e expressions for x(u,α,y) and n(u,α,y), the values for the speech and noise

that result from setting (u,α,y), are given in appendix f.2.
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�ere was a complication in transforming the one-dimensional integral in sec-

tion 7.3.1 from (x, n) to (u,α): for some x, multiple values for n were possible, and

vice versa. Because transforming the integral needed a deterministic link, the integ-

ral was split into two parts, for two regions of (x, n)-space. In the multi-dimensional

case it is necessary to do this for each of the dimensions. Appendix f.2 gives the full

derivation. �e integration is therefore �rst split up into conditional distributions per

dimension i, and then into regions. �e integrals for the two regions over (xi, ni) are

rewritten as an integral over (ui, αi). Collapsing the dimensions (see equation (f.16))

then yields an unsurprising generalisation of (7.17):

p(yt) =

∫
p(α)

∫
p(x(u,α,yt))p(n(u,α,yt))dudα (7.27a)

,
∫ ∫
γ(u,α)dudα, (7.27b)

and it is convenient to factorise the integrand γ(u,α) as

γ(u,α) = γ(α)γ(u|α) , (7.27c)

γ(α) = p(α) ; (7.27d)

γ(u|α) = p(x(u,α,yt))p(n(u,α,yt)) . (7.27e)

�is derivation is valid whatever the form of the speech and noise priors, p(x) and

p(n). In this work, they are Gaussians with (repeated from (7.3a) and (7.3b))

x ∼ N (µx,Σx) ; n ∼ N (µn,Σn) , (7.28)

with full covariance matrices Σx and Σn. γ(u|α) then becomes

γ(u|α) = N (x(u,α,yt); µx, Σx)N (n(u,α,yt); µn, Σn) , (7.29a)

so that

γ(u,α) = p(α)N (x(u,α,yt); µx, Σx)N (n(u,α,yt); µn, Σn) . (7.29b)

To approximate this integral, conventional importance sampling could again be

used. Just like in section 7.2, intuitively, the integration over two variables can be ap-
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(c)�e product: γ(u|α).

Figure 7.10 �e integrand γ(u|α) for α = 0: the two factors, and their product.

proximated by drawing samples (u(l),α(l)) from a proposal distribution ρ:∫ ∫
γ(u,α)dudα =

∫ ∫
γ(u,α)

ρ(u,α)
ρ(u,α)dudα

' 1

L

L∑
l=1

γ(u(l),α(l))

ρ(u(l),α(l))
, (u(l),α(l)) ∼ ρ. (7.30)

Figure 7.10 illustrates how the shape of the integrand γ(u|α = 0) generalises to
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7.3. importance sampling in a transformed space

two dimensions of u. �e principles are the same as the one-dimensional case in

�gure 7.8a on page 198. Figure 7.10a contains the factor of γ deriving from the speech

prior, N (x(u,α,yt); µx, Σx), and �gure 7.10b the same for the noise prior. �ey

are again Gaussians with a so� cut-o�, this time in two directions. By choosing the

slightly contrived parameter setting

x ∼ N

 7

6.3

 ,
 1 −0.1

−0.1 0.5

 ; n ∼ N

 5
3

 ,
 2 0.3

0.3 2

 ; yt =

 9
9

 ,
(7.31)

the product of the two factors, in �gure 7.10c, turns out to have four maxima. In gen-

eral, for d dimensions, the integrand can have 2d modes. Even though this may be

unlikely to occur o�en in practice, it is hard to formulate a proposal distribution for

importance sampling. �e proposal distribution would need to be close to the integ-

rand, and it must be possible to draw samples from it. A mixture of Gaussians, for

example, could need as many components as the integrand has maxima. However,

rather than applying normal importance sampling, the integrand will be factorised in

dimensions for sequential importance sampling.

7.3.2.1 Per-dimension sampling

Rather than sampling from all dimensions at once, sequential importance sampling

(see appendix a.4.3 on page 272) can be used, which samples dimension per dimen-

sion. Fundamentally, it is an instantiation of importance sampling formultiple dimen-

sions. First, it draws a set of samples from a distribution over the �rst dimension, and

assigns the samples a weight. �en, for each dimension it extends every partial sam-

ple with a value drawn given the value for previous dimensions of that sample. �e

advantage of this formulation is that between dimensions it allows for resampling:

duplicating higher-probability samples from the set and removing lower-probability

ones. �is concentrates the samples on the most relevant areas of the space.

To be able to apply sequential importance sampling, the target density needs to

be factorised into dimensions. If the feature space is d-dimensional, the integration

205



chapter 7. asymptotically exact likelihoods

is over 2d dimensions: α1, . . . , αd, u1, . . . , ud. It is important to realise that there is

no need for the factors to represent conditional probability distributions, normalised

or not. It is true that the most informative weights a�er each dimension i would arise

if factors 1 . . . i combined to form the (potentially unnormalised) marginal of partial

sampleu1:i. Resamplingwould then bemost e�ective. By de�nition, the factors would

be (unnormalised) conditionals. However, this is not a requirement, and this work

will compare two di�erent factorisations, both of which should be close to the actual

conditionals.

Since the phase factor coe�cients are independent (see section 4.2.1.1 on page 65),

an obvious factorisation for γ(α) is

γ(α) = γ1(α1) · · ·γd(αd) =
d∏
i=1

γi(αi), γi(αi) = p(αi) . (7.32a)

Since the ui are not independent, the factors of γ(u|α)must take the full partial

sample into account:

γ(u|α) = γ1(u1|α1)γ2(u2|u1,α1:2)γ3(u3|u1:2,α1:3) · · ·γd(ud|u1:d−1,α1:d)

=

d∏
i=1

γi(ui|u1:i−1,α1:i) . (7.32b)

Again, the notation of these factors γi(ui|u1:i−1,α1:i) does not mean that they are

necessarily related to conditional distributions. �ey can be any function of the vari-

ables before and a�er the bar, as long as their product γ(u|α) yields the correct res-

ult. Indeed, the next subsections will present two choices for the factorisation. Both

apply the same factorisation to both terms of γ in parallel. �e �rst, which will be

called “postponed factorisation”, each factor only incorporates the dimensions that

are sampled from, and leave other terms for later in the process. �e second, which

will be called “quasi-conditional factorisation”, factorises the two Gaussians separately

into conditional distributions per dimension.

�e form of the speech and noise prior in this work are standard Gaussians, so
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7.3. importance sampling in a transformed space

that the factorisation of γ(u|α)must satisfy (combining (7.29a) and (7.32b)):

d∏
i=1

γi(ui|u1:i−1,α1:i) = N (x(u,α,yt); µx, Σx)N (n(u,α,yt); µn, Σn) . (7.33)

7.3.2.2 Postponed factorisation

�e Gaussian terms in (7.33) can be written as products with every element of the

precision matrices. �e precision matrix is the inverse covariance: Λx = Σ−1
x . Its

elements are denoted λx,ij. It is possible to postpone the terms until both dimensions

to be related are known. �is requires some manipulation, the details of which are in

appendix f.3. �e integrand is rewritten in (f.20), and the factors γi are de�ned as

(from (f.21))

γ1(u1|α1)

= |2πΣy|−
1
2 |2πΣx|−

1
2 exp

(
− 1
2λn,11(n(u1, α1, yt,1) − µn,1)

2

− 1
2λx,11(x(u1, α1, yt,1) − µx,1)

2
)
; (7.34a)

γi(ui|u1:i−1,α1:i)

= exp
(
− 1
2λx,ii(x(ui, αi, yt,i) − µx,i)

2 −(x(ui, αi, yt,i) − µx,i)νx,i

− 1
2λn,ii(n(ui, αi, yt,i) − µn,i)

2 −(n(ui, αi, yt,i) − µn,i)νn,i

)
, (7.34b)

where the terms containing coordinates of lower dimensions u1:i−1 are de�ned as

(in (f.19b))

νx,i =

i−1∑
j=1

λx,ij(x(uj, αj, yt,j) − µx,j) ; νn,i =

i−1∑
j=1

λn,ij(n(uj, αj, yt,j) − µn,j) .

(7.35)

Note again that γi(ui|u1:i−1,α1:i) is not a conditional distribution.

At every dimension, a proposal distributionρi is required for importance sampling.

�is distribution needs to have a shape similar to γi. �ere is, however, no need to

match the amplitude of γi. �is is convenient when rewriting γi to �nd the shape of

the distribution, as appendix f.3 does.
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�e factors in (7.34b) turn out to be proportional to two Gaussian distributions

that are functions of x(ui, αi, yt,i) and n(ui, αi, yt,i) (from (f.23)):

γi(ui|u1:i−1,α1:i−1) ∝ N
(
x(ui, αi, yt,i); µx,i −

νx,i
λx,ii

, λ−1x,ii

)
· N
(
n(ui, αi, yt,i); µn,i −

νn,i
λn,ii

, λ−1n,ii

)
. (7.36)

�is expression has the same shape as the one-dimensional integrand in (7.19) in sec-

tion 7.3.1, and the same proposal distribution as discussed in section 7.3.1.2 can be used.

7.3.2.3 Quasi-conditional factorisation

Alternatively, both Gaussians in (7.29b) could be decomposed into themarginal of the

�rst dimension, the marginal of the second dimension given the �rst, and so on. Ap-

pendix a.1.3 decomposes a Gaussian distribution over two vectors into the marginal

of the �rst vector times the distribution of the second conditional on the �rst. How-

ever, since the density γ is the product of two Gaussians with two di�erent non-linear

variables, its factors are not normalised or proportional to conditional probabilities.

Crucially, the derivation in (a.7) does not rely on the input variable or normalisa-

tion. It is therefore possible to �nd a factorisation of both speech and noise Gaussians

in parallel, even if the factors are not exactly conditionals. For this, both terms of γ1:i

is factorised recursively as (only the le�-hand term is shown)

N (x1:i; µx,1:i, Σx,1:i,1:i) = N (x1:i−1; µx,1:i−1, Σx,1:i−1,1:i−1)

N
(
xi; µx,i|1:i−1(x1:i−1), σ

2
x,i|1:i−1

)
, (7.37a)

where the parameters for xi dependent on x1:i−1 are

µx,i|1:i−1(x1:i−1) = µx,i − Σx,i,1:i−1

[
Σx,1:i−1,1:i−1

]−1
(x1:i−1 − µx,1:i−1) ; (7.37b)

σ2x,i|1:i−1 = σ
2
x,i,i − Σx,i,1:i−1

[
Σx,1:i−1,1:i−1

]−1
Σx,1:i−1,i. (7.37c)

Note that the variance σ2x,i|1:i−1 is not a function of x, so that it needs to be computed

only once for all samples. Also, in computing the inverses of Σx,1:i,1:i for i = 1 . . . d,
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7.3. importance sampling in a transformed space

their structure can be exploited. A block-wise inversion can be used. Block-wise in-

version is a technique o�en applied to take advantage of known structure in blocks of

the matrix, for example, when a block is diagonal. �e trick here, however, is that the

intermediate results are useful. If the the inverse of amatrix with one column removed

from the right and one row removed from the bottom, Σx,1:i−1,1:i−1 is known, the in-

verse of thematrix with the extra row and column,Σx,1:i,1:i, can be computed inO
(
i2
)

time. An incremental implementation that yields[Σx,1:i,1:i]
−1 for i = 1 . . . d thus has a

time complexity of onlyO
(
d3
)
, the same as inverting only the full covariance matrix

with a conventional approach.

�e fully factorised formulation of the le�-hand term of γ is

N (x1:d; µx,1:d, Σx,1:d,1:d) = N
(
x1; µx,1, σ

2
x,1,1

)
d∏
i=2

N
(
xi; µx,i|1:i−1(x1:i−1), σ

2
x,i|1:i−1

)
. (7.38)

�e analogous factorisation can be applied to the right-hand term of γ(u). (7.29a)

can then be factorised

γ(u|α) = N (x(u,α,yt); µx, Σx)N (n(u,α,yt); µn, Σn)

= N
(
x(u1, α1, y1); µ1, σ

2
1,1

)
N
(
n(u1, α1, y1); µ1, σ

2
1,1

)
d∏
i=2

N
(
x(ui, αi, yi); µx,i|1:i−1

(
x(u1:i−1,α1:i−1,y1:i−1)

)
, σ2x,i|1:i−1

)
N
(
n(ui, αi, yi); µn,i|1:i−1

(
n(u1:i−1,α1:i−1,y1:i−1)

)
, σ2n,i|1:i−1

)
.

(7.39)

�e factors of γ then become4

γi(ui|u1:i−1)

= N
(
x(ui, αi, yi); µx,i|1:i−1

(
x(u1:i−1,α1:i−1,y1:i−1)

)
, σ2x,i|1:i−1

)
N
(
n(ui, αi, yi); µn,i|1:i−1

(
n(u1:i−1,α1:i−1,y1:i−1)

)
, σ2n,i|1:i−1

)
, (7.40)

4 �is formulation assumes (in γ1) that multiplying a 1 × 0 matrix by a 0 × 0 matrix by a 0 × 1
matrix yields a 1× 1matrix

[
0
]
.
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where µx,i|1:i−1(x1:i−1) and σ2x,i|1:i−1 are de�ned in (7.37a). Again, the factors have the

form of density as the one-dimensional γ in (7.19), so that the proposal distribution

given in section 7.3.1.2 can be used.

7.3.2.4 Applying sequential importance resampling

Whichever factorisation of γ(u|α) is chosen, the application of sequential import-

ance resampling is the same. �e integral
∫ ∫
γ(u,α)dαdu, the value of interest, is

the normalisation constant of γ(u,α), which will be called Z. To �nd Z by stepping

through dimensions, it can be expressed as a sequence of incremental normalisation

constantsZi/Zi−1 (see appendixa.4.3). Given a sample set
{(
u
(l)
1:i−1,α

(l)
1:i−1

)}
, the ap-

proximation of the incremental normalisation constant is5 (when resampling is used)

Z̃i
Zi−1

=
1

L

L∑
l=1

γi
(
α
(l)
i

)
ρi
(
α
(l)
i

) γi(u(l)i ∣∣u(l)
1:i−1,α

(l)
1:i

)
ρi
(
u
(l)
i

∣∣u(l)
1:i−1,α

(l)
1:i

) , (7.41)

where samples α(l)
i are drawn from proposal distribution ρi

(
α
(l)
i

)
and samples u(l)i

from the appropriate ρi
(
ui
∣∣u(l)
1:i−1,α

(l)
1:i

)
.

�e shape of the density γ
(
ui
∣∣u(l)
1:i−1,α

(l)
1:i

)
depends on the current partial sam-

ple
(
u
(l)
1:i−1,α

(l)
1:i

)
and the type of factorisation. �e factorisations in sections 7.3.2.2

and 7.3.2.3 both result in factors of the form

γi(ui|u1:i−1,α1:i) = N
(
x(ui, αi, yt,i); µ̂x,i, σ̂

2
x,i

)
· N
(
n(ui, αi, yt,i); µ̂n,i, σ̂

2
n,i

)
, (7.42)

where the parameters (µ̂x,i, σ̂2x,i, µ̂n,i, σ̂2n,i) depend on the type of factorisation and the

current partial sample
(
u
(l)
1:i−1,α

(l)
1:i

)
. Appropriate proposal distributions for this type

of density have been discussed in section 7.3.1.2. �ese distributions over ui take the

form of one Gaussian or a mixture of two. �ey are therefore straightforward to draw

a sample from and slot into (7.41).

�e density γi
(
αi
)
is set to p(αi) de�ned in (4.18), which has a Gaussian shape,

but constrained to [−1, 1]. It is straightforward to draw a sample directly from this
5Since samples for one dimension of α and one of u are drawn, this could be written Z2i/Z2i−2 to

be exactly compatible with appendix a.4.3.
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distribution, by sampling from theGaussian and rejecting samples outside [−1, 1] (see

section 4.2.1.1).�erefore, ρi
(
αi
)
can be set toγi

(
αi
)
. thismeans thatγi

(
αi
)
/ρi
(
αi
)

in (7.41) becomes 1, and hybrid sequential importance resampling of algorithm 7 on

page 278 can be applied.

Resampling is discussed in appendix a.4.4. In short, it duplicates higher-weight

samples from the sample set and removes lower-weight ones between every dimen-

sion. �is reduces the variance of the sample weights; conceptually, it focuses e�ort

on higher-probability regions.

When using resampling, the order inwhich the dimensions are traversed becomes

important. �e longer ago samples for one dimensions were drawn, the more likely

they are to have duplicate entries for that dimension. �e sample set will therefore be

less varied for earlier dimensions. �is is not a big problem when, as here, the interest

is not in the samples, but in the normalisation constant. However, when drawing

samples for one dimension, it still makes sense to have last drawn the dimensions

which the new dimension depends on most.

For example, it might seem obvious to drawα(l)
1 . . . α

(l)
d �rst, and then go through

u
(l)
1 . . . u

(l)
d . However, in i − 1 rounds of resampling, the set of samples α(l)

1 . . . α
(l)
d

may become considerably less varied. For higher i, u(l)i may be drawn with only a few

or one unique α(l)
i , which limits the accuracy of the approximation of the normalisa-

tion constant. In thiswork, the order of sampling is thereforeα1, u1, α2, u2, . . . αd, ud.

�is works best ifui anduj are less dependent when j−i is greater.�e order inwhich

samples for the dimensions are drawn could also be determined on the �y by consid-

ering the values of the o�-diagonals in Σx and Σn, but this work does not investigate

this.

�is section has discussed a transformation of the integral that gives the corrup-

ted speech likelihood p(yt), two di�erent factorisations of the integrand, and how

to apply sequential importance sampling to approximate the integral. �e estimate

from the sampling scheme is consistent, but not unbiased. �is means that for a small

sample cloud, the approximated value for p(yt) may be generally overestimated of
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underestimated. However, as the sample cloud size increases, the resulting value con-

verges to the real likelihood.

7.4 Approximate cross-entropy

It is standard practice in speech recognition research to judge speech recognition

methods by word error rates. However, this chapter has the explicit aim of model-

ling the predicted corrupted speech distribution as accurately as possible. �ere is a

more direct way of testing performance on this criterion than the word error rate: the

Kullback-Leibler divergence between the predicted distribution and the approxima-

tion. �is is similar to the kl divergence to the single-pass retrained system discussed

in section 4.4.4.1, but here the reference distribution is not parametric, and the speech

and noise distributions are. For a detailed assessment and for e�ciency, it is useful to

focus on one speech Gaussian.

�e kl divergence is always non-negative; it is 0 if and only if the distributions are

the same. �e kl divergence to real distribution p from approximation q over y is

de�ned as (from (a.11))

KL(p‖q) =
∫
p(y) log

p(y)

q(y)
dy. (7.43)

Here, q is an approximation to the noise-corrupted speech distribution, found for

example with vts, dpmc, or transformed-space sampling. �e problem in computing

this divergence is the one that motivates this whole chapter: the real distribution p

has no closed form, and neither doesKL(p‖q). �is problem can be worked around

in two steps.

First, the kl divergence can be decomposed as (from (a.12))

KL(p‖q) = H(p‖q) −H(p) , (7.44a)

where the cross-entropy of p and q is de�ned as

H(p‖q) = −

∫
p(y) logq(y)dy (7.44b)
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and the entropy of p as

H(p) = −

∫
p(y) logp(y)dy. (7.44c)

�e entropy of p is constant when only q changes. �e cross-entropy is then equal to

the kl divergence up to a constant. For comparing di�erent approximations q against

a �xed p, therefore, the cross-entropyH(p‖q) su�ces. It does not, however, give an

absolute divergence. When q becomes equal to p, the cross-entropy becomes equal

to the entropy, but the latter cannot be computed for the noise-corrupted speech dis-

tribution.6

�e second problem is that H(p‖q) cannot be computed either. However, it is

straightforward to draw samples fromp: section 4.3.1 has shown the algorithm. L sam-

ples drawn from p give the delta spikes in the empirical distribution p̃:

p̃ =
∑
l

δy(l) , y(l) ∼ p(y). (7.45)

�en, plainMonte Carlo (see section a.4) can approximate the cross-entropy between

p and q with the cross-entropy between p̃ and q.

H(p‖q) ' H(p̃‖q) = −

∫
p̃(y) logq(y)dy = −

1

L

∑
l

logq
(
y(l)
)
. (7.46)

�e cross-entropy in (7.44b) can be viewed as the expectation of the log-likelihood

logq(y) under p, which is approximated with Monte Carlo (as in (a.37)). �e result

is (7.46), which can be seen as the negative log-likelihood of q for the set of sam-

ples
{
y(l)
}
. �is gives another motivation for using the cross-entropy as a metric

for comparing compensation methods. Note that when q is the transformed-space

sampling method from section 7.3, for every sample y(l) another level of sampling

takes place inside the evaluation of q
(
y(l)
)
.

6 �e entropy could be rewritten to

H(p) =
∫
p(y) logp(y)dy =

∫(∫ ∫
p(x,n,y)dndx

)
log
(∫ ∫

p(x,n,y)dndx

)
dy,

which has no obvious closed form.
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�e cross-entropy results in section 8.2 will use this Monte Carlo approximation.

It has one caveat: the distribution q is assumed to be normalised, and if not, then the

result is not valid.�ismeans that theAlgonquin approximation, which does not yield

a normalised distribution over y, cannot be assessed in this way. As pointed out in

section 7.3.2, the likelihood approximation of transformed-space sampling is biased,

but consistent. �is means that as the size of its sample cloud increases, q converges

to being normalised.

7.5 Summary

�is chapter has described the third contribution of this thesis.

�is chapter has introduced a new technique for computing the likelihood of a

corrupted speech observation vector. It does not use a parametric density, like the

schemes in chapters 4 and 5, but a sampling method. �e integral over speech, noise,

and phase factor that the likelihood consists of is transformed to allow importance

sampling to be applied. As the number of samples goes to in�nity, this approximation

converges to the real likelihood.�is work uses it with speci�c distributions (Gaussian

speech and noise, a constrained Gaussian for the phase factor), but the method could

also be applied to other distributions. �ough the method is too slow to embed in

a speech recogniser, it is possible to �nd the kl divergence from an approximated

corrupted speech distribution to the real one up to a constant. Section 8.2 will use it to

assess how close to ideal compensation methods are, and the e�ect of approximations

such as assuming the corrupted speech Gaussian.
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Chapter 8

Experiments

�is thesis has looked into two ways of improving statistical models for noise-robust-

ness. �e experimental results will therefore be in two parts.

�e �rst part is about modelling correlations within speech recogniser compon-

ents.�e theory has considered two aspects: estimating full-covariance compensation

(chapter 5), and decoding with that compensation but without the computational cost

(chapter 6). �ese aspects will be demonstrated in section 8.1.

