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Abstract

Discriminative training criteria and discriminative models are two e�ective improve-
ments for HMM-based speech recognition. �is thesis proposed a structured support
vector machine (SSVM) framework suitable for medium to large vocabulary continu-
ous speech recognition. An important aspect of structured SVMs is the form of fea-
tures. Several previously proposed features in the �eld are summarized in this frame-
work. Since some of these features can be extracted based on generative models, this
provides an elegant way of combine generative and discriminative models. To apply
the structured SVMs to continuous speech recognition, a number of issues need to be
addressed. First, features require a segmentation to be speci�ed. To incorporate the
optimal segmentation into the training process, the training algorithm is modi�ed
making use of the concave-convex optimisation procedure. A Viterbi-style algorithm
is described for inferring the optimal segmentation based on discriminative paramet-
ers. Second, structured SVMs can be viewed as large margin log linear models using
a zero mean Gaussian prior of the discriminative parameter. However this form of
prior is not appropriate for all features. An extended training algorithm is proposed
that allows general Gaussian priors to be incorporated into the large margin criterion.
�ird, to speed up the training process, strategies of parameter tying, 1-slack optim-
isation, caching competing hypotheses, lattice constrained search and parallelization,
are also described. Finally, to avoid explicitly computing in the high dimensional fea-
ture space and to achieve the nonlinear decision boundaries, kernel based training
and decoding algorithms are also proposed. �e performance of structured SVMs is
evaluated on small and medium to large speech recognition tasks: AURORA 2 and 4.
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Notation

Matrixes and vectors

s a scalar is denoted by a plain lowercase letter
v a vector is denoted by a bold lowercase letter
A a matrix is denoted by a bold uppercase letter
{·}T transpose of a vector or a matrix
{·}−1 inverse of a square matrix
‖·‖ Norm of a vector or a matrix
diag(·) Matrix diagonalisation
tr(·) trace of a square matrix
〈·, ·〉 Inner product of two vectors
⊗ Kronecker tensor product of two vectors
aij =[A]ij Element (i, j) of A

I Identity matrix
0 Vector/matrix with all entries 0
1 Vector/matrix with all entries 1
exp(·) , log(·) , ◦ Element-wise exponentiation, logarithm,

multiplication

Distributions

p(·) probability density function
p(·|·) conditional probability density
P (·) probability mass distribution
P (·|·) conditional probability mass distribution
E{·} Expected value
Var{·} Variance
KL(p‖q) Kullback-Leibler divergence to p from q
H(p‖q) Cross-entropy of p and q
δ(·) Kronecker delta function: evaluates to 1 if the

argument is zero and to 0 otherwise.
a ∼ N (µa,Σa) a is Gaussian-distributed with mean µa and

covariance Σa

N (a; µa, Σa) Gaussian density evaluated at a
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Chapter 1

Introduction

1.1 Structured Data

One goal of supervised machine learning is to develop mathematic models that are

able to learn and generalize from previously observed data, (x1,y1) , . . . , (xn,yn),

where x is the observation sequence and y is the corresponding class. In many ap-

plications, for example face recognition, speaker veri�cation and isolated word recog-

nition, machine learning has been involved with predicting a class label from obser-

vations, as in the case of classi�cation; or predicting a scalar value, as in the case of

regression (Bishop 2006). In these cases, the class y has been mainly considered as a

single, atomic (unstructured) label y.1 �ese (x, y) are referred as unstructured data

(Bakir et al. 2007).

However, in some other tasks for example natural language parsing and continu-

ous speech recognition, the output class y is not a single label but a structured ob-

ject, such as a tree or a word sequence with some grammars. �ere are dependencies

between these classes y. Classi�cation for structured data (x,y) is far from trivial

(Lacoste-Julien 2010; Rabiner 1989; Taskar et al. 2005). One reason is that the space of

all possible classes, y, is enormous, usually exponential in the number of individual
1In this work, unstructured labels are denoted by unbold symbols, e.g., y and structured labels are

denoted by bold symbols, e.g., y.
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chapter 1. introduction

unstructured y. For example, in isolated digit recognition, the space of, unstructured,

output y is only 10. However, in continuous digit recognition, for a 6-digit length

utterance, the space of all possible y is 106.

1.2 Classification Models

Statistical models for classi�cation commonly fall into one of two broad categories:

generative and discriminative models.

• �e generative models, e.g., Hidden Markov Models (HMMs), approximate the

joint distribution, p(x,y), over observation sequences and classes. In many

cases it is usually convenient to decompose the joint probability into a prior

probability P (y) and a likelihood probability p(x|y) (Bishop 2006). A clas-

si�cation decision can be made by computing posterior probabilities based on

Bayes’ rule,P (y|x) = p(x|y)P (y)
p(x) . �e parameters of the generative model were

originally estimated by using the maximum likelihood criterion (Rabiner 1989).

Generative models can also be trained using discriminative criteria, e.g., max-

imum mutual information (MMI) (Gauvain and Lee 1994), minimum Bayes

risk (MBR) (Na et al. 1995), minimum classi�cation error (MCE) (Juang and

Katagiri 1992) and maximum margin (MM) training (Sha and Saul 2007).

• By contrast, discriminative models, directly model the mapping from obser-

vation sequences to label sequences, either as a posterior distribution P (y|x)

or as a discriminant function fy(x). Discriminative models therefore avoid

the need to maintain valid likelihood and prior distributions (Minka 2005).

For example, logistic regression machines (Ng and Jordan 2001) and Condi-

tional Random Fields (CRF) (La�erty et al. 2001) directly model the posterior

of the label sequence given the observations. Support vector machines (SVMs)

(Vapnik 1995) directly models the discriminant function (or decision boundar-

ies) between classes. �e parameters of these discriminative models are typic-

ally estimated by optimizing various objectives related to the classi�cation loss,
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1.3. organisation of thesis

such as conditional maximum likelihood (CML) (Heigold 2010), MCE (Smith

and Eisner 2006), MBR (Venkataramani et al. 2003) or a maximum margin cri-

terion (Vapnik 1995; Zhang et al. 2010).

Discriminative approaches usually show better performance when there is su�-

cient training data, as they are better “tuned” to the classi�cation task (Jebara 2001).

On the other hand, generative modeling approaches provide a more natural way to

incorporate complex structural information about the data. To handle structured

data (with enormous numbers of classes), the parameters of generative/discriminative

models are typically broken down into a common set of basic structure units. �ese

shared basic parameters can then be combined together in di�erent sequences to model

all possible classes. In this work, these generative and discriminative models are re-

ferred as structured models. Several commonly used unstructured and structured

models are summarized in Table 1.1.

1.3 Organisation of Thesis

Continuous speech recognition (CSR), also known as speech to text transcription, sys-

tems are typically trained using a large (comparing to many machine learning tasks)

amount of training data, millions of words of language model training data and mil-

lions of frames of acoustic model training data (Gales et al. 2006). �is thesis views

speech recognition as a structured classi�cation problem (Taskar 2005; Zhang et al.

2010) in which class labels (sentences) have meaningful internal structure (e.g., words).

�us, although the number of possible class labels may be unlimited, these class labels

can be decomposed into a common set of basic structures, e.g., words/phones. Deriv-

ing an appropriate set of basic structures is o�en as important as modelling speech-text

dependencies (Odell 1995; Ragni 2013).

Chapter 2 discusses generative approaches to speech recognition. Most speech

recognition systems are based on structured generative models, employing hidden

Markov models (HMM), as the acoustic models. Likelihoods from these phone-based
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HMMs are combined together with the prior, usually an n-gram language model, to

yield the sentence posterior based on Bayes’ rule (Gales and Young 2007). �is enables

posteriors of all possible sentences to be captured. Although discriminative training

of HMMs has been shown to yield performance gains (Byrne 2006; Juang and Katagiri

1992; Keshet et al. 2011; Sha and Saul 2007; Woodland and Povey 2002), the underlying

acoustic models are still generative, with the standard HMM conditional independ-

ence assumptions and the form of posteriors may be restricted by Bayes’ rule. �is has

led to interest in discriminative models for speech recognition in Chapter 3 and 4.

For discriminative models three important decisions need to be made: the form of

the features to use; the appropriate training criterion; and how to handle structure for

continuous speech. Chapter 3 introduces unstructured discriminative models, e.g., lo-

gistic regression models (Birkenes et al. 2006) and SVMs (Venkataramani et al. 2003)

for isolated word recognition. Chapter 4 discusses structured discriminative models,

e.g., conditional random �elds (CRFs) (Abdel-Haleem 2006), hidden CRFs (HCRFs)

(Gunawardana et al. 2005) and segmental CRFs (SCRF) (Zweig and Nguyen 2009),

where the sentence posterior given the observation are directly modelled. Many com-

mon discriminative training criteria are considered.

A central aspect of discriminative models is the set of features extracted from the

observation and hypothesized word sequences. Features for discriminative models

are summarized in Chapter 5. An overview of feature functions proposed for hand-

ling variable-length sequence is given. A number of features at the frame, model and

word level (Gunawardana et al. 2005; Morris and Fosler-Lussier 2008; Ragni and Gales

2011b; Zhang et al. 2010) are summarized in an correlated format. In particular, fea-

tures based on generative models are discussed. �ey are an attractive option as they

allow state-of-the-art speaker adaptation and noise robustness approaches for gener-

ative models to be used (Gales and Flego 2010).

Chapter 6 introduces structured SVMs for speech recognition which is the fo-

cus of this thesis. �e relationship between several commonly used unstructured and

structured models for speech recognition are summarized in Table 1.1. �e motivation
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of using structured SVMs for speech recognition can be seen from two perspectives

in this table.

Training Unstructured y −→ Structured y

Max Likelihood Naive Bayes p(x|y) −→ HMM p(x|y)

↓ ↓ ↓
Max Conditional Likelihood Logistic regression P (y|x) −→ CRF P (y|x)

↓ ↓ ↓
Max Margin SVMαT

yφ(x) −→ ?

Table 1.1 Summary of commonly used models for sequence classi�cation, wherex
is the observation sequence andy (or y) is the corresponding label sequence (or an
unstructured label). Here CRFsmeans linear chain CRFs.�e gray row represents
generative models and the yellow rows represent discriminative models. Note that
the logistic regression and CRF can be related to the discriminatively trained naive
bayes and HMMs (Heigold et al. 2007; Roos et al. 2005), respectively; SVMs can
be related to the maximum margin trained logistic regression models (for details
see Section 3.2.3). �e question mark is the focus of this thesis (It is discussed and
related to the SVMs and CRFs in Chapter 6).

First, from the perspective of structured extension. Unstructured discriminative mod-

els, e.g. logistic regression models and SVMs, assume that the class labels have

no structure. When applying these models to a complete utterance in continu-

ous speech recognition, the space of possible classes becomes very large, e.g., a

6-digit length utterance yields 106 classes. One solution to deal with this is to

segment the continuous speech into words/sub-words observation sequences

(Venkataramani et al. 2003). For each segment, SVMs or logistic regression

models can be applied in the same fashion as in isolated classi�cation tasks

(Birkenes et al. 2006; Gales and Flego 2010; Zhang et al. 2010). However, there

are two problems with this approach. First, the classi�cation is based on one,

�xed, segmentation. Second, each segment is treated independently. An altern-

ative solution is to incorporate structure into the model. �is transforms the

unstructured discriminative model into a structured model. For naive Bayesian

classi�ers, this structured extension can lead to HMMs. For logistic regressions,
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this can lead to CRFs. For SVMs, this yields structured SVMs which was ori-

ginally proposed by (Joachims et al. 2009) in the machine learning �eld.

Second, from the perspective of maximum margin training. An appropriate training

criterion is very important for speech recognition (Schlüter et al. 2001). Max-

imum margin learning has been widely studied and applied by machine learn-

ing researchers in many application domains and o�en has achieved superior

results (Keshet and Bengio 2008; Roark 2009; Sha and Saul 2007; Smola 2000).

Interestingly, it was shown by (Zhang et al. 2003) that the SVMs can be related

to logistic regression models trained by the maximum margin criteria. Table 1.1

illustrates that structured SVMs may also related to CRFs with maximum mar-

gin learning. �is maximum margin learning of discriminative models may

o�er new opportunities to improve the performance of state-of-the-art speech

recognition systems.

�e major contribution of this thesis is we complete the Table 1.1 by structured

SVM and extend its training and inference algorithm for speech recognition. We show

that the proposed structured SVMs can be related to many existing models in the

speech �eld. A brief chapter-by-chapter breakdown is given as follows.

Chapter 2 provides an overview of generative approaches to speech recognition. In

particular, it describes state-of-the-art HMM-based systems.

Chapter 3 describes unstructured discriminative models for isolated word recog-

nition. To apply these models to continuous speech recognition, an acoustic code-

breaking scheme is also introduced.

Chapter 4 discusses structured discriminative models for continuous speech recog-

nition. Various forms of discriminative training criteria are also discussed.

Chapter 5 provides an overview of features for discriminative models. �e features

can map the variable-length sequences into a �xed-dimension vector.
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Chapter 6 describes structured SVMs for continuous speech recognition and im-

plementation issues.

Chapter 7 describes kernel methods for structured SVMs that can avoid computing

the high-dimension feature space explicitly.

Chapter 8 provides the experimental setup and results on two speech recognition

tasks where vocabulary ranges from small to medium-to-large.

Chapter 9 concludes with a summary of the thesis and outlines possible directions

for future work.
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Chapter 2

Generative Models

As was discussed in Chapter 1, Statistical classi�cation approaches are o�en categor-

ised into two broad groups generative models and discriminative models. Discussion

in this chapter focuses on the generative models.

Generative models are one of the most important forms of statistical model for

classifying sequence data such as speech. Generative models model the probability

density function associated with the observations, enabling observation sequences

to be randomly generated from distributions of the model. For example in speech

recognition, given an observation sequence, O = {o1, . . . ,oT }, and a word se-

quence (class), w = {w1, . . . , wL}, generative models allow the sequence likelihood,

pλ(O|w), to be calculated,1 where λ is model parameters. Given a prior distribution

over the class, P (w), Bayes’ rule can be used to convert the likelihood into a class

posterior (Bishop 2006; Duda et al. 2001),

Pλ(w|O) =
pλ(O|w)P (w)

p(O)
(2.1)

where p(O) is the class-independent probability of O, known as the evidence (Bishop

2006). It is typically calculated by marginalising over all classes,

p(O) =
∑

w∈W
pλ(O|w)P (w) (2.2)

1Strictly generative classi�ers use models of the joint distribution, typically of the form pλ(O,w) =
pλ(O|w)P (w).
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whereW is the set of all classes. A class ŵ ∈ W can then be assigned to unlabelled

O using Bayes’ decision rule (Bishop 2006),

ŵ = arg max
w∈W

Pλ(w|O)

= arg max
w∈W

pλ(O|w)P (w) (2.3)

�e evidence, p(O), is omitted in equation 2.3 since it does not depend on the w.

As discussed in Chapter 1, generative models can be divided into unstructured

and structured approaches. �e typical example of unstructured generative models is

the naive Bayes, where the likelihood pλ(O|w) given a single unstructured label w is

modelled. One famous form of structured generative model is the HMM, where the

likelihood pλ(O|w) given a label sequence w can be modelled. �e details of naive

Bayes and HMMs are described in the following sections.

2.1 Naive Bayes

�e naive Bayes model is the simplest example of an unstructured generative model.

It assumes that there is no structure in the class (i.e., w → w) and each feature oi is

conditionally independent of every other feature oj , ∀ i 6= j. �us the likelihood of

observation sequence can be calculated as

pλ(O|w) =
T∏

t=1

pλ(ot|w) (2.4)

�e graphical representation of naive Bayesian model is shown in Figure 2.1. �e na-

ive Bayes assumption dramatically reduces the number of parameters to be estimated

when modeling likelihoods (Friedman et al. 1997). �ese parameters (i.e., observation

probability distributions) can be estimated using the maximum likelihood criterion

(Bishop 2006). It has been shown that the classi�cation function of naive Bayes model

is a linear function when the observation is discrete (McCallum et al. 1998). Note that

there are no hidden states and parameter sharing (between classes) in these models.

Although naive Bayes works well in practice for many classi�cation tasks (McCallum
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w

o1 oToto2

p(O|w) =
T∏

t=1
p(ot|w)

Naive Bayes 

Conditional Independence · · · · · ·

Figure 2.1�e structure of naive Bayesian model (Friedman et al. 1997).

et al. 1998; Tóth et al. 2005; Ye et al. 2002), it is not easy to apply this model for recog-

nizing structured data. �is leads to interest in structured generative models.

2.2 Hidden Markov Models

Structured generative models consider the structures in the classes w when modelling

likelihoods pλ(O|w). However this is normally a di�cult problem to tackle directly

since the numbers of classes is enormous when w is a structured object. �e key idea

to handle this is to break down the parameters of structured models, for all observed

classes (e.g., sentences) in the training data, into a common set of basic structure units

(e.g., words/subwords). �ese shared basic parameters can then be combined together

in di�erent sequences to model all possible classes in the test data. Latent variables θ

are normally introduced in these models to allow the data (O,w) to be segmented

into the structure units.

�e Hidden Markov Model (HMM) (Rabiner 1989) is one example of structured

generative models. It was very widely applied to the tasks of speech recognition (Baker

1975; Gales and Young 2007). �e Hidden Markov Model is a �nite state machine

composed of a �xed number of discrete latent states including non-emitting initial

and accept latent states. �e HMM starts in the initial state at time t = 0. At each

subsequent time instance t the HMM transitions into a new state θt = j with trans-

ition probability aij from state θt−1 = i. An observation is then generated based
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on the output distribution on current state, bj(ot) = p(ot|θt).2 In HMMs, only the

observation sequence, {o1, . . . ,oT } is observable. �e corresponding state sequence

θ = {θ1, . . . , θT } is unobserved. �e underlining assumption for a HMM are:

• Conditional independence (for observations): the probability of generating an

observation ot only depends on the current state θt.

• First order Markov assumption (for hidden states): the probability of transition-

ing to a particular state is dependent only on the previous state.

Neither of these two assumptions is true for speech. Much research has been carried

out to compensate the e�ect of the poor assumptions or to �nd alternative models for

speech. However, the standard HMM is still a successful acoustic modelling technique

and is widely used in many speech recognition systems. Figure 2.2 shows the topology

and directed graphical model (Bilmes 2003) associated with an example HMM. �e

le� diagram illustrates a strict le�-to-right topology with three emitting states for a

phone HMM in speech recognition. �e right diagram illustrates the directed graph-

ical model associated with HMMs for a word sequence.

(a)  left-to-right topology (b) directed graph

1 2 3 54
a12

a22

a23

a33

a34

a44

a45

ot oT

· · · · · · · · ·

b2(ot) b3(ot) b4(ot)

ot ot+2ot+1

θt

.... ....wi

....θt+1 θt+2

.... ....

....

w

O

θ

Figure 2.2Hidden Markov models. (a) An example of le�-to-right topology with
three emitting states. (b) A directed graphical model for HMMs with a speci�c
state sequence θ, where w is a word sequence and wi is a word/subword.

2�e output distribution, bj(ot), can also be a discrete probability, P (ot|θt).
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2.2. hidden markov models

�e parameter set, λ = {π,A,B}, associated with a HMM is:

• π = {πi} — Initial state distribution

�e initial state distribution of state i is expressed as

πi = P (θ1 = i),
N∑

i=1

πi = 1 (2.5)

where N is the total number of states. From equation (2.5), by introducing a

non-emitting entry state and having a standard le�-to-right topology, the initial

state distribution of the �rst emitting state is always 1.

• A = {ai,j} — State transition probability matrix

Letting θt denote the state at time t, the element of state transition probability

matrixA is de�ned as

aij = P (θt = j|θt−1 = i),
N∑

j=1

aij = 1. (2.6)

As the HMMs used in speech recognition are normally constrained to be le�-

to-right, the matrix contains zeros.

• B = {bj(·)} — State output probability distributions

Each emitting state j is associated with one probability distribution which gen-

erates an observation at each time instance.

bj(ot) = p(ot|θt = j) (2.7)

�ere are two forms of state output distribution that are usually adopted in

speech recognition. One is to compute bj(ot) using Gaussian Mixture Mod-

els (GMMs). �e resulting model is usually referred as GMM-HMMs. Altern-

atively, bj(ot) can adopt the probability density function derived from Deep

Neural Networks (DNNs). �e resulting framework is known as DNN-HMM

hybrid systems (Bourlard and Morgan 1998; Seide et al. 2011). �e details of

these forms will be discussed in Sections 2.2.1.2 and 2.2.1.3.
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�e use of HMMs in practical applications requires solutions to the following

three standard problems (Rabiner 1989):

• Likelihood Caculation: Given the observation sequence O, the correspond-

ing label sequence w and HMM parameters λ, how to compute the likelihood

pλ(O|w) e�ciently?

• Infering the state sequence3: Given the observation sequence O and HMM

parameters λ, how to �nd the “most likely” state sequence θ?

• Parameter estimation: How to estimate HMM parameters λ?

Solutions to these problems are considered in Sections 2.2.1, 2.2.2 and 2.3.

2.2.1 Likelihood Calculation

Likelihood calculation is a basic issue to be addressed when using HMMs. As states

θ are hidden, the probability density of observations O given w is computed by mar-

ginalising over all possible latent state sequences

pλ(O|w) =
∑

θ

pλ(O,θ|w) =
∑

θ

P (θ|w)pλ(O|θ; w)

=
∑

θ∈ΘTw

aθ0θ1

T∏

t=1

aθt−1θtbθt(ot) (2.8)

where ΘT
w indicates all valid state sequences of w with length T . Note that even for

small numbers of states and observations, the use of direct summation becomes com-

putationally impractical due to a large number of possible state sequences. However,

the conditional independence and �rst order Markov assumptions enable the likeli-

hood pλ(O|w) to be calculated e�ciently using dynamic programming approaches,

for example the forward-backward algorithm (Gales and Young 2007; Rabiner 1989).

3Infering the word sequence w will be discussed in Section 2.4.
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2.2.1.1 Forward-backward algorithm

Let the forward probability,αt(j), denote the sum of the likelihoods of all partial paths

ending in state j at time t. For a N -state HMM, the forward probability for emitting

states can be calculated recursively using

αj(t) = pλ(o1, . . . ,ot, θt = j)

=

[
N−1∑

i=2

αi(t− 1)aij

]
bj(ot)

(2.9)

Note that the �rst and the last states are “non-emitting” states. �e initial and �nal

conditions for the above recursion are

αj(t) =





1 j = 1 t = 0

a1jbj(ot) 1 < j < N t = 1
N−1∑
i=2

αi(T )aiN j = N t = T

(2.10)

As a result, the likelihood is given by the forward probability of the state N at time T

pλ(O|w) = αN (T ) (2.11)

In addition to forward probabilities, the backward probability βi(t) is introduced

as the conditional probability that the model will generate the rest of the sequence

from time t given θt = i,

βi(t) = pλ(ot+1, . . . ,oT |θt = i)

=

N−1∑

i=2

aijbj(ot+1)βj(t+ 1).
(2.12)

�e initial and �nal conditions are

βi(t) =





aiN 1 < i < N t = T
N−1∑
i=2

a1jbj(o1)βi(1) i = 1 t = 1
(2.13)

Note that di�erently to forward probabilities computation is performed starting at

time t = T and terminating at time t = 1. As a results, the likelihood can also be

given by the backward probability of the initial state at time t = 1.

pλ(O|w) = β1(1)

23



chapter 2. generative models

�e forward-backward algorithm can be also used to compute a posterior prob-

ability γj(t) of occupying state j at time t

γj(t) = Pλ(θt = j|O; w) =
αj(t)βj(t)

pλ(O|w)
(2.14)

whereαj(t) is the forward probability, βj(t) is the backward probability and pλ(O|w)

is the likelihood. �e posterior probability γj(t) plays a important role in estimating

HMM parameters (for details see Section 2.3).

Note that both forward and backward probabilities require a speci�c form of state

likelihood probabilities, bj(ot). Two forms of bj(ot) that are commonly used in speech

recognition are described in the following sections.

2.2.1.2 GMM Likelihoods

�e state output distributions bj(ot) usually adopt probability density functions in the

form of Gaussian mixture models (GMM)

bj(ot) = p(ot|θt = j) =
M∑

m=1

cjmN (ot;µjm,Σjm) (2.15)

where M is the number of mixture components and cjm is the weight of component

m of state j. Each component is a multivariate Gaussian distribution

N (o;µ,Σ) = (2π)−
D
2 |Σ|− 1

2 exp

{
−1

2
(o− µ)T Σ−1 (o− µ)

}
. (2.16)

where D is the dimension of feature vector, µ is the mean vector, and the covariance

matrix Σ is normally assumed to be diagonal. In order to ensure that the state output

distributions are valid probability density functions, the mixture component weights

must satisfy

∀ j, ∀ m cjm ≥ 0; ∀ j
M∑

m=1

cjm = 1 (2.17)

�e number of mixture components, M , can be set using simple approaches such as

mixture splitting (Young et al. 2009) or using more re�ned approaches such as those

described in (Chen and Gopinath 1997; Gales et al. 2006; Liu and Gales 2007). �us,

the resulting HMMs are normally called GMM-HMMs (Gales and Young 2007).
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2.2. hidden markov models

2.2.1.3 DNN “Likelihoods”

Alternatively, the state output distributions bj(ot) can adopt the probability density

functions derived from neural networks (or multilayer perceptrons–MLPs) (Bourlard

and Morgan 1994; 1998). �is approach provides an elegant way of combining neural

networks and HMMs. Especially, when those neural networks with “deep architec-

ture” are used, the resulting framework is known as DNN-HMM hybrid systems (Hin-

ton et al. 2012) 4. Promising results based on these hybrid systems have been reported

(Hinton et al. 2012; Seide et al. 2011).

2 3 4

a12

a22

a23

a33

a34

a44

a45

· · ·

b2(ot) b3(ot) b4(ot)

otot−4 ot+4

· · ·

···
···

···

· · ·

· · ·

!!!!!· · · !!!!!

· · · Hidden Layers

Output Layers

· · ·

· · ·

Figure 2.3 DNN-HMM hybrid architectures.

4 �ere are two ways of incorporating neural networks into HMM systems in literatures of CSR:
Hybrid (Bourlard and Morgan 1998) and Tandem systems (Hermansky et al. 2000). In contrast to DNN-
HMM hybrid systems, Tandem system still belongs to GMM-HMM framework. �e neural network is
used for extracting the features. �ese features are described in Section 5.1.1.2.
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chapter 2. generative models

�ese neural networks aim to model the posterior probability of each state p(θt =

j|ot) directly. �e state output distributions can then be obtained by applying the

Bayes’ rule,

bj(ot) = p(ot|θt = j) =
P (θt = j|ot)p(ot)

P (θt = j)
(2.18)

where θt is the state label of observation ot, P (θt = j|ot) is the state posterior prob-

ability estimated from the DNN, P (θt = j) is the prior probability of each state es-

timated from the training set. All of the likelihoods produced in this way are scaled

by the same unknown factor of p(ot), which can be ignored since it is independent

of label sequences (Seide et al. 2011). Dividing the state posterior probability by prior

probability P (θt = j) has been found to be very useful to overcome the label bias

problem (Dahl et al. 2012), especially in speech recognition when the training utter-

ances contain many long silence segments.

�e framework of DNN-HMM is shown in Figure 2.3. �e input feature is the con-

catenation of several consecutive frames, and the state labels are used for training the

DNN. �e training process can be split into two stages, pre-training and �ne-tuning.

Pre-training aims to �nd a good initialization. �ere are mainly two types of pre-

training. �e �rst approach is to use the Restrict Boltzman Machine, stacking layer

by layer using greedy unsupervised training (Hinton et al. 2006). �e other approach

is to train a shallow neural network (e.g. only 1 hidden layer) through supervised

training �rst. �e hidden layers are added one by one and followed by sweeping the

training data with a few epochs, until required number of hidden layers are achieved.

�e later approach was found converged faster in the �ne-tuning stage (Hinton et al.

2012). In the �ne-tuning stage, the standard error back-propagation algorithm can be

applied.

Although good performances are achieved in systems based on DNNs, there are

still some challenges for these hybrid systems. For example, the training speech with

state labels is a issue for DNNs. It is not easy to parallelize the back propagation with

stochastic gradient descent. In addition, the adaptation methods for DNN-HMMs

still need to be explored.

26



2.2. hidden markov models

2.2.2 Viterbi Decoding

Given observation sequence O and model parameters λ, the corresponding state se-

quence θ is not known. �ere are several possible criteria that can be used to infer an

“optimal” state sequence 5, in some meaningful sense (Rabiner 1989). In speech re-

cognition, the criterion based on maximising the likelihood is most commonly used.

�e state sequence that satis�es this criterion is called the most likely state sequence.

�e problem of inferring the most likely state sequence can be expressed as

θ̂1:T = arg max
θ

pλ(O,θ) = arg max
θ

{
pλ(O|θ)p(θ)

}

= arg max
θ1:T

{
aθ0,θ1

T∏

t=1

bθt(Ot)aθt,θt+1

}
(2.19)

�e technique for inferring the most likely state sequence known as Viterbi algorithm

(Viterbi 1982). To �nd the most likely state sequence, the Viterbi algorithm introduces

the following term,

ρ
(j)
t = max

θ1:t−1

{
pλ(O1:t,θ1:t−1, θt = j)

}
(2.20)

which is the maximum likelihood of observing the partial observation sequence O1:t

and then being in state j at time t. �e Viterbi algorithm can be visualised in trellises

(Rabiner 1989) such as the one given in Figure 2.4.

�e Viterbi algorithm computes equation (2.20) recursively based on (Young et al.

2009)

ρ
(j)
t = max

i

{
ρ

(i)
t−1 · ai,j

}
bj(ot) (2.21)

with the initial conditions given by (Young et al. 2009)

ρ
(1)
0 = 1, ρ

(2)
1 = a12b2(o1), . . . (2.22)

where bj(ot) may from the GMM likelihood (2.15) or DNN likelihood in (2.18). Upon

termination at time t = T , the likelihood of θ̂ obtained by (Young et al. 2009)

pλ(O, θ̂) = max
i

{
ρ

(i)
T · aiN

}
(2.23)

5Decoding the word sequence w for speech recognition will be discussed in Section 2.4.
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Figure 2.4 �e viterbi decoding ofHMMs. Each blue circle represents an emission
probability bj(ot) for state j at time t. Each arrow represents a state transition
probability aij , and ρ

(i)
t is the maximum likelihood of observing the partial obser-

vation sequenceO1:t and then being in state i at time t. �e black arrows indicate
the most likely state sequence which can be retrieved using equation (2.24).

�e most likely state sequence can be retrieved through the following recursion (Ra-

biner 1989)

θ̂t = arg max
i

{
ρ

(i)
t aiθ̂t+1

}
(2.24)

given the optimal state θ̂t+1 from previous stage. �e initial state at time T is given by

θ̂T = arg max
i

{
ρ

(i)
T · aiN

}
(2.25)

�e computational complexity of the Viterbi algorithm isO(N2T ).

2.3 Parameter Estimation for Generative Models

As discussed in Section 2.2, the use of generative models, e.g. HMMs, in real applica-

tions, requires knowing how to estimate the parameters λ̂. A standard approach is to

select values λ̂ for the model parameters that maximise some training criterionF(λ)

given a training datasetD,

λ̂ = arg max
λ

{F(λ|D)} . (2.26)
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2.3. parameter estimation for generative models

For supervised training in speech recognition, the datasets are usually consist of ut-

terances with transcriptions,

D =
{(

O(1),w
(1)
ref

)
, . . . ,

(
O(R),w

(R)
ref

)}
(2.27)

where O(r) is the rth observation sequence and w
(r)
ref is the rth reference transcription

(word sequence).

Many di�erent criteria, F(λ), have been proposed for estimating the parameters

of generative models. Among all these algorithms, the most common training cri-

terion is maximum likelihood (ML) estimation, where the parameters are optimised

to maximise the likelihood of the training data. Although model parameters are of-

ten estimated using the ML training criterion, discriminative training criteria have

become increasingly popular. �ese attempt to optimise the model parameters with

respect to an objective function that is directly related to the classi�cation perform-

ance. Proposed criteria include: maximum mutual information (MMI) (Bahl et al.

1986), minimum Bayes risk (MBR) (Byrne 2006; Kaiser et al. 2000) and minimum

classi�cation error (MCE) (Juang et al. 1995). �ese popular training criteria are de-

scribed in the following subsections.

2.3.1 Maximum Likelihood (ML)

Maximum likelihood estimation is one of the standard approach for training the para-

meters of generative models. It adjusts model parameters to maximise the likelihood

of a given training set. �e ML training criterion can be expressed as maximising

Fml(λ|D) =

R∑

r=1

log pλ(O(r)|w(r)
ref), (2.28)

where λ is the generative model parameters and pλ(O(r)|w(r)
ref) is the likelihood of

the parameterλ for r-th observation sequence given the r-th label sequence. �e like-

lihood can be calculated using the forward-backward algorithm described in Section

2.2.1.1. Maximising equation (2.28) with respect to λ allows ML parameter estimates
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chapter 2. generative models

to be calculated. In practice the global optimal solution of maximum likelihood es-

timation is not guaranteed. However, good performance can be obtained for a variety

of tasks with appropriate initialisation (Rabiner 1989; Young et al. 2006).

For some simple generative models such as a single Gaussian distribution, equa-

tion (2.28) can be maximised analytically by computing the partial derivatives ofFml(λ|D)

with respect to the model parameter λ, and setting them to zero. For latent variable

models, such as HMMs, di�erentiating equation 2.28 with respect to λ o�en does not

yield simple closed form estimates for the optimal model parameters. Instead expect-

ation maximisation (EM) algorithm (Baum et al. 1970; Dempster et al. 1977; Rabiner

1989) can be used to iteratively update the model parameters.

2.3.2 Maximum Mutual Information (MMI)

Discriminative training criteria provide a method of optimising the model parameters

with respect to an objective function that is directly related to the classi�cation per-

formance. One of the most widely used discriminative training criteria for generative

models is maximum mutual information (MMI) estimation (Normandin 1991). In the

MMI training, the following form is maximised

Fmmi(λ|D) =
R∑

r=1

log(P (w
(r)
ref|O(r);λ)), (2.29)

where (O(r),w
(r)
ref) is the rth training pair. Using Bayes’ rule, the posterior probab-

ilities a label sequence in equation (2.29) can be expressed in terms of the generative

model likelihoods pλ(O|w), and class priors P (w),

P (w
(r)
ref|O(r);λ) =

pλ(O(r)|w(r)
ref)P (w

(r)
ref)∑

w′
pλ(O(r)|w′)P (w′)

. (2.30)

where w′ denotes all possible hypothesis (label sequences) including both the correct

and competing ones.

In speech recognition, the space of all possible w′ is usually very large, there-

fore calculating the denominator of equation (2.30) is impractical. To avoid this, the
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2.3. parameter estimation for generative models

denominator summation is o�en approximated using a relatively small number of

‘likely’ hypotheses. �ese hypotheses are usually generated using Viterbi decoding of

ML-estimated models (Povey 2003) and are normally stored as N-Best lists or lattices

(see Section 2.4.4). With the above approximation, maximising equation (2.29) with

respect to the parameters of both the generative models and the prior distributions al-

lows MMI estimates of the model parameters to be calculated. For speech recognition,

the prior distributions P (w
(r)
ref) is the language model probability (see Section 2.4.3)

which is typically not estimated in conjunction with the likelihood pλ(O(r)|w(r)
ref) so

will be assumed �xed in this section.

2.3.3 Minimum Classification Error (MCE)

�e parameter estimation of generative models based on minimum classi�cation error

(MCE) criterion (Chou et al. 1993; Juang and Katagiri 1992; McDermott et al. 2007)

can be performed by minimising

Fmce(λ|D) = − 1

R

R∑

r=1


1 +




P (w
(r)
ref|O(r);λ)∑

w′ 6=w
(r)
ref

P (w′|O(r);λ)




ξ


−1

(2.31)

where P (w
(r)
ref|O(r);λ) is de�ned in equation (2.30) and ξ is an additional free para-

meter. MCE is a smooth measure of the di�erence between the log-likelihood of cor-

rect reference sequence and all other competing word sequences (Juang and Katagiri

1992). �ere are some important di�erences between MCE and MMI. �e �rst is that

the denominator term does not include the correct word sequence. Second the log-

probabilities are smoothed with a sigmoid function, which introduces an additional

smoothing term ξ. When ξ = 1 it is possible to show that (Gales 2007)

Fmce(λ|D) = 1− 1

R

R∑

r=1

P (w
(r)
ref|O(r);λ). (2.32)

�e second term in equation (2.32) is actually the objective function in equation (2.29).
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2.3.4 Minimum Bayes’s Risk (MBR)

Alternatively, maximizing the posterior probability of training data in the MMI cri-

terion, MBR minimising the expected loss,

Fmbr(λ|D) =
1

R

R∑

r=1

∑

w′

P (w′|O(r);λ)L(w′,w
(r)
ref) (2.33)

where w′ denotes all possible hypothesis, P (w′|O(r);λ) is de�ned in equation (2.30)

and L(w′,w
(r)
ref) is a loss functions that calculates the error between the hypothesis

w′ and the reference w
(r)
ref. Designing a suitable loss function is very important and

leads to several MBR-style criteria in speech recognition (Gales 2007).

0/1 loss For continuous speech recognition 0/1 loss is equivalent to a sentence-level

loss function.

L(w′,w
(r)
ref) =





0, if w′ = w
(r)
ref

1, if w′ 6= w
(r)
ref

(2.34)

When ξ = 1 MCE and MBR training with this loss function are the same.

Word-level loss �is loss function directly related to minimising the expected Word

Error Rate (WER). It is normally computed by word-level Levenshtein distance

between w′ and w
(r)
ref (Gales 2007). Using this loss function in equation (2.33)

yields the minimum word error (MWE) criterion (Mangu et al. 1999).

Phone-level loss For large vocabulary speech recognition not all word sequences will

be observed. To help the generalization the loss function is o�en computed

between the phone sequences, rather than word sequences (Gales 2007). In the

literature this is known as Minimum Phone Error (MPE) training (Povey 2003).

Frame-level loss �is loss is the Hamming distance used in (Taskar 2005). It meas-

ures the number of observations having incorrect phone labels. Using this loss

function in equation (2.33) yields the minimum phone frame error (MPFE) cri-

terion (Zheng and Stolcke 2005).
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Some of the above criteria have been compared on the Wall Street Journal (WSJ) task

in (Macherey et al. 2005; Schlüter et al. 2001). Both MCE and MPE were found to

outperform MMI on this task. MPFE yielded small, but consistents, gains over MPE

in (Zheng and Stolcke 2005).

2.3.5 Maximum Margin (MM)

In many applications, since the underlying models are usually not known and the

training data is always limited, MMI and MBR-style training criteria may have over-

training problems. In order to train a robust classi�er that generalizes better on high-

dimension space, maximum margin based approaches become popular (Gales 2007;

M. Layton and M.J.F. Gales 2004; Sha and Saul 2007). �e simplest form of maximum

margin training criterion can be expressed as maximising

Fmm(λ|D) =
1

R

R∑

r=1

(
min

w′ 6=wr

{
log

(
P (w(r)|O(r);λ)

P (w′|O(r);λ)

)})
. (2.35)

�is objective function aims to maximise the distance between the log-posterior of the

correct label and the “closest” incorrect labels. Note that the posteriorsP (w(r)|O(r);λ)

and P (w′|O(r);λ) are de�ned in equation (2.30), however the normalization terms

of these posteriors (denominator in equation (2.30)) can be cancelled out.

Many variants of maximum margin training have also been used. In (Sha and Saul

2007), the size of the margin is forced to be not smaller than a loss function. �is leads

to minimising the following objective function

Fmm(λ|D) =
1

R

R∑

r=1

[
max

w′ 6=wr

{
L(w′,w

(r)
ref)− log

(
P (w(r)|O(r);λ)

P (w′|O(r);λ)

)}]

+
(2.36)

whereL(w′,w
(r)
ref) is the Hamming distance (Sha and Saul 2007) between the two la-

bel sequences. In continuous speech recognition, this is the frame-level loss described

in Section 2.3.4. To ignore the data that already classi�ed correctly and beyond the
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margin, the hinge function [ · ]+ is introduced

[f(x)]+ =




f(x), if f(x) > 0

0, otherwise
(2.37)

Note that the objective function in (2.36) is not di�erentiable because of the max{·}
function. In order to simplify optimisation, in (Sha and Saul 2007) the following so�-

max inequality is used to approximate the non-di�erentiable objective function,

max
i
xi ≤ log

(∑

i

exp(xi)

)
(2.38)

�is yields the following upper bound of the objective function in equation (2.36),

Fmm(λ|D) ≤ 1

R

R∑

r=1

[
− log

(
P (w

(r)
ref|O(r);λ)

)
+

log

(∑

w′

P (w′|O(r);λ)Lexp(w′,w(r)
ref)

)]

+

(2.39)

where the new loss function is

Lexp(w′,w(r)
ref) =





0, if w′ = w
(r)
ref

exp
{
L(w′,w

(r)
ref)

}
, if w′ 6= w

(r)
ref

(2.40)

�is lower bound has properties related to both the MMI and MBR criterion (Gales

2007). �e �rst term within the hinge-loss function is the negated log-posterior, the

same as the MMI objective function in (2.29). �e second term is the logarithm of

MBR objective function in (2.33) with a new loss function given by (2.40).

Furthermore, the lower bound in equation (2.39) can also be related to the boosted

MMI (bMMI) criterion (Povey et al. 2008). In bMMI criterion the following objective

function is maximised (Saon and Povey 2008)

Fbmmi(λ|D) =
1

R

R∑

r=1

log


 pλ(O(r)|w(r)

ref)P (w
(r)
ref)∑

w′
pλ(O(r)|w′)P (w′) e−εA(w′,w

(r)
ref)


 (2.41)

whereA(w′,w
(r)
ref) is the accuracy function of label sequence w′ against the reference

w
(r)
ref, and ε is a boosting factor. �ere are two di�erences between the maximum
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margin criterion in (2.39) and bMMI criterion in (2.41). First, in the former, the hinge-

loss function is used to prevent the log-posterior ratio to grow arbitrary large. Second,

in the latter, a scaled phone-level accuracy e−εA(w′,w
(r)
ref) is used instead of the loss

function in equation (2.40). Note that the criterion in (2.39) is an approximation of

the “exact” maximum margin in (2.36).

2.4 Speech Recognition

In the previous sections, generative models and their training criteria were introduced.

Although these models have been applied to a wide variety of tasks, including speech

recognition (Rabiner 1989), machine translation (Somers 1992) and computational

biology (Krogh et al. 1994), this work focuses on the task of speech recognition. �e

aim of an automatic speech recognition (ASR) system is to produce a word sequence

(transcription) given a speech waveform. �e basic structure of an ASR system is

shown in Figure 2.5. �is system consists of �ve principal components: the Front-end

processing, acoustic model, language model, dictionary and decoding algorithm.

Front-end 

Processing

Decoding 

(Inference)

Acoustic 

Model

Language 

Model

      

     
w

Pronunciation 

Dictionary 

Figure 2.5 A typical structure of automatic speech recognition system based on
generative models.

�e �rst stage of speech recognition is to compress the speech signals into a se-

quence of acoustic feature vectors, referred to as observations, denoted as O = {o1, . . . ,oT }.
�is process is known as the feature extraction or front-end processing. Given the ob-

35



chapter 2. generative models

servation sequence, generally two main sources of information are required to decode

the most likely word sequence: the language model and acoustic model. �e decoder

uses Bayes’ decision rule to calculate the most likely word transcription associated

with the observation sequence,

ŵ = arg max
w

P (w|O) = arg max
w

(pλ(O|w)P (w)) , (2.42)

where P (w) is the language model and pλ(O|w) is the generative acoustic model.

Note thatP (O) is ignored in equation (2.42) as it is independent of the word sequence

w. �ese principal parts of a speech recognition system are discussed in more details

in the following sections.

2.4.1 Front-end processing

�e raw form of speech is a continuous speech waveform. �is waveform is normally

recorded using a microphone and sampled at 8kHz or 16kHz depends on the chan-

nel. To e�ectively perform speech recognition, the sampled waveform is usually con-

verted into a sequence of time-discrete parametric vectors. �ese parametric vectors

are assumed to contain su�cient information and be compact enough for e�cient

decoding, referred to as feature vectors or observations, O = {o1, . . . ,oT }. �ere

are two widely used feature extraction schemes: Mel-frequency Cepstral coe�cients

(MFCCs) (Davis and Mermelstein 1980) and perceptual linear prediction (PLP) (Her-

mansky 1990). Both are based on Cepstral analysis.

�e speech signal is assumed to be quasi-stationary. It is then split into discrete

segments normally with 10ms shi�ing rate and 25ms window length. �ese discrete

segments are o�en referred to as frames. A pre-emphasising approach is sometimes

applied during the feature extraction, where overlapping window functions, such as

Hamming windows are commonly used to smooth the signals and reduce the bound-

ary e�ect in signal processing (Deller et al. 2000). A fast Fourier transform (FFT)

is then performed on the time-domain speech signals of each frame, generating the

segment frequency-domain power spectrum. �is is then warped using either a Mel-
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frequency scale (MFCCs) or a Bark-frequency scale (PLPs). �e resulting power spec-

trum is �ltered and compressed. MFCC and PLP vectors are then generated using

an inverse discrete cosine transform (IDCT) or a linear prediction (LP) analysis re-

spectively. 13-dimensional vectors are typically extracted. In many speech recogni-

tion systems, the MFCC and PLP vectors are extended using �rst-order (delta) and

second-order (delta-delta) dynamic features. �ese increase the observation-space

to 39 dimension, and help to overcome the HMM assumption that observations are

conditionally independent given the state sequence (Forney 1973).