�e secondpart ismore theoretical. Chapter 7 has introduced amethod that, given

speech andnoise priors and amismatch function, computes the corrupted speech like-

lihood exactly in the limit. �ough it is too slow for decoding, it makes it possible to

�nd how well current methods for model compensation do. �is will use an approx-

imation to the kl divergence. It is interesting to see how well that predicts speech

recogniser performance. It also becomes possible to investigate speci�c approxima-

tions that model compensationmethods make. Section 8.2 will examine, for example,

the in�uence of the assumption that the corrupted speech distribution is Gaussian and

diagonalising that Gaussian’s covariance. It will also assess the impact of a common

approximation to the mismatch function for vts compensation, namely setting the

phase factor to a �xed value.
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8.1 Correlation modelling

Realisticmethods speci�cally for noise-robustness aremeant to deal with short, noise-

corrupted utterances, for example, voice commands to a car navigation system. With

little adaptation data, it is vital to have as few parameters as possible to estimate. A

Gaussian noisemodel can be estimated on a few seconds of data. A generic adaptation

method, on the other hand, would do better only if the noise is constant for minutes

(for a comparison between vts and cmllr on short noisy utterances, see Flego and

Gales 2009). �e scenario that this section will consider is, therefore, that of short

utterances with varying noise.

Model compensation methods using extended feature vectors (like extended vts

or extended dpmc) model dynamics better. �erefore, they are able to �nd better full-

covariance compensation. �is section will examine the e�ects of the improvements

that extended vts makes over standard vts. For this, it will use the Resource Man-

agement task, which allows per-speaker noise estimation, so that it is feasible to run

edpmc. �en, results on aurora will indicate whether the improvements carry over

to this well-known task. Finally, results on the Toshiba in-car data will show perform-

ance on data recorded in a real noisy environment.

For all recognition systems, clean training data is used to train the speech models.

39-dimensional feature vectors are used: 12 mfccs and the zeroth coe�cient, aug-

mented with deltas and delta-deltas. Unless indicated otherwise, themfccs are found

from the magnitude spectrum with htk (Young et al. 2006) and the deltas and delta-

deltas are computed over a window of 2 observations le� and 2 right, making the total

window width 9.

�e state of the art in model compensation is vts compensation with the con-

tinuous-time approximation. Section 4.4.2 has discussed how it uses a vector Taylor

series approximation of the mismatch function. �is makes it possible to estimate

the noise model, because the in�uence of the noise is locally linearised. To keep in

line with standard vts compensation, for this section (not for section 8.2) the same

noise estimates and the same mismatch function will be used for all per-component
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compensationmethods in this section.�e phase factor will be assumed 0 in themag-

nitude spectrum. (Appendix c.2 shows how this is roughly equivalent to setting the

phase factor to 1 when working with the power spectrum.)

When the noise model is estimated, maximum-likelihood estimation (Liao and

Gales 2006), as described in section 4.7, is used for a clean system with vts and the

continuous-time approximation. �e initial noise model’s Gaussian for the additive

noise is the maximum-likelihood estimate from the �rst 20 and last 20 frames of the

utterance, which are assumed to contain no speech.�e initial convolutional noise es-

timate is 0. Given this initial noise estimate for an utterance, a recognition hypothesis

is found. �is is used to �nd component–time posteriors. �en, the noise means and

the additive noise covariance are re-estimated. Decoding with this noise model yields

the �nal hypothesis.

8.1.1 Resource Management

To assess compensation quality and the e�ect of noise estimation, initial experiments

are on a task of reasonable complexity, but with arti�cial noise. �e �rst corpus used

is the 1000-word Resource Management corpus (Price et al. 1988). Operations Room

noise from the noisex-92 database (Varga and Steeneken 1993) is added at 20 and

14 dB.

�e rm database contains read sentences associated with a naval resource man-

agement task. �is task contains 109 training speakers reading 3990 sentences, a total

of 3.8 hours of data. �e original database contains clean speech recorded in a sound-

isolated booth, which was used for training the recognisers. All results are averaged

over three of the four available test sets, February 89, October 89, and February 91

(September 1992 is not used), a total of 30 test speakers and 900 utterances.

�e noisex-92 database provides recording samples of various arti�cial, pedes-

trian and military noise environments recorded at 20 kHz with 16-bit resolution. �e

Destroyer Operations Room noise is sampled at random intervals and added to the

clean speech data scaled to yield signal-to-noise ratios of 20 dB and 14 dB.

217



chapter 8. experiments

State-clustered triphone models with six components per mixture are built us-

ing the htk rm recipe (Young et al. 2006). A�er four iterations of embedded re-

estimation, the monophone models are cloned to produce a single-component tri-

phone system. A�er two iterations of embedded training, the triphones are clustered

at the state level. �e number of distinct states is about 1600. �ese are then mixed up

to six components, yielding about 9500 components in total. �e language model for

recognition is a word-pair grammar.

For initial experiments, an equivalent system is trained with one component per

state from the one-but-last six-component system. �e single-component one will be

used for initial experiments, because data sparsity becomes an issue when estimating

full covariance matrices over extended feature vectors. �e six-component system

is the standard one. On clean data, it produces a word error rate of 3.1 %. At the

20 dB word error rate, however, it yields 38.1 %. Since the additive background noise

is known, it is possible to generate stereo data (clean and arti�cially corrupted) and use

single-pass retraining (see section 4.4.4) to obtain an idealised compensated system.

�e word error rate then becomes 7.4%. It is also possible to extract the true noise

model.

When the noise model is estimated, this is done per speaker. With maximum-

likelihood estimation for the noise model, there is no guarantee that this compensates

only for noise: it may implicitly also adapt for speaker characteristics. For example,

the voice quality will in�uence the parameters of the convolutional noise, like cepstral

mean normalisation does.

10 000 samples per distribution are used for dpmc. (Performance does not im-

prove with additional samples.) �e noise covariance estimate does not contain any

zero entries, so back-o� as discussed in section 5.5.2.1 is not necessary.

Section 8.1.1.1 will investigate the closeness of compensation methods to the ideal

distribution. Section 8.1.1.2 will look into reconstructing an extended noise model

from a noise model with statics and dynamics. Section 8.1.1.3 will then apply exten-

ded feature vector compensation to components. �e computational complexity of
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compensation and decoding will be the topic of section 8.1.1.4.

8.1.1.1 Compensation quality

�e compensation methods with extended feature vectors in this thesis aim to model

the corrupted speech distribution more accurately, with the objective to improve per-

formance. Whether they succeed can be veri�ed in two stages. �is section will assess

compensation quality with the kl divergence; later sections will assess recognition

performance.

Compensation quality will be measured with the component-per-component kl

divergence to the single-pass retrained system as explained in section 4.4.4.1. �at

section has also mentioned that, depending on the structure of the covariance matrix,

the kl divergence can be computed separately for coe�cients or blocks of compon-

ents. �e following will therefore examine single coe�cients, for diagonal-covariance

compensation, �rst, and then blocks of coe�cients for block-diagonal matrices.

�e results derive from a Resource Management system with one component per

state so full-covariance speech statistics can be robustly estimated. �e total number

of Gaussians is 1600. noisex-92 Operations Room noise is arti�cially added at a 14 dB

snr. Hence it is possible to obtain the correct noise distribution, for both the standard

and extended feature vector cases. �e noise models also have full covariance matri-

ces.1

Diagonal compensation Normally, vts-compensated covariance matrices are di-

agonalised. �us it is interesting to initially examine this con�guration. Using diag-

onal covariance matrices also allows each dimension to be assessed. Figure 8.1 on the

following page contrasts the accuracy of an uncompensated system, and three forms

of compensation: standard vts, extended vts, and, as an indication of maximum

possible performance, extended dpmc. �is graph is for a 14 dB snr, but graphs for

other snrs are very similar. �e horizontal axis has the feature dimensions: 13 static
1Similar trends are observed when striped noise statistics, consistent with diagonal standard noise

models for vts, are used for evts.
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Figure 8.1 Average Kullback-Leibler divergence between compensated systems
and a single-pass retrained system.

mfccs ys, 13 �rst-order dynamics y∆, and 13 second-order dynamics y∆2 . As expec-

ted, the uncompensated system is furthest away from the single-pass retrained sys-

tem, and extended dpmc provides the most accurate compensation given the speech

and noise models. �e di�erence between standard vts and extended vts is interest-

ing. By de�nition, both yield the same compensation for the statics.2 For the deltas

and especially the delta-deltas, however, the continuous-time approximation does not

consistently decrease the distance to the single-pass retrained system. Extended vts,

though not as accurate as extended dpmc, provides a substantial improvement over

standard vts.

Block-diagonal compensation �e previous section used diagonal covariance ma-

trices. To compensate for changing correlations under noise, more complex covari-

ance matrix structures, such as full or block-diagonal, may be used. vtswith the con-

tinuous-time approximation can also be used to generate block-diagonal covariance

matrices for the output distributions. �e form of this was shown in (4.44). Normally,

evts produces full covariance matrices, and so can single-pass retraining, but they
2Small di�erences are because htk gathers statistics for statics and dynamics di�erently from for

extended feature vectors.
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Compensation — vts evts edpmc
ys 58.8 1.0 1.0 1.0
y∆ 3.3 1.4 0.7 0.5
y∆

2 3.2 1.7 0.7 0.5

Table 8.1 Resource Management task: average kl divergence to a block-diagonal
single-pass retrained system for vts (continuous time), evts and dpmc at 14 dB
snr.

can be constrained to be block-diagonal by setting other entries to zero. It then is pos-

sible to compute the kl divergence to a single-pass retrained system per block. �is

allows the compensation of each of the blocks of features to be individually assessed:

the statics, and �rst- and second-order dynamics. vts compensation uses block-di-

agonal statistics for both the clean speech and noise models. For evts the extended

statistics have full covariance matrices, to be equivalent to the statistics for standard

vts.

Table 8.1 shows the average kl divergence between a system compensated with

block-diagonal vts with the continuous time approximation and the block-diagonal

single-pass retrained system. For other signal-to-noise ratios, numbers are very sim-

ilar. vts �nds compensated parameters close to the single-pass retrained system for

the static features: the kl divergence goes from 58.8 to 1.0. However, the dynamic

parameters are not compensated as accurately, though both the delta and delta-delta

parameters are still somewhat closer to the spr system than the uncompensatedmodel

set (3.2 to 1.7 for the delta-deltas). Similarly to diagonal compensation (see �gure 8.1),

with block-diagonal covariances standard vts �nds good compensation for the static

parameters, but less good for the deltas and delta-deltas.

evts has the same compensation as standard vts for the statics. As in the di-

agonal-covariance case, however, for dynamic parameters compensation it is more

accurate. It does yield a clear improvement over the uncompensated system (3.2 to 0.7

for the delta-deltas) and is close to edpmc, which in the limit yields the best obtainable

Gaussian compensation given the speech and noise models.
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Σy

Σe
n diag full

known
diag 16.4 16.0
smoothed 15.9 15.2
full 15.9 14.9

estimated diag 12.0 11.2
smoothed 12.5 12.0

Table 8.2 Resource Management task: word error rates for reconstructing an
extended noise model at 14 dB snr.

8.1.1.2 Extended noise reconstruction

In practice, labelled samples of the noise to estimate the noise model are not always

available. As discussed in section 5.5.2, when using the standard ml estimated noise

models there are two approaches tomapping the noisemodel parameters to the exten-

ded noise model parameters: one with a diagonal covariance matrix for the additive

noise, and one with a smoothly reconstructed matrix (which is striped). �is section

contrasts the performance of the two. It applies extended vts to the system with six

striped-covariance Gaussian components per state. �e standard noise model para-

meters can either be derived from the actual noise data, the “known” case, or using

maximum-likelihood estimation, “estimated”. In this section the noise added to the

rm task is scaled to yield a 14 dB snr.

�e top three rows of table 8.2 compare diagonal and smoothed reconstructions of

the extended noise when the standard noisemodel is estimated on the actual data. For

diagonal-covariance and full-covariance compensation, smoothing results in 0.6%

and 0.8% absolute improvement in the word error rate. �is works almost as well

as when the known noise distribution is used (as well, with diagonal-covariance com-

pensation). However, when the standard noisemodel parameters are foundwithmax-

imum-likelihood estimation, the bottom two rows in table 8.2, the smoothing process

degrades performance.

�is degradation from the use of smoothing when using maximum-likelihood

estimated noise parameters is caused by the nature of the maximum-likelihood es-
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Jacobians Σe
x 20 dB 14 dB

Standard vts 6.8 13.7
Fixed diag 7.8 13.5
Variable diag 7.5 13.0
Variable striped 6.2 12.0

Table 8.3 Resource Management task: word error rates for approximations of
evts. Diagonal-covariance decoding.

timates. For the smoothing process it is assumed that there is some true underlying

sequence of noise samples that yields the standard noise model parameters. �is is

guaranteed to be true for the known noise distribution. However, this is not neces-

sarily the case for the estimated noise. �e dynamic noise parameters are estimated

using the continuous-time approximation. �ere are no constraints that the estim-

ates re�ect the true or a possible sequence of noise samples. Using smoothing, which

assumes relationships in the noise sample sequence, to estimate the extended noise

covariance matrix may therefore not help. �e experiments in the following sections

will therefore use the diagonal reconstruction for the extended noise distribution.

8.1.1.3 Per-component compensation

�is section investigates recognition performance for per-component compensation

with extendedvts. Here, a standard noisemodel is estimated and a diagonal extended

noise model derived from it.

Table 8.3 presents the properties of extended vts and striped statistics. �e �rst

row gives word error rates for standard vts at 20 and 14 dB. As discussed in sec-

tion 5.3.3.1, extended vts becomes standard vts if the expansion point is chosen equal

for all time instances. Varying the expansion point is expected to provide better com-

pensation for dynamics. On the other hand, diagonalising extended clean speech stat-

istics discards information compared to diagonalising standard features with statics

and dynamics. For the second line in the table, the expansion points vary, but the

Jacobian is �xed. At the lower snr, the improved modelling helps, but at the higher

snr, where the corrupted speech distributions are closer to the clean speech, diagonal-
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Operations Room Car
Scheme Speech Σy 20 14 8 20 14 8

vts diag Σx diag 6.8 13.7 30.0 5.2 9.1 18.7
block Σx block 7.0 14.2 31.6 5.3 9.7 20.1

evts striped Σe
x

diag 6.2 12.0 27.9 4.8 8.5 18.2
full 6.3 11.2 26.7 5.0 8.3 17.9

edpmc striped Σe
x

diag 6.3 11.9 27.9 4.8 8.2 16.4
full 6.0 11.3 26.3 4.7 7.9 15.9

Table 8.4 Resource Management task: word error rates for standard vts, exten-
ded vts and extended dpmc.

ising the extended clean speech statistics discards vital information. For the third row,

the Jacobians are allowed to vary, which gives complete evts, if with diagonal speech

statistics. �e bottom row uses striped statistics, as discussed in section 5.5.1, which

discards no information compared to diagonal standard statistics. �is leads to a con-

sistent improvement over standard vts. �e following experiments will therefore use

striped statistics.

Table 8.4 shows contrasts between compensation with standard vts and with ex-

tended feature vectors using either evts or edpmc. A �rst thing to note is that all

approaches perform better than single-pass retraining (not in the table, at 7.4 % for

20 dB Operations Room noise). �is is because the noise estimation can implicitly

compensate for some speaker characteristics. �e results in the �rst row are from the

standard scheme, diagonal-covariance compensation with vts. Block-diagonal com-

pensation with standard vts is also implemented and block-diagonal clean speech

statistics are used. �e results for this approach are in the second row. �e use of the

block-diagonal compensation with vts degrades performance, for example 13.7 % to

14.2 % for Operations Room noise at 14 dB.

Compensation with evts (shown in the middle two rows of the table) yields bet-

ter performance than standard vts for both diagonal and full compensated covari-

ance matrices. For diagonal-covariance compensation, the relative improvement is

5–10% (6.8 to 6.2 %; 13.7 to 12.0%, etc.) over standard vts. �ough at the higher snr

condition, 20 dB, full-covariance compensation does not improve performance over
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diagonal-covariance performance, gains are observed at the lower snrs. For Oper-

ations Room noise at 14 dB, full-covariance compensation produces an 11.2 % word

error rate, which is a 20% relative improvement from standard vts, and 7% relative

gain compared to the diagonal case.

In addition, table 8.4 shows the performance of edpmc, which in the limit can be

viewed as the optimal Gaussian compensation scheme. �e results for this approach

are shown in the bottom two rows of table 8.4. When compared with edpmc, the �rst-

order approximation in evts degrades performance by up to 0.4% absolute, except

for 8 dB Car noise. However, evts is signi�cantly faster than edpmc.

8.1.1.4 Per-base class compensation

�e results in section 8.1.1.3 used per-component compensation, and full covariance

matrices. In real recognition systems, this is o�en impractical: computing per-com-

ponent compensation is too slow, as is decoding with full covariances. �ese prob-

lems can be solved with two techniques in tandem. Joint uncertainty decoding can

perform compensation with extended feature vectors per base class (see section 5.4).

�is speeds up compensation. Predictive linear transformations, such as predictive

semi-tied covariance matrices (see section 6.2.3), can convert full-covariance com-

pensation into diagonal-covariance compensation plus a linear transformation. �is

speeds up decoding. It is the combination of extended feature vector compensation

with joint uncertainty decoding and predictive transformations that make it feasible

for real systems.

Since both joint uncertainty decoding (jud) and predictive semi-tied covariance

matrices are approximations, some loss of accuracy is expected in return for the gain in

speed. �e noise model is estimated to maximise the likelihood for standard vts and

for jud with standard vts. Again, a diagonal-covariance noise model with extended

feature vectors is found. It should be noted that the performance �gures on extended

feature vectors give an underestimate of performance if the noisemodel was estimated

consistently. In the results in this work there is a contest between the e�ect of the

225



chapter 8. experiments

Gaussians Type Σy 20 dB 14 dB

9.5 K

vts diag 6.8 13.7

evts diag 6.2 12.0
full 6.3 11.2

edpmc diag 6.3 11.9
full 6.0 11.3

16 (jud)

vts diag 7.4 16.4

evts
diag 7.6 15.6
full 7.5 13.8
semi-tied 7.5 13.8

edpmc
diag 8.0 16.2
full 7.4 14.6
semi-tied 7.4 14.7

Table 8.5 Word error rates for per-component and per-base class compensation.

quality of compensation (extended dpmc should be better than extended vts, which

should be better than standard vts), and the e�ect of themismatch in the noisemodel

estimation (standard vts should be better than extended vts, which should be better

than extended dpmc).

Table 8.5 shows the word error rates. �e top half of table 8.5 contains results for

per-component compensation. �ey are repeated from table 8.4 on page 224 for ref-

erence. �e main e�ects are that methods with extended feature vectors (evts and

edpmc) were able to produce more accurate compensation, especially with full cov-

ariance matrices and at the lower signal-to-noise ratio. Because the noise model is

estimated for standard vts, to which evts compensation is more similar than edpmc

compensation, edpmc does not consistently outperform evts even though it provides

more accurate compensation.

�e second half of the table contains results with joint uncertainty decoding. To

reduce the computational cost substantially, the number of base classes is low: only 16.

�e noise model is optimised for jud compensation with vts, the top row of the

second half. Going from per-component to per-base class vts, the accuracy decreases

by 0.6% and 2.7%. At 20 dB, extended vts and extended dpmc do not improve over

standard vts at all. �is is caused by the mismatch of the noise model, compounded
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by the approximation that jud uses.

At the 14 dB signal-to-noise ratio, however, the performance di�erences are more

similar to the ones for per-component compensation. However, here extended dpmc

performs less well than extended vts, though it is slower and more accurate given

the real noise distribution. �is is caused by the larger mismatch between the com-

pensation that the noise model is estimated for and the actual compensation. �e

mismatch between standard vts and extended vts is less great. Extended vts im-

proves jud performance by 0.8% when generating diagonal covariances, and by 2.6%

with full covariances. �e latter models the change in feature correlations. However,

since it makes the covariance bias of joint uncertainty decoding full, all covariance

matrices become full, which is slow in decoding. Semi-tied covariance matrices, in

the next row, convert the full-covariance Gaussians to diagonal-covariance ones with

a linear transformation per base class. As in earlier work (Gales and van Dalen 2007),

this does not impact performance negatively: it stays at 13.8 %.

�ese results show that it is feasible to reduce the computational load of exten-

ded feature vector approaches to a practical level, with only limited negative e�ect to

accuracy. �e combination of predictive semi-tied covariance matrices, joint uncer-

tainty decoding, and extended vts is the set-up that this thesis proposes for practical

compensation. Joint uncertainty decoding reduces the number of Gaussians to be

compensated. �en, predictive semi-tied covariance matrices provides a form of de-

coding that is basically as fast as diagonal covariances, but does model correlations.

�e choice of the number of base classes for joint uncertainty decoding provides a

trade-o� between speed and accuracy. It is important to note that joint uncertainty

decoding with only one component in each base class is equal to the form of com-

pensation it is derived from, for example, extended vts. �e same goes for predictive

semi-tied covariance matrices. �e results here show the extremes of both, but it is

possible to select any point in between for the desired trade-o� between speed and

accuracy.
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8.1.2 AURORA 2

aurora 2 is a small vocabulary digit string recognition task (Hirsch and Pearce 2000).

�ough it is less complex than the Resource Management corpus, it is a standard cor-

pus for testing noise-robustness. Utterances are one to seven digits long and based

on the tidigits database with noise arti�cially added. �e clean speech training data

comprises 8440 utterances from 55 male and 55 female speakers. �e test data is split

into three sections. Test set a comprises 4 noise conditions: subway, babble, car and

exhibition hall. Matched training data is available for these test conditions, but not

used in this work. Test set b comprises 4 di�erent noise conditions. For both test set

a and b the noise is scaled and added to the waveforms. For the two noise conditions

in test set c convolutional noise is also added. Each of the conditions has a test set of

1001 sentences with 52 male and 52 female speakers.

�e feature vectors are extractedwith the etsi front-end (Hirsch andPearce 2000).

�e delta and delta-delta coe�cients use 2 and 3 frames le� and right, respectively, for

total window of 11 frames. �e acoustic models are whole word digit models with

16 emitting states, and 3 mixtures per state and silence. �e results presented here use

the simple aurora back-end. Using the simple back-end recogniser rather than one

with more Gaussian components per state ensures that block-diagonal and full cov-

ariancematrices for the clean speech are robust. Since for this task, as for the Resource

Management task, the noise estimates do not contain zero elements in the variance,

the back-o� strategy for the noise estimate discussed in section 5.5.2.1 is not necessary.