Furthermore, many state-of-the-art speech recognition systems use third-order

dynamic features in order to generate 52-dimensional vectors. �ese are then projec-

ted into a smaller 39-dimensional space. One common projection scheme is heteros-

cedastic linear discriminant analysis (HLDA) (Goel and Andreou 1998; Kumar 1997).

�is performs both dimensionality reduction and feature-space decorrelation. In ad-

dition to HLDA, state-of-the-art speech recognition systems o�en include a range

of feature-space normalisation techniques such as vocal-tract length-normalisation

(VTLN) (Lee and Rose 1996; Uebel and Woodland 1999), and Cepstral mean and vari-

ance normalisation (CMN and CVN) (Furui 1981; Viikki and Laurila 1998).

2.4.2 Acoustic models

Acoustic models are used to estimate the observation sequence probabilities, pλ(O|w),

given the complete sentence transcription. For medium and large vocabulary, the

number of possible sentences (classes) is very large. It is impractical to associate the

parameters to each class at sentence level. In order to address this issue, structure can

be introduced into the model, where sentences are broken down into words or phone

units, and modelled by combining units into a composite sentence model. �is leads

to the use of structured generative models for speech recognition.

As discussed earlier, hidden Markov models are the most common form of struc-

tured generative models. For speech recognition tasks with a limited vocabulary it

is o�en possible train HMMs for every possible word. However, as the number of
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1 2 3 54 1 2 3 54 1 2 3 54

w3w1 w2

w = {w1, w2, w3}

(a) Three HMMs  λ(w1),λ(w2),λ(w3)

(b) A composite HMM   λ(w)

Figure 2.6 A composite HMM constructed from three individual HMMs.

words in the vocabulary increases, it becomes increasingly di�cult to robustly estim-

ate HMMs for all words. Instead, a pronunciation dictionary used to split words into

smaller sub-word units known as phones. A�er estimating HMMs for each phone

(or word), sentence models can be generated by concatenating the phone (or word)

HMMs as shown in Figure 2.6. For example, concatenating HMMs for phones (or

words)w1,w2 andw3 could form a sentence model called composite HMM with para-

meters λ(w) =
{
λ(w1),λ(w2),λ(w3)

}
. �e parameters of the HMM for each phone

(or word) can be estimated using any of training criteria discussed in Section 2.3, e.g.,

ML, MMI and MBR estimation.

�ere are two main types of phone model sets used,mono-phoneswhich are context-

independent phones, and context-dependent phones. �e mono-phone set uses indi-

vidual phones as the sub-word unit and does not take into account the context inform-

ation. However, due to the co-articulatory e�ect, the pronunciation of the current

phone is highly dependent on the preceding and following phones. �us, for many

speech recognition tasks, especially for LVCSR, the use of mono-phones does not

yield good performance. �us, context-dependent phone models are o�en used. One

form is triphones which depend upon both the preceding and the following phones,

and may be either word-internal (do not cross word boundaries) or cross-word (word

boundaries are ignored). One issue with using triphones is that the number of pos-
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1 2 3 54

sil-s+p

1 2 3 54

iy-ch+sil

1 2 3 54

s-p+iy

1 2 3 54

sil-s+p

1 2 3 54

iy-ch+sil

1 2 3 54

s-p+iy

single component triphones

state clustered single component triphones

Figure 2.7 State tying for single Gaussian triphones.�e triphone symbol “s-p+iy”
denotes the context-dependent version of the phone “p” which is to be used when
the le� neighbour is the phone “s” and the right neighbour is the phone “iy”.

sible acoustic units is signi�cantly increased. For example, for a mono-phone set with

46 phones, the number of possible cross-word triphones is about 100,000. It is hard

to collect su�cient training data to robustly train all triphones. To solve this problem,

parameter tying or clustering techniques are o�en used (Young et al. 1994). �e basic

idea of the technique is to consider a group of parameters as sharing the same set of

values. In training, statistics of the whole group is used to estimate the shared para-

meter. Tying can be performed at various levels, such as phones, states or Gaussian

component. �e most widely used approach is to do state level parameter tying, re-

ferred to as state clustering (Young 1995). In state clustering, an output distribution is

shared among a group of states as illustrated in Figure 2.7.

2.4.3 Language models

In speech recognition systems, the prior distribution of sentence transcriptions,P (w),

is usually estimated using a language model. Given a word sequence, w = {w1, . . . , wL},
the language model probability is usually written as a product of the conditional prob-
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abilities of words given their history,

P (w) = P (w1, . . . , wL) =

L∏

l=1

P (wl|wl−1, . . . , w1). (2.43)

For continuous speech recognition, the vocabulary is o�en too large to allow robust

estimation of P (w). To improve robustness, the language model is usually simpli�ed

by assuming that word probabilities only depend on the last n− 1 words. �is allows

the word history to be truncated,6

P (w) = P (w1, . . . , wL) ≈
L∏

l=1

P (wl|wl−1, . . . , wl−n+1). (2.44)

�e conditional probabilities P (wl|wl−1, . . . , wl−n+1) are estimated from training

texts. Let C(wl−n+1, . . . , wl−1, wl) be the number of times the underlying n-gram

occurs in the training texts. A maximum likelihood (ML) estimate is then given by

(Chen and Goodman 1998; Gales and Young 2007)

P (wl|wl−1, . . . , wl−n+1) =
C(wl−n+1, . . . , wl−1, wl)

C(wl−n+1, . . . , wl−1)
(2.45)

Popular language models are the bigram and trigram models, with n equal to 2 and

3 respectively (Moore 2001; Shannon 1948). Although the n-gram language model

probabilities in equation (2.44) are relatively easier to calculate than the probabilities

in equation (2.43), robust estimation of the probabilities for all word combinations is

usually impossible. Instead, smoothing algorithms such as discounting and backing-

o� are normally used (Chen and Goodman 1998; Jelinek 1998; Katz 1987). For instance,

the Katz smoothing scheme (Katz 1987) sets conditional probabilities by

P (wl|wl−1, . . . , wl−n+1) = (2.46)



D
C(wl−n+1, . . . , wl−1, wi)

C(wl−n+1, . . . , wl−2, wl−1)
, if 0 ≤ C(wl−n+1, . . . , wl−1, wl) ≤ Cmin

C(wl−n+1, . . . , wl−1, wl)

C(wl−n+1, . . . , wl−2, wl−1)
, if C(wl−n+1, . . . , wl−1, wl) > Cmin

P (wl|wl−1, . . . , wl−n+2)

Z(wl−n+1, . . . , wl−2, wl−1)
, otherwise

6Note that the context of the �rstn−1N -grams can be �lled with start-of-sentence symbols,<s>.
�e end-of-sentence symbol, </s>, are also appended to every sentence as additional words.
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whereD is a discounting coe�cient for n-grams observed less thanCmin times in the

training texts andZ(wl−n+1, . . . , wl−2, wl−1) is a normalisation constant to ensure a

valid probability mass function. �e goal of discounting is to reserve probability mass

for the unseen n-grams (Moore 2001). �ere are several options how the discounting

coe�cient can be set (Chen and Goodman 1998). For instance, in Good-Turing dis-

counting (Good 1953) the n-grams occurring exactly c times in the training texts are

discounted by (Gales and Young 2007)

D =
(c+ 1)Cc+1

c Cc
(2.47)

where Cc is the number of n-grams occurring exactly c times in the training texts. If

{wl−n+1, . . . , wl−1, wl} has not been observed in the training texts then an estimate

of its conditional probability is obtained from the third case in equation (2.46), which

uses the estimate of conditional probability associated with the (n − 1)-gram scaled

by the normalisation constant. In practice, the acoustic model and language model

probabilities may have di�erent dynamic ranges. To compensate for this mismatch,

the dynamic range of language model probabilities is scaled by a language model scale

factor κ. �e value of κ is normally determined experimentally (Young et al. 2006).

In addition to n-gram models, a range of other language models has been invest-

igated for speech classi�cation tasks: class n-gram models (Brown et al. 1992; Moore

2001), maximum entropy language models (Rosenfeld 1994), neural network language

models (Bengio et al. 2003) and recurrent neural network language models (Mikolov

et al. 2010).

2.4.4 Decoding and Lattices

Decoding is at the core of speech recognition systems. �e decoding algorithm de-

termines the best sentence transcription for a given observation sequence. An ideal

decoder should be able to search through all possible sentence transcriptions in order

to �nd the one that has the largest posterior probability in equation (2.42). Section 2.2

has described the form of likelihood pλ(O|w). As in equation (2.8), to �nd the most
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likely word sequence, the state sequence θ should be marginalised out,

ŵ = arg max
w

P (w)
∑

θ

P (θ|w)pλ(O|θ; w) (2.48)

However, summing over all possible θ is computationally infeasible. Instead, the sum

in (2.48) can be replaced by a max operator. �us, rather than �nding the best word

sequence, decoders �nd the word sequence corresponding to the best state sequence,

ŵ ≈ arg max
w

P (w) max
θ

P (θ|w)pλ(O|θ; w) (2.49)

If all possible word sequences can be compactly encoded into a single composite HMM

(Section 2.4.2) then the solution of decoding problem equation (2.49) can be found

e�ciently by using the Viterbi algorithm described in Section 2.2.2.

In practice, the use of the Viterbi algorithm for decoding becomes very com-

plex due to the topology, the n-gram language model constraints, the use of cross-

word context-dependent units and the size of memory required to hold the composite

HMM (Gales and Young 2007). A range of methods have been proposed to handle

these problems such as dynamic decoding (Odell et al. 1994; Ortmanns et al. 1997),

stack decoding (Jelinek 1969), and static decoding based on weighted �nite-state trans-

ducer (WFST) technology (Mohri et al. 2002; Watanabe et al. 2010).

Scoring Performance of speech recognition systems is typically evaluated by com-

paring hypothesised word transcriptions against known reference transcriptions. Scor-

ing proceeds as follows. Hypothesised transcriptions are �rst aligned against the refer-

ence transcriptions using a dynamic programming string matching algorithm. �en,

given the aligned hypotheses, the number of substitution (S), deletion (D) and inser-

tion (I) errors is calculated by comparing the words in the reference and hypothesised

transcriptions. �e word error rate (WER) is then calculated using the expression,

WER = 100

(
D + S + I

N

)
(2.50)

whereN denotes the total number of words in the reference transcription. Word error

rate are quoted as percentages.
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Lattices Although the main purpose of decoder is to �nd the most likely hypothes-

ised word sequence, it is also usually possible to output N most likely candidates or

the N -best list (Young et al. 2009). As the number of candidates increases, the use

of N -best lists becomes computationally and memory ine�cient. In order to store

N-best lists in a compact and e�cient manner, the use of word lattices can be adopted

(Odell et al. 1994; �ompson 1990). �e use of lattices is useful as it allows multiple

passes over the observation sequence without the computational expense of repeatedly

solving the decoding problem from scratch (Gales and Young 2007).

THE

Time (s)

t-dh+iy dh-iy+d

!! !!

         

Figure 2.8 An example lattice with phone-marked information. �e colourful
vectors are the segmental feature space described in Section 5.1.2.

A word lattice consists of a set of nodes representing points in time and a set

of spanning arcs representing word hypotheses (Gales and Young 2007). Figure 2.8

shows an example lattice. Lattices can also be converted into phone-marked lattices

(Young et al. 2009). A phone-marked lattice is an extension to a word lattice where

each word arc is split into phone arcs corresponding to the underlying sequence of

phones. In addition to label information, each arc can also carry additional inform-

ation such as acoustic, pronunciation and language model scores. For example, each

phone arc can contain acoustic model scores, such as the HMM likelihood associated

with the phone. Figure 2.8 gives an example of phone-marked lattice with segmental
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feature space. �is feature space will be described in details in Section 5.1.2 and used

in Chapters 6 and 7.

2.4.5 Adaptation to Speaker and Noise Condition

In speech recognition, the acoustic conditions during training and testing are seldom

matched. �ere are many sources of variability in the speech signal, such as inter-

speaker variability, intra-speaker variability, background noise conditions, channel

distortion and reverberant noise (longer term channel distortions) (Gales 2011). A

number of approaches have been developed to reduce the level of variability: some are

based on general linear transformations (Gales 1998; Leggetter and Woodland 1995),

e.g., the Maximum likelihood linear regression (MLLR) approach in (Gales 1998; Leg-

getter and Woodland 1995); others are based on a model of how the mismatch impacts

the acoustic models or observations (Acero 1993; Acero et al. 2000; Gales 1995; Lee and

Rose 1996), e.g., the Vector Taylor series (VTS) compensation approach in (Moreno

1996).

�e rest of this section adopts bar notation to denote unmodi�ed, canonical, acous-

tic models and unmodi�ed, “clean”, observations. For instance, λ denotes the canon-

ical set of HMM parameters, whilst λ denotes the adapted set of HMM parameters.

Similarly, o denotes the “clean” observation, whilst o denotes the noise-corrupted ob-

servation.

2.4.5.1 Maximum Likelihood Linear Regresssion

Various con�gurations of linear transforms have been proposed. In the simplest case,

a global maximum likelihood linear regression (MLLR) transform may be applied to

mean vectors (Leggetter and Woodland 1995)

µj,m = Aµj,m + b (2.51)

where A, b are transform parameters associated with mean vectors. �is con�gura-

tion is usually called mean MLLR (Young et al. 2009). In addition to mean vectors, it
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is also possible to adapt covariance matrices in which case (Gales 1998)

Σj,m = HΣj,mHT (2.52)

where H are transform parameters associated with covariance matrices. �is con�g-

uration is usually called variance MLLR (Young et al. 2009). When both mean vectors

and covariance matrices are adapted then the state-component sj,m output density

may be computed by transforming observations and mean vectors whilst keeping co-

variance matrices unchanged as follows (Gales and Young 2007)

p(o|sj,m, T ) = N (o; Aµj,m + b,HΣj,mHT) (2.53)

= |H|−1N (H−1o; H−1(Aµj,m + b),Σj,m) (2.54)

where T are transform parameters A, b and H. Using this form it is possible to ef-

�ciently apply full transformations, especially in situations when covariance matrices

are diagonal (Young et al. 2009). In addition, when the transformation matrices A

and H are constrained to be the same, then

µj,m = Aµj,m + b (2.55)

Σj,m = AΣj,mAT (2.56)

�us the state-component sj,m output density can be expressed as (Gales and Young

2007)

p(o|sj,m, T ) = N (o; Aµj,m + b,AΣj,mAT) (2.57)

= |A−1|N (A−1o−A−1b;µj,m,Σj,m) (2.58)

= |A−1|N (o;µj,m,Σj,m) (2.59)

where o is the transformed observation vector given by

o = A−1o−A−1b (2.60)

�is con�guration is usually called constrained MLLR (CMLLR) (Gales 1998). Com-

pared to the mean and variance MLLR, the CMLLR does not require transforming
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means and covariances which makes this con�guration e�cient if the speaker (or en-

vironment) rapidly changes (Gales and Young 2007). �e details of estimating the

transform parameters T can be found in (Gales and Young 2007) .

2.4.5.2 Vector Taylor Series

To compute the e�ect of the acoustic noise on the observations of a speech recogniser,

an expression for the mismatch between clean and corrupted speech is needed. �e

VTS adopts a simpli�ed model of the noisy acoustic environment Acero et al. (2000)

or noise model, which combines various additive and convolutional noise sources into

single additive and linear channel or convolutional noises, as shown in Figure 2.9. In

Channel

difference
h

+

              

            

             

              

            

             

Figure 2.9 A simpli�ed model of noisy acoustic environment.

the time domain, the additive noise n and the convolutional noise h transform the

clean speech ō, resulting in noise-corrupted speech o (Acero 1993):

o = h ∗ ō+ n (2.61)

where ∗ denotes convolution. In the mel-cepstral domain, the mismatch function

between the static clean speech ōs and noise corrupted speech observations os can

be expressed as (Acero et al. 2000)

os = ōs + hs + C logloglog
(
1 + expexpexp

(
C−1(ns − ōs − hs)

))
, (2.62)

where C is the Discrete Cosine Transformation (DCT) matrix, and logloglog(·) and expexpexp(·)
indicate the element-wise logarithm and exponent. �e superscript s denote the static

coe�cients and parameters. �e observation vector ot is o�en formed of the static

parameters appended by the delta and delta-delta parameters: ot = [ost
T ∆ost

T ∆2ost
T]T.
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�e target of model-based compensation methods is to obtain the parameters of

the noise-corrupted speech model from the clean speech and noise models. Most

model-based compensation schemes assume that if the speech and noise models are

Gaussian, N (µ̄s, Σ̄s), N (µs,n,Σs,n) and N (µs,h,Σs,h),7 then the combined noisy

model will also be Gaussian, N (µs,Σs). �us to compute the expected value of the

observation for each clean speech component, the following need to be computed

µsm = E{os|m}; Σs
m = diag

(
E{ososT|m} − µsmµsmT

)
. (2.63)

where the expectations are over the distribution of component m of the clean speech

model and the noise distribution combined in equation (2.62). �ere is no simple

closed-form solution to these equations so various approximations such as Parallel

Model Combination (Gales and Young 1996) and Vector Taylor Series (Acero et al.

2000) have been proposed.

Vector Taylor series model-based compensation is a popular model-based com-

pensation approach. �ere are a number of possible forms that have been examined.

�e �rst-order VTS scheme described comprehensively in (Liao and Gales 2006) is

frequently used. In this scheme the static noise-corrupted mean µsm and covariance

Σs
m are given by

µsm = µ̄sm + µs,h + C logloglog
(
1 + expexpexp

(
C−1(µs,n − µ̄sm − µs,h)

))
(2.64)

Σs
m = diag

(
AmΣ̄s

mAT
m + (I−Am)Σs,n(I−Am)T

)
(2.65)

�e matrix Am is the partial derivative, ∂os/∂ōs. It can be expressed as

Am =
∂os

∂ōs

∣∣∣∣
µ̄sm,µ

s,n,µs,h
= CFmC−1 (2.66)

where C is a DCT matrix and Fm is a diagonal matrix with elements given by 1 +

expexpexp(C−1(µs,n− µ̄sm−µs,h)). �e noise model parameters,µs,n, Σs,n andµs,h, are

seldom known in advance and must be estimated from the test data. Normally, the

noise parameters are estimated in a ML fashion from the silence available immediately

before the test utterance.
7�e convolutional noise is usually assumed to be constant, in which case Σs,h = 0 (Acero et al.

2000).
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2.5 Summary

Generative techniques model the probability density function of observations given

the class labels. Given a prior distribution of the class labels, decision boundaries can

be calculated using a combination of Bayes’ rule and Bayes’ decision rule. A range of

training criteria, such as maximum likelihood (ML), maximum mutual information

(MMI), minimum phone error (MPE) and maximum margin (MM), were introduced

and compared. �e choice of statistical model is important and the appropriate form

of model to use is normally task and data dependent. �is chapter introduced the most

important model suitable for speech recognition, hidden Markov models (HMMs).

�e various of techniques for building the state-of-the-art HMM-based systems, e.g.,

DNN likelihood calculation, discriminative training and speaker and noise adapta-

tion, were discussed.
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Chapter 3

Unstructured

Discriminative Models

In the previous chapter, generative models were introduced for speech recognition.

Most continuous speech recognition systems use structured generative models, in the

form of hidden Markov models (HMMs) as the acoustic models. Likelihoods from

these HMMs are combined with a prior, usually an n-gram language model, to yield

the sentence posterior based on Bayes’ rule. �is enables posteriors of all possible

sentences to be obtained. Although discriminative training (Byrne 2006; Juang and

Katagiri 1992; Keshet et al. 2011; Sha and Saul 2007; Woodland and Povey 2002) of

HMMs has been shown to yield performance gains, the underlying acoustic models

are still generative, with the standard HMM conditional independence assumptions,

and the form of posteriors are found by Bayes’ rule. �is has led to interest in discrim-

inative models.

Discriminative schemes are an alternative approach to sequential data classi�ca-

tion. Unlike generative approaches, these directly model the mapping of observations

O to the class w, either as a conditional distribution or as a function. Depending on

whether the internal structure in the class w is considered, discriminative models can
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be divided into unstructured and structured approaches (see examples in Table 1.1).

�is chapter focuses on the unstructured discriminative models, including logistic re-

gression models, support vector machines (SVMs) and multi-class SVMs (MSVMs).

�ese models assume class labels are independent and have no structure, thus the sym-

bol w (instead of w) is used as the output class of models in this chapter. �ese mod-

els can be directly applied to isolated word recognition (Birkenes 2007) or frame-level

phone classi�cation (Salomon et al. 2002). However, when applying these unstruc-

tured models to complete utterances in continuous speech recognition, the space of

possible classes becomes very large. One option to handle this issue are acoustic code-

breaking based schemes discussed at the end of this chapter.

3.1 Logistic Regression Model

Logistic Regression (LR) is an approach to learning functions of the form f : O→ w,

or P (w|O) in the case where w is discrete-valued, and O = {o1, . . . ,oT } is any

vector sequence containing discrete or continuous variables. Classi�cation is accom-

plished by selecting the class label ŵ that giving the largest conditional probability,

ŵ = arg max
w

P (w|O) (3.1)

Before presenting the general form of the logistic regression modelP (w|O), �rst con-

sider the simple case of two classes (C = 2). A popular model for the conditional

probability of class w = 1 given O is

P (w = 1|O) =
ef

1 + ef
(3.2)

and the conditional probability for class w = −1 is

P (w = −1|O) =
1

1 + ef
(3.3)

where the discriminant function f = αTψ(O) is a dot product of feature vector

ψ(O) and parameters α. �e feature vectors are used to capture the long-term in-

formation by mapping the observation sequence O into anD-dimensional Euclidean
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3.1. logistic regression model

space. �is feature mappingψ(·) can transform variable length sequences into a �xed-

dimensional vector. A simple example of the feature vector is

ψ(O) =

[
T∑

t=1

ot

]
(3.4)

Notice that equation (3.3) follows directly from equation (3.2), because the sum of

these two probabilities must equal 1. �e function in (3.2) is known as the logistic

function and apart from being just a squashing function that maps f into the interval

[0, 1], it also has good probabilistic properties in the context of classi�cation (Jordan

et al. 1995). �e graphic representation of the logistic function is shown in Figure 3.1.

f

ef

1 + ef

Figure 3.1 A logistic function is a common sigmoid curve.

�e extension to classi�cation problems with more than two classes is to model the

conditional probabilities with the so�max function or multinomial logistic regression

de�ned by

P (w|O) =
efw

C∑
w=1

efw
, w ∈ {1, . . . , C} (3.5)

where fw is the discriminant function for class w parameterized by the weight vector

αw

fw = αT
wψ(O)

Figure 3.2 illustrates the logistic regression model with feature space. Due to the prob-

ability constraint
C∑
w=1

P (w|O) = 1, the weight vector for one of the classes, e.g. αw,
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O !→ ...

ψ(O)

!→
α1

αC

f1

fC

...

P (w = 1|O)

P (w = C|O)

...

Figure 3.2�e model of the posterior probabilities for a class, P (w|O), with fea-
ture space ψ(O).

does not need to be estimated and can be set to all zeros (Tanabe 2001). However,

in this section we follow the convention in (Birkenes 2007) and keep the redundant

parameters. As explained in (Tanabe 2001), this is done for numerical stability reas-

ons, and enables all classes to be treated equally. �e parameters of model in (3.5) can

be combined in a single column vector

α =
[
αT

1 , . . . ,α
T
w, . . . ,α

T
C

]T
(3.6)

�us the discriminative function fw = αT
wφ(O) can also be expressed in the follow-

ing form

αT
wψ(O) = αTφ(O, w) (3.7)

whereφ(O, w) is a sparse joint feature vector described the relationship between ob-

servations and word labels,

φ(O, w) =




...

δ(w, dog)ψ(O)

δ(w, cat)ψ(O)
...



. (3.8)

�e graphical representation of logistic regression models is shown in Figure 3.3.

As discussed earlier, to apply discriminative models for speech recognition three

important decisions need to be made: the form of the features to use; the appropriate
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O

Logistic Regression
w

o1 oToto2

P (w|O) =
exp

(
αT

wψ(O)
)

C∑
w=1

exp (αT
wψ(O))

(a) frame-level features (b) log-likelihood features

w

O o1 oToto2

.... .... .... ....

Figure 3.3�e graphical model for logistic regression with frame-level feature and
log-likelihood feature. �e form of these features are discussed in Section 3.1.1.

training criterion; and how to handle the structure in continuous speech. Two ex-

amples of features ψ(·) are introduced in the next Section 3.1.1. �e standard way to

estimate the parameters of logistic regression model,α, is to maximise the probability

of the observed labels,

Fcml(α|D) =

R∑

i=1

log(P (wi|Oi;α)) (3.9)

where the probability P (wi|Oi;α) is de�ned in equation (3.5). Oi is the i-th obser-

vation sequence in the training set D and wi is the corresponding class label. �is

objective function is related to the maximum mutual information (MMI) objective

function for HMMs discussed in Section 2.3.2. In the context of discriminative mod-

els it is usually called conditional maximum likelihood (CML) criterion. More options

for discriminative parameter estimation will be discussed in Section 4.4. �e logistic

regression model assumes no structure in the class label, thus it can be directly applied

to the tasks such as isolated word classi�cation (Birkenes et al. 2006), where fw can

be viewed as a discriminant function for word w.

3.1.1 Feature Functions

�e form of the feature-function is central to the performance of discriminative mod-

els. For speech recognition, a wide range of feature-functions at the frame, model and

word level (Gunawardana et al. 2005; Morris and Fosler-Lussier 2008; Ragni and Gales

2011b; Zhang et al. 2010) have been proposed. A fundamental requirement of feature
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function is that they can map variable length sequences O into a �xed-dimensional

vectorψ(O). �e nonlinear mapψ(·) should preserve the discriminative information

embedded in the speech signals. A simple example of frame-level feature-function is

based on equation (3.4) in the last section,

ψ(O) =


 1
∑T

t=1 ot


 (3.10)

where 1 is included to allow for bias. (Birkenes et al. 2006) proposed a mapping in-

volving a set of HMMs for the words,

ψ(O) =




...

log pλ(O|w = dog)

log pλ(O|w = cat)
...



. (3.11)

where pλ(O|w = dog) is the log-likelihood probability of HMM for word “dog”, and

λ is the HMM parameters. �is feature is also known as log-likelihood feature (for

details see Chapter 5). �e log-likelihoods from all models are concatenated, includ-

ing the correct model and competing ones, to yield additional information from the

observations. More examples of features for speech recognition will be described in

Chapter 5.

3.2 Support Vector Machines

Support Vector Machines (SVMs) (Cortes and Vapnik 1995; Vapnik 1995) are a popular

discriminative classi�er described extensively in the literature. �ey have been suc-

cessfully applied to many di�erent applications, such as text categorization (Burges

1998), speaker veri�cation (Campbell et al. 2006), image classi�cation (Chapelle et al.

1999), and bioinformatics (Bahlmann et al. 2002). SVMs are based on the intuit-

ive concept of maximising the margin of separation between two competing classes,

where the margin is de�ned as the distance between the decision hyperplane and the
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3.2. support vector machines

closest training examples. �is has been shown to be related to minimising an upper

bound on the generalisation error (Vapnik 1995).

Figure 3.4Maximum margin separation for simple classi�cation task

Consider supervised training data O = {o1,o2, . . . ,oR}, oi ∈ Rd with class

labels {y1, y2, . . . , yR}, where yi ∈ {−1, 1}. When the training data is linearly separ-

able, SVMs can estimate a linear decision boundary such that all examples in the train-

ing set are correctly classi�ed. Given this boundary (hyperplane), de�ned by weight

(direction) vectorα and bias b, a test example omay be classi�ed according to

y = sign
(
αTo+ b

)
(3.12)

Note that this function is invariant under a positive rescaling of the parametersα and

b, parameter scaling must be �xed in order to obtain a unique solution from training.

�is is typically achieved by de�ning two canonical hyperplanes on both sides of the

decision boundary,

αTo+ b = +1

andαTo+ b = −1

Training examples are then constrained to lie outside the region enclosed by the mar-

gin hyperplanes. �is is shown in Figure 3.4 for the simple case of two-dimensional
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data. �e decision boundary is shown by a solid line. �e margin hyperplanes are

shown by two dashed lines. Training samples that lie on the canonical hyperplanes

are known as support vectors and (as discussed below) play an important role in the

calculation and optimisation of the decision boundary.

�e shortest distance between the optimal/decision boundary and the margin hy-

perplanes is known as the margin. Using the de�nition of the canonical hyperplanes,

the size of this margin can be calculated using the following expression

margin =
1

||α|| (3.13)

Statistical learning theory states that the decision boundary that minimises the prob-

ability of generalisation error1 is the one that maximises this margin (N. Cristianini

and J. Shawe-Taylor 2000; Vapnik 1995). Since SVMs are designed to minimise the

generalisation error, the SVM objective function for linearly separable data is given

by

min
α,b

1

2
||α||2 (3.14)

s.t. yi

(
αToi + b

)
≥ 1 ∀i

Unfortunately, in practice it is o�en not possible to �nd a linear boundary that cor-

rectly separates all training examples. To enable SVM training to converge for such

data, the margin constraints, yi
(
αToi + b

)
≥ 1 are o�en relaxed to allow training

examples to be misclassi�ed. �e resulting constraints are known as the so�-margin

SVM constraints, and are given by yi
(
αToi + b

)
≥ 1− ξi, where the slack variables,

ξi ≥ 0, measure the distance by which an example has failed to meet the original

margin constraint. To ensure that the margin is not increased at the expense of un-

necessary classi�cation errors, the SVM objective function is altered such that incor-

rectly classi�ed training examples are penalized. �e resulting objective function and

1�is is also known as structural risk minimisation (Vapnik 1995).
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constraints become

min
α,b

1

2
||α||2 + C

R∑

i=1

ξi (3.15)

s.t. yi

(
αToi + b

)
≥ 1− ξi ∀ i

ξi ≥ 0 ∀ i

where ξi is the slack variables that accounts for linearly inseparable training examples.

�e term
R∑
i=1

ξi in equation (3.15) gives the upper bound on the training classi�cation

error. �e constant C allows to trade-o� margin maximisation to training classi�ca-

tion error.

Although this so�-margin SVM can be optimised directly in its primal form (equa-

tion (3.15)), it is o�en easier to consider the dual form of the objective (Vapnik 1995)2.

�e dual objective function is de�ned by

max
αdual

R∑

i=1

αduali − 1

2

R∑

i=1

R∑

j=1

αduali αdualj yiyjo
T
i oj (3.16)

s.t.
R∑

i=1

αduali yi = 0

0 ≤ αduali ≤ C ∀ i

whereαdual are the dual variables (Lagrange multipliers) ofα. �e upper bound, C ,

on the dual variables limits the impact of individual examples, and is typically selec-

ted using either a development set or a data-dependent algorithm such as (Joachims

1999). �e dual objective function in (3.16) is convex (quadratic for the dual variables).

�us the optimisation can converge to a single global solution. Many algorithms have

been proposed for training SVMs, two of the most popular are sequential minimal op-

timisation (Platt 1999) and the decomposition and chunking algorithms in (Joachims

1999).

2 If the dimension of the feature space is larger than the number of training examples, it becomes
more e�cient to solve equation (3.16) rather than the primal equation. �is will be explained in next
section.
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One important property of SVM is that the dual variables αduali are only non-

zero for a limited set of training examples. During optimization, the Karush-Kuhn-

Tucker (KKT) conditions (Vapnik 1995) ensure that only examples that lie either on the

margin, yi
(
αToi + b

)
= 1, or on the wrong side of the margin, yi

(
αToi + b

)
≤ 1,

have non-zero dual variables, αduali > 0. �ese examples are known as the support

vectors (Vapnik 1995). �is gives a sparse representation to SVMs. Using Lagrangian

theory, the weight vector, α, and bias, b, in the primal form (3.15) can be obtained

using only the support vectors,

α =
R∑

i=1

αduali yioi (3.17)

�e weight vectorα is a linear combination of the support vectors. To determine the

value of bias b, select a correctly classi�ed training example that lie on the margin. In

practice a more accurate estimate is found from averaging all such values.

3.2.1 Kernelization

In the previous section describes SVMs, only linear decision hyperplane have been

considered. In order to extend the above approach to nonlinear decision boundary,

a nonlinear mapping ψ(o) is introduced. �is mapping transforms the data from

the observation-space to a feature-space of higher dimensionality. Linear decision

boundaries are found in this high dimensional feature-space, which correspond to

non-linear decision boundaries in the original observation-space as illustrated in Fig-

ure 3.5. �us the SVM dual objective function in (3.16) becomes

max
αdual

R∑

i=1

αduali − 1

2

R∑

i=1

R∑

j=1

αduali αdualj yiyjψ(oi)
Tψ(oj) (3.18)

subject to the same constraints in equation (3.16). Note that equation (3.18) is only

a function of the distance between feature-space points. In practice, computing the

high-dimensional feature-space explicitly may be ine�cient. Instead, SVMs can be

written in terms of a kernel function (Boser et al. 1992; Vapnik 1995)

k(oi,oj) = ψ(oi)
Tψ(oj) (3.19)
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

Figure 3.5An example of feature mappingψ(·) (associated with polynomial ker-
nels) and dicesion boundaries.

In general, this function may be any symmetric nonlinear function that satis�es Mer-

cer’s condition (Shawe-Taylor and Cristianini 2004; Vapnik 1995). Figure 3.5 shows an

example of decision boundaries with (second order) polynomial kernels. �us, the

kernelized objective function of SVMs can be expressed as

max
αdual

R∑

i=1

αduali − 1

2

R∑

i=1

R∑

j=1

αduali αdualj yiyjk(oi,oj) (3.20)

�e classi�cation function of SVMs in equation (3.12) can also be represented based

on kernels

y = sign

(
R∑

i=1

αduali yik(o,oi) + b

)
. (3.21)

Kernel Trick One advantage of expressing SVM training in terms of a kernel func-

tion is, for some feature-spaces, the feature-space mapping and inner-product opera-

tions can be combined into a single e�cient calculation. It is not necessary to expli-

citly operate in the high-dimensional feature-space. �is is especially important when

the feature-space has a much higher dimensionality than the observation-space. Here

signi�cant computational savings can be achieved by using the kernel functions. For

example, consider a two-dimensional input space o ∈ R2 together with the feature
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map

ψ : o =


 o1

o2


 ∈ R2 7−→ ψ(o) =




o2
1

o2
2√

2o1o2


 ∈ R3 (3.22)

�e inner product in the feature space can be evaluated as follows

ψ(oi)
Tψ(oj) =




o2
i1

o2
i2√

2oi1oi2




T 


o2
j1

o2
j2√

2oj1oj2


 (3.23)

= (oi1oj1 + oi2oj2)2 =
(
oTi oj

)2
= k(oi,oj)

�is equation illustrates that the inner product can also be computed implicitly through

the kernel function k(oi,oj) =
(
oTi oj

)2 more e�ciently. �is technique is com-

monly referred as kernel trick (Aizerman et al. 1964).

Modularity According to equation (3.20), only the kernel values (instead of the fea-

tures) are required to train SVM parameters. �e kernel values of all the training data

can be stored into a matrix G, known as the Gram matrix,

G =




g11 · · · g1R

... . . . ...

gR1 · · · gRR


 , where gij = k(oi,oj). (3.24)

�e Gram matrix have dimensions R × R, where R is the number of training sam-

ples. �us the interaction between the training data and the learning algorithm is via

the Gram matrix. �is is illustrated in Figure 3.6. �is modularity allows develop-

ing general learning algorithms and designing suitable kernels for speci�c problems

independently. �e same algorithm will work with any kernel and hence for data in

any domain. �e form of the kernel is data speci�c, but can be combined with di�er-

ent algorithms to solve a wide range of tasks (Hofmann et al. 2008; Shawe-Taylor and

Cristianini 2004). All this leads to a very natural and elegant way to design learning

systems, where modules are combined together to achieve complex learning systems

60



3.2. support vector machines

as shown in Figure 3.6. �e data is processed using a kernel function to create a Gram

matrix, followed by a learning algorithm to produce a classi�cation function. �is

function is used to process unseen examples.

Data

Kernel

Gram Matrix

Training 
Algorithm k(oi,oj)

(o1, y1)

(oR, yR)

y = +1 y = −1

R×R

G αdual
iTraining

Figure 3.6 Kernel methods o�er a modular framework. In a �rst step, a dataset
is processed into a Gram matrix. Data can be of various types. In a second step,
a variety of learning algorithms can be used to analyze the data, using only the
information contained in the Gram matrix.

Form of Kernels Many di�erent kernel functions have been proposed for mapping

observations into a high-dimensional feature-space. A small selection of typically

used kernels are given in Table 3.1. Some kernels—such as polynomial kernels—have a

�xed dimensional feature-space, some—such as Laplacian and Radial Basis Function

(RBF) kernels—have feature-spaces with an in�nite number of dimensions (Shawe-

Taylor and Cristianini 2004).

Kernel Function Form Kernel Parameters

Linear oTi oj -

Polynomial (oTi oj + c)d order d, o�set c ≥ 0

Laplacian exp

(
−||oi − oj ||

σ

)
width σ > 0

RBF exp

(
−||oi − oj ||

2

2σ2

)
width σ > 0

Table 3.1 Commonly used static kernel functions
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3.2.2 Sequence Kernels

So far it has been assumed that the data has �xed-length feature vectors. As dis-

cussed earlier, in speech recognition the observation sequences typically have a vari-

able length, O = {o1, . . . ,oT }. Several solutions have been proposed to enable

SVMs to be applied to classi�cation of variable-length data. �ese include subsampling

(Ganapathiraju et al. 2000) and sequence kernels (Jaakkola and Haussler 1999; Smith

and Gales 2002b). �is section focuses on the sequence kernels. To distinguish these

from the static kernels k(oi,oj) introduced in previous section (in Table 3.1) for �xed-

dimensional data, these kernels for variable-length data will be referred to as dynamic

or sequence kernels and denoted as K(Oi,Oj). �ese sequence kernels can map

variable-length sequences into a �xed-dimensional feature space where an inner product

can be calculated (Longworth 2010; Smith and Gales 2002a). Given a pair of observa-

tion sequences, Oi and Oj , the sequence kernel may be expressed by

K(Oi,Oj) = ψ(Oi)
TΣ−1ψ(Oj) (3.25)

whereψ(·) are feature functions, Σ−1 is a metric de�nes the distance in feature space

(Jaakkola and Haussler 1999). Two simple examples of feature functions were given

in equations (3.10) and (3.11) in Section 3.1.1. Additional examples of feature functions

will be discussed in Chapter 5. Various forms of metric Σ have been investigated for

many tasks (Campbell et al. 2006; Lodhi 2002; Zhang and Mak 2011). As SVMs are

sensitive to data scaling (Shivaswamy and Jebara 2009), the following empirical cov-

ariance matrix is commonly used to normalize the data (Shawe-Taylor and Cristianini

2004)

Σ =
1

R

R∑

i=i

(ψ(Oi)− µ) (ψ(Oi)− µ)T (3.26)

where µ = 1
R

R∑
i=1
ψ(Oi) and {Oi}Ri=1 are the training observation sequences. For

high-dimensional score-spaces computing and storing Σ based on equation (3.26)

can be computationally expensive (Layton 2006). To address this issue, further ap-

proximations may be applied, such as diagonal approximation diag(Σ) (Smith and
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Gales 2002a). �is provides a reasonable approximation to equation (3.26) while re-

ducing the computational cost associated with inverting a full matrix to inverting a

diagonal matrix.

Given a sequence kernel, SVMs can be applied to variable-length sequence data

by solving the dual optimisation problem,

max
αdual

R∑

i=1

αduali − 1

2

R∑

i=1

R∑

j=1

αduali αdualj yiyjK(Oi,Oj) (3.27)

subject to the same constraints in equation 3.16. �e classi�cation function of these

SVMs has the following form (Jaakkola and Haussler 1999)

y = sign

(
R∑

i=1

αduali yiK(O,Oi) + b

)
. (3.28)

3.2.3 Relation to Logistic Regression

In the previous sections, logistic regression and SVMs were introduced. Logistic re-

gression can directly model the posterior probability of a class label. Although SVMs

are introduced to model decision boundary between classes, it has been shown that

the SVMs can also be related to probabilistic models (Grandvalet et al. 2006; Sollich

2002; Zhang et al. 2003). In the following we will illustrate that SVMs can be closely

related to logistic regression models. Consider the logistic regression for binary clas-

si�cation described in equations (3.2) and (3.3). �e posterior of a binary class label y

given O can be written as,

P (y|O) =
1

1 + e−y αTψ(O)
, y ∈ {+1,−1} (3.29)

Given a training set {Oi, yi}Ri=1, substituting equation (3.29) into criterion (3.9), the

CML training of logistic regression with regularization ||α|| can be achieved by min-

imising

Fcml(α) =
1

2
||α||2
︸ ︷︷ ︸

regularization

+C
R∑

i=1

log
{

1 + e−yi α
Tψ(Oi)

}

︸ ︷︷ ︸
logistic empirical risk

(3.30)
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where 1
2 ||α||2 is the regularization term, log

{
1 + e−yi α

Tψ(Oi)
}

is a form of empir-

ical risk (Zhang et al. 2003) and C is the balance parameter. For SVMs, substituting

the constrains of equation (3.15) into the objective function, the SVM training can be

rewritten as

Fsvm(α) =
1

2
||α||2 + C

R∑

i=1

max
{

0, 1− yiαTψ(Oi)
}

︸ ︷︷ ︸
L1 empirical risk

(3.31)

where max
{

0, 1− yiαTψ(Oi)
}

is the ξi in equation (3.15). In (Zhang et al. 2003) the

empirical risk log(1+e−z) in equation (3.30) has been considered as an approximation

to max{0, 1− z} in (3.31), where z = yi α
Tψ(Oi). �is can be illustrated in Figure

3.7. �us the CML trained logistic regression can be related to SVMs (Girosi 1998).

log(1 + e−z)

max{0, 1− z}

z

Figure 3.7 A comparison between the empirical risks ofL1-SVMs (blue line) and
logistic regressions (green dash).

More interestingly, if logistic regression models are trained using large margin

criteria it becomes equivalent to SVMs. To see this, the margin for logistic regression is

de�ned as the distance between log-posteriors of correct classes yi and incorrect class

ȳi (e.g., yi = 1 and ȳi = −1). �us the large margin training of logistic regression

can be written as minimising

Flm(α) =
1

2
||α||2 + C

R∑

i=1

[
L(yi, ȳi)− log

P (yi|Oi)

P (ȳi|Oi)

]

+

(3.32)
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where log P (yi|Oi)
P (ȳi|Oi)

is the margin and the loss function L(yi, ȳi) is introduced to en-

force the margin to be greater than the loss. �e hinge function [ · ]+ is introduced

to ignore the data that beyond the margin and already classi�ed correctly. Note that

this equation is also similar to the large margin training of HMM in equation (2.36).

Substituting equation (3.29) into (3.32):

Flm(α) =
1

2
||α||2 + C

R∑

i=1

[
L(yi, ȳi)− log

1 + e−ȳi α
Tψ(O)

1 + e−yi αTψ(O)
)

]

+

(3.33)

For binary classi�cation, the incorrect class is the negative of the correct class ȳi =

−yi, and the loss function L(yi, ȳi) can always be |yi − ȳi|/2 = 1. �us equation

(3.33) can be expressed as

Flm(α) =
1

2
||α||2 + C

R∑

i=1

[
1− yiαTψ(Oi)

]
+

(3.34)

�is is actually the training criterion of SVMs in equation (3.31). �us SVMs can be

viewed as large margin trained logistic regression models.

3.3 Multi-Class SVMs

In the previous section SVM has been introduced as a binary classi�er. Approaches

that extend binary SVMs to multi-class classi�cation can be divided into two groups.

�e �rst group—“indirect” approach is to break the problem down into a series of

binary classi�cation tasks. �is process is known as a reduction (Bottou et al. 1994).

A selection of reduction schemes are presented in Section 3.3.1. �e second group—

“direct” approaches, such as Multi-class SVM3 (Crammer and Singer 2001), modi-

�ed the SVM training and classi�cation to support the multi-class problems are also

presented in the Section 3.3.2.

3�is section focuses on unstructured data, e.g., data in isolated word recognition. Another form of
extension to SVMs, structured SVMs, for continuous speech recognition will be described in Chpater 6.
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3.3.1 Combining Binary SVMs

In this section the �rst group of approaches is used to combine binary SVMs for multi-

class classi�cations. �ese are reduction-style techniques which reduce the multi-class

problem to a series of binary classi�cation tasks. Two forms of classi�er will be ex-

amined: majority voting and tree-based classi�ers4.

Majority Voting Various approaches exist for using simple voting schemes with the

SVM. �e simplest approach is to train a one-versus-the-rest classi�er. However, in

(Gautier 2008) it was found to yield poor performance in a speech recognition task.

�e alternative approach used in this work is to train a one-versus-one SVM classi�er.

Consider isolated word recognition tasks, given observation sequence O the following

procedure can be performed (Gales et al. 2009):

1. For each word pair {wl, wj} in the vocabulary

(a) Classify: apply equation (3.28) to obtain the word label wsvm ∈ {wl, wj}

(b) Voting: count[wsvm] = count[wsvm] + 1

2. Classi�cation result, wvote, for observation sequence O is given by:

(a) If no ties in voting then wvote = arg max
wsvm
{count[wsvm]}

(b) If only two words tie then wvote is determined using the result of classi-

�cation in equation (3.28).

(c) If more words tie then wvote can be determined using HMMs.