8.1.2.1 Extended VTS

Table 8.6 on the next page shows results for compensation with vtswith the continu-

ous-time approximation and evts. Both diagonal and block-diagonal forms of vts

are used. vts with diagonal compensation (trained on diagonal speech statistics) is

the standard method. Results for this are shown in the columns labelled “vts diag”

of table 8.6 and are treated as the baseline performance �gures (similar results for vts

are given in Li et al. (2007)). vts can also be used to produce block-diagonal cov-
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snr A B C
Scheme vts evts vts evts vts evts
Comp. diag block full diag block full diag block full

00 28.2 24.3 23.5 26.2 22.9 24.3 25.9 23.6 22.6
05 10.5 8.2 7.1 9.3 7.9 7.2 9.9 8.2 6.9
10 4.3 3.3 2.5 3.9 3.2 2.4 4.4 3.4 2.8
15 2.2 1.9 1.2 2.2 1.8 1.2 2.3 1.8 1.4
20 1.6 1.3 0.8 1.4 1.2 0.7 1.6 1.2 1.0

Avg. 9.4 7.8 7.0 8.6 7.4 7.2 8.8 7.7 6.9

Table 8.6 aurora: diagonal compensation with standard vts and full compens-
ation with extended vts.

ariance matrices. �e results for this are shown in the columns labelled “vts block”

in table 8.6. Compared to the standard diagonal vts scheme, this gives, for example,

relative reductions inword error rate of 15 % to 22% at 5 dB snr. With diagonal-covari-

ance statistics for the clean speech (not in the table), this yields no performance gain.

However, performance gains were obtained when using block-diagonal clean-speech

models, unlike for Resource Management. �is di�erence in performance between

the tasks can be explained by the additional complexity of the rm task compared to

aurora.

�e results for evts are shown in the last three columns of table 8.6. Here, full-

covariancemodels are used for the extended clean speech to produce compensated full

covariance matrices for decoding. �e improved compensation for dynamics causes

extended vts to perform better than to block-diagonal standard vts in all but one

noise conditions. At 5 dB again, relative improvements are an extra 3% to 10%.

8.1.2.2 Front-end PCMLLR

�is section makes a di�erent, but interesting, trade-o� between speed and accuracy.

Section 6.4 has introduced a number of schemes that are based on predictive trans-

formations but are even faster, because they solely use feature transformations. Since

the objective of the experiments in this section is to �nd fast feature transformations,

appropriate for embedded real-time systems, the small aurora task is again used.
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snr
Scheme 20 15 10 5 0 Avg.
vts 1.6 2.2 4.3 10.5 28.2 9.4
jud 1.7 2.7 4.7 11.4 30.4 10.2
pcmllr 1.5 2.6 5.2 13.5 34.7 11.5
Model-mmse 33.8 47.5 61.6 77.4 91.7 62.4

Table 8.7 aurora: component-dependent compensation.

Also, all transformations have diagonal covariance matrices, which makes compens-

ation and decoding very fast.

64 base classes are used, which as in Stouten et al. (2004b) is about a tenth of the

number of back-end components (546). �e noise model for each utterance is estim-

ated for every utterance, for compensation on the base class level. �is noise model is

then used to vts-compensate the 64-component clean front-end gmm, producing the

joint distribution (4.70). �is scheme for estimating the joint distribution is the same

as used for mmse feature enhancement in Stouten et al. (2004b), with the addition of

additive noise estimation and explicit compensation of dynamic parameters.

Table 8.7 contains word error rates for component-speci�c model compensation.

vts is the odd one out in that it compensates every back-end component separately,

providing accurate but slow compensation. All other schemes use the joint distri-

bution. jud actually decodes with the back-end models set to their predicted distri-

butions in (4.48a), trading in some accuracy for speed compared to vts. �e other

two schemes, pcmllr and model-mmse, both use component-dependent transform-

ations. pcmllr minimises the kl divergence to jud compensation. Model-mmse is

applied in the same way, but estimated for mmse (see section 4.6): every transform-

ation reconstructs the clean speech in an area of acoustic space. pcmllr brings the

adaptedmodels close to the jud-predicted statistics.�atmodel-mmse fails to provide

meaningful compensation highlights the di�erence in the nature of pcmllr andmmse

transforms, even though their form is the same. mmse transforms, which aim to re-

construct the clean speech, have no meaning when applied separately to each base

class of components.
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snr
pcmllr Scheme 20 15 10 5 0 Avg.
Global 2.9 6.5 16.8 40.5 71.8 27.7
Observation-trained 1.4 2.6 5.5 14.2 37.1 12.2
Hard-decision 1.5 3.0 6.5 16.6 40.5 13.6
Interpolated 1.4 2.5 5.0 12.6 32.5 10.8
mmse 1.5 2.6 5.4 14.4 39.7 12.7

Table 8.8 aurora: component-independent transformation: pcmllr-based
schemes and mmse.

Table 8.8 shows results of using component-independent transformations. mmse

is the standard feature enhancement scheme that reconstructs a clean speech estim-

ate from the noise-corrupted observation. For higher snrs, its accuracy is similar to

model compensation methods jud and pcmllr trained from the same joint distribu-

tion. For lower snrs, however,mmse’s point estimate of the clean speech performs less

well than jud and pcmllr’s compensation of distributions.

Global pcmllr estimates one transform per noise condition, and is the baseline

for component-independent pcmllr. Observation-trained pcmllr adapts the pre-

dicted corrupted speech distribution for every observation and estimates an appro-

priate transform. �is yields accurate compensation, which for lower snrs shows the

advantages of model compensation.

Hard-decision pcmllr uses the same transforms as pcmllr, but picks one based

on the feature vector rather than on the back-end component. �is simple scheme

yields a piecewise linear transformation of the feature space. Interpolated pcmllr

performs better, by interpolating the transforms weighted by the front-end posterior.

Interpolated pcmllr outperforms all other derivatives of pcmllr, pcmllr itself, and

mmse, which uses the same form of decoding. �e ingredients for its performance are

twofold. First, the pcmllr transforms are trained to minimise the kl divergence of

the adaptedmodels to the jud-predicted corrupted speech distributions in an acoustic

region. Secondly, the interpolation smoothly moves between transformations that

are appropriate for the acoustic region. pcmllr itself applies component-dependent

231



chapter 8. experiments

enon city hwy
Scheme Decoding 35 dB 25 dB 18 dB
vts diag 1.2 2.5 3.2

evts diag 1.1 2.4 2.8
full 1.7 2.5 2.4

evts back-o� 1.1 2.2 2.4
% utterances 87% 38% 11%

Table 8.9 Extended vts on the Toshiba in-car task.

transformations independently of the feature vector.

8.1.3 Toshiba in-car database

Experiments are also run on a task with real recorded noise: the Toshiba in-car data-

base. �is is a corpus collected by Toshiba Research Europe Limited’s Cambridge Re-

search Laboratory. It comprises a set of small/medium sized tasks with noisy speech

collected in an o�ce and in vehicles driving at various conditions. �is work uses

three of the test sets containing digit sequences (phone numbers) recorded in a car

with a microphone mounted on the rear-view mirror. �e enon set, which consists

of 835 utterances, was recorded with the engine idle, and has a 35 dB average signal-

to-noise ratio. �e city set, which consists of 862 utterances, was recorded driving in

the city, and has a 25 dB average signal-to-noise ratio. �e hwy set, which consists of

887 utterances, was recorded on the highway, and has a 18 dB average signal-to-noise

ratio.

�e clean speech models are trained on the Wall Street Journal corpus, based on

the system described in Liao (2007), but the number of states is reduced to about 650,

more appropriate for an embedded system. �e acoustic models used are cross-word

triphones decision-tree clustered per state, with three emitting states per hmm, twelve

components per gmm and diagonal covariance matrices. �e number of components

is about 7800. Like for Resource Management, extended clean speech statistics for

extended vts are striped for robustness. �e language model is an open digit loop. To

�nd the noise model, it is re-estimated twice on a new hypothesis.
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Table 8.9 on the facing page shows results on the Toshiba task. �e top row con-

tains word error rates for the standard compensation method: vts trained on diag-

onal speech statistics. �e performance of evts using diagonal covariance matrices is

shown in the second row. Again evts shows gains over vts, especially at the lowest

snr condition, hwy. In the hwy condition about a 12% relative reduction in error

rate was obtained.

Initially full-covariance matrix compensation with evts is evaluated without the

use of the back-o� scheme described in section 5.5.2.1. Using evts with full-covari-

ance decoding yields additional gains compared to diagonal compensation at low snrs

(2.8 % to 2.4%). However the performance is degraded at higher snr conditions, for

example enon where performance is degraded from 1.1 % to 1.7 %.

In contrast to the previous tasks, at high snrs there are found to be zeros in the

noise variance estimate. �e back-o� scheme, labelled “evts back-o�” in table 8.9,

is therefore used. Here diagonal covariance matrix compensation is used if any noise

variance estimate falls below 0.05 times the variance �oor used for clean speechmodel

training (results are consistent over a range of values from 0.0 to 0.1). �e bottom

line in table 8.9 shows the percentage of utterances for each of the task where the

system is backed o� to diagonal covariance matrix compensation. As expected the

percentage at high snrs, 87%, was far higher than at lower snrs, 11 %. Using this back-

o� approach gives consistent gains over using either diagonal or full compensation

evts alone. Note that as the back-o� is based on the ml-estimated noise variances,

it is fully automated. Compared to standard vts, evts with back-o� gave relative

reductions of 8% in the enon condition, 12 % in city, and 25% in hwy.

8.2 The effect of approximations

�e second part of this chapter is more theoretical. Chapter 7 has found an accur-

ate approximation to the corrupted speech likelihood. To assess its performance, this

section will initially consider the cross-entropy to the real distribution for individual
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components, as discussed in section 7.4. In the limit, the transformed-space sampling

method yields the ideal compensation, which gives the point where the kl divergence

is 0. �is allows a �ne-grained assessment of the approximations that methods for

noise-robustness make. �is section will consider the e�ects of parameterisations of

the noise-corrupted speech distributions, such as assuming it Gaussian (section 8.2.2),

and diagonalising the covariancematrix of this Gaussian (section 8.2.3). It will also in-

vestigate the e�ects of a common approximation to the mismatch function: assuming

the phase factor α �xed (section 8.2.4).

8.2.1 Set-up

If the speech and noise models represented the real distributions perfectly, then com-

puting the corrupted speech distribution exactly would yield the best recognition per-

formance. In practice, however, themodels are imperfect and improving the kl diver-

gence to the real distribution does not necessarily mean that the speech recognition

accuracy will also improve. In this respect, assessing the quality of speech recognition

compensation with the kl divergence is conceptually similar to assessing language

models by their perplexities. �e following sections will therefore also examine how

the cross-entropy results relate to word error rates.

However, not all methods discussed in this thesis can be assessed with both of

these metrics. �e Algonquin algorithm, discussed in section 4.5.1, yields a Gaussian

approximation of the corrupted speech distribution speci�c to an observation. Used

as a method to approximate the likelihood of observations, it therefore is not norm-

alised. �is makes it impossible to compute the cross-entropy for it. As discussed in

section 7.3, the likelihood for transformed-space sampling is not normalised for small

sample clouds, but converges to normalisation as the number of samples increases.

�is sectionwill also not presentword error rates for the transformed-space sampling

method introduced in chapter 7.3, because decoding with it is prohibitively slow. �e

cause of this is a conceptual di�erence between model compensation methods (e.g.

vts, dpmc, and idpmc) on the one hand and transformed-space sampling on the
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other. Model compensation computes a parametric distribution, and once that is

done, running a recogniser or computing a cross-entropy is not necessarily slower

than without compensation. Transformed-space sampling, on the other hand, ap-

proximates the likelihood given an observation, and cannot precompute anything. To

employ it for the recognition task in this section, just for the statics and with a decent-

sized sample cloud of 512, it would run at roughly 30 million times real-time.3 �is

�gure is based on an implementation that is not optimised for speed at all, but even

with an optimised implementation running a speech recogniser with it would not be

feasible.

However, the approximated likelihood of transformed-space sampling tends to

the exact likelihood. In the following section it will become clear that the cross-en-

tropy that transformed-space sampling converges to indicates the minimum value of

the cross-entropy to the real distribution. �is minimum is by de�nition where the

kl divergence is 0. �e distance to this point in a cross-entropy graph therefore shows

how far compensation methods are from the ideal compensation.

�e cross-entropy experiments will assess compensation quality for the corrupted

speech distribution resulting from combining one speech Gaussian with one noise

Gaussian. �e distributions will just be over statics, to remove the dependence on any

additional approximations for the dynamics.

For the speech recognition experiments, the distributions over dynamic features

for speech recognition are foundwith extended feature vectors, as introduced in chapter 5.

Not only does this yield better accuracy than approximations, but it also keeps com-

pensation for dynamics most closely related to that for the statics. For robustness, the

speech statistics have striped covariance matrices as discussed in section 5.5.1. �e es-

timated Gaussian distributions of the corrupted speech have full covariance matrices.

�is section uses a noise-corrupted version of the ResourceManagement task, the

set-up of which was discussed in section 8.1.1, both for evaluating the cross-entropy
3Computing the likelihood of one sample for one speech Gaussian takes slightly over 30 seconds

on a machine on the Cambridge Engineering Department’s compute cluster. Processing one second of
speech, with observations every 10ms, and 9500 speech Gaussians, requires performing this operation
950 000 times. �is therefore takes roughly 30 million seconds.
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and the word error rate. All experiments use a noise model trained directly on the

noise as added to the speech audio, and there is no convolutional noise. �is elimin-

ates the in�uence of the noise estimation algorithm. As discussed in section 4.4, in

practice methods for noise robustness can estimate a noise model on little training

data compared to generic adaptation techniques. �is is because their model of the

environment matches the actual environment to some degree. �is section examines

how close that model can be without considering how to estimate the noise model.

�is section uses the mismatch function presented in section 4.2.1 as the real one.

It also assumes that the phase factor is Gaussian but constrained to [−1, 1], and in-

dependent per time frame and per spectral coe�cient. �e variances σ2α of the phase

factor are found from the actual �lter bank weights for the htk Resource Manage-

ment recogniser, as discussed in section 4.2.1.1. For the cross-entropy experiments, the

schemes that sample from the phase factor distribution, dpmc and transformed-space

sampling, use the exact distribution. vts requires the distribution to be Gaussian (see

section 5.3.3) and ignores the domain of the coe�cients.

Previous work on model compensation has not modelled the phase factor with

a distribution. Work on feature enhancement with vts, on the other hand, has: to

�nd a minimummean square error estimate (Deng et al. 2004), or with a Kalman �l-

ter (Leutnant andHaeb-Umbach 2009a). Formodel compensationwithvts, previous

work has �xedα to 0 (Moreno 1996; Acero et al. 2000), to 1 (Liao 2007, and section 8.1

of this thesis), mathematically highly improbable, or 2.5 (Li et al. 2007), mathemat-

ically inconsistent. �e original presentation of dpmc (Gales 1995) similarly ignored

the phase factor. However, since it trains a distribution on samples drawn from the

corrupted speech distribution, it is straightforward to extend it so it uses a distribution

for α. �e phase factor distribution to draw samples from was given in section 4.2.1.1.

�e recognition experiments in this section apply extended vts and dpmc compens-

ation with a distribution over α. �is is possible because extended feature vectors are

used rather than the continuous-time approximation (see section 5.3.3). Section 8.2.4

will examine the in�uence of �xing the phase factor.
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For the cross-entropy experiments, the full-covariance noise and speech Gaussi-

ans are both over 24 log-spectral coe�cients. �e one for the noise is trained directly

on the noise audio. �e speech distribution is taken from a trained Resource Man-

agement system, single-pass retrained to �nd Gaussian in the log-spectral domain. A

low-energy speech component4 is chosen, to represent the part of the utterance where

the low snr causes recognition errors. �e distance between the speech and the noise

means, averaged over the log-spectral coe�cients, corresponds to a 10 dB snr. Except

where mentioned, the relative ordering of the approximation methods is the same for

all combinations of speech and noise examined. 5000 samples y(l) are drawn from

the corrupted speech distribution.

For the cross-entropy experiments, dpmc trains Gaussians on 50 000 samples. For

idpmc, the average number of samples per Gaussian component is also 50 000, so

that the 8-component mixture, for example, is trained on 400 000 samples. For the

recognition experiments, the number of samples per component for extended dpmc

is set to 100 000. For iterative dpmc, the average number of samples is 100 000: for

example, a 6-component mixture is trained on 600 000 samples.

�is is many more samples than in section 8.1. �is is because as the compens-

ation methods get to the limits of their performance, both for the cross-entropy and

speech recognition, small inaccuracies become important. For the cross-entropy ex-

periments, there is no mismatch between training data and predicted distribution,

because both are generated with exactly the samemodels. For both cross-entropy and

recognition experiments, over-training can be prevented not by reducing the number

of components, but by increasing the number of samples. Training idpmc, in partic-

ular, appears to be sensitive to the number of samples each component has to train

on. �e number of samples is therefore pushed to machine limits,5 at which point

performance appeared to have converged.

4Tied state “st uh 4 3”, component 2.
5Training the recogniser takes several processor-weeks.
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Figure 8.2 Cross-entropy to the corrupted speech distribution for transformed-
space sampling and model compensation methods.

8.2.2 Compensation methods

�e graph in �gure 8.2 shows the cross-entropy for di�erent compensation meth-

ods. �e curved line indicates the cross-entropy between the real distribution and the

transformed-space sampling method described in section 7.3, for increasing sample

cloud size. �e factorisation is the quasi-conditional factorisation from section 7.3.2.3.

For distributions other than a three-dimensional toy example, the postponed factor-

isation discussed in section 7.3.2.2 showed a much slower convergence: in an earlier

version of the experiment in �gure 8.2 (without the phase factor), even with 16 384

samples it did not perform as well as the vts-estimated Gaussian.

As the size of the sample cloud increases, the approximation of p(y(l)) found with

transformed-space sampling converges to the correct value.�ismeans that the cross-

entropyH(p‖q) converges to the entropyH(p). �e bottom of the graph is set to the

point the curve in �gure 8.2 converges to, which indicates the entropy of p. Since

the kl divergence can be written (in (7.44a)) as KL(p‖q) = H(p‖q) −H(p), this is
the point where the kl divergence is 0. Since the kl divergence cannot be negative,

this point gives the optimum cross-entropy. It gives a lower bound on how well the
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Figure 8.3 Cross-entropy to the corrupted speech distribution for iterative dpmc.

real corrupted speech distribution can be matched. �e value of the cross-entropy for

transformed-space sampling with 16 384 samples, 30.14, will also be the bottom for the

other graphs in this section.

�e line labelled “dpmc” in �gure 8.2 indicates the best match to the real distri-

bution possible with one Gaussian. �e Monte Carlo approximation to the cross-en-

tropy, section 7.4 has shown, is equivalent to the negative average log-likelihood on the

samples. dpmc �nds the Gaussian that maximises its log-likelihood on the samples

it is trained on. If the sample sets for training and testing were the same, then dpmc

would yield the mathematically optimal Gaussian. �ough di�erent sample sets are

used (with 50 000 samples for training dpmc and 5000 samples for testing) the cross-

entropy has converged. Any other Gaussian approximation will perform worse.

�e state-of-the-art vts compensation �nds such a Gaussian analytically, and it

is much faster. However, its cross-entropy to the real distribution is far from dpmc’s

ideal one.

Just like dpmc, idpmc �nds a distribution from samples, but it uses a mixture

of Gaussians rather than one Gaussian. �e mixture in the graph has 8 components

trained on 400 000 samples, and comes close to the correct distribution. As the num-
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Compensation Shape 20 dB 14 dB
— diag 38.1 83.8
vts, α = 1 8.6 17.3
evts

full

11.1 16.5
edpmc 7.4 13.3
eidpmc 6.9 12.0
eidpmc+ 6 6.2 11.1
eidpmc+ 12 6.5 11.3

Table 8.10Word error rates for various compensation schemes.

ber of components increases from 1 to 8, keeping the average number of samples for

components at 50 000, the cross-entropy decreases, as �gure 8.3 on the preceding page

illustrates. With an in�nite number of components, it would yield the exact distri-

bution. To correctly model the non-Gaussianity in 24 dimensions, however, a large

number of components are necessary, which quickly becomes impractical.

To examine the link between the cross-entropy and the word error rate, recog-

nition experiments are run. Improved modelling of the corrupted speech does not

guarantee better discrimination, since speech and noise models are not necessarily

the real ones. Since transformed-space sampling needs to be run separately for every

observation vector for every speech component, it is too slow to use in a speech re-

cogniser.

Table 8.10 contains word error rates at two signal-to-noise ratios for comparison

with the cross-entropy results in �gure 8.2. Results with the uncompensated system,

trained on clean data, are in the top row. Below it, as a reference, is standard vts.

It sets the phase factor α to 1, and �nds diagonal-covariance compensation. Stand-

ard vts uses the continuous-time approximation to compensate delta- and delta-delta

parameters. �is yields inaccurate compensation for o�-diagonals. Section 8.1.1.1

has demonstrated that. Using block-diagonal statistics and compensation (not in the

table), word error rates for standard vts are worse than using diagonal-covariance

ones: 19.5 % and 38.5 %.

�e bottompart of the table contains results on extendedvts (evts) and extended
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dpmc (edpmc). �ey use distributions over extended feature vectors. �ey also use a

distribution over the phase factorα. �e covariances of the resulting distributions are

full.

evts performs less well than standard vts at 20 dB. �is is caused by the inter-

action of the phase factor with the vector Taylor series approximation, which sec-

tion 8.2.4 will explore in more detail. At 14 dB, the more precise modelling does pay

o�. Compared to the uncompensated system extended vts’s performance improves

more (38.1 % to 11.1 %) than expected from its improvement in terms of the cross-

entropy in �gure 8.2. vts compensation uses a vector Taylor series approximation

around the speech and noise means. It therefore models the mode of the corrupted

speech distribution better than the tails. �is causes the majority of the improvement

in discrimination.

However, extended dpmc, which �nds the optimal Gaussian given the speech and

noise models, does yield better accuracy (7.4%). Extended dpmc �nds one corrupted

speech Gaussian for one clean speech Gaussian. �e cross-entropy experiment only

uses one clean speech Gaussian. Extended idpmc (eidpmc), however, trains amixture

of Gaussians from samples, which can be drawn from any distribution. For the recog-

nition experiments, therefore, eidpmc compensates one state-conditional mixture at

a time. Replacing the 6-component speech distribution by a 6-component corrupted

speech distribution, eidpmc increases performance from edpmc’s 7.4 % to 6.9%. By

modelling the the distribution better, with 12 components (“eidpmc+ 6”), perform-

ance increases further to 6.2 %. �e corrupted speech distribution should be more

precise as the number of components increases to 18 (“eidpmc+ 12”). However, even

by increasing the number of samples by a factor of 2, to 3600 000, performance does

not increase. �is can be explained by lack of robustness of the speech statistics, even

though they have striped covariance matrices. Since in �gure 8.3 the line for idpmc

tends towards the best possible cross-entropy, this should be the best possible word

error rate for these clean speech and noise distributions and this noise model.

Going from a Gaussian trained with extended vts to the optimal Gaussian to a
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Figure 8.4�e e�ect of diagonalisation on the cross-entropy.

mixture ofGaussians in general improves the precision of the corrupted speechmodel.

�is shows in the cross-entropy to the real distribution, and the same e�ects are ob-

served in the word error rate. Better modelling of the corrupted speech distribution

leads to better performance. �e next sections will evaluate speci�c common approx-

imations: diagonalising Gaussians’ covariance matrices, and settingα to a �xed value.