Tree-based Approaches Tree-based reduction methods are popular in pattern re-

cognition literature (Beygelzimer et al. 2007; Kijsirikul and Abe 2002; Platt et al. 2000;

Vural and Dy 2004). �e basic process consists of converting the multi-class classi-

�cation problem into sequence of binary tasks. �e appropriate sequence of tasks is

encoded into a binary tree. Figure 3.8 gives an example for a 4-class problem. �ere
4 Note the acoustic code-breaking in (Venkataramani et al. 2003) may also be viewed as a reduction

approach. Applying it to continuous speech recognition will be discussed in Section 3.4.
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c1

c2 c3

w1 w2 w3 w4

Figure 3.8 Tree-based classi�er for 4-class problem. Square boxes denote binary
classi�ers. Circles denote classes.

are a number of options available for training and classi�cation based on these bin-

ary tree classi�ers. In this section three schemes will be considered: Directed Acyclic

Graph (DAG) (Platt et al. 2000), Filter Tree (FT) (Beygelzimer et al. 2007) and Ad-

aptive Directed Acyclic Graph (ADAG) (Kijsirikul and Abe 2002). All schemes have

in common the way how the bottom layer classi�ers (c2 and c3 in Figure 3.8) are

trained. �e di�erence lies in the way how the upper level classi�er c1 is trained. Ad-

ditionally, classi�cation is performed either top-down or bottom up. In the following

each reduction scheme is described in more detail.

Directed acyclic graph (Platt et al. 2000): the upper-level classi�er c1 in Figure 3.8

is trained to classify {w1, w2}-vs-{w3, w4}. Examples belonging to classesw1 andw2

are taken as positive and examples from classes w3 and w4 as negative. Classi�cation

with the DAG is performed by starting at the top-level classi�er c1 and proceeding to

the bottom following each binary decision.

Filter tree (Beygelzimer et al. 2007): improves the error characteristics of the DAG

classi�er. �e key idea consists of training the upper level classi�er c1 using data that

can be correctly classi�ed by the lower level classi�ers c2 and c3. Misclassi�ed training

examples are ignored. �erefore, training of the FT proceeds bottom-up. Classi�ca-

tion is performed top-down in the same fashion as the DAG approach. It has been

experimentally con�rmed to yield lower error rates than the DAG approach (Aldam-

arki 2009; Gales et al. 2009).
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Adaptive directed acyclic graph (Kijsirikul and Abe 2002): most of the errors

with the DAG and FT usually results from the incorrect decisions made by the up-

per level classi�er c1 (Gautier 2008). �e ADAG approach addresses this problem

using the reversed classi�cation and dynamic classi�er selection. �e classi�cation

proceeds from the bottom-up. All bottom layer classi�ers are applied to the observa-

tion sequence O. Let c2 classify it as belonging to w2 and c3 as belonging to w3. �e

upper level classi�er c1 in the ADAG approach is not �xed but changes dynamically

according to decisions made by the lower level classi�ers c2 and c3. In this example

c1 would use {w2}-vs-{w3} classi�er to make the �nal classi�cation decision. �e

adaptive nature of the ADAG approach, however, requires that all possible pairwise

classi�ers are available during classi�cation.

Table 3.2 provides details on the number of classi�ers and binary classi�cations

required for a general C-class reduction using the tree-based schemes. As a refer-

ence the �rst line gives the same characteristics for the majority voting described in

previous section. �e DAG and FT approaches allow to use the smallest number of

classi�ers (C−1) and perform the smallest number of classi�cations (log2(C)). �ese

approaches however were found to be less accurate in practice as compared to the ma-

jority voting and ADAG (Aldamarki 2009; Gales et al. 2009).

Scheme number of SVMs number of classi�cations

Voting C(C − 1)/2 C(C − 1)/2

DAG C − 1 log2(C)
FT C − 1 log2(C)

ADAG C(C − 1)/2 C − 1

Table 3.2 Number of SVMs and binary classi�cations required during classi�ca-
tion with majority voting, directed acyclic graph (DAG), �lter tree (FT) and ad-
aptive directed acyclic graph (ADAG) reduction approaches.
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3.3.2 Multi-Class SVMs

Previously “indirect” ways to do multi-class classi�cation with SVMs were described.

�ere approaches break the classi�cation problem down into a series of binary de-

cision problems, thus they may require training C(C − 1)/2 classi�ers for C classes.

An elegant alternative is to use “direct” approaches, for example Multi-class SVM,

which attempt to �nd discriminant functions for all classes simultaneously by maxim-

izing margins among classes (Crammer and Singer 2001; Weston and Watkins 1999).

Consider each class (e.g., word) w is parameterized with a weight vector αw that

can be used to compute a discriminant score for observation sequence O. �e score

is the inner product αT
wψ(O), which can be also interpreted as a negated distance

between the data point in feature space and the hyperplane whose normal vector is

αw. �e decision rule is thus given by,

ŵ = arg max
w

αT
wψ(O) (3.35)

�e training goal is to make sure the score for the correct class is greater than the

scores for the incorrect classes as much as possible. One such formulation is given in

(Crammer and Singer 2001),

min
αw

1

2

∑

w

||αw||2 + C
R∑

i=1

ξi (3.36)

s.t. For every training data i = 1, . . . , R,

For every competing classes (words) w 6= wi :

αT
wiψ(Oi)−αT

wψ(Oi) ≥ 1− ξi where ξi ≥ 0

where {(Oi, wi)}Ri=1 is the training set and the value “1” on the right hand side of

equation (3.36) is used to denote zero-one loss, namely, whether the data point is cor-

rectly classi�ed or not.

Note that the objective function is essentially the same as the binary SVM. �e

only di�erence comes from the constraints, which essentially says that the score of the

correct labelαT
wiψ(Oi) has to be greater than the score of any other classesαT

wψ(Oi),
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so there are C − 1 constraints in total where C is the total number of classes. �ere

is one slack variable ξi for each example, shared among the C − 1 constraints. In

equation (3.36) the loss is a constant 1 for any misclassi�cation. Other types of loss

functions, for example, class-sensitive losses described in Section 2.3.4 can also be

applied. �us the extension of SVMs from binary to multi-class classi�cation (e.g.,

isolated word recognition) is described. Extending multi-class SVMs to structured

SVMs for continuous speech recognition will be discussed in Chapter 6.

3.4 Acoustic Code-Breaking

Previously three unstructured discriminative models—logistic regression, SVMs and

multi-class SVMs were discussed in this chapter. In these models the output classes

are considered as unstructured (atomic) labels. �e parameters associated with dif-

ferent classes are assumed to be unshared. Although for some tasks such as isolated

word recognition or speaker recognition these models can be applied (Birkenes et al.

2006; Keshet and Bengio 2008), for continuous speech recognition as the number of

classes (sentences) increases such an approach quickly becomes impractical. �ere

are several options to address this issue. One option is to use the structured discrim-

inative models. �is option will be discussed in Chapter 4. �is chapter introduces

an alternative which is to decompose the whole sentence recognition problem into

a sequence of independent, typically, word classi�cation sub-problems using acous-

tic code-breaking (ACB) schemes (Gales and Flego 2010; Venkataramani and Byrne

2005; Venkataramani et al. 2003). �ese sub-problems are then addressed by using

unstructured models described in this chapter where parameters are associated with

individual words.

Acoustic code-breaking is a rescoring approach to continuous speech recognition

in which the whole-sentence recognition problem is transformed into multiple inde-

pendent, word classi�cation sub-problems (Venkataramani et al. 2003). �is provides

a general framework for incorporating models that may not be possible to apply to
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3.4. acoustic code-breaking

continuous speech recognition tasks (Gales and Flego 2010; Venkataramani et al. 2003).

For example, if the sub-problems are limited to word-pairs then the SVMs in Section

3.2 may be directly used. A range of acoustic code-breaking approaches have been

proposed (Gales and Flego 2010; Layton 2006; Venkataramani et al. 2003). Common

to these approaches is the use of HMM-based ASR systems to yield the 1-best hypo-

thesis or word lattice. �is section discusses two such approaches.

HMM Segment
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Figure 3.9 1-best hypothesis based acoustic code-breaking: segment continuous
speech for isolated word classi�cation.

Given a test utterance O, the variant of acoustic code-breaking in (Gales and Flego

2010) makes use of existing HMM-based speech recognition system to produce a 1-

best hypothesis with segmentation, as illustrated in Figure 3.9. Using the time stamp

information provided by the HMM segmentation, the observation sequence is seg-

mented into sub-sequences. Unstructured discriminative models can then be applied

to classify each sub-sequence into one of the possible word label classes. �is variant of

acoustic code-breaking was applied to digit string recognition tasks (Gales and Flego

2010), where the vocabulary of words includes digits from one to nine, oh, zero and

silence. Examples of unstructured discriminative models examined included SVMs

(Gales and Flego 2010) where the multi-class decisions were made using the majority

voting strategy described in Section 3.3.1, and multi-class SVMs (Zhang et al. 2010)

described in Section 3.3.2.
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(a) Word-level lattice (b) Confusion network (c) Pruned confusion network

Figure 3.10 Confusion network based acoustic code-breaking.

Alternatively, the variant of acoustic code-breaking in (Layton 2006), similar to

the approaches in (Venkataramani et al. 2003), was proposed for binary, word-pair re-

scoring using SVMs and generative augmented models (Smith 2003). �is approach is

illustrated in Figure 3.10 and may be described in three steps. �e �rst step makes use

of an existing HMM-based speech recognition system to produce a word lattice, such

as the one shown in Figure 3.10(a). Each arc in the lattice has a word label and time

alignment data (not shown). As can be seen multiple hypotheses and segmentations

are possible. A risk-based lattice cutting (Kumar and Byrne 2002) is performed in the

second step to produce a confusion network, such as the one shown in Figure 3.10(b).

As can be seen only one segmentation is retained in the confusion network. In addi-

tion to word label and time alignment data each arc has a posterior probability. �e

posterior probability is obtained in the lattice cutting procedure (Kumar and Byrne

2002). �e confusion network is pruned in the third step to retain at most two and at

least one arc for each segment as shown in Figure 3.10(c). �e pruning is performed

based on the posterior probabilities. �e reduction is �nished at this point. �e next

stage consists of rescoring the pruned confusion network. �e SVMs are applied to

each segment where the number of confusions is two. At the end there remains exactly

one arc for each segment of the network. �e �nal recognition hypothesis is obtained

from the arc word labels. By default, in the acoustic code-breaking a common pool

of SVM classi�ers is maintained during rescoring. an alternative ambitious approach

is proposed in (Venkataramani et al. 2003) where classi�ers are trained on demand.

In both cases SVMs are trained only for the most frequent confusions as determined

from the training data. �e number of classi�ers is further bounded by the number
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of available examples. For instance, in (Venkataramani et al. 2003) only 21 word-pair

classi�ers were used for rescoring. �is limits possible gains from the acoustic code-

breaking in large vocabulary tasks.
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Chapter 4

Structured

Discriminative Models

In the previous chapter, three unstructured discriminative models, logistic regression,

SVMs and multi-class SVMs were introduced. In these models the class labels are as-

sumed to be unstructured (atomic). �us the parameters associated with each of these

classes can be considered independent. Although in isolated word recognition/frame

phone classi�cation these models can be directly applied (Birkenes et al. 2006; Sa-

lomon et al. 2002), in continuous speech recognition the number of classes (sentences)

increases makes such approaches impractical (because the number of parameters and

classi�cations becomes very large). One solution to handle this problem is to use

acoustic code-breaking based approaches described in Section 3.4, where continuous

speech is segmented into words/sub-words observation sequences. For each segment,

multi-class SVMs or logistic regression can then be applied in the some fashion as an

isolated classi�cation tasks (Birkenes et al. 2006; Zhang et al. 2010). However, this

approach has two issues. First, the classi�cation is based on one, �xed, segmentation.

Second, each segment is treated independently.

An alternative option is to introduce structure into the discriminative model by
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chapter 4. structured discriminative models

breaking down class labels into atomic units, such as words, phones or states, sim-

ilar to the standard approach applied with HMMs described in Chapter 2. �us the

parameters for any class (sentence) can be constructed from a common set of basic

units. �is transforms unstructured discriminative models such as logistic regression

into structured discriminative models, e.g., conditional random �elds (CRFs) (Abdel-

Haleem 2006), hidden CRFs (HCRFs) (Gunawardana et al. 2005) and segmental CRFs

(SCRF) (Zweig and Nguyen 2009). �e discriminative parameter estimation and ad-

aptation to speaker and noise conditions are discussed in this chapter.

4.1 Log Linear Models

�e log linear model is a special form of discriminative model, in which the logar-

ithm of posteriors are linear w.r.t. the feature functions, e.g., the logistic regression in

Section 3.1, maximum entropy models (Jaynes 2003) and conditional random �elds

(La�erty et al. 2001). It directly model the posterior in the following form

PLLM(w|O;α) =
1

Z(α; O)
exp

(
αTφ(O,w)

)
, (4.1)

whereZ(α; O) is a normalisation term, required to ensure that PLLM(w|O) is a valid

probability mass function, and w may be a label sequence, as in the case of conditional

random �elds (Abdel-Haleem 2006); or an unstructured label w, as in the case of

logistic regression described in Section 3.1 and maximum entropy models in (Jaynes

2003). φ(O,w) is the joint feature function1 extracting the statistical characteristics of

(O,w) pair. Various forms of log linear models have been applied for discriminative

language modeling (Rosenfeld 1994), natural language processing (NLP) (Berger et al.

1996), discriminative model combination (Beyerlein 1997), machine translation (Och

and Ney 2002) and speech recognition (Heigold 2010; Heigold et al. 2009; Hifny et al.

2005; Zhang et al. 2010). �e following section describes a speci�c forms of log linear

models—conditional random �elds.
1To distinguish features ψ(O) for observation sequence in unstructured discriminative models,

the feature function φ(O,w) for observation-label sequence pair in structured discriminative models
is referred as joint feature in this work.
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4.1.1 Conditional Random Fields

Conditional random �elds (CRFs) (Abdel-Haleem 2006; Hifny and Renals 2009; Laf-

ferty et al. 2001) are one of the most popular conditional models in the machine

learning area. �ey are related to Maximum Entropy Markov Models2 (McCallum

and Freitag 2000). CRFs use a single exponential distribution to model the posterior

probability of the state sequence θ = {θ1, . . . , θT } given an observation sequence

O = {o1, . . . ,oT },

Pcrf(θ|O;α) =
1

Z(α; O)
exp

(
αT

T∑

t=1

φ(ot, θt, θt−1)

)
(4.2)

where Z(α; O) is de�ned as calculating over all possible label sequences3,

Z(α; O) =
∑

θ∈ΘT

exp

(
αT

T∑

t=1

φ(ot, θt, θt−1)

)
. (4.3)

where ΘT is the set of all state sequences that have length T . �e dependencies of

the label sequence are only limited to the current and previous labels (a �rst-order

Markov assumption). �e model in equation (4.2) is actually a linear-chain CRF (Laf-

ferty et al. 2001) as shown in Figure 4.1. It is de�ned using a frame-level feature func-

tion, φ(ot, θt, θt−1), weighted by a model parameter α. An example of CRF features

is the Gaussian su�cient statistics (Gunawardana et al. 2005). �is feature will be

described in Section 4.2.

o1 oToto2

θ1 θT

.... ....O = {o1, . . . ,oT }

θ2 θt.... ....θ = {θ1, . . . , θT }

Figure 4.1 An undirected graphical model for linear chain CRFs.

2Maximum entropy Markov models are not introduced in this thesis since it has a major drawback
called the label bias problem (La�erty et al. 2001).

3�e usage of global normalizerZ(α;O) over all possible label sequences eliminates the label bias
problem in maximum entropy Markov models (La�erty et al. 2001).
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�e CRF in equation (4.2) can be expressed in the form of log linear model in (4.1)

by constructing the joint feature space from frame-level features,

φ(O,θ) =
T∑

t=1

φ(ot, θt, θt−1).

Note that although general CRF features can also depend on the complete observation

sequence (Quattoni et al. 2004), φ(O,θ), many applications of CRFs used the form

in (4.2) for e�ciency (Peng and McCallum 2006; Sha and Pereira 2003).

4.2 Hidden Conditional Random Fields

In the previous section CRFs were introduced as structured discriminative models

for applications where the length of label sequence and observation sequence are the

same. In CRFs an explicit one-to-one relationship between the observations ot and

state labels θt is assumed to exist. However, for applications such as speech recogni-

tion, this one-to-one relationship doesn’t hold since the length of word sequence w

is not same as observation sequence O. Hidden conditional random �elds (HCRFs)

were introduced as one method to overcome this problem.

�e hidden conditional random �eld (HCRF) (Gunawardana et al. 2005; Quattoni

et al. 2007; Sung et al. 2007) is a latent-variable extension of standard CRFs that allows

the one-to-one relationship between observations and labels to be relaxed. Similarly

to CRFs, given an observation sequence O = {o1, . . . ,oT }, the posterior probability

of a word/subword sequence w = {w1, . . . , wL} for HCRF can be expressed as

Phcrf(w|O;α) =
1

Z(α,O)

∑

θ∈ΘTw

exp
(
αTφh(O,w,θ)

)
, (4.4)

whereα is the vector of model parameters,φh(O,w,θ) are HCRF features extracted

from the observation sequence, word sequence and their latent alignment (state se-

quences θ), and ΘT
w is the set of all valid state sequences of w that have length T . �e

normalisation term Z(α,O) is obtained by marginalising the unnormalised models
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over all possible word sequence w and state sequences θ.

Z(α,O) =
∑

w∈W

∑

θ∈ΘTw

exp
(
αTφh(O,w,θ)

)
. (4.5)

In a similar fashion to linear-chain CRFs, where a Markov dependency is assumed

on the latent state sequence, Z(α,O) can be e�ciently estimated using a forward-

backward algorithm (Quattoni et al. 2007). Again the nature of joint featureφh(O,w,θ)

determines the form of dependencies and structures incorporated in the model. In

the HCRF for speech recognition (Sung and Jurafsky 2009), the following frame-level

features are used

φh(O,w,θ) =

T∑

t=1

φ(ot, θt, θt+1) =

T∑

t=1


 φac(ot, θt)

φlm(θt, θt+1)


 , (4.6)

where θ ∈ ΘT
w is a valid state sequence of w that has length T , and φac(ot, θt) and

φlm(θt, θt−1) are the frame-level acoustic feature and language feature, respectively.

One way to de�ne these frame-level features is to borrow the su�cient statistics asso-

ciated with the latent variables in HMMs,

φac(ot, θt) =




...

δ(θt = sw)ot

δ(θt = sw) diag(oto
T
t )

...




∀ sw (4.7)

φlm(θt, θt+1) =




...

δ(θt = sw)

δ(θt = sw, θt+1 = s′w′)
...




∀ sw, s′w′ (4.8)

where sw and s′w′ indicate states of each word in the vocabulary and δ(θt = sw) is

equal to one when the state of frame t is sw and zero otherwise. �us the position ofot

and diag(oto
T
t ) in the feature spaceφac(·) depends on its state label θt. As illustrated

in equations (4.7) and (4.8), these acoustic and language features are composed of

Gaussian su�cient statistics (which only depend on the observation and state at time
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t), HMM-style state prior, state and word transition probabilities4. For this particular

form of features, HCRFs can be shown be equivalent to discriminative training of

HMMs (Heigold et al. 2007). �is relationship can also be illustrated by comparing

the undirected graphical model of HCRFs shown in Figure 4.2 with the directed graph

of HMMs in Figure 2.2.

ot ot+2ot+1

θt

....wi

....θt+1 θt+2

....ot ot+2ot+1

θt

.... ....wi

....θt+1 θt+2

.... ....

....

....

....

....

w

O

θ

HMM HCRF

w

O

θ

Figure 4.2 An undirected graphical model for HCRFs with a speci�c alignment
θ. �is graphical model can be related to directed graph of HMMs in Figure 2.2.

Note that this type of model allows the structure to be imposed in the feature func-

tion φh(O,w,θ). As there are latent states in HCRFs it is possible to compute local

features for each state in particular words. Similar to a composite HMM illustrated

in Figure 2.6, these local features associated with states and words can be combined

together to yield a joint feature for a complete sentence. �is is also the underlying

form of augmented CRFs (Hifny and Renals 2009), where frame-level augmented ob-

servations are combined to predict a sentence.

4.3 Segmental Conditional Random Models

In the previous section CRFs and HCRFs with frame-level features are introduced. It is

possible to relax the frame-level independece assumption in these model to segment-

level to capture longer-span dependencies. �is yields conditional augmented models

4Various forms of language features that can be applied to HCRFs will be discussed in Chapter 5.
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(CAugs) (Layton 2006) and Segmental CRFs (SCRFs) (Zweig et al. 2011) expressed in

the following form,

Pscrf(w|O;α) =
1

Z(α,O)

∑

θ∈ΘTw

exp
(
αTφs(O,w,θ)

)
, (4.9)

where θ indicates the segmentation, and ΘT
w is the set of all possible segmentations

for T frame observations and word sequence w. �e feature function, φs(O,w,θ),

allows observations across a segment to be directly related (similar to generative seg-

mental HMMs (Ostendor� et al. 1996)), other than through the state sequence in

HCRFs,

φs(O,w,θ) =

|w|∑

i=1

φ(Oi|θ, wi, wi−1) =

|w|∑

i=1


 φac(Oi|θ, wi)

φlm(wi, wi−1)


 (4.10)

where wi is the word (or subword) label for the i-th segment. Oi|θ is the observation

sequence for the i-th segment given a segmentationθ,φac(Oi|θ, wi) andφlm(wi, wi−1)

are the segment-level acoustic feature and language feature, respectively. One simple

form of φac(Oi|θ, wi) is described as follows,

φac(Oi|θ, wi) =




...

δ(wi = w)ψ(Oi|θ)
...


 ∀ w (4.11)

whereψ(Oi|θ) is the log likelihood features described in Section 3.1.1 which can map

variable-length observations into a �xed-dimension vector,5

ψ(Oi|θ) =




...

log pλ(Oi|θ|w = dog)

log pλ(Oi|θ|w = cat)

...



.

5More examples of acoustic and language features that can be applied to SCRFs will be discussed in
Chapter 5.
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�e feature φlm(wi, wi−1) is related to unigram and bigram language models,

φlm(wi, wi−1) =




...

δ(wi = w)

δ(wi = w,wi−1 = w′)
...




∀ w,w′ (4.12)

where w and w′ correspond to all possible words in the vocabulary. Other forms of

segmental features will be discussed in Chapter 5. �us the only di�erence between

SCRFs in equation (4.9) and HCRFs in (4.4) is their feature functions. In HCRFs

the frame-level features in (4.7) are used whereas in SCRFs segmental features can be

incorporated. �e graphical model for SCRFs is shown in Figure 4.3.

wiw = {w1, . . . , w|w|}

O = {o1, . . . ,oT } ....

....

....

θ

ot ot+2ot+1

....wi+1

ot+3 ot+4

Figure 4.3 A graphical model for SCRFs with a speci�c segmentation θ.

4.4 Parameter Estimation for Discriminative Models

An appropriate training criterion is very important for speech recognition (Schlüter

et al. 2001). In the same fashion as generative models, such as the HMM (Section 2.3)

it is possible to use a range of discriminative criteria with the structured discriminative

models (Gales et al. 2012). Examples include conditional maximum likelihood (CML),

minimum word error (MWE)/minimum phone error (MPE) and maximum margin

(MM) criteria. �is section will discuss these criteria for structured discriminative

models in Sections 4.1, 4.2 and 4.3.
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4.4.1 Conditional Maximum Likelihood

�e structured discriminative model parameter estimation based on the CML cri-

terion, given a dataset D (see equation (2.27)), may be performed by maximising the

following objective function

Fcml(α|D) =
R∑

r=1

logP (w
(r)
ref|O(r);α), (4.13)

where α are model parameters for CRFs, HCRFs or SCRFs. It is worth noting that

the CML objective function, above, is similar to the MMI objective function in equa-

tion (2.29). �e di�erence between the two approaches lies in whether they update a

generative model (MMI) or a discriminative model (CML).

For structured discriminative models, setting the gradient of equation (4.13) with

respect toα to zero does not yield analytic closed-form solutions. Instead, models are

typically estimated using iterative algorithms, such as EM-style algorithms (Darroch

and Ratcli� 1972; La�erty et al. 2001) and gradient-based algorithms (Gunawardana

et al. 2005; Layton 2006; Mahajan et al. 2006; Quattoni et al. 2004; Sha and Pereira

2003). In the case of CRFs (see equation (4.2)), the objective function is convex, caus-

ing it to have a single, global, maximum (Sutton and McCallum 2006). However, due

to the additional latent variable, this is not the case for HCRFs and SCRFs. In these

models the posterior of word sequence w in equations (4.4) and (4.9) involves sum-

ming over all segmentations, compared to CRFs in equation (4.2). �us, for HCRFs

and SCRFs, the CML objective function in equation (4.13) may be expressed as

Fcml(α|D) =
R∑

r=1

[
log

(∑

θ

exp
(
αTφ(O(r),w

(r)
ref,θ)

))
− (4.14)

log

(∑

w

∑

θ

exp
(
αTφ(O(r),w,θ)

))]

whereφ(O,w,θ) is the HCRF or SCRF feature. �e �rst, numerator, term is the log-

arithm of the unnormalised posterior and second, denominator, term is the logarithm

of the normalisation term Z(α,O).
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chapter 4. structured discriminative models

Directly optimising the objective functions above for HCRFs/SCRFs is complic-

ated due to the summation over all possible alignment and word sequences (Layton

2006; Nguyen and Zweig 2010). A related problem for HMMs was addressed by us-

ing the lattice framework (see Section 2.4.4 and (Valtchev et al. 1997)). �e objective

functions in equation (4.14) may be expressed in the lattice framework as

Fcml(α|D) =
R∑

r=1

log
(

[[L(r)
num]]

)
− log

(
[[L(r)

den]]
)
, (4.15)

where L(r)
num and L(r)

den are the numerator and denominator lattice respectively. �ese

lattices are used to constrain the possible alignments and word sequences. [[·]] is the

lattice weight (Layton 2006) which can be calculated using the lattice-based forward-

backward algorithm described in (Nguyen and Zweig 2010). Alternatively, the lattice

weight can also be approximated using more e�cient lattice-based Viterbi algorithms

described in (Layton 2006), which only calculates the “most likely” alignment instead

of “all possible” alignments in equation (4.14). �us, in practice, the discriminative

parametersα of these models can be optimized e�ciently by maximising an objective

function (4.15) based on standard stochastic gradient descent (Layton 2006; Nguyen

and Zweig 2010).

4.4.2 Minmum Bayes’ Risk

�e structured discriminative model parameter estimation based on the MBR cri-

terion may be performed by minimising the following objective function

Fmbr(α|D) =
R∑

r=1

∑

w

P (w|O(r);α)L(w,w
(r)
ref) (4.16)

where w denotes all possible hypothesis, P (w|O(r);α) could be the posterior prob-

ability of CRFs, HCRFs or SCRFs, and L(w,w
(r)
ref) is a loss functions. Similar to the

MBR training of HMMs described in Section 2.3.4, the resulting objective function

can be called minimum word error (MWE), minimum phone error (MPE), or min-

imum phone frame error (MPFE) for structured discriminative models depending on
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4.4. parameter estimation for discriminative models

whether the loss function is computed at the word, phone or frame level (Ragni 2013).

Optimising HCRF/SCRF model parameters based on the MWE/MPE/MPFE object-

ive function in equation (4.16) can be computationally expensive (Layton 2006; Zweig

et al. 2011). In order to address computational issues, again, the lattice framework dis-

cussed in Sections 2.4.4 and 4.4.1 can be adopted (Layton 2006; Ragni 2013).

4.4.3 Maximum Margin

In order to robustly train a discriminative model which has good generalization in

a high-dimensional space with limited data, large margin based approaches can be

applied (Li et al. 2007; Taskar 2005). If the margin for the structured discriminative

models is de�ned as the log-posterior ratio of the reference w
(r)
ref and best competing

hypothesis w, as illustrated in Figure 4.4, large margin training for structured dis-

criminative model can be expressed as maximising

Fmm(α) =
R∑

r=1

(
min

w 6=w
(r)
ref

{
log

(
P (w

(r)
ref|O(r);α)

P (w|O(r);α)

)})
(4.17)

Similar to the maximum margin training of HMMs in Section 2.3.5, the loss func-

       Margin

logP (w|O,α)

w
(r)
ref

wcompeting

reference

min
w !=w

(r)
ref

{
log

(
P (w

(r)
ref|O(r);α)

P (w|O(r);α)

)}

Figure 4.4 �e margin of structured discriminative models is de�ned in the log
posterior domain between w

(r)
ref and the “closest” competing hypothesis w.

tion is introduced to generalize the margin. To prevent the log-posterior ratio from

growing arbitrary large, the hinge function [ · ]+ de�ned in equation (2.37) may also
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chapter 4. structured discriminative models

be introduced. �is leads to minimising the following expression

Fmm(α) =
R∑

r=1

[
max

w 6=w
(r)
ref

{
L(w

(r)
ref,w)− log

(
P (w

(r)
ref|O(r);α)

P (w|O(r);α)

)}]

+

(4.18)

Note that this objective function is non-di�erentiable because of the max{·} function.

�us gradient-based algorithms cannot be directly applied. Two approaches to deal

with this problem are summarized as follows.

Approximate Margin One approach is to apply a so�-max approximation to this

objective function, similar to the maximum margin (Sha and Saul 2007) and boosted

MMI (Povey et al. 2008) training for HMMs. �is yields a di�erentiable objective

function. However this approximation minimises an upper bound of equations (4.18)

rather than the criterion itself

Fmm(α) ≤ 1

R

R∑

r=1

[
− logP (w

(r)
ref|O(r);α) (4.19)

+ log
{∑

w

exp
(
L(w,w

(r)
ref)

)
P (w|O(r);α)

}]

+

�is equation (4.19) allows gradient-based optimisation to be applied for log linear

models and HCRFs/SCRFs (Taskar 2005), but it is not the “exact” maximum margin

in equation (4.18).

Exact Margin Alternatively, approaches of maximising the “exact” margin in (4.18)

exist for speci�c models. For log linear models, substituting equation (4.1) into (4.18),

the objective function becomes

Fmm−llm(α) =
R∑

r=1

[
−

linear︷ ︸︸ ︷
αTφ(O(r),w

(r)
ref) + (4.20)

max
w 6=w

(r)
ref

{
L(w

(r)
ref,w) +αTφ(O(r),w)

}

︸ ︷︷ ︸
convex

]

+

Note that the normalization termZ(α; O) in (4.1) cancels from denominator and nu-

merator. �is objective function is convex for α. Log linear models trained with this
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4.5. adaptation to speaker and noise condition

objective function is closely related to the structured SVMs (see details in Chapter

6). Although the objective function (4.20) is non-di�erentiable, it can be directly

solved using the sub-gradient algorithm in (Singer and Srebro 2007) or cutting plane

algorithm (Joachims et al. 2009) described in Section 6.2.1.

For HCRFs and SCRFs, substituting equations (4.4) or (4.9) into (4.18), again

the normalization terms in (4.4) or (4.9) cancel out. �us the objective function of

HCRFs/SCRFs becomes

Fmm−scrf(α) =
R∑

r=1

[ concave︷ ︸︸ ︷
− log

∑

θ(r)∈ΘT
(r)

exp
(
αTφ(O(r),w

(r)
ref;θ

(r))
)

+ (4.21)

max
w 6=w

(r)
ref



L(w

(r)
ref,w) + log

∑

θ∈ΘTw

exp
(
αTφ(O(r),w;θ)

)




︸ ︷︷ ︸
convex

]

+

where ΘT
(r) is the set of all valid state sequences of w

(r)
ref that have length T . �ere

are two challenges to estimate α by minimising function (4.21). First, the objective

function is no longer convex. It consists of a concave and a convex functions. �e

optimisation can be solved using the concave-convex procedure (CCCP) (Yuille et al.

2002) and cutting plane algorithm (Joachims et al. 2009). �ese algorithms will be

described in details in Chapter 6. Second, the training and decoding time can be slow

because of summing over all possible segmentations. �us the lattice-based frame-

work (Layton 2006; Ragni 2013) may also applied to restrict the number of possible

segmentations. An alternative method is using one Viterbi segmentation to approx-

imate the summing over all segmentations (Ragni 2013). In this case, HCRFs/SCRFs

will become structured SVMs with latent variables (see more details in Section 6.4.3).

4.5 Adaptation to Speaker and Noise Condition

For generative models, adaptation to a speci�c speaker or environment condition is

an essential part of current speech recognition systems (Gales et al. 2012). A number

of approaches have been proposed, including maximum a posteriori (MAP) adapta-

87



chapter 4. structured discriminative models

tion, linear transformation-based approaches, model-based noise compensation, and

feature enhancement (for details and references, see (Gales and Young 2007)). Re-

lated approaches have been proposed for discriminative models as well. Note that

in machine learning literature, the problem of handling a mismatch between train-

ing and test conditions is sometimes referred to as sample selection bias or covariate

shi� (Gales et al. 2012). �ese adaptation approaches can be devided into three broad

categories: general adaptation, linear transformation approaches, and feature adapta-

tion (Gales et al. 2012). Note that in contrast to the majority of adaptation approaches

for generative models that are based on maximum likelihood, discriminative model

adaptation is usually based on conditional maximum likelihood.

In (Chelba and Acero 2006), two schemes for adapting log-linear models—MAP

adaptation and minimum divergence training—are discussed. �ese approaches yield

a general adaptation framework that makes no assumption about the nature of the

features in the model. MAP adaptation has also been applied to HCRFs (Sung et al.

2007). �ough these general adaptation approaches can be used for discriminative

models, they do not take advantage of any structure in the features. Alternatively,

linear transformation-based approaches for log-linear models are described in (Sung

et al. 2008) and (Loof et al. 2010). �ese schemes use techniques similar to the linear

transformations for HMMs. Assumptions are made about the relationships between

features. To date, they have only been applied to models where the features are very

similar to those used in standard HMMs. Whether these approaches can be extended

to more general features is an open question.

�e �nal form of adaptation is related to the feature compensation schemes used

for generative models. Rather than adapting the model parameters, the features are

modi�ed to make them independent of the speaker or environment. �is is simplest

to do when the feature extraction process is based on generative models (Gales and

Flego 2010; Zhang et al. 2010). �is approach is discussed in more detail in the Section

5.1.3.
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4.6. summary

4.6 Summary

In Chapters 2, 3 and 4 generative and discriminative models have been discussed.

�ese models can also be categorized into unstructured and structured to deal with

di�erent types of data. For example, the unstructured generative model, naive Bayes,

is introduced in Section 2.1; structured generative models, HMMs, are introduced in

Section 2.2; unstructured discriminative models, logistic regression and SVMs, are

described in Chapter 3; structured discriminative models, CRFs, HCRFs and SCRFs,

are described in Chapter 4.

Generative and Discriminative Models Generative classi�ers use models of the

joint distribution, typically of the form p(O,w) = p(O|w)P (w). Discriminative

models, on the other hand, focus on the conditional distribution P (w|O). As dis-

cussed earlier, one advantage of discriminative modeling is that it has more freedom

to �t the data (Minka 2005; Sutton and McCallum 2006) and is more suitable to in-

cluding rich, long-span features (Heigold 2010). �e relationship between naive Bayes

and logistic regression is a typical example of generative-discriminative pair (Ng and

Jordan 2001). �is mirrors the relationship between HMMs and HCRFs as illustrated

in Figure 4.5.

Unstructured and StructuredModels Unstructured models, for example the naive

Bayes and logistic regression, assume that the class labels are atomic (denoted as w).

�e parameters for di�erent classes are not shared. For isolated word recognition these

models can be directly applied (Birkenes et al. 2006), however in continuous speech

recognition as the number of classes (sentences) increases such approach becomes

impractical. Structured models, for example HMMs, HCRFs and SCRFs, assume that

there are structures in classes (denoted as w) and parameters for di�erent classes may

be dependent. �ese classes (sentences) can be breaken down into some atomic units,

such as words, phones or states. �us the parameters for any classes (sentence) can

be constructed from a common set of basic parameters associated to these atomic
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chapter 4. structured discriminative models

units. �e relationship between these unstructured and structured models are also

illustrated in Figure 4.5.
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Figure 4.5 Graphical model relationship. Naive Bayes and Logistic Regression
form a generative-discriminative pair for classi�cation. �eir relationship mir-
rors that between HMMs and HCRFs for sequential structured data. SCRFs
can be viewed as a segmental extension to HCRFs. Note that only one align-
ment/segmentation for HMMs, HCRFs and SCRFs is shown.
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Chapter 5

Feature Functions

In speech recognition the selection of features is important to the performance of the

models. �e previous chapters have assumed that appropriate (joint) feature functions

for the models exist. For example, one general form of features in Chapter 4 can be

expressed as,

φ(O,w;θ) =


 φ

ac(O,w;θ)

φlm(w,θ)


 (5.1)

�e term φac(O,w;θ) denotes the acoustic features which relate to the observation

statistics; �e termφlm(w,θ) denotes the language features which relate to pronunci-

ation probabilities and word statistics. In this chapter, features for speech recognition

are broadly categorized into acoustic features and language features. �ese can be split

into frame level and segmental level features. �ese features which discussed in the

following sections can be used with all of the discriminative models in this thesis.

5.1 Acoustic Features

Acoustic features can be split into the frame level and the segmental level. Each seg-

ment has an associated word (or subword) indicated bywi, where i = 1, . . . , |w|. |w|
represents the number of words (or subwords). For the notation in this thesis, the lat-

ent variables θ is used to specify the hidden (subphone) states in frame-level features;
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chapter 5. feature functions

For segment-level features, the latent variables θ indicate the boundary (the start and

end frames) of each segment, wi.

5.1.1 Frame-level features

�e simplest form of acoustic feature is restricted to frame-level features in the same

fashion as the HCRF features (Gunawardana et al. 2005),

φac(O,w;θ) =
T∑

t=1

φac(ot, θt) =
T∑

t=1




...

δ(θt = sw)ψ(ot)
...


 ∀sw (5.2)

where δ(·) is the Kronecker delta function (indicator function),w is the word or phone

label and sw indicates the hidden (subphone) state in each w. ψ(·) is the features ex-

tracted from frame-level observations (not depend on the state labels). Two examples

ofψ(ot) are discussed in the following two subsections. �e feature space in equation

(5.2) can also be viewed as a tensor product of vectors δ(θt) andψ(ot),

φac(O,w;θ) =
T∑

t=1

δ(θt)⊗ψ(ot) (5.3)

where the index vector δ(θt) can be expressed as

δ(θt) =




...

δ(θt = sw)
...


 ∀sw (5.4)

where sw indicates the hidden state in eachw. �us the position ofψ(ot) in the joint

feature space depends on its state label θt. �e form of equation (5.3) is chosen to

allow a simple comparison between frame-level features and the segmental features

in equation (5.8).

Dot-product caculation One interesting property of this form of the joint feature

space in equation (5.2) is the the dot product of the φac(O,w;θ) and discriminative
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parametersαac can be evaluated by accumulating every frame score

αacTφac(O,w;θ) =
T∑

t=1

α(θt)Tψ(ot), where θt ∈ {sw} (5.5)

where αacT = [. . . ,α(sw)T, . . .] and sw indicates each hidden states of each w. �is

property allows frame-level Viterbi decoding. �is will be discussed further in Section

6.3.1.

5.1.1.1 Gaussion statistic features

�e simplest form ofψ(ot) uses the Gaussian su�cient statistics of observations:

ψ(ot) =


 ot

diag(oto
T
t )


 (5.6)

Substituting equation (5.6) into (5.2) yields the HCRF features in (Gunawardana et al.

2005). �e features in equation (5.6) also related to the HMM mean and covariance

statistics (Heigold et al. 2007). Applying this feature to the HCRFs yields discriminat-

ively trained HMMs (Heigold et al. 2007). �is feature can also be extended to include

features of higher-order statistics (Wiesler et al. 2009).

Another variation of this frame-level feature is to modify the form of observation

ot. Rather than just considering a single frame ot, frames can be spliced together and

optionally transformed (Hifny and Renals 2009), to form a larger observation vector.

�is is similar to the approach used with standard HMMs where delta and delta-delta

features are appended.

5.1.1.2 MLP features

Much recent work in speech recognition uses a multi-layer perceptrons (MLP) as a

feature extractor, trained to produce phoneme posterior probabilities – both prob-

abilistic features (Zhu et al. 2004) and bottleneck con�gurations (Grézl et al. 2007)

have been investigated and reported in literature – using either the traditional GMM-

HMM (Zhu et al. 2004) or the “hybrid” MLP-HMM (Hinton et al. 2012) as the back-

end classi�er. �e MLP features can also be incorporated together with PLP features
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Figure 5.1 �e illustration of MLP based features: probabilistic features, bottle-
neck features and tandem features.

as Tandem features (Zhu et al. 2005) as shown in Figure 5.1. �e features can also be

normalised through feature space projections such as heteroscedastic LDA (HLDA)

(Kumar 1997) and CMLLR (Gales 1998). Previous research has demonstrated that

using these features from deep neural network (DNN) for HMMs yields signi�cant

gains in LVCSR (Hinton et al. 2012). �ese MLP based features can be also applied to

discriminative models (Morris and Fosler-Lussier 2008).

5.1.2 Segment-level features

�e frame-level features described in Section 5.1.1 will generate T feature vectors for a

T -length observation sequence. An alternative option is to derive features depend on

all the observations associated with a segment to introduce some long-term depend-

encies. �is serves as basis of segmental conditional random �elds (SCRF) in Section

4.3. In contrast to the frame-level features (5.2), one general form of segment-level
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features is

φac(O,w;θ) =

|w|∑

i=1

φac(Oi|θ, wi) =

|w|∑

i=1




δ(wi = v1)ψ(Oi|θ)
...

δ(wi = vM)ψ(Oi|θ)


 (5.7)

where wi is the label for the i-th segment, normally a word or subword. Oi|θ is the

observation sequence for the i-th segment given the alignment θ. {vk}Mk=1 denotes,

for example, all possible words or subwords in the dictionary, δ(wi = vk) is the Kro-

necker delta function, and ψ(Oi|θ) is the feature vector extracted for segment Oi|θ

as shown in Figure 5.2. Note that the joint feature space in equation (5.7) can also be

viewed as a tensor product of vectors δ(wi) andψ(Oi|θ)1

φ(O,w;θ) =

|w|∑

i=1

δ(wi)⊗ψ(Oi|θ) (5.8)

where the index vector δ(wi) can be expressed as

δ(wi) =




δ(wi = v1)
...

δ(wi = vM)




M

Again the position of ψ(Oi|θ) in the joint feature space depends on its label wi. Fig-

ure 5.2 shows an example of using equation (5.7) to construct a joint feature space for

data pair (O,w) given a segmentation θ.

�e target of designing segment-level featuresψ(Oi|θ) is to capture any long-term

dependency in the data and to relax the frame-level independent assumption to seg-

mental level. It is possible to hypothesize a range of segment-level features that could

be used. However, one interesting approach is to consider this process in the con-

text of sequence kernels and score spaces (Layton 2006). �ese sequence kernels map

variable length sequences to a �xed-dimension vector in which the inner product can

be computed. �e advantage of discussing acoustic features in this framework is that
1Comparing equation (5.8) with (5.3) shows the di�erence between segmental features and frame-

level features.
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Figure 5.2 Constructing the joint feature space from feature space.

existing developments from machine learning can be used (Gales et al. 2012). To map

each variable-length segment Oi|θ to a �xed dimensional vectorψ(Oi|θ), a range type

of sequence kernel can be used. Of particular interest in this work are those sequence

kernels based on generative models λ. As well as yielding a mapping to a �xed vector

size, these generative kernels allow standard speaker and noise adaptation approaches

developed for CSR to be used to derive robust features (see more in section 6.5.5). Two

examples of generative feature spaceψλ(Oi|θ) are discussed in the following subsec-

tions.2

Dot-product caculation One interesting property of the form of joint feature space

in equation (5.7) is the the dot product of the φac(O,w;θ) and discriminative para-

metersαac can be evaluated by accumulating every segment score (Zhang et al. 2010)

αacTφac(O,w;θ) =

|w|∑

i=1

α(wi)
T
ψ(Oi|θ), (5.9)

where αacT = [α(v1)T, . . .α(vk)T . . . ,α(vM)T] and wi ∈ {vk}Mk=1. �is property

means that a segmental-level Viterbi decoding for discriminative models becomes

possible. �is will be discussed further in Section 6.3.2.
2Other methods that utilize detections of longer-term acoustic events (Zweig and Nguyen 2009) are

similar in spirit to the above feature-space paradigm. �ese features are not discussed in this thesis.
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5.1.2.1 Log-Likelihood features

�e simplest example ofψλ(Oi|θ) is the log-likelihood feature space

ψλ(O) =




log pλ(O|v1)
...

log pλ(O|vM)


 (5.10)

where λ denotes the generative model parameters, and pλ(O|vk) is the likelihood

for generative model vk. �is feature space concatenates the log-likelihoods from all

models, including the correct model and competing ones, to yield additional inform-

ation from the observations. Note that each element in feature ψλ(O) is a log like-

lihood which can be computed using the forward-backward algorithm described in

Section 2.2.1.1. �us given a segmentationθ the acoustic scoreαTφ(O,w;θ) in equa-

tion (5.9) can also be calculated e�ciently using the forward-backward algorithm.

One elegant property of this joint feature space is that it allows the standard HMM

baseline to be obtained by simply setting the value of α associated with the correct

model to be one and zero for all competing models (see (5.10)), i.e., the sparse vectors

α(v1) = [1 0 . . . 0]T, · · · ,α(vM) = [0 0 . . . 1]T,

αTφ(O,w;θ) =

|w|∑

i=1

log pλ(Oi|θ|wi)

If the parameters associated with the correct models are not one, they can viewed as

acoustic de-weighting factors. But unlike the acoustic de-weighting in (Povey 2003)

where a constant scalar is used, all the weights α here are class-dependent and can

be learned under any criteria discussed in the Section 4.4. In practice this property

o�ers the discriminative models such as multi-class SVMs or SCRFs an opportunity

to initialise parameters such that the HMM classi�cation performance (Zhang et al.