8.2.3 Diagonal-covariance compensation

�e cepstral-domain Gaussians of speech recognisers are o�en diagonalised. �is

yields more robust estimates than full covariance matrices, and makes decoding fast.

For noisy conditions speci�cally, it has previously been observed that feature correla-

tions change and it is advantageous to compensate for this. However, it turns out that

modelling correlations for the wrong noise conditions is counter-productive (Gales

and van Dalen 2007). Also, estimates for o�-diagonal elements are much less robust

to approximations (see section 5.3.3). �is section will relate these e�ects using the

cross-entropy and speech recogniser accuracy.

Diagonalisation usually takes place in the cepstral domain. �e theory and the

cross-entropy experiments have used log-spectral-domain feature vectors. To emulate
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Compensation Shape 20 dB 14 dB
— diagonal 38.1 83.8

evts diag 8.3 15.7
full 11.1 16.5

edpmc diag 7.5 14.9
full 7.4 13.3

Table 8.11�e e�ect of diagonalisation on the word error rate.

diagonalisation in the cepstral domain for log-spectral-domain features, therefore, the

Gaussian is �rst converted to the cepstral domain with a dctmatrix. Normally, cep-

stral feature vectors are truncated to 13 elements. However, to be able to convert back

to the log-spectral domain, here all 24 dimensions are retained. �e Gaussian is then

diagonalised. To be able to compare the log-likelihoods, the diagonalised Gaussians

are converted back to the log-spectral domain with the inverse dct.

Figure 8.4 compares the cross-entropy to the real distribution of diagonalised and

non-diagonalised Gaussians found with dpmc and vts. As explained in the previous

section, dpmc by de�nition yields the optimal Gaussian, so it must result in the lowest

cross-entropy, and diagonalising it makes it perform less well. It is interesting that

full-covariance vts performs less well than its diagonalised form. On this test case,

apparently, the o�-diagonals in the cepstral domain are not estimated well enough, so

that diagonalising lends the distribution robustness.

Table 8.11 investigates speech recognition performancewhen diagonalisingGauss-

ian compensation. As in the previous section, the compensation methods use a phase

factor distribution and extended feature vectors, to model the distributions as pre-

cisely as possible. Here, as for the cross-entropy, diagonalising extendedvts compens-

ation improves performance (e.g., 11.1 % to 8.3 %). �e o�-diagonal covariance entries

are not estimated well, so that diagonalisation increases robustness. (�e next section

will relate this to the model for the phase factor α.) However, edpmc, which �nds

the optimal Gaussian compensation, does perform better when it is allowed to model

correlations (7.5 % to 7.4% at 20 dB). As expected from the results in section 8.1.1.3,

at a lower signal-to-noise ratio the correlations change more, so that modelling them
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becomes more important (14.9% to 13.3 % at 20 dB).

8.2.4 Influence of the phase factor

Model compensation o�en assumes a mismatch function that is an approximation to

the real one as presented in section 4.2.1. However, traditionally the phase factor α,

which arises from the interaction between the speech and the noise in the complex

plane, has been assumed �xed. As section 8.2.1 has explained, there has recently been

interest inmodelling the phase factor with a distribution. However, this work has been

the �rst to use a phase factor distribution for model compensation. �is section will

look into the e�ect of the approximation of assuming the phase factor �xed.

Two settings for α are of interest. �e traditional presentation (Moreno 1996;

Acero et al. 2000) sets α = 0, which is the mode of the actual distribution. �e

second setting is α = 1. As appendix c.2 shows, if the term with α in the mismatch

function is ignored and magnitude-spectrum feature vectors are used, this is roughly

equivalent to setting α = 1 for the power spectrum. �is setting has been applied in

previous work (e.g. Liao 2007), and in section 8.1 of this thesis.
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Figure 8.5�e e�ect of the phase factor on Gaussian compensation.

Figure 8.5 shows the cross-entropy for dpmc and vtswith di�erentmodels for the
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Scheme α 20 dB 14 dB

edpmc
0 7.6 13.2
1 8.0 14.7
N 7.4 13.3

evts
0 11.4 16.5
1 8.7 14.9
N 11.1 16.5

Table 8.12�e e�ect of the phase factor on Gaussian compensation.

phase factor. Note that the vertical axis uses a larger scale than �gure 8.2. �e bottom

of the graph is still set to the optimal cross-entropy acquired with transformed-space

sampling. Both methods generate full covariance matrices. �e diagonalised versions

(not shown in the table) show the same trends, with smaller distances between cross-

entropies. dpmc with the model for α matching the actual distribution (“dpmc α ∼

N ”) yields the lowest cross-entropy by de�nition. vts with a Gaussian model (“vts

α ∼ N ”) is at some distance.

�e obvious choice for �xing α would be the mode of its actual distribution, 0.

With that assumption, both dpmc and vts end up further away from the ideal distri-

bution. Note that though the cross-entropy lines for “dpmc α = 0” and “vts α = 0”

are close, the distributions are not necessarily similar. As expected, when α is �xed

to 1, the modelled distributions become even further away from the actual ones.

Table 8.12 contains word error rates for the same contrasts. Again, it shows only

full-covariance compensation. With diagonal covariances the trends are again the

same but less pronounced. For edpmc, the e�ect of di�erent phase factor models is as

expected. Whether α is distributed around 0 or �xed to 0 mostly a�ects the covari-

ances. �ough this does have an e�ect on the cross-entropy, since the change to the

covariance matrices is fairly uniform across components, this makes little di�erence

for discrimination. However, setting α to the unlikely value 1 a�ects performance

negatively.

�e results for vts are more surprising. Again, there is little di�erence between

setting α to 0 and letting it be distributed around 0. For vts, this by de�nition does
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not a�ect components’ means, but only their covariances. However, setting it to 1

does improve performance.�is may be because overestimation of themode (see sec-

tion 4.4.2) improvesmodelling for some components. Preliminary results suggest that

which value of α yields the best cross-entropy varies with di�erent distances between

the speech and noise means. A hypothesis is that for di�erent tasks, di�erent settings

for α optimise compensation for components at a speech-to-noise ratio where mis-

compensation is most likely to cause recognition errors. �is would explain why the

optimal α is di�erent for di�erent corpora (Gales and Flego 2010). However, this is

material for future research.

What the results here do show is that while modelling α with a distribution re-

duces the distance to the actual distribution, as evidenced by the improving cross-en-

tropy, discrimination is not helped. Section 4.4.2 has pointed out that the only e�ect

of using a distribution for the phase factor over a �xed value at the distribution’s mode

is a fairly equal bias on the covariance, which is unlikely to in�uence discrimination

much. It has also discussed how in practice the noise estimation can subsume this

bias. Using a distribution over the phase factor rather than a �xed value as is currently

done, is therefore unlikely to result in gains in a practical speech recogniser.
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Conclusion

�e theme of this thesis has been to improve modelling of noise-corrupted speech

distributions for speech recognition. It has argued (section 4.1) that if the model for

speech, noise, and their interactionwere exact, then decoding the audio with the exact

corrupted speech distribution would yield the best speech recogniser performance.

�is thesis has sought not only performance baselines, but also performance ceil-

ings. It has derived an explicit expression for the corrupted speech distribution, which

has no closed form. It has then analysed model compensation as aiming to minim-

ise the divergence between the recogniser distribution and this predicted corrupted

speech distribution. Two ways of improving modelling of corrupted speech distribu-

tions have been proposed.

First, this thesis has introduced methods that can model within-component fea-

ture correlations under noise. �is is not normally done, because of problems �nding

accurate compensation, and the computational cost. �is thesis has found new ap-

proaches for both problems (chapters 5 and 6), resulting in a chain of techniques that

provide correlation modelling at a reasonable and tunable computational cost.

Second, this thesis has introduced a method of approximating the real corrupted

speech likelihood (chapter 7). Given speech and noise distributions and a mismatch

function, it �nds a Monte Carlo approximation to the likelihood of one observation

vector. �ough it is very slow, in the limit it computes the exact likelihood. It there-
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fore gives a theoretical bound for noise-robust speech recognition. �is has made it

possible to assess the e�ect of approximations that model compensation makes.

�e following gives more detail about the contributions of this thesis.

9.1 Modelling correlations

Methods for noise-robust speech recognition, like the state-of-the-art vts compensa-

tion, normally use diagonal-covariance Gaussians, and fail to model within-compon-

ent feature correlations. �e reason for this is twofold: existing methods do not give

good estimates for correlations, and the computational cost of decoding with full co-

variance matrices is prohibitive. �is thesis has presented insights and solutions for

both problems.

vts compensation’s estimates for the feature correlations of corrupted speech are

unreliable because of the continuous-time approximation. It assumes that dynamic

coe�cients are time derivatives of static coe�cients, whereas in reality they aremerely

approximations. Dynamic coe�cients are found with linear regression from a win-

dow of static feature vectors. Chapter 5 has introduced model compensation methods

that apply the mismatch function (or an approximation) to each time instance in the

window separately. By only then applying the linear transformation that the dynamic

coe�cients are extracted with, compensation becomes much more precise. It then

becomes possible to generate good full-covariance compensation with as little adapt-

ation data as standard vts needs.

However, decoding with full covariance matrices is slow. Chapter 6 has therefore

derived methods that approximate full-covariance compensation using linear trans-

formations. �is makes decoding faster. �ese predictive linear transformations are

versions ofwell-knownadaptive linear transformations, whichnormally requiremuch

more adaptation data than methods for noise-robustness. Also, joint uncertainty de-

coding can compensate a whole base class of components at once. Combining joint

uncertainty decoding and predictive linear transformations makes many of the re-
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quired statistics cacheable, so that the whole process is fast enough to be implemented

in a real-world speech recogniser.

Predictive linear transformations had been introduced before (van Dalen 2007),

but chapter 6 has introduced the formal framework for them. Predictive methods

approximate a predicted distribution with a di�erent parameterisation. �is has been

formalised as minimising the kl divergence. �e framework also subsumes standard

model compensation methods, which minimise the kl divergence to the predicted

distribution.

Predictive transformations give a powerful framework for combining the advant-

ages of two forms of distribution. Since the introduction of predictive linear trans-

formations for noise-robustness, other variants have been proposed, some of which

derive from vtln or combine predicted statistics from with statistics directly from

data (Flego and Gales 2009; Xu et al. 2009; 2011; Breslin et al. 2010).

Section 6.4, based on joint work with Federico Flego, has introduced another, fast,

variant, which estimates a transformation tominimise the divergence to the predicted

corrupted speech, but applies it to speech recogniser features.

9.2 Asymptotically exact likelihoods

Model compensation methods aim to model the corrupted speech distribution, but

usually fall short by de�nition. With Gaussian speech and noise, the corrupted speech

is not Gaussian. Standard model compensation assumes it is, and can never provide

ideal compensation. Chapter 7 has introduced a more accurate approximation to the

corrupted speech likelihood. Rather than a parameterised density, it uses a sampling

method, which approximates the integral over speech, noise and phase factor that

the likelihood consists of. Because the probability density has an awkward shape, the

integral is �rst transformed. �en, sequential importance resampling deals with the

high dimensionality. As the number of samples tends to in�nity, this approximation

converges to the real likelihood.
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Because the method cannot precompute distributions, it is too slow to embed in

a speech recogniser. However, it is possible to �nd the kl divergence from the real

corrupted speech distribution to an approximation up to a constant. �e newmethod

essentially gives the point where the kl divergence is 0, so it can be assessed how close

compensationmethods are to the ideal. �e kl divergence for di�erent compensation

methods appears to predict their word error rates well. One of these compensation

methods is iterative data-driven parallelmodel combination (idpmc), which takes im-

practically long to train but it is feasible to run speech recognition with. A version of

idpmc that uses extended feature vectors comes close to transformed-space sampling

in terms of cross-entropy, and improves the word error rate substantially. Given the

link between the cross-entropy and the word error rate, this should indicate the best

possible performance with these speech and noise models, and this mismatch func-

tion.

Using the kl divergence technique, it also becomes possible to examine approx-

imations to the mismatch function. �ese include assuming the corrupted speech

distribution Gaussian, and diagonalising that Gaussian’s covariance. One common

approximation, assuming the phase factor �xed, has seen particular interest in recent

years. �is work has introduced model compensation using a phase factor distribu-

tion for extended vts, extended dpmc, and extended idpmc. �is has turned out to

improve the cross-entropy more than discrimination. In particular, for vts compens-

ation setting the phase factor to a �xed value other than its mode appears to counter

some e�ects of the vector Taylor series approximation at di�erent signal-to-noise ra-

tios.

9.3 Future work

�is thesis has found improvedmodels for the corrupted speech, assuming the speech

and noise Gaussian-distributed. �is should give insight into what are viable direc-

tions of research in model compensation.
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�e search for better compensation with diagonal-covariance Gaussians contin-

ues. Better approximations to the mismatch function (Xu and Chin 2009b; Seltzer

et al. 2010, and the phase factor distribution in section 8.2 of this work) and using an

alternative sampling scheme, the unscented transformation (Hu and Huo 2006; van

Dalen and Gales 2009a; Li et al. 2010) have been investigated. �is line of research

has two issues. First, if the noise distribution is known, the theoretical bound for

Gaussian compensation with full covariance matrices, and therefore also for diagonal

covariance matrices, is now known. It is given by extended dpmc, presented in this

thesis. Second, in practice, it is necessary to estimate the noisemodel.�is is currently

possible with maximum-likelihood estimation for standard vts. Using such a noise

model, extended dpmc hardly beats extended vts (also presented in this thesis, and

reasonably fast), whether with full or diagonal covariances. �is indicates that any

new practical method for Gaussian compensation will need to improve over extended

vts in terms of accuracy, and in terms of noise model estimation. �is may be a tough

search for little gain. Noise estimation can absorb the di�erences between compens-

ation schemes if they model the environment reasonably well. It is telling that (with

diagonal covariances) awell-tuned implementation of unscented transformations per-

forms an insigni�cant 0.02%worse than a well-tuned implementation of vts (Li et al.

2010). It may therefore be advisable to call o� the search for newmethods of Gaussian

compensation.

However, this thesis has only sketched (in section 5.5.2.2) how to directly estimate

a noise model for extended vts. Implementing this would not only make estimation

and compensation with evts consistent, but also allow full-covariance noise models.

For a known noise distribution, a full-covariance Gaussian has yielded some improve-

ment in accuracy (in section 8.1.1.2). It would also be interesting to estimate a noise

model that optimises the likelihood for compensation with full-covariance joint un-

certainty decoding or predictive transformations directly.

Non-Gaussian compensation may be harder to �nd, though it may yield bigger

gains. �is thesis has upper-bounded the gain (in section 8.2), but with slow meth-
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ods. Suitably fast non-Gaussian distributions that are better tailored to the corrup-

ted speech distribution in multiple dimensions might help. Alternatively, but poten-

tially even harder, forms of clean speech and noise distributions that when combined

through themismatch function produce a distribution for the corrupted speech that is

easier to approximate would be helpful. �is work has only given a theoretical bound

for Gaussian speech and noise models. However, the techniques presented in this

thesis should be general enough to estimate how far from optimal any new proposal

is.

�ere are alternative directions for research on improving noise-robust speech

recognition, though. One is to investigate other noise models, for example, with more

temporal structure. Again, this thesis has not given theoretical bounds for that.

A more practically-minded strand of research that may follow from this thesis,

not necessarily restricted to noise-robustness, is in predictive transformations. It has

already become clear that predictive linear transformations bring advantages to other

areas than noise-robustness (Breslin et al. 2010). �at the framework is so general,

and formalised in this thesis, provides opportunity for a wide range of interesting in-

stantiations.
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Appendix A

Standard techniques

�is appendix gives details of a number of well-known equalities and algorithms for

reference.

A.1 Known equalities

�e following useful equalities are well-known.

A.1.1 Transforming variables of probability distributions

If variables x and y are deterministically linked, a probability distribution over x,

p(x), can be converted into one over y with (see, for example, Bishop 2006, 11.1.1)

p(y) = p(x)

∣∣∣∣ ∂x∂y
∣∣∣∣ . (a.1)

A.1.2 Matrix identities

�eWoodbury identity relates three matricesA,B,C (see e.g. Petersen and Pedersen

2008, 3.2.2):(
A+CBCT

)−1
= A−1 −A−1C

(
B−1 +CTA−1C

)−1
CTA−1. (a.2)
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�e inverse of a block symmetricmatrix is given by (see e.g. Petersen and Pedersen

2008, 9.1.3) A CT

C B

−1

=

 D−1 −D−1CTB−1

−B−1CD−1 E−1

 (a.3a)

=

 D−1 −A−1CTE−1

−E−1CA−1 E−1

 , (a.3b)

whereD = A−CTB−1C is the Schur complement of the matrix with respect to B,

and E = B−CA−1CT is the Schur complement of the matrix with respect toA.

�e determinant of the matrix is∣∣∣∣∣∣
A CT

C B

∣∣∣∣∣∣ = |A| ·|E| = |B| ·|D| . (a.4)

A.1.3 Multi-variate Gaussian factorisation

It can be useful to decompose the evaluation of a multi-variate Gaussian into factors.

An obvious choice of factors would be the actual distribution of one coe�cient con-

ditional on all previous ones. Straightforward derivations of this usually (e.g. Bishop

2006) assume that theGaussian is normalised (so that constant factors can be dropped)

and assume the input for the Gaussian is linear in the variable of interest (so that the

integral over coe�cients is constant). �ese assumptions, however, can not be made

in this work. Below derivation therefore explicitly considers all constants.

Let q an unnormalised Gaussian density with parameters a and b,

q

a
b

 = exp

−
1

2

a
b

−

µa
µb

T Λa Λab
Λba Λb

a
b

−

µa
µb


 ,
(a.5)

whereΛ is the precision matrix, the inverse of the covariance matrix Σ:

Λ =

 Λa Λab
Λba Λb

 =

 Σa Σab
Σba Σb

−1

= Σ−1. (a.6)
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From the expression for the inverse of a symmetric block matrix, given in (a.3), it

follows that Σ−1
a = Λa −ΛabΛ

−1
b Λba, which will be useful in the derivation below.

�e density can be decomposed into a factor dependent on a and one dependent

on both a and b. �e steps the derivation follows are (a.7a) expanding the terms;

(a.7b) gathering terms containing b; (a.7c) completing the square and compensating

for that; and �nally (a.7d) simplifying.

q

a
b

 = exp

−
1

2

a
b

−

µa
µb

T Λa Λab
Λba Λb

a
b

−

µa
µb




= exp
(
− 1
2(a− µa)

TΛa(a− µa) −(b− µb)
TΛba(a− µa)

− 1
2(b− µb)

TΛb(b− µb)
)

= exp
(
− 1
2(a− µa)

TΛa(a− µa) − b
TΛba(a− µa) + µ

T
bΛba(a− µa)

− 1
2b

TΛbb+ bTΛbµb −
1
2µ

T
bΛbµb

)
(a.7a)

= exp
(
− 1
2(a− µa)

TΛa(a− µa) + µ
T
bΛba(a− µa) −

1
2µ

T
bΛbµb

− 1
2b

TΛbb+ bTΛb

(
µb −Λ

−1
b Λba(a− µa)

))
(a.7b)

= exp
(
− 1
2(a− µa)

TΛa(a− µa) + µ
T
bΛba(a− µa) −

1
2µ

T
bΛbµb

− 1
2

(
b−

(
µb −Λ

−1
b Λba(a− µa)

))T
Λb

(
b−

(
µb −Λ

−1
b Λba(a− µa)

))
+ 1
2

(
µb −Λ

−1
b Λba(a− µa)

)T
Λb

(
µb −Λ

−1
b Λba(a− µa)

))
(a.7c)

= exp
(
− 1
2(a− µa)

T
(
Λa −ΛabΛ

−1
b Λba

)
(a− µa)

− 1
2

(
bT −

(
µb −Λ

−1
b Λba(a− µa)

))T
Λb

(
bT −

(
µb −Λ

−1
b Λba(a− µa)

)))
= exp

(
− 1
2(a− µa)

TΣ−1
a (a− µa)

)
exp

(
− 1
2

(
bT−

(
µb −Λ

−1
b Λba(a− µa)

))T
Λb

(
bT−

(
µb −Λ

−1
b Λba(a− µa)

)))
.

(a.7d)

A normalised Gaussian can be factorised analogously. Using (a.4), the determinant

of the block matrix Σ can be decomposed into the determinants of the covariance

matrices of the two terms in (a.7): |Σ| = |Σa| ·
∣∣Λ−1

b

∣∣. A normalised Gaussian then
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can be decomposed into two normalised Gaussians:

N

a
b

 ;

µa
µb

 ,
 Σa Σab
Σba Σb


= |2πΣ|−1/2 q

a
b


= |2πΣa|−1/2 ·

∣∣∣2πΛ−1
b

∣∣∣−1/2 exp(− 1
2(a− µa)

TΣ−1
a (a− µa)

)
exp

(
− 1
2

(
bT−

(
µb −Λ

−1
b Λba(a− µa)

))T
Λb

(
bT−

(
µb −Λ

−1
b Λba(a− µa)

)))
= N (a; µa, Σa)N

(
b; µb −Λ

−1
b Λba(a− µa), Λ

−1
b

)
= N (a; µa, Σa)N

(
b; µb + ΣbaΣ

−1
a (a− µa), Σb − ΣbaΣ

−1
a Σab

)
. (a.8)

If the density q is a probability distribution anda andb are distributed according

to it: a
b

 ∼ N

µa
µb

 ,
 Σa Σab
Σba Σb

 , (a.9)

then the two factors in (a.8) are the marginal probability distributions of a and the

distribution of b conditional on a, so that

a ∼ N (µa,Σa) ; (a.10a)

b|a ∼ N
(
µb −Λ

−1
b Λba(a− µa),Λ

−1
b

)
(a.10b)

∼ N
(
µb + ΣbaΣ

−1
a (a− µa),Σb − ΣbaΣ

−1
a Σab

)
. (a.10c)

�is is a standard result. Note that the distribution of a is more concisely expressed

in terms of the joint’s covariance matrix, and the distribution of b|a in terms of the

precision matrix.

A.2 Kullback-Leibler divergence

An important tool in this work is the Kullback-Leibler (kl) divergence (Kullback and

Leibler 1951). It measures the di�erence between two distributions. If p and q are
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distributions over a continuous domain, the kl divergence between them, KL(p‖q)
is de�ned as

KL(p‖q) =
∫
p(x) log

p(x)

q(x)
dx. (a.11)

In this work it is used both as a criterion for optimisation and to assess the accuracy

of models. �e kl divergence has the following properties.

�e expression in (a.11) can be decomposed as

KL(p‖q) = H(p‖q) −H(p) , (a.12a)

whereH(p‖q) is the cross-entropy of p and q,

H(p‖q) = −

∫
p(x) logq(x)dx, (a.12b)

andH(p) is the entropy of p,

H(p) = −

∫
p(x) logp(x)dx. (a.12c)

�e kl divergence is always non-negative, since the cross-entropy is always greater

than or equal to the entropy. If and only if the distributions have the same density

for each x, the cross-entropy and the entropy are equal, so that the kl divergence

becomes 0.