2010) can be achieved in the �rst training iteration of discriminative models. Note

that this may not be possible with other forms of feature-functions.

97



chapter 5. feature functions

5.1.2.2 Derivative features

A more general form for segmental featuresψλ(Oi|θ) is the derivative features (Jaakkola

et al. 1999; Ragni and Gales 2011a)

ψλ(O) =




log pλ(O|v1)

∇λ log pλ(O|v1)
...

log pλ(O|v1)

∇λ log pλ(O|vM)




. (5.11)

In addition to log-likelihoods the feature vector in equation (5.11) incorporates de-

rivatives with respect to generative model parameters. Consider the the HMM para-

meters λjm = {µjm,Σjm} for Gaussian component cjm, the derivatives taken with

respect to the mean µjm can be derived as,

∇µjm log pλ(O|v1) =
∑

t

P (cjm,t|O)Σ
− 1

2
jm (ot −Σjm)

where j is the index of state and m is the index of component in that state. �ese

derivatives are functions of component posterior probabilities, P (cjm,t|O), which

depend on the whole observation sequence of that segment (as shown in equation

(2.14)). �is means that the use of derivative features can relax the frame-level inde-

pendent assumption to the segmental level.3 Alternatively, if GMMs are used, then

the derivative feature space yields frame-level features; the derivative with respect to

the component priors, for example, yields sparse GMM posterior features (Gales et al.

2012; Wiesler et al. 2011).

Note that by properly setting theα(w), it is also possible to view the dot product of

α(w) and derivative featuresψλ(O) as a Taylor series expansion of the “true” log like-

lihood log pλ(O|w) (Layton 2006). �is can be seen from the following expressions.

Given ML-estimated HMM parameters λ̂, the “true” log likelihood can be approxim-

3Higher-order derivatives o�er more complex dependencies (Layton 2006).
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ated by a �rst-order Taylor-series expansion,

log pλ(O|w) = log pλ(O|w)|λ=λ̂ + (λ− λ̂)T∇λ log pλ(O|w)|λ=λ̂ + · · ·

≈
[
α(w)

]T 
 log pλ(O|w)|λ=λ̂

∇λ log pλ(O|w)|λ=λ̂


 (5.12)

�e �rst-order approximation here is only used for illustration purposes. In general

Taylor-series of any length can be applied by adding higher-order derivatives to the

feature space.

Another advantage of derivative features is that they contain more discriminative

information. In order to illustrate this, consider the following example (Layton 2006).

A discrete HMM with the topology shown in Figure 5.3 is used to model two classes

w1 and w2. �e observation for two classes are

w1 : AAAA,BBBB

w2 : AABB,BBAA

�e HMM parameters can be estimated by ML criteria given these observations. �e

resulting state transition and output probabilities are shown in Figure 5.3. Since all

estimated distributions yield equal probabilities the HMM is not capable of distin-

guishing between the two classes. However the situation is di�erent with derivative

features. Table 5.1 shows values of selected derivatives. When the �rst and second or-

der derivatives are computed with respect to output symbolA in state 2 (line 3 and 3)

then all training examples may be correctly classi�ed.

Table 5.1 Feature values for second-order HMM score-space

Feature Class w1 Class w2

AAAA BBBB AABB BBAA

Log-Like -1.11 -1.11 -1.11 -1.11
∇2A 0.50 -0.50 0.33 -0.33
∇2A∇2A -3.83 0.17 -3.28 -0.61

Although the derivative feature has many theoretical advantages, in practice it

normally requires signi�cantly more memory to compute the high dimensionalψλ(O).
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1 2 3 4

1.0 0.5 0.5

0.5 0.5

P (A) = 0.5

P (B) = 0.5

P (A) = 0.5

P (B) = 0.5

Figure 5.3 Discrete HMM topology, transition and output probabilities.

For example, for 39 dimension observations and 3-emitting-states HMM with 18 mix-

ture component for each state, even just taking the derivatives with respect to means

will lead to a 2106M dimensional featuresψλ(Oi|θ) for one segmentation, whereM

is the number of possible words or subwords in the dictionary. Although e�cient

methods for computing the derivative features exist (R. C. van Dalen, A. Ragni, and

M. J. F. Gales 2013; Ragni and Gales 2011b), these derivative features are not evaluated

in this thesis.

5.1.3 Adaptation framework

As discussed in Section 4.5, an alternative approach to adapting the discriminative

classi�ers to speaker and noise conditions is to modify the feature-functions. When

the features are based on generative models this can be achieved by applying model-

based adaptation/compensation schemes (Gales and Flego 2008). When the HMM is

used as the generative model then the examples of model-based adaptation/compensation

schemes include (constrained) MLLR discussed in Section 2.4.5.1 and vector Taylor

series (VTS) discussed in Section 2.4.5.2.

�e general feature-space adaptation/compensation framework in (Gales and Flego

2008) is illustrated by Figure 5.4. �e shaded part in Figure 5.4 shows the model-based

adaptation/compensation stage. Given observation sequence O , the canonical model

parameters λ′ are modi�ed to match the target speaker and noise conditions yielding

the adapted model parameters. �e score-space in the unshaded part of Figure 5.4
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5.2. language features

makes use of the adapted model to yield modi�ed feature vectors for the discrimin-

ative classi�er. �e discriminative classi�er examined in this framework include the

SVM, multi-class SVM, SCRF and structured SVMs.

Generative 
feature space

ψλ(O)

Figure 5.4 Adaptation/compensation scheme for discriminative classi�ers using
feature-spaces based on generative models. �e shaded region illusates the model-
based adaptation/compensation stage.

5.2 Language Features

�e language features φlm(w,θ) are mainly associated with state, phone or word se-

quences (Gales et al. 2012) and may provide various forms of information including

lexical (Arisoy et al. 2010; Zweig and Nguyen 2009), syntactic (Arisoy et al. 2010;

Collins et al. 2005) and semantic (Chen and Rosenfeld 1999; Khudanpur and Wu

2000). Similar to the acoustic features, the language features used in this thesis can

also be categorised into frame-level (state-transition) features φlm(θ) and segment-

level features φlm(w).

�e simplest form of frame-level language feature is the state transition features
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used in HCRF (Gunawardana et al. 2005),

φlm(θ) =

T∑

t=1

φlm(θt, θt+1) =

T∑

t=1




...

δ(θt = sw)

δ(θt = sw, θt+1 = s′w)
...



∀ sw, s′w (5.13)

where sw and s′w are the states labels of word or subword w. �is feature captures the

state transition within each w.

One popular form of segmental (or supra-segmental) language features is based on

the unigram and higher-ordern-grams (Arisoy et al. 2010; Watanabe et al. 2010; Zweig

and Nguyen 2009). For instance, features related to unigram and bigram language

models can be expressed as

φlm(w) =

|w|∑

i=1

φlm(wi, wi+1) =

|w|∑

i=1




...

δ(wi = w)

δ(wi = w,wi+1 = w′)
...



∀ w,w′ (5.14)

where w and w′ may correspond to any words or phones in the dictionary. It is also

possible to apply the same concept to the segmentation and word features to represent

pronunciation probability. Another example of supra-segmental language features is

simply use the language model score,

φlm(w) =
[

logP (w)
]

(5.15)

where P (w) is the language model (e.g., n-gram) probability for word sequence w. If

the parameter αlm associated to it is set to one, the original language model score can

be achieved.

5.3 Joint Feature Space

To sum up, given observations O = {o1, . . . ,oT }, the corresponding labels w =

{w1, . . . , wi, . . . , w|w|} and the segmentation θ, the joint feature φ(O,w;θ) can be
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5.3. joint feature space

constructed to characterize the statistical dependencies of the (O,w) pair, by using

the acoustic and language features described in this Chapter,

φ(O,w;θ) =


 φ

ac(O,w;θ)

φlm(w)


 (5.16)

If the segmentation is speci�ed at the state level, frame-level features can be applied;

if the segmentation at word or subword level, then segmental features can be applied.

When the frame-level or segmental features are based on generative models, applying

the joint feature space o�ers an elegant way of combine generative and discriminative

models. A summary of frame and segment-level features described here can be found

in Table 5.2. One example of the joint feature space using segmental features is

φ(O,w;θ) =




|w|∑
i=1
δ(wi = v1)ψ(Oi|θ)

...
|w|∑
i=1
δ(wi = vM)ψ(Oi|θ)

logP (w)



, the correspondingα =




α(v1)

...

α(vM)

αlm




(5.17)

where ψ(Oi|θ) could be the log-likelihood features in Section 5.1.2.1. �is example

of joint feature space will be used to evaluate the our models in the experiment (see

Chapter 8).
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Chapter 6

Structured SVMs for

Speech Recognition

6.1 Introduction to Structured SVMs

In the previous chapters two types of discriminative models: unstructured and struc-

tured discriminative models were introduced. Unstructured discriminative models,

e.g. logistic regression model and support vector machines (SVMs), assume that the

class labels are independent and have no structure. When applying these models to

a complete utterance in continuous speech recognition, the space of possible classes

becomes very large, e.g., a 6-digit length utterance yields 106 classes. One solution to

deal with this, similar to acoustic code-breaking (Venkataramani et al. 2003), is to seg-

ment the continuous speech into words/sub-words observation sequences. For each

segment, multi-class SVMs or logistic regression can be applied in the same fashion

as an isolated classi�cation tasks (Birkenes et al. 2006; Gales and Flego 2010; Zhang

et al. 2010) as discussed in Section 3.2 and illustrated in Figure 3.9. However, this ap-

proach has two problems. First, the classi�cation is based on one, �xed, segmentation

generated by HMMs. Second, each segment is treated independently.
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Training Unstructured w −→ Structured w

Max Likelihood Naive Bayes p(O|w) −→ HMM p(O|w)

↓ ↓ ↓
Max Conditional Likelihood Logistic P (w|O) −→ HCRF P (w|O)

↓ ↓ ↓
Maximum Margin SVMαT

wφ(O) −→ Struct SVM αTφ(O,w)

Table 6.1 Summary of some unstructured and structuredmodels for speech recog-
nition. �e gray row represents generative models and yellow rows represent dis-
criminative models. Note that SVMs can be viewed as maximummargin trained
logistic regression models (for details see Section 3.2.3). �e structured SVMs can
be related to maximum margin trained HCRFs/SCRFs (for details see Section
6.4).

An alternative solution is to incorporate the structure into the model. �is trans-

forms the unstructured discriminative models to structured models. For logistic re-

gressions, this structured extension leads to HCRFs/SCRFs as described in Chapter 4.

For SVMs this yields structured SVMs which was originally proposed by (Joachims

et al. 2009) in the machine learning �eld. Interestingly, it was shown that the SVMs

can be related to a logistic regression model trained by the maximum margin criteria

(for details see Section 3.2.3); �is section will show that the structured SVMs can

also be related to a maximum margin trained HCRFs/SCRFs described in Chapter 4.

�e relationships between commonly used unstructured and structured models are

summarized here in Table 6.1. �is chapter focuses on the structured SVMs (SSVM)

framework and the practical issues for continuous speech recognition.

Structured Support Vector Machines Denote O = {o1, . . . ,oT } as an observa-

tion sequence and w = {w1, . . . , w|w|} as the corresponding label sequence. In

structured SVMs for continuous speech recognition, the goal is to learn a weight vec-

tor α. A linear discriminant function αTφ(O,w) is then used to measure how well

a label sequence w matches an observation sequence O, such that

wα = arg max
w

{
αTφ(O,w)

}
(6.1)
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is the recognized label sequence for a given O, where α is the discriminative para-

meter vector and φ(O,w) is a joint feature vector characterizing the statistical de-

pendencies of the (O,w) pair. Unlike multi-class SVMs where the weight vectorαw

is used for each class w to compute a score (Crammer and Singer 2001), SSVMs use a

joint feature-space and a single weight vector,α, for the whole sentence w.

To apply structured SVMs to large vocabulary continuous speech recognition three

important decisions need to be made: the form of the joint features φ(O,w) to use;

the appropriate training criterion and e�cient learning algorithm; and the e�cient

decoding algorithm based on the joint features. In Chapter 5 various type of fea-

tures from frame level, segmental level to suprasegmental level were described. All

these features can be used by structured SVMs for continuous speech recognition.

�e training and inference will be focuses in the following sections of this chapter.

6.2 Parameter Estimation

One important decision for structured support vector machines is the training cri-

terion for parameter estimation. Note that there are two sets of parameters to be

trained, the generative parameters λ (for the features)1 and discriminative paramet-

ers α (for the structured SVMs). A standard approach is to select values λ̂, α̂ for the

model parameters that maximise some training criterion F(α,λ),

{
λ̂, α̂

}
= arg max

λ,α
{F(α,λ)} . (6.2)

6.2.1 Estimating Discriminative Parameters

For simplicity, instead of training the generative and discriminative parameters to-

gether,2 in this chapter we consider base model parameters λ is pre-trained using one

of the criteria described in Section 2.3. �erefore the focus of this section is to train
1Some features such as likelihood features described in Section 5.1.2 are dependent on generative

models.
2Training generative and discriminative parameters jointly will be discussed in Appendix a.
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the discriminative parametersα using a maximum margin training criterion Fmm.

α̂ = arg max
α

{
Fmm(α; λ̂)

}
.

6.2.1.1 Introducing latent variable—segmentation

Given the training data (O(1),w
(1)
ref), . . . , (O

(R),w
(R)
ref) and the joint feature space,

the discriminative parameters α can be trained under some criterion. In Chapter 5

various forms of joint features were described. �ese features require a speci�c seg-

mentation/alignment θ (at word, phone, subphone or state level) as shown in Figure

6.1. Introducing the segmentation as a latent variable raises two questions: How to

learnα with θ jointly in training? How to �nd w and θ in decoding?
… … …… … …

??

Figure 6.1 �e joint feature space depends on the segmenation/alignment.

For decoding, in Section 6.3 we will show that givenα the optimal segmentation θ

can be inferred. For training, bothα and θ are unknown and depend on one another.

�e segmentation may vary with α; and adjusting the segmentation will a�ect the

optimal value ofα. In following two sections, we will describe the maximum margin

training of parameter α �rst with the �xed segmentation θλ from HMMs. �en a

joint training ofα and the optimal segmentation θα is described as an extension.

6.2.1.2 Training with fixed segmentation

In this section we consider the “most likely” segmentation θλ generated using Viterbi

search based on standard generative model HMMs λ

θλ = arg max
θ

P (θ|w)pλ(O|θ,w). (6.3)
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�is is the typical approach also used in the SCRF (Zweig and Nguyen 2009), CAug

(Layton 2006) and LLM (Zhang et al. 2010) based systems. Given segmentation θλ

for each data pair, the joint feature space can be simpli�ed as

φ(O(r),w(r)) := φ(O(r),w(r);θ
(r)
λ )

�us, the parameters of structured SVM can be trained by solving the following op-

timisation problem (Joachims et al. 2009):

min
α,ξr

1

2
||α||2 +

C

R

R∑

r=1

ξr (6.4)

s.t. For every utterance r = 1, . . . , R,

For all competing hypothesis w
(r)
∗ 6= w

(r)
ref :

αTφ(O(r),w
(r)
ref)−αTφ(O(r),w

(r)
∗ )≥ L(w

(r)
ref,w

(r)
∗ )− ξr,

where ξr ≥ 0 are the slack variables and L(w
(r)
ref,w

(r)
∗ ) is the loss function between

the reference w
(r)
ref and its competing hypothesis w

(r)
∗ . �e constraints in equation (6.4)

can be explained as follows. For every training pair (O(r),w
(r)
ref), the best score of the

reference pair should be greater than all competing pairs (O(r),w
(r)
∗ ) by a margin de-

termined by the loss. However the number of possible competing hypotheses w
(r)
∗ is

huge. �erefore, the challenge is to solve an optimisation problem with a large num-

ber of constraints, although the number of active constraints that a�ect the solution

is limited (this can be illustrated in the Figure 6.2).

Substituting the slack variable ξr from the constraints into the objective function,

equation (6.4) can be reformulated as the minimisation of

Fmm(α; λ̂) =
1

2
||α||22 +

C

R

R∑

r=1

[
linear︷ ︸︸ ︷

−αTφ(O(r),w
(r)
ref) (6.5)

+ max
w

(r)
∗ 6=w

(r)
ref

{
L(w

(r)
ref,w

(r)
∗ ) +αTφ(O(r),w

(r)
∗ )
}

︸ ︷︷ ︸
convex

]
+

where [ ]+ is the hinge-loss function. Because of the max(·), the objective function is

non-di�erentiable and non-smooth. However, the maximum of a set of linear func-
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Figure 6.2 �e illustration of limited active constraints in a two-dimensional
searching space. �e background grey color represents the value of the objective
function (darker means larger and lighter means smaller). Each line represents
a linear constraint for the variable. �e red circle is the optimal solution that
minimises the objective function subject to the constraints. �e number of active
constraints that a�ect the sulution in this case is only two as illustrated in the right
�gure.

tions is convex. �erefore, the objective function in equation (6.5) is convex as illus-

trated in the Figure 6.3.

!!

!"#$%&'! ()$*%+!

"!!

,-&.'&/0!

−αTφ(O(r),w
(r)
ref)

1
2 ||α||22 max

w
(r)
∗ !=w

(r)
ref

{
L(w(r)

ref,w
(r)
∗ ) +αTφ(O(r),w

(r)
∗ )

}

Figure 6.3 Illustration of the convexity but non-di�erentiable objective function
for α.

�e objective function in equation (6.4) is convex for α, however, solving this

problem is not trivial because the criterion is non-di�erentiable. Existing algorithms

for this problem fall into two groups. �e �rst group of algorithms use generalized

gradient-based approaches: subgradient methods (Singer and Srebro 2007) and ex-

ponentiated gradient methods (Globerson et al. 2007). �e second group uses the

cutting plane algorithm which does not take a single gradient step, but always takes
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an optimal step in the current constraint set (Joachims et al. 2009; Tsochantaridis et al.

2005). In this work, the cutting plane algorithm summarized in Algorithm 1 is used

to solve this convex optimisation problem.

Algorithm 1: n-slack Cutting plane algorithm for equation (6.4) or (6.5)

Input: {(O(r),w
(r)
ref)}Rr=1 , C and precision ε;

Initializeα and empty constraint set: Wr ← ∅;
repeat

for r = 1..R do
/*generating best competing hypothesis*/

w
(r)
∗ ← arg max

w

{
L(w,w

(r)
ref) +αTφ(O(r),w)

}
(6.6)

if αT
[
φ(O(r),w

(r)
ref)− φ(O(r),w

(r)
∗ )

]
< L(w(r)

ref,w
(r)
∗ )− ξr − ε then

/* put it in constraint set */
Wr ← Wr ∪w

(r)
∗ ;

/* solving the n-slack QP using current constraint set */

(α, ξr) ← min
1

2
||α||22 +

C

R

R∑
r=1

ξr (6.7)

s.t. ∀w(1)
∗ ∈ W1 : αT

[
φ(O(1),w

(1)
ref)− φ(O

(1),w(1)
∗ )

]
≥ L(w(1)

ref,w
(1)
∗ )− ξ1

...
∀w(R)

∗ ∈ WR : αT
[
φ(O(R),w

(R)
ref )− φ(O

(R),w(R)
∗ )

]
≥ L(w(R)

ref ,w
(R)
∗ )− ξR

until no Wr has changed during iteration;
returnα

Note that this algorithm includes multiple slack variables (each for a training ex-

ample). �us it was normally referred as n-slack cutting plane algorithm (Joachims

et al. 2009). �e basic concept of the algorithm is very simple. It iteratively con-

structs a constraint set W = {W1, . . . ,WR}, starting with an empty set W = ∅. �e

algorithm iterates through the training examples and �nds the constraint that is viol-

ated most by the current solution {α, ξr}. In this work, this constraint is referred as

the most violated constraint. �e corresponding hypothesis w
(r)
∗ is referred as the best

competing hypothesis. If this constraint is violated by more than the desired precision
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ε, the constraint is added to constraint set W and the quadratic programming (6.7) is

solved over the extended W . �e algorithm stops when no constraint is added in the

previous iteration. �is means that all constraints in problem (6.4) are satis�ed up to a

precision of ε. �e algorithm is provably e�cient (Joachims et al. 2009) as long as the

best competing hypothesis w
(r)
∗ can be found e�ciently. Inferring the best competing

hypothesis will be discussed in Section 6.3.

< ε

Iteration 1:  

Add one constraint, then

Find the optimal solution 

under current approximation 

Iteration 2:  

Add one more constraint, then

update the optimal solution

Iteration 3:  

Iteration 4:  Stopped

Initialization 

Figure 6.4 Illustration of cutting plane algorithm in a one-dimensional optim-
isation problem: the light blue curve is the original objective function, while the
black straight lines are the cutting planes and the red circles are the optimal solu-
tion under the current approximation .
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Figure 6.4 illustrates the successive steps in a cutting plane algorithm using a

simple 1-dimensional optimisation problem. �e le� top �gure shows the true ob-

jective function and the circle denotes our starting point. �e starting point and the

searching space of variable can be determined based on its prior distribution. �is

will be discussed in details in Section 6.5.2. In the �rst iteration the �rst cutting plane

is generated, which is a linear approximation of the true objective function. Minim-

izing this linear approximation leads us to the current solution which is indicated by

the red circle (in this simple illustration, the regularizer is ignored and the searching

space is bounded). In the second iteration a second cutting plane is generated. �e

new approximated function now becomes a maximum over the two linear functions.

By generating new cutting planes the approximation is improved, as illustrated in iter-

ation 3 and 4. Note that in this process although the minimum value of approximated

function (black lines) in each iteration is increasing , it gradually approaching the min-

imum value of objective function (blue curve). �e cutting plane algorithm will stop

when the di�erence between the true objective and the cutting plane approximation

is less than a small value ε.

6.2.1.3 Training with optimal segmentation

In the previous section it has been shown that given the “most likely” segmentation

θλ, the discriminative parameter α can be estimated. Although θλ is the optimal

segmentation for the generative model, it may not be the best segmentation to char-

acterize the dependencies on (O,w) pair for the discriminative model. �e optimal

segmentation may vary withα; and adjusting the segmentation will a�ect the optimal

value of α. In this section, we consider both α and θ as unknown variables that de-

pend on one another during training. �e joint training algorithm of the structured

SVM and the optimal segmentation is described with a maximum margin criterion

below.