To �nd a distribution of a particular form that best matches another distribution,

minimising the kl divergence is o�en a useful criterion. Well-known algorithms for

training distribution parameters such as expectation–maximisation, described in ap-

pendix 2.3.2.1, can be seen asminimising a kl divergence. Inference in graphicalmod-

els is o�en expressed as minimising a kl divergence as well. �e expectation propaga-

tion and belief propagation algorithms are examples.

When optimising q or comparing di�erent distributions q, the reference distri-

bution p is o�en �xed. In that case, the cross-entropy is the kl divergence up to a

constant. Optimising the cross-entropy, or comparing merely the cross-entropy, is

therefore o�en a valid alternative for working with the kl divergence.
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A.2.1 KL divergence between Gaussians

A speci�c case of interest is the kl divergence between two Gaussians. If two distri-

butions p and q over a d-dimensional space are de�ned

p(x) = N (x; µa, Σa) ; q(x) = N (x; µb, Σb) , (a.13a)

then the kl divergence between the distributions is

KL(p‖q) = 1

2

(
log
(|Σb|
|Σa|

)
+ Tr

(
Σ−1
b Σa

)
+ (µb − µa)

TΣ−1
b (µb − µa) − d

)
.

(a.13b)

A sub-case of this is when the dimensions for both distributions can be partitioned

into blocks of dimensions that are mutually independent. �e kl divergence then

becomes a sum of kl divergences for these blocks. Without loss of generality, assume

that the covariance matrices are block-diagonal with

Σa =

Σa,1 0

0 Σa,2

 ; Σb =

Σb,1 0

0 Σb,2

 . (a.14a)

Both distributions can then be factorised as distributions over x1 and x2, with x =[
xT1 x

T
2

]T
:

p(x) = p1(x1)p2(x2) = N (x1; µa,1, Σa,1)N (x2; µa,2, Σa,2) ; (a.14b)

q(x) = q1(x1)q2(x2) = N (x1; µb,1, Σb,1)N (x2; µb,2, Σb,2) (a.14c)

�ekldivergence in (a.13b) then becomes the sumof the parallel divergences between

the two factors:

KL(p‖q) = KL(p1‖q1) +KL(p2‖q2) . (a.14d)

�is is true for the kl divergence between any two distributions that display inde-

pendence between blocks of dimensions. By applying this equation recursively, the

kl divergence between any two Gaussians with the same block-diagonal covariance

matrices is the sum of the kl divergences of the factors in parallel. �e most factor-

ised Gaussians have diagonal covariances, in which case the kl divergence works per

dimension. �is will be useful both when training parameters of a distribution, and

when assessing the distance to the real distribution.
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A.2.2 Between mixtures

�e kl divergence between mixtures does not have a closed form. A number of ap-

proximations with di�erent properties (Yu 2006; Hershey and Olsen 2007) are pos-

sible. For section 6, it will be useful to minimise the kl divergence between two mix-

tures of Gaussians. �e following will therefore describe a variational approxima-

tion to the kl divergence introduced independently by Yu (2006); Hershey and Olsen

(2007).1 �is approximation can then be minimised as a proxy for minimising the

exact one.

Let p and q be mixture models, with components indexed withm and n respect-

ively:

p(x) =
∑
m

π(m)p(m)(x); q(x) =
∑
n

ω(n)q(n)(x), (a.15)

with p(m)(x) and q(n)(x) the component distributions, and π andω the weight vec-

tors, with
∑
m π

(m) =
∑
nω

(n) = 1.

�e kl divergence can be written as the di�erence between the cross-entropy and

the entropy, as in (a.12). �e variational approximation that will be presented here

�nds an upper bound on both the cross-entropy and on the entropy separately. �is

implies that there is no guarantee for the approximation to the kl divergence to be

on either side of the real one. However, in this thesis the approximation is used to

minimiseKL(p‖q) with respect to q. SinceH(p) is not a function of q, it su�ces to

minimise the upper bound onH(p‖q).�e following will therefore present the upper

bound onH(p‖q); the upper bound onH(p) can be found analogously.

A set of variational parametersφ is introduced that partition the weight of each

component of p up into parts representing the components of q:∑
n

φ
(m)
n = 1, (a.16)

with φ(m)
n ≥ 0.

1�e description inHershey andOlsen (2007)was originallymeant formixtures ofGaussians, which
is also what this work will use it for, but the derivation is valid for mixtures of any type of distribution,
as Dognin et al. (2009) acknowledge.
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�e following derivation of an upper boundF(p, q,φ) to the cross-entropy uses

Jensen’s inequality. It moves a summation outside a logarithm in (a.17a), and because

of Jensen’s inequality, the result is less than or equal to the logarithm of the sum. In

this case, the expressions are negated, so that the result is greater than or equal.

H(p‖q) = −

∫
p(x) logq(x)dx

= −

∫∑
m

π(m)p(m)(x) log

(∑
n

ω(n)q(n)(x)

)
dx

= −

∫∑
m

π(m)p(m)(x) log

(∑
n

φ
(m)
n
ω(n)q(n)(x)

φ
(m)
n

)
dx

≤ −

∫∑
m

π(m)p(m)(x)
∑
n

φ
(m)
n log

(
ω(n)q(n)(x)

φ
(m)
n

)
dx (a.17a)

= −
∑
m

∑
n

π(m)φ
(m)
n

(∫
p(m)(x) logq(n)(x)dx+ log

ω(n)

φ
(m)
n

)

=
∑
m

∑
n

π(m)φ
(m)
n

(
H
(
p(m)

∥∥q(n))+ log
φ
(m)
n

ω(n)

)
, F(p, q,φ). (a.17b)

Derivatives of this with respect to the variational parameters are

dF(p, q,φ)

dφ
(m)
n

=
dπ(m)φ

(m)
n

(
H
(
p(m)

∥∥q(n))− logω(n) + logφ(m)
n

)
dφ

(m)
n

= π(m)
(
H
(
p(m)

∥∥q(n))− logω(n) + logφ(m)
n + 1

)
; (a.18a)

d2F(p, q,φ)

d2φ
(m)
n

=
π(m)

φ
(m)
n

. (a.18b)

On the domain of φ(m)
n , which is [0, 1], its second derivative is non-negative, so that

the upper bound is convex.

�e upper bound is minimised with respect to the variational parameters φ(m)
n .
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�e optimisation under the constraints in (a.16) uses Lagrange multipliers:

0 =
dF(p, q,φ) + λ

(∑
n ′ φ

(m)
n ′ − 1

)
dφ

(m)
n

;

logφ(m)
n = logω(n) −H

(
p(m)

∥∥q(n))− 1− λ

π(m)
;

φ
(m)
n = ω(n) exp

(
−H

(
p(m)

∥∥q(n))− 1− λ

π(m)

)
, (a.19)

which, setting λ to satisfy the constraint in (a.16), gives the optimal parameter setting

φ
(m)
n :=

ω(n) exp
(
−H

(
p(m)

∥∥q(n)))∑
n ′ ω

(n ′) exp
(
−H

(
p(m)

∥∥q(n ′))) . (a.20)

Optimisingφ does not change the real cross-entropy; it merely �nds a tighter bound.

In section 6, this bound is used to optimise the cross-entropy itself with respect to q.

A parameter setting that is of interest results in the matched-pair bound. �is as-

sumes a one-to-one mapping from components of p to components of q. Assuming

that componentm in p corresponds to componentm in q, the parameters can be set

to2

φ
(m)
n =


1, m = n;

0, m 6= n.
. (a.21)

�is reduces the upper bound to

F(p, q,φ) =
∑
m

π(m)
(
H
(
p(m)

∥∥q(m)
)
− logω(m)

)
= H

(
π
∥∥ω)+∑

m

π(m)H
(
p(m)

∥∥q(m)
)
. (a.22)

If additionally the component priors for both mixtures are kept equal, π = ω, then

optimising the term behind the + sign will tighten this upper bound. In section 6.1.1

this bound is used to �nd distributionsq(m) that approximatep(m), where both derive

from the same speech recogniser model set but are parameterised di�erently.
2�is is easy to generalise to the case where there is a di�erent deterministic mapping from each

component of p to a component of q.

263



appendix a. standard techniques

A.3 Expectation–maximisation

Expectation–maximisation aims to maximise L(p̃, qUX ) by updating a lower-bound
function F(p̃, ρ, qUX ) of the likelihood. �e lower-bound explicitly uses a distribu-

tion over the hidden variables ρ(U |X ). ρ and qUX are optimised iteratively. First, ρ

must be set to make the lower-bound function equal to the log-likelihood (in the “ex-

pectation” step).�en,qUX is set tomaximise the lower bound (in the “maximisation”

step). �e generalised em algorithm replaces this maximisation by an improvement.

It is possible to prove, with Jensen’s inequality, that the lower bound is indeed lower

or equal to the log-likelihood, so that the log-likelihood is guaranteed not to decrease

if the lower bound does not decrease. �e following details the expectation–maximi-

sation algorithm and its proof.

�e statisticalmodelwhose parameters are trainedwill be denotedwithqUX (U ,X ),
which is a distribution over the hidden and observed variables. Marginalising out over

the hidden variables gives the distribution over the observed variables:

qX (X ) =
∫
qUX (U ,X )dU (a.23a)

�e log-likelihood for one data point is then

L(X , qUX ) , log
∫
qUX (U ,X )dU , (a.23b)

and for the whole training data

L(p̃, qUX ) ,
∫
p̃(X )L(X , qUX )dX . (a.23c)

�e lower bound that expectation–maximisation optimises is de�ned for a single

data point X as

F(X , ρ, qUX ) ,
∫
ρ(U |X ) log qUX (U ,X )

ρ(U |X ) dU (a.24a)

and for the empirical distribution p̃ representing all training data as

F(p̃, ρ, qUX ) ,
∫
p̃(X )F(X , ρ, qUX )dX . (a.24b)
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�e following will optimise the lower bound as a surrogate for optimising the actual

log-likelihood. �e expectation and the maximisation steps rewrite the lower bound

di�erently to make it possible to optimise its parameters.

A.3.1 The expectation step: the hidden variables

Compared to the log-likelihood, the lower bound function takes an extra parameter, ρ.

�e expectation step sets this distribution so that the lower bound is maximised, and

equals the log-likelihood. �is uses the posterior distribution of the hidden variables

given the data according to the current mode parameters, which will be written qU |X
with

qU |X (U |X ) =
qUX (U ,X )
qX (X )

. (a.25)

For a given observation X , the lower bound can be written as a sum of the log-likeli-

hood (independent of the hidden variables) and a kl divergence:

F(X , ρ, qUX ) =
∫
ρ(U |X ) log qUX (U ,X )

ρ(U |X ) dU

=

∫
ρ(U |X )

(
logqX (X ) + log

qU |X (U |X )
ρ(U |X )

)
dU

= logqX (X ) +
∫
ρ(U |X ) log

qU |X (U |X )
ρ(U |X ) dU

= L(X , qUX ) −KL
(
ρ
∥∥qU |X ), (a.26)

�e log-likelihoodL(X , qUX ) does not depend on ρ. Tomake the lower bound equal

to the log-likelihood, the right-hand term needs to be zero. �e Kullback-Leibler di-

vergenceKL(·‖·) of two distributions is always non-negative, and zero when the dis-

tributions are identical. F is therefore maximised when ρ is set to the hidden variable

posterior qU |X for all observations in p̃:

ρ(k) := argmin
ρ
F
(
p̃, ρ, q

(k)
UX
)

= argmin
ρ

∫
p̃(X )KL

(
ρ
∥∥q(k−1)U |X

)
dX

= q
(k−1)
U |X . (a.27)
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By setting ρ(k) to the hidden variable posterior, the Kullback-Leibler divergence in

(a.26) becomes 0, so that

L
(
p̃, q

(k−1)
X

)
= F

(
p̃, ρ(k), q

(k−1)
UX

)
. (a.28)

�is is the �rst part of the proof of convergence of expectation–maximisation.

A.3.2 The maximisation step: the model parameters

�e second step of expectation–maximisation, the maximisation step, optimises the

parameters of the model, qUX . Again, like in (a.26), the expression for the lower

bound for a single data point is rewritten, this time straightforwardly as a term de-

pendent on qUX and one independent:

F(X , ρ, qUX ) =
∫
ρ(U |X ) log qUX (U ,X )

ρ(U |X ) dU

=

∫
ρ(U |X ) logqUX (U ,X )dU −

∫
ρ(U |X ) log ρ(U |X )dU . (a.29)

�e right-hand term in this expression is constant when optimising F with respect

to qUX in the maximisation step. �e new estimate for qUX is therefore chosen

q
(k)
UX := argmax

qUX

F(p̃, ρ(k), qUX )

= argmax
qUX

∫
p̃(X )F(X , ρ(k), qUX )dX

= argmax
qUX

∫
p̃(X )

∫
ρ(k)(U |X ) logqUX (U ,X )dUdX . (a.30)

How to perform this maximisation depends on the speci�c problem. If it is not pos-

sible to maximise F , then generalised em can be used. It merely requires that qUX

does not decrease. In either case, the lower bound is guaranteed to remain equal or

increase:

F
(
p̃, ρ(k), q

(k−1)
UX

)
≤ F

(
p̃, ρ(k), q

(k)
UX
)
. (a.31)

�is is the second part of the proof of convergence of expectation–maximisation.
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A.3.3 Convergence

�e objective of expectation–maximisation is to increase the log-likelihood at every

iteration. It can be proven that the log-likelihood never decreases. �e last step of this

proof requires Jensen’s inequality, which states that for a convex function φ(x) (for

example, the log function), inputs xi, and non-negative weights πi, the weighted sum

of the function applied to the inputs is never greater than the function applied to the

weighted sum of the inputs:∑
i

πiφ(xi) ≤ φ
(∑

i

πixi

)
. (a.32)

�e relation betweenF and L is the analogue in the continuous domain. For one

observation X , F was de�ned in (a.24a). By applying Jensen’s inequality, F turns

out to be related to lower bound L expressed as marginalising out over the hidden

variables (as it was in (a.23b)):

F(X , ρ, qUX ) =
∫
ρ(U |X ) log qUX (U ,X )

ρ(U |X ) dU

≤ log
∫
ρ(U |X ) qUX (U ,X )

ρ(U |X ) dU

= log
∫
qUX (U ,X )dU = L(X , qUX ). (a.33)

�is same relation then goes for the log-likelihood and the lower bound over the full

training data:

F(p̃, ρ, qUX ) =
∫
p̃(X )F(X , ρ, qUX )dX

≤
∫
p̃(X )L(X , qUX )dX = L(p̃, qUX ). (a.34)

�is is the �nal part of the proof of convergence of expectation–maximisation.

Combining (a.28), (a.31), and (a.34):

L
(
p̃, q

(k−1)
X

)
= F

(
p̃, ρ(k), q

(k−1)
UX

)
≤ F

(
p̃, ρ(k), q

(k)
UX
)
≤ L

(
p̃, q

(k)
X
)
. (a.35)

�is proves that the expectation–maximisation does not decrease the likelihood of the

data. Note that the algorithm is not guaranteed to �nd a global maximum. In practice,

it o�en does �nd a useful parameter setting.
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A.4 Monte Carlo

�e previous section considered training data, which naturally consists of a �nite

number of training samples, as an empirical distribution. Even when parameterised

forms of distributions are available, using them directly is not always tractable. In

these cases, it is o�en necessary to produce empirical distributions from paramet-

erised distributions by sampling. Methods that approximate a target density with a

�nite number of samples are calledMonte Carlomethods.

Many Monte Carlo methods can work with unnormalised densities, which for

many applications is a useful feature. Markov chainMonte Carlo, for example, divides

the value of the density at two points by each other, so that any normalisation constant

cancels out, and can be disregarded. However, the value required in this thesis, the

integral of a target density over the whole of a space, is the normalisation constant of

the density. �e samples themselves are merely a by-product.

�is requirement rules outmanyMonteCarlomethods. One technique, called im-

portance sampling, does return an approximation to the normalisation constant. It re-

quires a (normalised) proposal distribution that samples can be drawn fromand is close

in shape to the target density. Sequential importance sampling is importance sampling

over a multi-dimensional space. In itself, it is just importance sampling that deals

explicitly with one dimension at a time. It becomes advantageous once resampling

is introduced between dimensions. �is removes low-weight samples and duplicates

high-weight ones, so that the samples focus on the most interesting, high-probability

regions of space.

Sequential sampling techniques are o�en presented as traversing through time.

�ere is no reason, however, why the dimensions should represent time. In this work,

dimensions will relate to elements of feature vectors and will be called just “dimen-

sions”. �is section follows the presentation of Doucet and Johansen (2008). It will

discuss implicitly multi-dimensional Monte Carlo and importance sampling. �en,

resampling is introduced. Finally, section a.4.5 on page 277 discusses the case where

for some dimensions it is possible to draw from the target distribution, and for some
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it is not.

A.4.1 Plain Monte Carlo

Monte Carlo methods approximate a target distribution with a �nite number of sam-

ples. Denote the target probability distribution with π. If it is possible to draw L sam-

ples u(l) ∼ π, the Monte Carlo approximation of π is the empirical distribution

π̃ =
1

L

∑
l

δu(l) , (a.36)

where δ· denotes the Dirac delta. Using the empirical measure in the place of the

target distribution, the expectation of any test functionφ under distribution π can be

approximated as

Eπ{φ(u)} =
∫
π(u)φ(u)du '

∫
π̃(u)φ(u)du =

1

L

∑
l

φ
(
u(l)
)
. (a.37)

�is equation is used in section 4.4.1 to estimate empirical means (with φ(u) = u)

and second moments (with φ(u) = uuT).

�is straightforward Monte Carlo method requires, however, that it is possible

to sample directly from the target distribution. When this is not the case, it is o�en

possible to use importance sampling, which draws samples from a proposal distribution

that is close to the target distribution, and then assigns the samples weights to make

up for the di�erence.

A.4.2 Importance sampling

If it is impossible to sample from the target distribution, it can still be possible to

approximate it by sampling from a proposal distribution ρ similar to the target dis-

tribution, and make up for the di�erence by weighting the samples. �is is called

importance sampling. �e weights also give an approximation to the normalisation

constant. �e process is analogous to the evaluation of a function under a distribu-

tion in (a.37). However, L samples u(l) ∼ ρ are drawn from the proposal distribution,
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so that the empirical proposal distribution of it is, analogously to (a.36):

ρ̃ =
1

L

∑
l

δu(l) . (a.38)

�at samples are drawn from a proposal distribution and not directly from the

target distribution makes it possible to use an unnormalised target density, γ. �is is

o�en useful if the normalisation constant of the target density is unknown. It does

need to be possible to evaluate γ at any point. Importance sampling �nds samples

from the distribution at the same time as an approximation to the normalisation con-

stant. γ is a scaled version of π:

π(u) =
γ(u)

Z
, (a.39a)

where the normalising constant is

Z =

∫
γ(u)du. (a.39b)

�e proposal density needs to cover at least the area that the target distribution

covers:

π(u) > 0⇒ ρ(u) > 0, (a.40)

otherwise no samples will be drawn in some regions where π is non-zero.

�e key to making up for the di�erence between proposal and target is the weight

function w(u). It gives the ratio between the target density and the proposal distri-

bution:

w(u) =
γ(u)

ρ(u)
. (a.41)

Substitutingw(u)ρ(u) for γ(u) in (a.39a) and (a.39b),

π(u) =
w(u)ρ(u)

Z
; (a.42a)

Z =

∫
w(u)ρ(u)du. (a.42b)
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Now that the target distribution has been expressed in terms of the proposal distri-

bution ρ, the proposal distribution can be replaced by its empirical version ρ̃ in (a.38).

�is yields the empirical distribution to π, π̃, with the samples from ρ weighted by

their importance weight:

π̃ =
1

L

∑
l

w
(
u(l)
)

Z̃
δu(l) =

∑
l

w(l)δu(l) , (a.43a)

where approximation to the normalisation constant is

Z̃ =

∫
w(u)ρ̃(u)du =

1

L

∑
l

w
(
u(l)
)
, (a.43b)

and the normalised weightsw(l) are

w(l) =
w
(
u(l)
)∑

l ′ w
(
u(l ′)

) . (a.43c)

π̃ is the normalised importance sampling approximation to target distribution γ, and

Z̃ is the corresponding approximation to the normalisation constant.

�e expectation of a test functionφ(u) underπ can be approximated analogously

to (a.37), with π̃ given by (a.43a):

Eπ{φ(u)} =
∫
π(u)φ(u)du '

∫
π̃(u)φ(u)du =

1

L

∑
l

w(l)φ
(
u(l)
)
. (a.44)

A degenerate case of importance sampling is when the proposal distribution is

equal to the normalised target distribution ρ = π. If it is possible to draw samples

from π, then using importance sampling is overkill. However, the next section will

introduce sequential importance sampling, which samples from one dimension at a

time. In that setting, it might be possible to draw from the target distribution for some

dimensions, but not for others. In the simple importance sampling case with ρ = π,

the weight function in (a.41) always yields the normalisation constant:

w(u) =
γ(u)

ρ(u)
= Z. (a.45)
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Substituting this in (a.43a), the approximation π̃ of the normalised target distribu-

tion π becomes

π̃ =
1

L

∑
l

w
(
u(l)
)

Z̃
δu(l) =

1

L

∑
l

δu(l) , (a.46)

which is exactly the standard Monte Carlo empirical distribution in (a.36).

A.4.3 Sequential importance sampling

Sequential importance sampling is an instance of importance sampling that explicitly

handles a multi-dimensional sample space. It steps through the dimensions one by

one, keeping track of L samples, and extending them with a new dimension at every

step. Considering this explicitly is useful because then the set of samples can be ad-

justed between dimensions. Section a.4.4 will discuss resampling, which drops low-

probability samples and multiplies high-probability samples, so that computational

e�ort is focussed on high-probability regions.

Sequential importance sampling is a generalisation of the well-known particle �l-

tering algorithm. It samples from a multi-dimensional distribution dimension by di-

mension, applying principles similar to those of importance sampling at every step.

�e distribution must be factored into dimensions. In particle �ltering, the dimen-

sions are o�en time steps, and the factor for each dimension a distribution condi-

tional on previous dimensions. However, for sequential importance sampling the per-

dimension target distributions in sequential importance sampling need not be norm-

alised or relate to valid probability distributions, as long as their product is equal to

the target distribution.

In section a.4.1 on page 269, the sample space was implicitly multi-dimensional.

In this section, the the dimensions of the samples will be explicitly written. �e space

has d dimensions. �us, u , u1:d. �e distributions γ, π, and ρ will be factorised, as

will Z andw.

To apply sequential importance sampling, itmust be possible to factorise the target
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density γ into factors γi(·|·) for each dimension. γi(·|·) is therefore de�ned as

γi(ui|u1:i−1) =
γi(u1:i)

γi−1(u1:i−1)
. (a.47a)

If for every i, γi(u1:i) is amarginal distribution ofu1:i, then (a.47a) is an instantiation

of Bayes’ rule and γi(ui|u1:i−1) is a conditional distribution. However, even though

the notation used is(·|·), there is no requirement for the factors to be conditionals or

to be normalised. �is is a generalisation of particle �ltering, and indeed, a strength

of sequential importance sampling.

�e target densityγ can be written as the product of factorsγi. (a.47b) formulates

the factorisation of γ recursively; (a.47c) writes out the recursion:

γ(u) = γd(u1:d) = γd−1(u1:d−1)γd(ud|u1:d−1) (a.47b)

= γ1(u1)

d∏
i=2

γi(ui|u1:i−1) . (a.47c)

�e normalised variant of γi will be called πi and de�ned analogous to π in the

previous section:

πi(u1:i) =
γi(u1:i)

Zi
; (a.48a)

Zi =

∫
γi(u1:i)du1:i. (a.48b)

�e proposal distribution ρ is factorised similarly to the target distribution:

ρi(ui|u1:i−1) =
ρi(u1:i)

ρi−1(u1:i−1)
; (a.49a)

ρ(u) = ρd(u1:d) = ρd−1(u1:d−1)ρd(ud|u1:d−1)

= ρ1(u1)

d∏
i=2

ρi(ui|u1:i−1) . (a.49b)

�is makes it possible to draw samples u(l)
1:d dimension per dimension. For the �rst

dimension, u(l)1 ∼ ρ1. �en, u(l)i
∣∣u(l)
1:i−1 ∼ ρi for dimensions i = 2, . . . , d. Each

proposal factor ρi approximates target factor γi.

Computing the importance weight of a sample can also be done dimension per

dimension. Decomposing the weight function in (a.41) recursively, in factors wi(·|·)
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related to γi(·|·) and ρi(·|·):

wi(ui|u1:i−1) =
wi(u1:i)

wi−1(u1:i−1)
=
γi(u1:i)ρi−1(u1:i−1)

ρi(u1:i)γi−1(u1:i−1)

=
γi(ui|u1:i−1)

ρi(ui|u1:i−1)
; (a.50a)

w(u) = wd(u1:d) = wd−1(u1:d−1)wd(ud|u1:d−1)

= w1(u1)

d∏
i=2

wi(ui|u1:i−1) . (a.50b)

�e empirical distribution of ρi then is found from L samples drawn from ρi,

analogously to the approximation of ρ̃ in (a.38):

ρ̃i =
1

L

∑
l

δ
u
(l)
1:i

. (a.51)

Using this empirical distribution, the empirical normalisation constant and the nor-

malised weights are

Z̃i =

∫
wi(u1:i)ρ̃i(u1:i)du1:i =

1

L

∑
l

wi
(
u
(l)
1:i

)
; (a.52a)

w
(l)
i =

wi
(
u
(l)
1:i

)∑
l ′ wi

(
u
(l ′)
1:i

) . (a.52b)

�e empirical distribution derived from πi then is, analogously to (a.43a),

π̃i =
∑
l

w
(l)
i δu(l)1:i

. (a.53)

�e complete algorithm for sequential importance sampling is described in Al-

gorithm 5.

�e �nal normalisation constant could be approximated as the average of the

weights in the last step, using (a.43b). However, in section a.4.4 resampling will be in-

troduced. �is at every step removes some samples and duplicates others, and overall

weights will not be available. To overcome this problem, the normalising constant Z

of γ, de�ned in (a.39b), can be factorised into terms Zi/Zi−1, which can be approx-

imated at every step:

Z , Zd = Zd−1
Zd
Zd−1

= Z1

d∏
i=2

Zi
Zi−1

. (a.54)
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procedure Sequential-importance-sampling(γ, ρ)
for dimension i = 1 . . . d do

for sample index l = 1 . . . L do
Sample u(l)i ∼ ρi

(
ui
∣∣u(l)
1:i−1

)
;

Compute weightwi
(
u
(l)
1:i

)
= wi−1

(
u
(l)
1:i−1

)γi(u(l)i |u
(l)
1:i−1)

ρi(u
(l)
i |u

(l)
1:i−1)

.

return weighted samples
{
wd
(
u
(l)
1:i

)
,u

(l)
1:d

}
.

Algorithm 5 Sequential importance sampling

�e fraction Zi/Zi−1 can be written in terms of the normalised density for dimen-

sion i− 1 and the proposal distribution and the weight function for dimension i (ap-

plying (a.48a), (a.50a), and (a.49a)) as

Zi
Zi−1

=

∫
γi(u1:i)du1:i∫

γi−1(u1:i−1)du1:i−1
=

∫
γi−1(u1:i−1)γi(ui|u1:i−1)du1:i∫

γi−1(u1:i−1)du1:i−1

=

∫
πi−1(u1:i−1)wi(ui|u1:i−1) ρi(ui|u1:i−1)du1:i

=

∫
πi−1(u1:i−1)

ρi−1(u1:i−1)
wi(ui|u1:i−1) ρi(u1:i)du1:i. (a.55)

�is can then be approximated at every step i using the empirical distribution ρ̃i

from (a.51):

Z̃i
Zi−1

=
1

L

L∑
l=1

w
(l)
1:i−1wi

(
u
(l)
i

∣∣u(l)
1:i−1

)
. (a.56)

It is straightforward to see that this yields a consistent estimate of Zi/Zi−1. Note that

as long as the samples are not resampled, this computation yields the exact same Z̃d

as (a.43b).

A.4.4 Resampling

A problem with importance sampling is that some samples will be in low-probability

regions. As the number of dimensions grows, the number of high-probability samples

tends to shrink exponentially. As a measure for this problem, the variance of the sam-

ple weights is o�en used. Sequential importance sampling as presented so far does not

do anything to produce lower variances.
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A technique that does help to focus on higher-probability regions, and therefore

does produce lower-variance weights is resampling. Resampling can be applied at

every step to �nd a new empirical measure with unweighted samples from a set of

weighted samples.

�e unweighted samples can bewritten as a set ofweights and samples:
{
w

(l)
i ,u

(l)
1:i

}
.

�e empirical distribution for dimensions 1 . . . i was given in (a.53):

π̃i =

L∑
l=1

w
(l)
i δu(l)1:i

. (a.57)

Resampling aims to �nd an approximation to this distribution with unweighted sam-

ples. �e conceptually simplest way of doing this is to draw L samples from π̃i and

construct a new empirical distribution

π̂i =

L∑
l=1

N
(l)
i

L
δ
u
(l)
1:i

, (a.58)

whereN(l)
i is the number of times sampleu(l)

1:i was drawn from π̃i, the (integer) num-

ber of o�spring of sample u(l)
1:i . �is is called multinomial resampling. However, the

only requirement to a resampling method is that the expected value of the number of

o�spring of a sample is proportional to its weight: E
{
N

(l)
i

}
= Lw

(l)
i .

Another way of generatingN(l)
1:i uses systematic resampling (Kitagawa 1996). �is

uses uniformly distributed z ∼ Unif
[
0, 1L
]
. New sample l ′ then is set equal to original

sample l where
∑l−1
j=1w

(j)
i ≤ z+ l ′ <

∑l
j=1w

(j)
i .

�e new empirical distribution can also be described as a list of unweighted sam-

ples
{
1
L , û

(l)
1:i

}
that containsN(l)

i copies of original sample u(l)
1:i . �e distribution then

is

π̂i =
1

L

L∑
l=1

δ
û
(l)
1:i

. (a.59)

�is makes it straightforward to introduce resampling at every step of the sequential

importance sampling algorithm as described in section a.4.3. A�er drawing samples

and computing their weights, the set of samples is resampled to yield equally weighted
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procedure Sequential-importance-resampling(γ, ρ)
for dimension i = 1 . . . d do

for sample index l = 1 . . . L do
Sample u(l)i ∼ ρi

(
ui
∣∣û(l)
1:i−1

)
;

Compute incremental weightwi
(
u
(l)
i

∣∣u(l)
1:i−1

)
=

γi(u
(l)
i |u

(l)
1:i−1)

ρi(u
(l)
i |u

(l)
1:i−1)

.

Compute Z̃i
Zi−1

= 1
L

∑
lwi

(
u
(l)
i

∣∣u(l)
1:i−1

)
.{

û
(l)
1:i

} ← Resample(
{
wi
(
u
(l)
i

∣∣u(l)
1:i−1

)
,u

(l)
1:i

}
).

Compute Z̃ = Z̃1
∑d
i=2

Z̃i
Zi−1

.

return
({
û
(l)
1:d

}
, Z̃
)
.

Algorithm 6 Sequential importance resampling

samples
{
1
L , û

(l)
1:i

}
. �is set is then used when drawing samples for the next itera-

tion. �e complete algorithm for sequential importance resampling is described in

Algorithm 6.

A.4.5 Sampling from the target distribution

An extension of sequential importance resampling was foreshadowed in (a.46). It

concerns the case where for some dimensions it is possible to sample from the norm-

alised target distribution πi(ui|u1:i−1). For such a dimension i, the proposal distri-

bution can be set to ρi(ui|u1:i−1) = πi(ui|u1:i−1). �e incremental weight function

from (a.50a) then returns the same value, the incremental normalisation constant, for

each point:

wi(ui|u1:i−1) =
γi(ui|u1:i−1)

ρi(ui|u1:i−1)
=

Zi
Zi−1

. (a.60)

�is is useful because it removes the need to compute the density of the distribution

at any point, or to resample the set of samples. In the case where γi = πi = ρi,

wi(ui|u1:i−1) = 1 by de�nition.

Algorithm 7 on the next page speci�es how sequential importance resampling, in

algorithm 6, can be extended to deal with dimensions for which it is possible to sample
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procedureHybrid-sequential-importance-resampling(γ, ρ)
for dimension i = 1 . . . d do

if ρi
(
ui
∣∣û(l)
1:i−1

)
∝ γi

(
ui
∣∣û(l)
1:i−1

)
then

for sample index l = 1 . . . L do
Sample û(l)i ∼ ρi

(
ui
∣∣û(l)
1:i−1

)
;

Set Z̃i
Zi−1

= wi
(
ui
∣∣u1:i−1) (for any u1:i−1).

else
for sample index l = 1 . . . L do

Sample u(l)i ∼ ρi
(
ui
∣∣û(l)
1:i−1

)
;

Compute incremental weightwi
(
u
(l)
i

∣∣u(l)
1:i−1

)
=

γi(u
(l)
i |u

(l)
1:i−1)

ρi(u
(l)
i |u

(l)
1:i−1)

.

Compute Z̃i
Zi−1

= 1
L

∑
lwi

(
u
(l)
i

∣∣u(l)
1:i−1

)
.{

û
(l)
1:i

} ← Resample(
{
wi
(
u
(l)
1:i

)}
).

Compute Z̃ = Z̃1
∑d
i=2

Z̃i
Zi−1

.

return
({
û
(l)
1:d

}
, Z̃
)
.

Algorithm 7Hybrid sequential importance resampling

from the target distribution, but its density at a point cannot be computed.
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Appendix B

Derivation of linear

transformations

Section 3.2 has discussed linear transformations for adaptation. Section 6.2 has in-

troduced versions of the same transformations trained on predicted statistics. �eir

derivations run parallel.�e following sections will highlight this by deriving the stat-

istics for both adaptive and predictive transformations of each form side by side. �ey

will discuss, in order, cmllr, covariancemllr, and semi-tied covariance matrices, all

with their predictive variants.

B.1 CMLLR

�e likelihood for cmllr is (repeated from (3.4b))

q(m)(y|A) = |A| · N
(
Ay+ b; µ

(m)
x , Σ

(m)
x

)
. (b.1)

To express the optimisation, it is convenient to write the a�ne transformation of the

observation vectors with one matrixW by appending a 1 to the observation to form
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vector ζ:

Ay+ b =
[
A b

]y
1

 ,Wζ. (b.2)

B.1.1 Adaptive

�e optimisation procedure implements an iterative approximation themaximisation

in (3.2). �is requires the log-likelihood, which is the logarithm of 3.4b, and its deriv-

ative with respect to the transform:

logq(m)(y|A) = log|A|− 1
2 log

∣∣2πΣ(m)
x

∣∣
− 1
2

(
Wζ− µ

(m)
x

)T
Σ
(m)
x

−1(
Wζ− µ

(m)
x

)
; (b.3a)

∂ logq(m)(y|A)
∂W

=
[
A−T 0

]
+ Σ

(m)
x

−1(
µ
(m)
x −Wζ

)
ζT. (b.3b)

�e transformation will be optimised row by row. �e derivative of row i ofW is

(assuming the covariance matrix is diagonal)

∂ logq(m)(y|A)
∂wi

=
[[
A−T

]
i
0

]
+

1

σ
(m)
x,ii

(
µ
(m)
x,i −wiζ

)
ζT, (b.3c)

where
[
A−T

]
i
is the ith row of the transposed inverse ofA.

�is expression can be substituted in the maximisation step in (3.2):

∂
∫
p̃(Y)∑m

∑TY
t=1 γ

(m)
t logq(m)(yt|A)dY

∂wi

=

∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t

∂ logq(m)(yt|A)
∂wi

dY

=

∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t

([[
A−T

]
i
0

]
+

1

σ
(m)
x,ii

(
µ
(m)
x,i −wiζt

)
ζTt

)
dY

= γ
[[
A−T

]
i
0

]
+ k(i) −wiG

(i), (b.4)

where γ, k(i), andG(i) are statistics from the adaptation data:

γ ,
∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t dY ; (b.5a)
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k(i) ,
∫
p̃(Y)

∑
m

µ
(m)
x,i

σ
(m)
x,ii

TY∑
t=1

γ
(m)
t ζTt dY ; (b.5b)

G(i) ,
∫
p̃(Y)

∑
m

1

σ
(m)
x,ii

TY∑
t=1

γ
(m)
t ζtζ

T
t dY. (b.5c)

To maximise the log-likelihood, (b.4) should be set to zero for all rows ofW at once.

�is is not in general possible, so the algorithm has to resort to updating the rows

ofW iteratively.

De�ne P to be the cofactor matrix of A with an extra column 0 appended. �e

�rst term in (b.4) can be written in terms ofwi and row i of P, pi:[[
A−T

]
i
0

]
= wi ·|A|−1 = wi ·

(
piw

T
i

)−1 (b.6)

�e row update is given in Gales (1998a):

wi :=
(
ηpi + k

(i)
)
G(i)−1, (b.7a)

where η is a solution of the quadratic expression

η2piG
(i)−1pT

i + ηpiG
(i)−1k(i)

T
− γ = 0. (b.7b)

�is row update is applied iteratively. It optimises the likelihood given the current

settings of the other rows, i.e. given the current setting ofpi. �erefore, the likelihood

is guaranteed not to decrease, and the overall process is an instantiation of generalised

expectation–maximisation.

B.1.2 Predictive

As for adaptive cmllr, the optimisation is performed row by row. �e derivative of

the log-likelihood for the output distribution is the same as in (b.3c). �is can be

substituted into the derivative of the maximand for general predictive linear trans-

formations from (6.18):

∂
∑
m γ

(m)
∫
p(m)(y) logq(m)(y|A)dy

∂wi
(b.8)
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=
∑
m

γ(m)

∫
p(m)(y)

∂ logq(m)(y|A)
∂wi

dy (b.9)

=
∑
m

γ(m)

∫
p(m)(y)

([[
A−T

]
i
0

]
+

1

σ
(m)
x,ii

(
µ
(m)
x,i −wiζ

)
ζT
)
dy (b.10)

=
∑
m

γ(m)
[[
A−T

]
i
0

]
+
∑
m

γ(m)µ
(m)
x,i

σ
(m)
x,ii

∫
p(m)(y)ζTdy

−
∑
m

γ(m)

σ
(m)
x,ii

∫
p(m)(y)wiζζ

Tdy (b.11)

= γ
[[
A−T

]
i
0

]
+ k(i) −wiG

(i), (b.12)

where γ, k(i), andG(i) are predicted statistics:

γ ,
∑
m

γ(m); (b.13a)

k(i) ,
∑
m

γ(m)µ
(m)
x,i

σ
(m)
x,ii

∫
p(m)(y)ζTdy =

∑
m

γ(m)µ
(m)
x,i

σ
(m)
x,ii

Ep(m)

{
ζT
}
; (b.13b)

G(i) ,
∑
m

γ(m)

σ
(m)
x,ii

∫
p(m)(y)ζζTdy =

∑
m

γ(m)

σ
(m)
x,ii

Ep(m)

{
ζζT
}
, (b.13c)

where Ep(m){·} is the expectation under the predicted distribution p(m) for compon-

entm.

B.2 Covariance MLLR

�e likelihood expression for covariance mllr is (repeated from (3.6b))

q(m)(y|A) = |A| · N
(
Ay; Aµ

(m)
x , Σ

(m)
x

)
. (b.14)
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B.2.1 Adaptive

�e optimisation of the transformation requires the log-likelihood and its derivative

with respect toA:

logq(m)(y|A) = log|A|− 1
2 log

∣∣2πΣ(m)
x

∣∣
− 1
2

(
A
(
y− µ

(m)
x

))T
Σ
(m)
x

−1(
A
(
y− µ

(m)
x

))
; (b.15a)

∂ logq(m)(y|A)
∂A

= A−T − Σ
(m)
x

−1
A
(
y− µ

(m)
x

)(
y− µ

(m)
x

)T
. (b.15b)

�e transformation will be optimised row by row. �e derivative of row i of A is

(assuming the covariance matrix Σ(m)
x is diagonal)

∂ logq(m)(y|A)
∂ai

=
[
A−T

]
i
−

1

σ
(m)
x,ii

ai
(
y− µ

(m)
x

)(
y− µ

(m)
x

)T
. (b.15c)

�is expression can be substituted into the maximand in (3.2):

∂
∫
p̃(Y)∑m

∑TY
t=1 γ

(m)
t logq(m)(yt|A)dY
∂ai

=

∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t

∂ logq(m)(yt|A)
∂ai

dY

=

∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t

([
A−T

]
i
−

1

σ
(m)
x,ii

ai
(
yt − µ

(m)
x

)(
yt − µ

(m)
x

)T)
dY

= γ
[
A−T

]
i
− aiG

(i), (b.16)

where γ andG(i) are statistics from the adaptation data:

γ ,
∫
p̃(Y)

∑
m

TY∑
t=1

γ
(m)
t dY ; (b.17a)

G(i) ,
∫
p̃(Y)

∑
m

1

σ
(m)
x,ii

TY∑
t=1

γ
(m)
t

(
yt − µ

(m)
x

)(
yt − µ

(m)
x

)T
dY. (b.17b)

For covariance mllr, γ is the same as for cmllr (in (3.5a)); G(i) is similar but uses

yt − µ
(m)
x instead of yt.

To maximise the log-likelihood, (b.4) should be set to zero for all rows of A at

once. Just like for cmllr, this is not in general possible, so the algorithm has to resort
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to updating the rows ofA iteratively. Each row is set to optimise the likelihood giving

the current settings of the other rows.�e details of the algorithm are inGales (1998a).

�e likelihood is guaranteed not to decrease, and the overall process is an instantiation

of generalised expectation–maximisation, where themaximisation step is an iteration

over the rows.

B.2.2 Predictive

�e optimisation works row by row. �e partial derivative of the log-likelihood was

given in (b.15c).�is can be substituted into the derivative of themaximand for general

predictive linear transformations from (6.18):

∂
∑
m γ

(m)
∫
p(m)(y) logq(m)(y|A)dy

∂ai
(b.18)

=
∑
m

γ(m)

∫
p(m)(y)

∂ logq(m)(y|A)
∂ai

dy (b.19)

=
∑
m

γ(m)

∫
p(m)(y)

([
A−T

]
i
−

1

σ
(m)
x,ii

ai
(
y− µ

(m)
x

)(
y− µ

(m)
x

)T)
dy (b.20)

= γ
[
A−T

]
i
− aiG

(i), (b.21)

where γ andG(i) are predicted statistics:

γ ,
∑
m

γ(m); (b.22a)

G(i) ,
∑
m

γ(m)

σ
(m)
x,ii

∫
p(m)(y)

(
y− µ

(m)
x

)(
y− µ

(m)
x

)T
dy

=
∑
m

γ(m)

σ
(m)
x,ii

Ep(m)

{(
y− µ

(m)
x

)(
y− µ

(m)
x

)T}
. (b.22b)

B.3 Semi-tied covariance matrices

�e expression for the likelihood for semi-tied covariancematrices is (repeated from (3.12b))

q(m)(x) = |A| · N
(
Ax; Aµ

(m)
x , Σ̃

(m)
x,diag

)
. (b.23)
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B.3.1 From data

�e log-likelihood expression and its derivative both with respect to the component

covariances and to the rows of the transformation matrix (the optimisation again is

row-wise, similar to (b.15c)) are necessary:

logq(m)(x) = log|A|− 1
2 log

∣∣2πΣ̃(m)
x,diag

∣∣
− 1
2

(
A
(
x− µ

(m)
x

))T[
Σ̃
(m)
x,diag

]−1(
A
(
x− µ

(m)
x

))
; (b.24a)

∂ logq(m)(x)

∂Σ̃
(m)
x,diag

= −1
2

[
Σ̃
(m)
x,diag

]−1(
I−A

(
x− µ

(m)
x

)(
x− µ

(m)
x

)T
AT
[
Σ̃
(m)
x,diag

]−1)
;

(b.24b)

∂ logq(m)(x)

∂A
= A−T − Σ

(m)
x

−1
A
(
x− µ

(m)
x

)(
x− µ

(m)
x

)T
; (b.24c)

∂ logq(m)(x)

∂ai
=
[
A−T

]
i
−

1

σ̃
(m)
x,ii

ai
(
x− µ

(m)
x

)(
x− µ

(m)
x

)T
. (b.24d)

�ese expressions can be substituted into the maximand in (2.32). For the optim-

isation of Σ̃(m)
x,diag,

2
∂
∫
p̃(X )∑m

∑TX
t=1 γ

(m)
t logq(m)(xt)dX

∂Σ̃
(m)
x,diag

(b.25)

=

∫
p̃(X )

TX∑
t=1

γ
(m)
t

[
Σ̃
(m)
x,diag

]−1(
A
(
xt − µ

(m)
x

)(
xt − µ

(m)
x

)T
AT
[
Σ̃
(m)
x,diag

]−1
− I
)
dX

(b.26)

= γ(m)
[
Σ̃
(m)
x,diag

]−1(
AW(m)AT

[
Σ̃
(m)
x,diag

]−1
− I
)
. (b.27)

Here, γ(m)
t and γ(m) are found from the training data as in (2.31), andW(m) contains

statistics from training observations. Only the diagonal elements of Σ̃(m)
x,diag are estim-

ated. However sinceW(m), the empirical full covariance for one component m, is

transformed byA (which changes at every iteration), it must be full:

W(m) ,
1

γ(m)

∫
p̃(X )

TX∑
t=1

γ
(m)
t

(
xt − µ

(m)
x

)(
xt − µ

(m)
x

)T
dX . (b.28)
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�e optimisation with respect toA is very similar to the one for covariance mllr

in (b.16):

∂
∫
p̃(X )∑m

∑TX
t=1 γ

(m)
t logq(m)(xt)dX

∂ai
(b.29)

=

∫
p̃(X )

∑
m

TX∑
t=1

γ
(m)
t

∂ logq(m)(xt)

∂ai
dX (b.30)

=

∫
p̃(X )

∑
m

TX∑
t=1

γ
(m)
t

([
A−T

]
i
−

1

σ̃
(m)
x,ii

ai
(
xt − µ

(m)
x

)(
xt − µ

(m)
x

)T)
dX (b.31)

= γ
[
A−T

]
i
− aiG

(i). (b.32)

Estimating A requires two types of statistics, γ and G(i). γ, the total occupancy, is

found in a similar way as in (b.17a), but from the training data. Since the procedure

for estimating the covariance transformation is the same as for covariance mllr, the

statistics are also basically the same.�e di�erence is that for covariancemllr, the co-

variance Σ(m)
x of the components is �xed, whereas for semi-tied covariance matrices,

the covariances Σ̃(m)
x,diag get re-estimated every iteration. Fixed σ(m)

x,ii in (b.17b) there-

fore is replaced by the diagonal elements of Σ̃(m)
x,diag, σ̃

(m)
x,ii . G

(i) is rewritten in terms of

the part that does not change with every iteration,W(m) in (b.28):

γ ,
∫
p̃(X )

∑
m

TX∑
t=1

γ
(m)
t dX ; (b.33a)

G(i) ,
∫
p̃(X )

∑
m

1

σ̃
(m)
x,ii

TX∑
t=1

γ
(m)
t

(
xt − µ

(m)
x

)(
xt − µ

(m)
x

)T
dX

=
∑
m

γ(m)

σ̃
(m)
x,ii

W(m). (b.33b)

B.3.2 Predictive

Unlike non-predictive semi-tied covariance matrices, the predictive variant de�nes a

distribution the corrupted speech, similar to (b.23) (repeated from (6.24)):

q(m)(y) = |A| · N
(
Ay; Aµ

(m)
y , Σ̃

(m)
y,diag

)
(b.34)
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b.3. semi-tied covariance matrices

�e optimisation of the means, the covariances, and the transformation need the

derivatives of the log-likelihood with respect to them. �ey are similar to (b.24) (the

derivative with respect to the means was not given there):

logq(m)(y) = log|A|− 1
2 log

∣∣2πΣ̃(m)
y,diag

∣∣
− 1
2

(
A
(
y− µ

(m)
y

))T[
Σ̃
(m)
y,diag

]−1(
A
(
y− µ

(m)
y

))
; (b.35a)

∂ logq(m)(y)

∂µ
(m)
y

= 2
[
Σ̃
(m)
y,diag

]−1
A
(
y− µ

(m)
y

)
; (b.35b)

∂ logq(m)(y)

∂Σ̃
(m)
y,diag

= −1
2

[
Σ̃
(m)
y,diag

]−1(
I−A

(
y− µ

(m)
y

)(
y− µ

(m)
y

)T
AT
[
Σ̃
(m)
y,diag

]−1)
;

(b.35c)

∂ logq(m)(y)

∂ai
=
[
A−T

]
i
−

1

σ̃
(m)
y,ii

ai
(
y− µ

(m)
y

)(
y− µ

(m)
y

)T
. (b.35d)

�ese can be substituted into the derivative of themaximand for general predictive

linear transformations from (6.18).

∂
∑
m γ

(m)
∫
p(m)(y) logq(m)(y|A)dy
∂µ

(m)
y

= 2
∑
m

γ(m)
[
Σ̃
(m)
y,diag

]−1
A

∫
p(m)(y)

(
y− µ

(m)
y

)
dy. (b.36)

To minimise the kl divergence with respect to the means, they are unsurprisingly set

to the expected value under the predicted distribution for componentm:

µ
(m)
y :=

∫
p(m)(y)ydy = Ep(m){y} . (b.37)

Since this expression does not depend on the other variables that are estimated, setting

the means is a one-shot process.

�e derivative with respect to the covariance of componentm is

2
∂
∑
m γ

(m)
∫
p(m)(y) logq(m)(y)dy

∂Σ̃
(m)
y,diag

= γ(m)
[
Σ̃
(m)
y,diag

]−1 ∫
p(m)(y)

(
A
(
y− µ

(m)
y

)(
y− µ

(m)
y

)T
AT
[
Σ̃
(m)
y,diag

]−1
− I
)
dy

= γ(m)
[
Σ̃
(m)
y,diag

]−1(
AW(m)AT

[
Σ̃
(m)
y,diag

]−1
− I
)
, (b.38)
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appendix b. derivation of linear transformations

where the predicted covariance in the original feature space for componentm is

W(m) ,
∫
p(m)(y)

(
y− µ

(m)
y

)(
y− µ

(m)
y

)T
dy

= Ep(m)

{(
y− µ

(m)
y

)(
y− µ

(m)
y

)T}
. (b.39)

�is is the equivalent ofW(m) for standard semi-tied covariance matrices, but estim-

ated on the predicted distribution rather than an empirical one. �ough the compon-

ent covariance Σ̃(m)
y,diag is constrained to be diagonal, the statisticsW

(m) have to be full,

because they are transformed by A. By setting the bracketed expression in (b.27) to

zero, the optimum setting for the diagonal elements of Σ̃(m)
y,diag is found with

Σ̃
(m)
y,diag := diag

(
AW(m)AT

)
. (b.40)

Unlike the expression for the means in (b.37), this expression depends onA, which in

turn depends on Σ̃(m)
y,diag. �erefore, the procedure will be iterative.

�e optimisation of A is performed row-by-row. Again, taking the derivative of

the kl divergence,

∂
∑
m γ

(m)
∫
p(m)(y) logq(m)(y)dy

∂ai

=
∑
m

γ(m)

∫
p(m)(y)

([
A−T

]
i
−

1

σ̃
(m)
y,ii

ai
(
y− µ

(m)
y

)(
y− µ

(m)
y

)T)
dy

= γ
[
A−T

]
i
− aiG

(i), (b.41)

where γ andG(i) are the predicted statistics:

γ ,
∑
m

γ(m); (b.42a)

G(i) ,
∑
m

γ(m)

σ̃
(m)
y,ii

∫
p(m)(y)

(
y− µ

(m)
y

)(
y− µ

(m)
y

)T
dy

=
∑
m

γ(m)

σ̃
(m)
y,ii

W(m). (b.42b)

As in standard semi-tied covariance matrices (in (b.33b)), G(i) can be expressed in

terms ofW(m), which do not change with every iteration.
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Appendix C

Mismatch function

�is section gives derivations relating to the mismatch function that would have con-

fused the main text. Section c.1 gives the Jacobians with respect to the sources, which

are required for vts compensation. Section c.2 derives the mismatch function and its

derivatives for di�erent powers of the spectrum.

C.1 Jacobians

�emismatch function relates log-spectral coe�cients of the observation, speech, and

noise with (repeated from (4.9))

exp
(
yi
)
= exp

(
xi + hi

)
+ exp

(
ni
)
+ 2αi exp 12

(
xi + hi + ni

)
. (c.1)
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�e per-coe�cient derivatives of this are

dyi
dxi

=
exp(xi + hi) + αi exp

(
1
2

(
xi + hi + ni

))
exp(xi + hi) + exp

(
ni
)
+ 2αi exp

(
1
2

(
xi + hi + ni

)) ; (c.2a)

dyi
dhi

=
dyi
dxi

; (c.2b)

dyi
dni

=
exp

(
ni
)
+ αi exp

(
1
2

(
xi + hi + ni

))
exp(xi + hi) + exp

(
ni
)
+ 2αi exp

(
1
2

(
xi + hi + ni

))
= 1−

dyi
dxi

; (c.2c)

dyi
dαi

=
β exp

(
1
2

(
xi + hi + ni

))
exp(xi + hi) + exp

(
ni
)
+ 2αi exp

(
1
2

(
xi + hi + ni

)) . (c.2d)

�e Jacobians of the vector mismatch function in the log-spectral domain are

Jlogx =
∂ylog

∂xlog
; Jlogn =

∂ylog

∂nlog
; J

log
h =

∂ylog

∂hlog
; Jlogα =

∂ylog

∂α
. (c.3)

Since the mismatch function applies per dimension in the log-spectral domain, the

Jacobians of the vector mismatch function in this domain are diagonal. �ey have as

diagonal entries the derivatives given in (c.2):

j
log
x,i =

dyi
dxi

; j
log
n,i =

dyi
dni

; j
log
h,i =

dyi
dhi

; j
log
α,i =

dyi
dαi

. (c.4)

Cepstral features are related to log-spectral through the dctmatrix C. �e cepstral-

domain can be found through the chain rule.

Jx =
∂ys

∂xs
=
∂ys

∂ylog

∂ylog

∂xlog
∂xlog

∂xs
= CJlogx C

−1, (c.5a)

and analogously

Jn =
∂ys

∂ns
= CJlogn C

−1; Jh =
∂ys

∂hs
= CJlogh C

−1; Jα =
∂ys

∂α
= CJlogα . (c.5b)

C.2 Mismatch function for other spectral powers

�e mismatch in the log-spectral domain was given in (4.9). It assumed that the fea-

tures yi, xi, ni used the power spectrum. �is section will write the power β applied
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c.2. mismatch function for other spectral powers

to the spectral coe�cients explicitly as y(β)i , x
(β)
i , n

(β)
i , so that (4.9) becomes:

exp
(
y
(2)
i

)
= exp

(
x
(2)
i + h

(2)
i

)
+ exp

(
n
(2)
i

)
+ 2αi exp

(
1
2

(
x
(2)
i + h

(2)
i + n

(2)
i

))
.

(c.6)

�e expression for the mismatch relating vectors in domains with di�erent powers

than 2 derives from this using an assumption about the mel-�ltered spectrum. �e

assumption is the same that was used to approximate the convolutional noise in (4.7),

namely that all spectral coe�cients in one mel-bin are equal. In that case, a mel-

�ltered spectral coe�cient is a weighted sum of spectral coe�cients to the power of β

(see (4.8a)), is equal to the power of the sum:

Ȳ
(β)
i =

∑
k

wik|Y[k]|β '
(∑

k

wik|Y[k]|
)β
. (c.7)

�e log-spectral coe�cients are found by taking the logarithm of this, so that

y
(β)
i = log

(
Ȳ
(β)
i

)
' β log

(∑
k

wik|Y[k]|
)
. (c.8)

�is assumption can be applied to all feature vectors. It causes coe�cients acquired

from the βth-power domain to be assumed related to those using a power of 2 by

y
(β)
i = β

2y
(2)
i ; x

(β)
i = β

2 x
(2)
i ; n

(β)
i = β

2n
(2)
i ; h

(β)
i = β

2h
(2)
i . (c.9)

For the log-magnitude-spectrum (β = 1), for example, coe�cients yi, xi, ni, are

smaller by a factor of 2. �erefore, (c.6) can be generalised to any power β by making

up for the power:

exp
(
2
βy

(β)
i

)
= exp

(
2
β

(
x
(β)
i + h

(β)
i

))
+ exp

(
2
βn

(β)
i

)
+ 2αi exp

(
1
β

(
x
(β)
i + h

(β)
i + n

(β)
i

))
, (c.10a)

or

y
(β)
i = β

2 log
(
exp
(
2
β

(
x
(β)
i + h

(β)
i

))
+ exp

(
2
βn

(β)
i

)
+ 2αi exp

(
1
β

(
x
(β)
i + h

(β)
i + n

(β)
i

)))
. (c.10b)
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Derivatives of this are

dy
(β)
i

dx
(β)
i

=
exp
(
2
β

(
x
(β)
i + h

(β)
i

))
+ αi exp

(
1
β

(
x
(β)
i + h

(β)
i + n

(β)
i

))
exp
(
2
β

(
x
(β)
i + h

(β)
i

))
+ exp

(
2
βn

(β)
i

)
+ 2αi exp

(
1
β

(
x
(β)
i + h

(β)
i + n

(β)
i

)) ;
(c.11a)

dy
(β)
i

dh
(β)
i

=
dy

(β)
i

dx
(β)
i

; (c.11b)

dy
(β)
i

dn
(β)
i

=
exp

(
2
βn

(β)
i

)
+ αi exp

(
1
β

(
x
(β)
i + h

(β)
i + n

(β)
i

))
exp
(
2
β

(
x
(β)
i + h

(β)
i

))
+ exp

(
2
βn

(β)
i

)
+ 2αi exp

(
1
β

(
x
(β)
i + h

(β)
i + n

(β)
i

))
= 1−

dy
(β)
i

dx
(β)
i

; (c.11c)

dy
(β)
i

dα
(β)
i

=
β exp

(
1
β

(
x
(β)
i + h

(β)
i + n

(β)
i

))
exp
(
2
β

(
x
(β)
i + h

(β)
i

))
+ exp

(
2
βn

(β)
i

)
+ 2αi exp

(
1
β

(
x
(β)
i + h

(β)
i + n

(β)
i

)) .
(c.11d)

Some implementations of vts compensation (e.g. Liao 2007) have usedmagnitude-

spectrum features (β = 1), but assumed the mismatch function was simply

exp
(
y
(1)
i

)
= exp

(
x
(1)
i + h

(1)
i

)
+ exp

(
n
(1)
i

)
. (c.12)

It is interesting to see the e�ect of these assumptions. By converting this back to power-

spectral features,

exp
(
1
2y

(2)
i

)
= exp

(
1
2x

(2)
i + 1

2h
(2)
i

)
+ exp

(
1
2n

(2)
i

)
; (c.13a)

exp
(
y
(2)
i

)
=
(
exp

(
1
2x

(2)
i + 1

2h
(2)
i

)
+ exp

(
1
2n

(2)
i

))2
= exp

(
x
(2)
i

)
+ exp

(
n
(2)
i

)
+ 2 exp

(
1
2x

(2)
i + 1

2h
(2)
i + 1

2n
(2)
i

)
. (c.13b)

�is is exactly equivalent to the real mismatch function, in (c.6), with α = 1. �is

means that performing vts compensation with vectors in the magnitude domain and

ignoring the phase term, as in (c.12) (e.g. Liao 2007), is essentially equivalent to as-

suming α = 1 on log-power-spectral features. Also, when the noise model is ml-

estimated, with the same mismatch function used for decoding, then the noise model

parameters will subsume much of the di�erence between model and reality.
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Appendix D

Derivation of model-space

Algonquin

�e Algonquin algorithm, when applied to the model, compensates each Gaussian

separately for each observation. It is not clear from the original presentation that this

happens.

�e original presentation replaces the likelihood calculation for each component

by a computation of the component’s “so� information score” (Kristjansson and Frey

2002; Kristjansson 2002). It derives this form from the feature enhancement version.

�e end result can be derived more directly, which the following will do before show-

ing the equivalence to the original presentation. As in the original, this will assume

that there is only one component per state (though the generalisation is straightfor-

ward).

Consider a speech recogniser, which aims to �nd the most likely state sequenceΘ

from an observation sequence Y with

P(Θ|Y) =
p(Y |Θ)P(Θ)

p(Y)

∝ p(Y |Θ)P(Θ) = P(θ0)
∏
t

P(yt|θt)P(θt|θt−1) . (d.1)
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appendix d. derivation of model-space algonquin

�e normalisation constant p(Y) is normally ignored, because it does not change de-

pending on the state sequence Θ. An obvious way of approximating the component

likelihood p(yt|θt) would be to replace it by the Algonquin approximation for that

componentm and observation yt,

p(yt|θt) '
∑

m∈Ω(θ)

π
(m)
θ q

(m)
yt (yt). (d.2)

�at this approximation to p(yt|θt) is not necessarily normalised is not a problem

for the Viterbi algorithm. A relevant question is, however, whether the likelihood ap-

proximations for di�erent components can be compared, when they are compensated

di�erently.

�e original presentation of Algonquin for model compensation (Kristjansson

2002; Kristjansson and Frey 2002) derives this form (up to a constant factor) through

a number of manipulations. �is relates the form of models compensation to the one

for feature enhancement. �e normalisation constant in (d.1) is not ignored, but ap-

proximated with a mixture of Gaussians:

p(Y) '
∏
t

p(yt) . (d.3)

�is decouples the distribution of y from the state sequence. �is is substituted in in

the expression that speech recognisers aim to maximise, P(Θ|Y). It is then rewritten

by applying Bayes’ rule, the approximation in (d.3), and again Bayes’ rule:

P(Θ|Y) =
p(Y |Θ)

p(Y)
P(Θ) ' P(θ0)

∏
t

p(yt|θt)

p(yt)
P(θt|θt−1)

= P(θ0)
∏
t

P(θt|yt)p(yt)

p(yt)P(θt)
P(θt|θt−1)

= P(θ0)
∏
t

P(θt|yt)

P(θt)
P(θt|θt−1) . (d.4)

�e expression that now replaces the likelihood computation for component θt =

m (again, assuming the state-conditional distribution Gaussian) in the speech re-

cogniser, P(m|yt) /P(m), is then called the “so� information score”. Its numerator,
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P(m|yt), is approximated by its variational approximation1

P(m|yt) ' qyt(m) =
q
(m)
yt (yt)P(m)∑

m ′ q
(m ′)
yt (yt)P(m ′)

. (d.5)

�e so� information score therefore is approximated

P(m|yt)

P(m)
' qyt(m)

P(m)
=

q
(m)
yt (yt)∑

m ′ q
(m ′)
yt (yt)P(m ′)

. (d.6)

�e normalisation term for one frame is the same across all components. �erefore,

it does not have an e�ect on decoding, so that the likelihood is in essence replaced by

unnormalised distributionqyt(yt), as in (d.2).�e question thus remainswhether the

unnormalised Algonquin approximations to the likelihood are comparable between

di�erence components.

1See Kristjansson (2002), equations (10.10), (10.15), and (8.18) for more details.
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Appendix E

The likelihood for piecewise linear

approximation

�is section follows the transformation of the expression for the likelihood presented

in Myrvoll and Nakamura (2004). �e explanation of the idea behind it is in sec-

tion 4.5.2. Section e.1 discusses the single-dimensional case as in the original paper.

Section e.2 generalises it to more dimensions.

E.1 Single-dimensional

�e interaction between the log-spectral coe�cients of the speech x, the noise n, and

the observation y is assumed to be

exp(y) = exp(x) + exp(n) . (e.1)

y is set to its observed value, yt.

�e substitute variable introduced to replace the integration overx andn is de�ned

u = 1− exp(x− yt) , (e.2a)
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so that

n = log(exp(yt) − exp(x)) = yt + log(1− exp(x− yt))

= yt + log(u) ; (e.2b)

x = yt + log(1− u) . (e.2c)

Two useful derivatives for transforming the integral are the following. �e derivative

of n with respect to y while keeping x �xed is

∂n(x, y)

∂y
=

exp(y)
exp(y) − exp(x)

=
1

1− exp(x− y)
=
1

u
. (e.3a)

�e notation n(x, y) is used to indicate the value of n that the setting of the other

two variables (x, y) implies. Similarly, the derivative of x with respect to u while

keeping yt �xed is

∂x(u, yt)

∂u
=

−1

1− u
. (e.3b)

As explained in section 4.5.2 (and see also section a.1.1), the transformation of the

integral in the likelihood expression uses the absolute values of the two derivatives.

p(yt) =

∫yt
−∞ p(yt|x)p(x)dx

=

∫yt
−∞
∣∣∣∣∣ ∂n(x, y)∂y

∣∣∣∣
yt

∣∣∣∣∣p(n(x, yt))p(x)dx
=

∫ 1
0

∣∣∣∣∣ ∂n(x, y)∂y

∣∣∣∣
yt

∣∣∣∣∣p(n(u, yt))
∣∣∣∣∂x(u, yt)∂u

∣∣∣∣p(x(u, yt))du
=

∫ 1
0

1

u
N
(
yt + log(u) ; µn, σ2n

) 1

1− u
N
(
yt + log(1− u) ; µx, σ2x

)
du.

(e.4)
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e.2. multi-dimensional

Rewriting only the le�-hand term of the integrand, noting that 1u = exp(− log(u)),

1

u
N
(
log(u) + yt; µn, σ2n

)
=

1√
2πσ2n

exp
(
−
(log(u) + yt − µn)2

2σ2n
− log(u)

)
=

1√
2πσ2n

exp
(
−
(log(u) + yt − µn + σ2n)2

2σ2n
+ 1
2σ
2
n + yt − µn

)
= exp

(
1
2σ
2
n + yt − µn

)
N
(
log(u); µn − σ2n − yt, σ2n

)
. (e.5)

�e right-hand side of the integrand can be rewritten in a similar way, so that the

likelihood expression becomes

p(yt) = exp
(
1
2σ
2
n +

1
2σ
2
x − µn − µx + 2yt

)
∫ 1
0

N
(
log(u); µn − σ2n − yt, σ2n

)
N
(
log(1− u); µx − σ2x − yt, σ2x

)
du.

(e.6)

By approximating log(u) and log(1 − u) with a piecewise linear function (Myrvoll

and Nakamura 2004), the integral can be written as a sum of integrals over part of a

Gaussian and a constant factor.

E.2 Multi-dimensional

�at the derivation above can use scalars crucially relies on two assumptions. �e as-

sumption that the ith coordinate of the clean speech only in�uences the ith coordinate

of the corrupted speech is only valid in the log-spectral domain. �e assumption that

the coordinates of both the clean speech and the corrupted speech are uncorrelated is

marginally valid in the cepstral domain, and invalid in the log-spectral domain. �e

following generalises the derivation above to a vector of mfccs. mfccs are related

to log-spectral coe�cients by a linear transformation. As long as the distributions in

the log-spectral domain are not assumed uncorrelated, therefore, a derivation in the

log-spectral domain can be used.
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�e relation of the clean speech, noise, and corrupted speech for every dimension

is the same as the single-dimensional case in (e.1), so that for vectors:

exp(y) = exp(x) + exp(n) . (e.7)

Again, y is set to its observed value, yt.

�e coe�cients of the substitute variableu are de�ned as in (e.2), so that in vector

notation,

u = 1− exp(x− yt) , (e.8)

so that

n = yt + log(u) ; (e.9)

x = yt + log(1− u) , (e.10)

where 1 is a vector with all entries set to 1.

�e absolutes of the derivatives that the transformation of the feature space res-

ults in in one-dimensional space generalise to determinants of partial derivatives.

Since the relationships between speech, noise, substitute variable, and observation

are element-by-element in log-spectral space, the partial derivatives are diagonal. �e

generalisations of the derivatives in (e.3) therefore is (note that u ∈ [0, 1])

∣∣∣∣∂n(x,y)∂y

∣∣∣∣ =
∣∣∣∣∣∏
i

∂n(xi, yi)

∂yi

∣∣∣∣∣ =
∣∣∣∣∣∏
i

1

1− exp(xi − yi)

∣∣∣∣∣ =∏
i

1

ui
; (e.11)

∣∣∣∣∂x(u,yt)∂u

∣∣∣∣ =
∣∣∣∣∣∏
i

∂x(ui, yt,i)

∂ui

∣∣∣∣∣ =∏
i

1

1− ui
. (e.12)

�e additive noise and the clean speech are distributed as

n ∼ N (µn,Σn) ; x ∼ N (µx,Σx) . (e.13)
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e.2. multi-dimensional

�e likelihood of yt generalises (e.4):

p(yt) =

∫
p(yt|x)p(x)dx

=

∫ ∣∣∣∣∣ ∂n(x,y)∂y

∣∣∣∣
yt

∣∣∣∣∣p(n(x,y))p(x)dx
=

∫
[0,1]d

∣∣∣∣∣ ∂n(x,y)∂y

∣∣∣∣
yt

∣∣∣∣∣p(n(u,y))
∣∣∣∣∂x(u,yt)∂u

∣∣∣∣p(x(u,y))du
=

∫
[0,1]d

(∏
i

1

ui

)
N (yt + log(u) ; µn, Σn)(∏

i

1

1− ui

)
N (yt + log(1− u) ; µx, Σx) du. (e.14)

Noting that ∏
i

1

ui
= exp

(
−
∑
i

log(ui)
)

= exp
(
− log(u)T1

)
; (e.15)

N (log(u) + yt; µn, Σn) =

|2πΣn|−
1
2 exp

(
− 1
2(log(u) + yt − µn)

TΣ−1
n (log(u) + yt − µn)

)
,

(e.16)

the le� term in (e.14) becomes (generalising (e.5))(∏
i

1

ui

)
N (log(u) + yt; µn, Σn)

= |2πΣn|−
1
2 exp

(
− 1
2(log(u) + yt − µn)

TΣ−1
n (log(u) + yt − µn) − log(u)T1

)
= |2πΣn|−

1
2 exp

(
− 1
2(log(u) + yt − µn + Σn1)

TΣ−1
n (log(u) + yt − µn + Σn1)

+ 1
21

TΣn1+ 1
Tyt − 1

Tµn

)
= N (log(u) ; µn − yt − Σn1, Σn) exp

(
1
21

TΣn1+ 1
Tyt − 1

Tµn

)
. (e.17)

Applying the same process to the right term, the likelihood of yt becomes

p(yt) = exp
(
1
21

TΣn1+
1
21

TΣx1− 1
Tµn − 1

Tµx + 2 · 1Tyt
)

∫
[0,1]d

N (log(u) ; µn − Σn1− yt, Σn)N (log(1− u) ; µx − Σx1− yt, Σx)du.

(e.18)
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appendix e. the likelihood for piecewise linear approximation

In the single-dimensional case, the integral is approximated with 8 line segments. In

themulti-dimensional case, the approximationwould use 8d hyperplanes. Sinceu has

as many dimensions as there are �lter bank coe�cients, a piecewise linear approxim-

ation is infeasible.
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Appendix F

The likelihood for

transformed-space sampling

To approximate the integral in the expression for the likelihood of the observation,

this work uses sequential importance resampling. A number of transformations of

the integral are required, some of the details of which are in this appendix.

�e detailed derivation of the transformation of the single-dimensional version of

the integral is in section f.1. �e generalisation of this transformation to the multi-

dimensional case is in section f.2. One of the two factorisations of the multi-dimen-

sional integrand that this work presents is detailed in section f.3. �e form of the pro-

posal distribution that approximates the single-dimensional integrand and the factors

of the multi-dimensional integrand is in section f.4.
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F.1 Transforming the single-dimensional integral

In section 7.3 on page 189, one half of a one-dimensional version of the corrupted

speech likelihood is rewritten to (repeated from (7.14)):

p(yt, x ≤ n) =
∫
p(α)

∫∞
0

∣∣∣∣∂x(u, yt, α)∂u

∣∣∣∣ ·
∣∣∣∣∣ ∂n(x, y, α)∂y

∣∣∣∣
yt,x(u,yt,α)

∣∣∣∣∣
· p(x(u, yt, α)) · p(n(u, yt, α)) dudα, (f.1a)

where (repeated from (7.11))

u = n− x. (f.1b)

Because the derivations of the Jacobians and of x(u, yt, α) and n(u, yt, α) are long,

they are given here.

�e mismatch function is (repeated from (7.10))

exp
(
y
log
t

)
= exp

(
xlog
)
+ exp

(
nlog

)
+ 2α exp

(
1
2x

log + 1
2n

log
)
. (f.2)

To express n as a function of x, yt, α, (f.2) can be rewritten to

exp(n) + 2α exp
(
1
2x
)
exp
(
1
2n
)
= exp(yt) − exp(x) ; (f.3a)(

exp
(
1
2n
)
+ α exp

(
1
2x
))2

= exp(yt) − exp(x) +
(
α exp

(
1
2x
))2
. (f.3b)

�is is where it becomes useful that the computation is restricted to the region where

x ≤ n so that n has only one solution. Since −1 ≤ α (as shown in section 4.2.1.1),

the squared expression on the le�-hand side, exp
(
1
2n
)
+ α exp

(
1
2x
)
, is always non-

negative. �erefore,

exp
(
1
2n
)
= −α exp

(
1
2x
)
+
√

exp(yt) − exp(x) + α2 exp(x); (f.3c)

n = 2 log
(
−α exp

(
1
2x
)
+
√
exp(yt) + exp(x) (α2 − 1)

)
. (f.3d)
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f.1 . transforming the single-dimensional integral

To express n as a function of u, yt, α, (f.2) can be rewritten with x = n − u

from (f.1b):

exp(yt) = exp(n− u) + exp(n) + 2α exp
(
1
2n− 1

2u+ 1
2n
)

= exp(n)
(
1+ exp(−u) + 2α exp

(
− 1
2u
))

; (f.4a)

exp(n) =
exp(yt)

1+ exp(−u) + 2α exp
(
− 1
2u
) ; (f.4b)

n = yt − log
(
1+ exp(−u) + 2α exp

(
− 1
2u
))
. (f.4c)

Similarly, x can be expressed as a function of u, yt, α by rewriting (f.2) with n =

u+ x from (f.1b):

exp(yt) = exp(x) + exp(u+ x) + 2α exp
(
1
2x+

1
2u+ 1

2x
)

= exp(x)
(
1+ exp(u) + 2α exp

(
1
2u
))

; (f.5a)

exp(yt − x) = 1+ exp(u) + 2α exp
(
1
2u
)
; (f.5b)

x = yt − log
(
1+ exp(u) + 2α exp

(
1
2u
))
. (f.5c)

Because u was chosen to relate x and n symmetrically, (f.4c) and (f.5c) are the same

except that u is replaced by −u.

An equality that will come in useful derives from (f.5b):

√
exp(yt) + exp(x) (α2 − 1) = exp

(
1
2x
)√

exp(yt − x) + (α2 − 1)

= exp
(
1
2x
)√

exp(u) + 2α exp
(
1
2u
)
+ α2

= exp
(
1
2x
)(
exp
(
1
2u
)
+ α

)
. (f.6)

�e Jacobians in (7.14) are derivatives of (f.5c) and (f.3d):

∂x(u, yt, α)

∂u
= −

exp(u) + α exp
(
1
2u
)

1+ exp(u) + 2α exp
(
1
2u
) = −

exp
(
1
2u
)(
exp
(
1
2u
)
+ α

)
1+ exp(u) + 2α exp

(
1
2u
) ;
(f.7a)
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∂n(x, y, α)

∂y

=
2√

exp(y) + exp(x) (α2 − 1) − α exp
(
1
2x
) · exp(y)
2
√
exp(y) + exp(x) (α2 − 1)

=
exp(y)(

exp
(
1
2x
)(
exp
(
1
2u
)
+ α

)
− α exp

(
1
2x
))

exp
(
1
2x
)(
exp
(
1
2u
)
+ α

)
=

exp(y− x)

exp
(
1
2u
)(
exp
(
1
2u
)
+ α

) =
1+ exp(u) + 2α exp

(
1
2u
)

exp
(
1
2u
)(
exp
(
1
2u
)
+ α

) . (f.7b)

When these aremultiplied, as in the integral in (f.1a), they drop out against each other,

except for the negation:
∂x(u, yt, α)

∂u

∂n(x, y, α)

∂y

∣∣∣∣
yt

= −1. (f.7c)

�is does not seem to be an intrinsic property of the process.

F.2 Transforming the multi-dimensional integral

�e transformation of the integral that returns the likelihood of the corrupted-speech

observation is more laborious for multiple dimensions than for a single dimension.

�e derivation uses three steps. First, the integral is split into separate dimensions.

�en, each of the integrals for one dimension is rewritten similarly to appendix f.1.

Finally, the dimensions are collated.

�e full expression for the likelihood of observation yt is (repeated from (7.1))

p(yt) =

∫ ∫ ∫
p(yt|x,n,α)p(x)p(n)p(α)dxdndα. (f.8)

Just like in the single-dimensional case, the integration over the clean speech and

the additive noise will be rewritten as an integral over a substitute variable. For each

dimension, this substitution is the same as the one in (7.11). In multiple dimensions,

the substitute variable u also relates the speech x and the noise n symmetrically:

u = x− n. (f.9)

However, the transformation of the integral will work one dimension at a time.

Per dimension, the derivation will be split in two regions which use symmetric de-

rivations, like in section 7.3.1. Again, the derivation will be explicitly given only for
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f.2. transforming the multi-dimensional integral

xi ≤ ni, with ni < xi completely analogous. By formulating (f.8) recursively, it can

be transformed one scalar at a time. �e following marginalises out one variable at a

time, starting with αi:

p(yt,i:d, xi ≤ ni|x1:i−1,n1:i−1,α1:i−1)

=

∫
p(αi|α1:i−1)p(yt,i:d, xi ≤ ni|x1:i−1,n1:i−1,α1:i)dαi, (f.10a)

where, marginalising out xi,

p(yt,i:d, xi ≤ ni|x1:i−1,n1:i−1,α1:i)

=

∫
p(xi|x1:i−1)p(yt,i:d, xi ≤ ni|x1:i,n1:i−1,α1:i)dxi, (f.10b)

where, with the restriction xi ≤ ni subsumed in the range of the integration over ni,

p(yt,i:d, xi ≤ ni|x1:i,n1:i−1,α1:i)

=

∫∞
xi

p(ni|n1:i−1)p(yt,i:d|x1:i,n1:i,α1:i)dni. (f.10c)

�e integrals in (f.10c) and in (f.10b) can then be re-expressed as one integral over

the substitute variable.

First, the integral over ni in (f.10c) can be written without the integral. �is is

because given the clean speech, additive noise, and phase factor for one dimension,

the corrupted speech for that dimension is deterministic:

p(yt,i|xi, ni, αi) = δf(xi,ni,αi)(yt,i) . (f.11)

�e variable of the Dirac delta in (f.11) can be transformed using the Jacobian (see

(a.1) in appendix a.1.1):

p(yt,i:d, xi ≤ ni|x1:i,n1:i−1,α1:i)

=

∫∞
xi

p(ni|n1:i−1)p(yt,i|xi, ni, αi)p(yt,i+1:d|x1:i,n1:i,α1:i)dni

=

∫∞
xi

p(ni|n1:i−1) δf(xi,ni,αi)(yt,i)p(yt,i+1:d|x1:i,n1:i,α1:i)dni
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=

∫∞
xi

p(ni|n1:i−1) ·
∣∣∣∣∣ dn(xi, αi, yi)dyi

∣∣∣∣
yt,i

∣∣∣∣∣ · δn(xi,αi,yt,i)(ni)
p(yt,i+1:d|x1:i,n1:i,α1:i)dni

=

∣∣∣∣∣ dn(xi, αi, yi)dyi

∣∣∣∣
yt,i

∣∣∣∣∣ · 1(xi ≤ ni)p(n(xi, αi, yt,i)|n1:i−1)
p
(
yt,i+1:d

∣∣x1:i,n1:i−1,α1:i, ni = n(xi, αi, yt,i)). (f.12)

�e next step is to substitute this result into (f.10b), and then replace the variable

of the integral from xi to ui. �e Jacobians that result from this are exactly the same

as the ones in section 7.3.1 on page 190, in (7.14). Since the product of their absolutes

is therefore again 1, they drop out.

p(yt,i:d, xi ≤ ni|x1:i−1,n1:i−1,α1:i)

=

∫
p(xi|x1:i−1)

∣∣∣∣∣ dn(xi, αi, yi)dyi

∣∣∣∣
yt,i

∣∣∣∣∣ 1(xi ≤ ni)p(n(xi, αi, yt,i)|n1:i−1)
p
(
yt,i+1:d

∣∣x1:i,n1:i−1,α1:i, ni = n(xi, αi, yt,i))dxi
=

∫∞
0

∣∣∣∣dx(ui, αi, yi)dui

∣∣∣∣ ·
∣∣∣∣∣ dn(xi, αi, yi)dyi

∣∣∣∣
yt,i

∣∣∣∣∣
p(x(ui, αi, yt,i)|x1:i−1)p(n(ui, αi, yt,i)|n1:i−1)

p
(
yt,i+1:d

∣∣x1:i−1,n1:i−1,α1:i, xi = x(ui, αi, yt,i), ni = n(ui, αi, yt,i))
dui

=

∫∞
0

p(x(ui, αi, yt,i)|x1:i−1)p(n(ui, αi, yt,i)|n1:i−1)

p
(
yt,i+1:d

∣∣x1:i−1,n1:i−1,α1:i, xi = x(ui, αi, yt,i), ni = n(ui, αi, yt,i))
dui, (f.13)
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Substituting this into (f.10a) gives one half of the likelihood:

p(yt,i:d, xi ≤ ni|x1:i−1,n1:i−1,α1:i−1)

=

∫
p(αi|α1:i−1)

∫∞
0

p(x(ui, αi, yt,i)|x1:i−1)p(n(ui, αi, yt,i)|n1:i−1)

p
(
yt,i+1:d

∣∣x1:i−1,n1:i−1,α1:i, xi = x(ui, αi, yt,i), ni = n(ui, αi, yt,i))
dui dαi. (f.14)

�is gives half the likelihood, because it is constrained to xi ≤ ni. �e other part,

for ni < xi, has the exact same derivation with xi and ni swapped, and ui replaced

by −ui. �is is exactly the same as the single-dimensional case in appendix f.1. �e

full likelihood, expressed recursively, then combines integrals over ui ∈ [0,∞) and

ui ∈ (−∞, 0):
p(yt,i:d|x1:i−1,n1:i−1,α1:i−1)

= p(yt,i:d, xi ≤ ni|x1:i−1,n1:i−1,α1:i−1)

+ p(yt,i:d, ni < xi|x1:i−1,n1:i−1,α1:i−1)

=

∫
p(αi|α1:i−1)

∫
p(xi(ui, αi, yt,i)|x1:i−1)p(n(ui, αi, yt,i)|n1:i−1)

p
(
yt,i+1:d

∣∣x1:i−1,n1:i−1,α1:i, xi = x(ui, αi, yt,i), ni = n(ui, αi, yt,i))
dui dαi. (f.15)

�is recursive formulation is straightforward to unroll to

p(yt) = p(yt,1:d)

=

∫ [ d∏
i=1

p(αi|α1:i−1)

] ∫ [ d∏
i=1

p(x(ui, αi, yt,i)|x1:i−1)

]
[ d∏
i=1

p(n(ui, αi, yt,i)|n1:i−1)

]
dudα

=

∫
p(α)

∫
p(x(u,α,yt))p(n(u,α,yt))dudα, (f.16)

where, analogously to the one-dimensional case, p(x(u,α,yt)) denotes the value of

the prior ofx evaluated at the value ofx implied by the values of (u,α,yt), and similar
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for p(n(u,α,yt)). To �nd these values for x and n, the relations in (f.5c) and (f.4c)

apply per dimension:

x = yt − log
(
1+ exp(u) + 2α ◦ exp

(
1
2u
))

; (f.17a)

n = yt − log
(
1+ exp(−u) + 2α ◦ exp

(
− 1
2u
))
. (f.17b)

In section 7.3.2, the full integrand is called γ(u,α), and the integral is approximated

with sequential importance sampling. Note that this derivation holds for any form of

priors for the speech and noise p(x) and p(n).

F.3 Postponed factorisation of the integrand

�is section presents a factorisation of the integrandγ(u|α). It should result in factors

γi so that (repeated from (7.33))

γ(u|α) = N (x(u,α,yt); µx, Σx)N (n(u,α,yt); µn, Σn) . (f.18)

�e two Gaussians on the right-hand side have the same structure. �e factorisation

here will only explicitly consider the term deriving from the speech prior; the one

deriving from the noise prior factorises analogously. A multi-variate Gaussian relates

all elements in its input vector through the inverse covariance matrix, the precision

matrix Λx. �e derivation writes these explicitly. �e elements of Λx = Σ−1
x are

denoted with λx,ij.

N (x(u,α,yt); µx, Σx)

= |2πΣx|−
1
2 exp

(
− 1
2(x(u,α,yt) − µx)

TΛx(x(u,α,yt) − µx)
)

= |2πΣx|−
1
2 exp

(
− 1
2

d∑
i=1

d∑
j=1

(x(ui, αi, yt,i) − µx,i) λx,ij(x(uj, αj, yt,j) − µx,j)

)

= |2πΣx|−
1
2 exp

(
d∑
i=1

[
− 1
2λx,ii(x(ui, αi, yt,i) − µx,i)

2

−(x(ui, αi, yt,i) − µx,i)

i−1∑
j=1

λx,ij(x(uj, αj, yt,j) − µx,j)

])
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= |2πΣx|−
1
2

d∏
i=1

exp
(

− 1
2λx,ii(x(ui, αi, yt,i) − µx,i)

2 −(x(ui, αi, yt,i) − µx,i)νx,i

)
, (f.19a)

where the term containing coordinates of lower dimensions u1:i−1 is

νx,i =

i−1∑
j=1

λx,ij(x(uj, αj, yt,j) − µx,j) . (f.19b)

When drawing ui for dimension i, the coordinates of lower dimensions u1:i−1 are

known.

A�er applying the same factorisation to the noise term, the complete integrand

in (f.18) can be written

γ(u|α) = N (x(u,α,yt); µx, Σx)N (n(u,α,yt); µn, Σn)

= |2πΣx|−
1
2 |2πΣn|−

1
2

d∏
i=1

exp
(

− 1
2λx,ii(x(ui, αi, yt,i) − µx,i)

2 −(x(ui, αi, yt,i) − µx,i)νx,i

− 1
2λn,ii(n(ui, αi, yt,i) − µn,i)

2 −(n(ui, αi, yt,i) − µn,i)νn,i

)
,

(f.20)

where νn,i is de�ned analogously to (f.19b). �e factors are then de�ned as (it is ar-

bitrary which factor takes the constant determiners)

γ1(u1|α1)

= |2πΣy|−
1
2 |2πΣx|−

1
2 exp

(
− 1
2λn,11(n(u1, α1, yt,1) − µn,1)

2

− 1
2λx,11(x(u1, α1, yt,1) − µx,1)

2
)
; (f.21a)

γi(ui|u1:i−1,α1:i)

= exp
(
− 1
2λx,ii(x(ui, αi, yt,i) − µx,i)

2 −(x(ui, αi, yt,i) − µx,i)νx,i

− 1
2λn,ii(n(ui, αi, yt,i) − µn,i)

2 −(n(ui, αi, yt,i) − µn,i)νn,i

)
, (f.21b)
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To �nd a proposal distribution for the resulting density, it can be rewritten so that

it is easily related to the one-dimensional γ in section 7.3.1, for which good proposal

distributions were discussed in section 7.3.1.2. Again, the following rewrites only part

of the term related to the speech prior; the noise term works completely analogously.

Since for importance sampling it is the shape rather than the height of the density that

the proposal distribution needs to match, the following disregards constant factors

(note the use of ∝), which are additive within the exp(·). A technique sometimes

called “completing the square” helps �nd the shape of the term related to the clean

speech in (f.21). �is derivation is similar to the derivation of the parameters of a con-

ditional Gaussian distribution (see e.g. Bishop 2006). Taking one factor from (f.19a),

exp
(
− 1
2λx,ii(x(ui, αi, yt,i) − µx,i)

2 −(x(ui, αi, yt,i) − µx,i)νx,i

)
∝ exp

(
− 1
2λx,ii(x(ui, αi, yt,i))

2 + λx,iiµx,ix(ui, αi, yt,i) − νx,ix(ui, αi, yt,i)
)

= exp
(
− 1
2λx,ii(x(ui, αi, yt,i))

2 + λx,ii

(
µx,i −

νx,i
λx,ii

)
x(ui, αi, yt,i)

)
∝ exp

(
− 1
2λx,ii

[
x(ui, αi, yt,i) −

(
µx,i −

νx,i
λx,ii

)]2)

∝ N
(
x(ui, αi, yt,i); µx,i −

νx,i
λx,ii

, λ−1x,ii

)
. (f.22)

By rewriting the additive noise term in the samemanner, the factors in (f.21) turn

out to be proportional to twoGaussian distributions that are functions ofx(ui, αi, yt,i)

and n(ui, αi, yt,i):

γi(ui|u1:i−1,α1:i−1) ∝ N
(
x(ui, αi, yt,i); µx,i −

νx,i
λx,ii

, λ−1x,ii

)
· N
(
n(ui, αi, yt,i); µn,i −

νn,i
λn,ii

, λ−1n,ii

)
. (f.23)

�is expression has the same shape as the one-dimensional integrand in (7.19) in sec-

tion 7.3.1.
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F.4 Terms of the proposal distribution

Finding the proposal distribution uses u(x, y, α), the value for u that follows from

�xing the other variables. Where this is necessary, u > 0. �is is equivalent to x ≤ n,
which is the area that this expression for n is valid for (repeated in (f.3d)):

n = 2 log
(
−α exp

(
1
2x
)
+
√
exp(yt) + exp(x) (α2 − 1)

)
, (f.24)

so that u can be found with

u = n− x = 2 log
(
−α+

√
exp(yt − x) + α2 − 1

)
. (f.25)

�emirror image of this expression isu(n, y, α), which �xesn rather than x, and

is required only for u < 0. �is expression can be found by rewriting (f.4b):

exp(n) =
exp(yt)

1+ exp(−u) + 2α exp
(
− 1
2u
) ; (f.26a)

exp(−u) + 2α exp
(
− 1
2u
)
+ 1 = exp(yt − n) ; (f.26b)(

exp
(
− 1
2u
)
+ α

)2
− α2 + 1 = exp(yt − n) ; (f.26c)(

exp
(
− 1
2u
)
+ α

)2
= exp(yt − n) + α2 − 1. (f.26d)

From u < 0, it follows that exp
(
− 1
2u
)
≥ 1 and exp

(
− 1
2u
)
+ α ≥ 0, so that

exp
(
− 1
2u
)
+ α =

√
exp(yt − n) + α2 − 1; (f.26e)

u = −2 log
(
−α+

√
exp(yt − n) + α2 − 1

)
.

(f.26f)
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