If the segmentation is optimized during training, it is necessary to modify the

original structured SVM training algorithm in a similar fashion to the latent SVMs
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(Felzenszwalb et al. 2010; Yu and Joachims 2009). �e parameters and latent variables

can be jointly trained by solving the following optimisation problem:

min
α,ξ

1

2
||α||2 +

C

R

R∑

r=1

ξr (6.8)

s.t. For every utterance r = 1, . . . , R,

For all competing hypothesis w
(r)
∗ 6= w

(r)
ref :

max
θ(r)

{
αTφ(O(r),w

(r)
ref;θ

(r))
}
−max

θ
(r)
∗

{
αTφ(O(r),w

(r)
∗ ;θ

(r)
∗ )
}
≥ L(w

(r)
ref,w

(r)
∗ )− ξr,

Comparing with optimisation (6.4), the linear scoring function αTφ(O(r),w
(r)
ref) in

the constraints is replaced as max
θ(r)

{
αTφ(O(r),w

(r)
ref;θ

(r))
}

, where

θ
(r)
α = arg max

θ(r)

{
αTφ(O(r),w

(r)
ref;θ

(r))
}

is the optimal segmentation of utterance (O(r),w
(r)
ref) given the current parameterα

and feature function φ(·). Substituting the slack variable ξr from the constraints into

the objective function, equation (6.8) can be reformulated as the minimisation of

Flm(α; λ̂) =
1

2
||α||22 +

C

R

R∑

r=1

[
concave︷ ︸︸ ︷

−max
θ(r)

(
αTφ(O(r),w

(r)
ref;θ

(r))
)

(6.9)

+ max
w 6=w

(r)
ref,θ

{
L(w

(r)
ref,w) +αTφ(O(r),w;θ)

}

︸ ︷︷ ︸
convex

]
+

Note that the objective function in equation (6.9) comprises concave and convex parts

as shown in Figure 6.5. �e optimization problem has become non-convex a�er in-

troducing the optimal segmentation θ, which is a common issue when working with

latent variables.

To solve this non-convex optimisation problem with respective to α in equa-

tion (6.9), an algorithm based on the concave-convex procedure (CCCP) (Felzenszwalb

et al. 2010; Yuille et al. 2002) is proposed in Algorithm 2.3 �e algorithm is very intuit-

ive. It works similar to the iterative process of EM. It alternates between optimizing the
3Note that in order to make the concave and convex terms in equation (6.9 )independent to each

other wichis required by CCCP, the loss function L(w(r)
ref,w) should be independent to θ(r)
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+Linear

(1) Optimise segmentation

(2) Original SSVM Training

Convex

αTφ(O(r),w
(r)
ref;θ

(r)
α )

α

θα

α
U
p
d
at
ed

+

SSVM Training 

with Optimal Segmentation
Concave

Figure 6.5 �e illustration of Step 1 and 2 in Algorithm 2 for joint learning the
parameters α of structured SVM and optimal segmentation θα.

Algorithm 2: Structured SVM learning algorithm with optimal segmentation.

0. Initial: α = [1, 0, 0 . . .] and θ(r) = θ
(r)
λ ;

1. Fixing α, optimise the reference segmentation θ(r) for each training pair
(O(r),w

(r)
ref) (using the Viterbi-style algorithm in Section 6.2.1.3):

θ
(r)
α = arg max

θ(r)

{
αTφ(O(r),w

(r)
ref;θ

(r))
}
, ∀ r (6.10)

2. Fixing θ(r)
α , optimiseα by minimizing the following convex upper bound

(equation (6.9)≤ (6.11)), using the cutting plane algorithm in Alg. 1 or Alg. 6:

1

2
||α||22 +

C

R

R∑

r=1

[
linear︷ ︸︸ ︷

−αTφ(O(r),w
(r)
ref;θ

(r)
α ) (6.11)

+ max
w 6=w

(r)
ref,θ

{
L(w

(r)
ref,w) +αTφ(O(r),w;θ)

}

︸ ︷︷ ︸
convex

]
+

3. go back to Step 1 until converge;
returnα ;

latent variable θ that explain the training pair (O(r),w
(r)
ref) and solving the structural

SVM optimization problem while treating the latent variables as completely observed.

First, the optimal reference segmentation θ(r)
α for the current parameter α is found

in Step 1. �is corresponds to �nding the linear upper bound of the concave term

of equation (6.38) as shown in Figure 6.5. Second, with the current reference seg-
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mentation θ(r)
α , the optimal value of α based on (6.11) is found. �ese two steps can

then be repeated. �e procedures are illustrated in Figure 6.5. Note that the equation

(6.11) in step 2 is a convex optimisation equivalent to the equation (6.5). �ere is no

fundamental di�erence between max
w,θ
{} and max

w
{} except the searching space. �e

searching algorithm for this will be discussed in Section 6.3. �us equation (6.11) can

be solved using Algorithm 1 described in the previous section.4

6.2.2 Estimating Generative Parameters

In the previous section, generative model parameters λ were �xed to create a static

joint feature space. �is allowed the discriminative parameters α to be estimated us-

ing maximum margin training criteria. Any training criteria described in Section 2.3

can be applied to estimate the generative model parameters λ̂, e.g., the maximum

likelihood criterion in equation (2.28), the MPE criterion in equation (2.33) or the

maximum margin criterion in equation (2.36). �e procedure of training generative

models and structured SVMs is summarized in Figure 6.6. �e joint estimation of the

generative model and structured SVM parameters is described in the Appendix a as

the future work.

θα

φ(O,wref;θ) φ(O,w∗;θ) αλ̂
{
O(r),w(r)

}R

r=1

Training Set
Generative 

Models
Structured 

SVMs

Algorithm 2
Algorithm 1

w∗

Figure 6.6 �e training process for generative models and structured SVMs,
where w∗ and θα represent the best competing hypothesis and optimal segment-
ation, respectively, given the current α.

4�e equation (6.11) can also be solved using the more e�cient 1-slack cutting plane algorithm (Alg.
6) described in Section 6.5.3.
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6.3 Inference

�eoretically, the Algorithm 2 described in the previous section can be directly applied

for model training. In practice, however, it is necessary to handle the exponentially

large searching space of all the possible w and θ in the following two issues during

the training (for details see Algorithm 2):

• Inferring the optimal segmentation:

max
θ(r)

{
αTφ(O(r),w

(r)
ref;θ

(r))
}
. (6.12)

• Inferring the best competing hypothesis:

max
w 6=wref,θ

{
L(w,w

(r)
ref) +αTφ(O(r),w;θ)

}
. (6.13)

A similar problem arises in the decoding process of structured SVMs:

• Decoding with optimal segmentation:

{
wα,θα

}
= arg max

w,θ

{
αTφ(O,w;θ)

}
(6.14)

In SCRF (Zweig and Nguyen 2009), CAug (Layton 2006) and log-linear model (Zhang

et al. 2010) based systems, the segmentations, θλ, are typically generated using stand-

ard generative model HMMs. �ese segmentations are �xed for both decoding and

training. For inference this yields

wα = arg max
w

{
αTφ(O,w;θλ)

}
, (6.15)

where θλ = arg max
θ

P (θ|w)pλ(O|θ,w). (6.16)

Equation (6.16) can be solved using the Viterbi algorithm described in Section 2.2.2.

Although θλ is the optimal segmentation for the generative model, it may not be the

best segmentation to characterize the dependencies on (O,w) pair for the discrimin-

ative model. �ere is thus a potential mismatch between (6.15) and (6.16). �e seg-

mentation variable θ should be optimised based on the discriminative models. �us
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the decoding formula (6.15) becomes (6.14). Essentially, equations (6.12), (6.13) and

(6.14) are the same inference problem.5 �is section focuses on the decoding problem

in equation (6.14). �e remaining two problems can be solved by easily extending the

algorithms we described below.6

6.3.1 Inference with frame-level features

Given a general joint feature space in the form of equation (5.16), the maximisation in

equation (6.14) can be expressed as

{
wα,θα

}
= arg max

w

{
max
θ∈ΘT

w

αacTφac(O,w;θ) +αlmTφlm(w)

}
(6.17)

where ΘT
w is the set of all valid state sequences of w that have length T . If the feature

function φac(O,w;θ) is at the frame level as described in Section 5.1.1, substituting

equations (5.2), (5.13) and (5.14) into the (6.17) yields

{
wα,θα

}
= arg max

w,θ1,...,θT

{
T∑

t=1

αacTφac(ot, θt) +αlmTφlm(w,θ)

}
(6.18)

where θt ∈ sw is the state label of frame t, and sw indicates a state of the word (or

subword) w in w. For the frame-level features in equation (5.2) expression in (6.18)

is related to HMM inference (see Section 2.2.2). �e search process (6.18) can be split

into two part. First, for each frame t, similar to the calculation of emission prob-

abilities for HMMs, the acoustic scores αacTφac(ot, θt) need to be computed. �e

complexity of computing the frame scores αacTφac(ot, θt) depends on the form of

features. If the HCRF features φac(ot, θt) in equation (5.6) are used, the frame scores

can be related to the HMM frame-level emission probabilities by properly setting the

parameter αac (Heigold et al. 2007). �e second part is to obtain the hidden state

sequence, {θ1, . . . , θT } and word labels, {w1, . . . , w|w|}. �is can be e�ciently im-

plemented using the Viterbi algorithm (Viterbi 1982).
5�e equation (6.12) is a special case of equation (6.14), and equation (6.14) is actually the equation

(6.13) without the loss function.
6Incorporating the loss function to extend the algorithm will be discussed in Section 6.5.4.2.
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: αacTφ(ot, θt)

: αlmTφlm(θt−1, θt)

Time

labels

t+ 1t

ρ
(θt+1)
t+1

ρ
(θt)
t

θ ∈ {sw}

Figure 6.7 Inference of structured SVMs with frame-level features. Each blue
circle represents a frame-level acoustic score αacTφac(ot, θt) for state θt. Each
arrow represents a language score αlmTφlm(θt−1, θt).

�e search process is illustrated in the Figure 6.7. �e best score for a state se-

quence θ = {θ1, . . . , θt} ending with θt at time t is stored as ρ(θt)
t ,

ρ
(θt)
t = max

θ1,...,θt−1

{
t∑

τ=1

αacTφac(oτ , θτ ) +αlmTφlm(w,θ)

}
(6.19)

Given time t+1 and corresponding label θt+1, the acoustic scoreαacTφac(ot+1, θt+1)

and the language score αlmTφlm(θt, θt+1) for each wt are computed. �e best score

for a label sequence ending with θt+1 can then be expressed in the recursive form,

ρ
(θt+1)
t+1 = max

θt∈{sw}

{
ρ

(θt)
t +αacTφac(ot+1, θt+1) +αlmTφlm(θt, θt+1)

}
. (6.20)

Note that the language scoreαlmTφlm(θt, θt+1) could be related to the state transition

probabilities and word bigram probabilities7 as described in Section 5.2. By running

the above Viterbi search from time 1 to T the optimal label sequence and segment-

ation can be obtained by tracing back the frame-level labels that maximising ρ(θT )
T .

�e complexity of the above searching process isO(MT ) where M is the number of

hidden states (or subphones) of all the words in the dictionary. Pruning options like

beam pruning (Young et al. 2006) can be directly applied.

7Bigram probabilities can be captured by the state transition between the end of each word to the
start of the next word.
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6.3.2 Inference with segmental features

If the segmental featuresφac(O,w;θ) described in Section 5.1.2 are used, substituting

equation (5.7) into (6.17) yields

{
wα,θα

}
= arg max

w,θ

{
αTφ(O,w;θ)

}

= arg max
w1,...,w|w|



max

θ

|w|∑

i=1

αacTφac(Oi|θ, wi) +αlmTφlm(w)



 (6.21)

�e search process (6.21) can be split into two distinct terms. First given a segment

(e.g., the i-th segment i|θ), the acoustic score αacTφac(Oi|θ, wi) and the language

score αlmTφlm(w) need to be computed. Note that the language features φlm(w)

only depends on the label sequences, e.g., the n-gram word features are independent

of segmentation θ. �e second is obtaining the optimal segmentation which requires

a modi�ed two-stage Viterbi search. �is process is illustrated in Figure 6.8.

Timettst

ρ
(w)
t

ρ
(w′)
tst

s(tts,w′)→(t,w)

w′

w

L
a
b
e
ls

Figure 6.8 Inference of structured SVMs with segment-level features. �e points
in blue represent the segment boundaries. �e blue area s(tst,w′)→(t,w) =

αacTφac(Otac:t, w)+αlmTφlm(w′, w) is the score for segment (tts, w′) : (t, w).

�is search process is similar to a semi-Markov search process (Fox 1968; Sarawagi

and Cohen 2005). �e best score (and alignment history) for a label sequence w end-

ing with w′ at time tst is stored as ρ(w′)
tst ,

ρ
(w′)
tst = max

w,θ
αTφ(O1:tst ,w;θ). (6.22)
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Given time tst (the start time of current decoding segment), the forward segmental

score up-to time t for model w, is computed at the end state of that model,

s(tst,w′)→(t,w) = αacTφac(Otac:t, w) +αlmTφlm(w′, w) (6.23)

�e best score for a label sequence ending with w at time t can then be expressed as

ρ
(w)
t = max

tst,w′

{
ρ

(w′)
tst + s(tts,w′)→(t,w)

}
, (6.24)

where s(tst,w′)→(t,w) is the score for segment (tts, w
′) : (t, w) which can be computed

using the forward-backward algorithm8 and tst ∈ [0, t − 1]. By running the above

Viterbi-style search from time 1 to T the optimal sentence and segmentation can be

obtained by tracing back the model and time index maximising ρ(w|w|)

T . �is decoding

process is summarized in the Algorithm 3.

�e complexity of the above process isO(MT 2), whereM is the number of words

or subwords in the dictionary. Pruning options are available, e.g., limitingw′ in (6.24)

to the top N models with highest scores and constraint the look-back time tst to last

T frames. Additionally, more e�cient approximations, e.g., Gibbs sampling and vari-

ational methods (Ghahramani and Jordan 1997), could be used to reduce the compu-

tation load. However these are not investigated in this work.

…

…

…

…

…

Figure 6.9 Inference of structured SVMs with log-likelihood features in equation
(5.10). �e black circles indicate the synchronisation points where theM HMM
log likelihoods and language model score are merged.

8If the log likelihood features in (5.10) are used, this acoustic score can be computed using the stand-
ard forward-backward algorithm for HMMs as describeed in Section 5.1.2.1. If the derivative features in
(5.11) are used, the score can be computed using the algorithm described in (R. C. van Dalen, A. Ragni,
and M. J. F. Gales 2013).
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Algorithm 3: Inference with segment-level features.

Input: observations O
Output: word sequence ŵ with con�dence score

/* Initialization */
for each w do

ρ
(w)
0 ← 0

/* Forward propagation */
for t = 1, . . . , T do

for each w do

for tst = 1, . . . , t− 1 do
compute segmental score:

s(tst,w′)→(t,w) = αacTφac(Otac:t, w) +αlmTφlm(w′, w)

update best path score:
ρ

(w)
t ← max

tst,w′

{
ρ

(w′)
tst + s(tts,w′)→(t,w)

}

save best previous segment:
Prev(t, w)← arg max

tst,w′

{
ρ

(w′)
tst + s(tts,w′)→(t,w)

}

/* Backward trace */
w ← arg max

w′
ρ

(w′)
T

(t, w)← Prev(T,w)
while t 6= 1 do

retrive (t, w)← Prev(t, w), save word: ŵ← [w, ŵ]

return ŵ, max
w′

ρ
(w′)
T

It may also interesting to point out that, if the log-likelihood feature in equation

(5.10) is used, the expression in (6.21) can be related to the factorial HMM inference

(Ghahramani and Jordan 1997),

{
wα,θα

}
= arg max

w



max

θ

|w|∑

i=1

M∑

k=1

α
(wi)
k log pλ(Oi|θ|vk) +αlmTφlm(w)





where α(wi)
k is the k-th element in α(wi), αac = [α(v1)T, . . .α(vk)T . . . ,α(vM)T]T,

wi ∈ {vk}Mk=1, and {vk}Mk=1 is the dictionary. �us the �rst step of search process,

computing the segmental scores, can be achieved by the standard HMM forward-

backward algorithm. �e search process can be illustrated in Figure 6.9. �eM phone
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HMMs are shown in parallel with synchronisation points shown in black which are

determined by the segment boundaries.

6.4 Relation to Prior Work

Previously, the training and inference algorithms of structured SVMs with optimal

segmentation for speech recognition were introduced. �e following sections will dis-

cuss the relationship between the proposed structured SVMs and several commonly

used models in continuous speech recognition.

6.4.1 Relationship with Multi-class SVMs

In Sections 3.3.2 and 3.4 the multi-class SVMs for isolated word classi�cation and for

continuous speech recognition based on acoustic code-breaking were introduced. To

see the relation to structured SVMs, the objective function of multi-class SVM in

equation (3.36) need to be re-expressed, by stacking the class weight vectors to form a

single weight vectorα and introducing the notation for a joint feature vectorφ(O, w):

α =




α1

...

αw
...

αC




, φ(O, w) =




0
...

ψ(O)
...

0




. (6.25)

where ψ(O) appears in the w-th block in φ(O, w). �us the optimization problem

(3.36) for multi-class SVM can be rewritten as

min
α,ξi

1

2
||α||2 + C

R∑

i=1

ξi (6.26)

s.t. For every training data (Oi, wi), i = 1, . . . , R,

For every competing classes (words) w 6= wi :

αTφ(Oi, wi)−αTφ(Oi, w) ≥ 1− ξi where ξi ≥ 0
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Comparing equations (6.26) and (6.4) shows that the multi-class SVM can be viewed

as a simple instance of structured SVMs. If the data is unstructured (e.g., isolated

words), the structured SVM in equation (6.4) will be the same as multi-class SVMs

in equation (6.26). If the data is structured (e.g., continuous speech utterances), the

multi-class SVM cannot be applied directly as discussed in Section 3.4. �e con-

tinuous speech needs to be �rstly segmented into words/sub-words observation se-

quences. �e training/test data from the same utterance but belonging to di�erent

segments are treated independently. However, in structured SVMs, multiple segment-

ations and dependencies between di�erent segments in the utterance are considered.

�us the structures in the whole utterance can be captured. �e experimental results

of these two models will be discussed in Section 8.1.2.1.

6.4.2 Relationship with Log Linear Models

Just as SVMs can be interpreted as maximum margin logistic regressions (see Section

3.2.3), the proposed structured SVM can be viewed as maximum margin log linear

models with optimal segmentation.9 To see this, the posterior of log linear model for

hypothesized labels w given O with optimal segmentation θα can be written as,10

P (w|O;θα,α) =
exp

(
αTφ(O,w;θα)

)
∑
w′

exp (αTφ(O,w′;θ′α))
, (6.27)

whereθα is the best segmentation that maximises posterior probabilityP (w|O;θ,α),

θα = arg max
θ

P (w|O;θ,α) = arg max
θ

αTφ(O,w;θ)

Decoding with this log linear models can be simply expressed as

wα = arg max
w

P (w|O;θα,α) = arg max
w

{
max
θ

αTφ(O,w;θ)
}

�is yields both the optimal word sequence and alignment and is equivalent to struc-

tured SVM inference in equation (6.14).
9Comparing equations (4.20) and (6.5) suggests that structured SVMs can be viewed as maximum

margin trained log linear models with a �xed segmentation. �is section discusses the relationship in
the case of optimal segmentation.

10To apply the log linear model for continuous speech recognition, a latent variable θ need to be
introduced to equation (4.1). �is form of log linear model has been discussed in (Zhang et al. 2010).
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φ(O,wref)

w =“Hello Dog”
“Hello Wood”
“Hey Wood”
“Hi the World”

...
...

logP
(w|O

;α
) ∝

α
T
φ
(O

,w
)

wref =“Hello World”

φ(O,w)

Margin

Figure 6.10 �e margin of log linear models is de�ned in log posterior domain
between wref and the best competing hypothesis w. For simplicity the best seg-
mentation θα is not shown in this diagram.

As discussed in Section 4.4.3, if the margin for the log linear models is de�ned

as the log-posterior ratio of the reference w
(r)
ref and best competing hypothesis w, as

illustrated in Figure 6.10, the maximum margin training for log linear model with

optimal segmentation can be expressed as minimising

Fmm−llm(α,λ) =
1

R
·
R∑

r=1

[
max

w 6=w
(r)
ref

{
L(w

(r)
ref,w)− log

(
P (w

(r)
ref|O(r);θα,α)

P (w|O(r);θα,α)

)}]

+

(6.28)

Note that there are two sets of parameters, discriminative parametersα and generative

model parameters λ to extract features (see Section 5.1.2.1). One general extension of

this criterion is to incorporate priors P (α), P (λ) and then minimise

F(α,λ) = Fmm−llm(α,λ)− log (P (α))− log (P (λ)) . (6.29)

In this work the generative model parameters, λ, are assumed to have been trained

and �xed. Equation (6.28) can then be expressed as

F(α) = − log(P (α)) +
1

R

R∑

r=1

[
− logP (w

(r)
ref|O(r);θα,α) (6.30)

+ max
w 6=w

(r)
ref

{
L(w,w

(r)
ref) + logP (w|O(r);θα,α)

}]

+
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�e prior P (α) is assumed to be Gaussian with a zero mean and scaled identity cov-

ariance matrix CI, thus

logP (α) = logN (0, CI) ∝ − 1

2C
αTα. (6.31)

Note that other forms of prior distribution P (α), e.g., the Laplace distribution, can

also be applied. �is will lead to a L1 norm (Kabán 2007), instead of L2 norm in

equation (6.31). Substituting equation (6.27) into (6.30) with this prior assumption

and canceling out the normalization terms in (6.27), yields the objective function (6.9).

�us the structured SVM used in this work can also be viewed as a maximum margin

trained log linear model with an optimal segmentation and a zero-mean Gaussian

prior.

6.4.3 Relationship with HCRFs and SCRFs

Previously in Section 4.4.3, the maximum margin training for HCRFs and SCRFs has

been discussed. As shown in equation (4.21) the objective function of HCRFs/SCRFs

can be expressed as minimising

F(α) = − log(P (α)) +

R∑

r=1

[ concave︷ ︸︸ ︷
− log

∑

θ(r)

exp
(
αTφ(O(r),w

(r)
ref;θ

(r))
)

(6.32)

+ max
w 6=w

(r)
ref

{
L(w

(r)
ref,w) + log

∑

θ

exp
(
αTφ(O(r),w;θ)

)}

︸ ︷︷ ︸
convex

]

+

where P (α) is the prior of discriminative parameters as discussed in previous sec-

tion. It can be proved that this objective function consists of a concave and a convex

functions. �us it can be solved using the concave-convex procedure (CCCP). �is is

described in the following algorithm 4. To handle the issue of summing over all pos-

sible segmentations, the lattice-based framework (Layton 2006; Ragni 2013) can be

applied. Note that solving the equation (6.34) requires searching for the best compet-

ing hypothesis. �is can be achieved by using the Viterbi-style algorithm described

in Section 6.3. For example, instead of searching one best path in Figure 6.7, the best
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competing hypothesis can be found by using the same Viterbi search process but mer-

ging paths that have same word labels. �is form of model is not investigated in this

work.

Algorithm 4: �e CCCP algorithm for HCRFs/SCRFs.
0. Initial: α[0] = [1, 0, 0 . . .], τ = 0 ;
1. Givenα[τ ], �nd the linear upper bound, `[τ ](α), for the concave part:

`[τ ](α) = αT


 ∂

∂α


− log

∑

θ(r)

exp
(
αTφ(O(r),w

(r)
ref;θ

(r))
)


∣∣∣∣∣
α=α[τ ]




(6.33)

2. Given `[τ ](α), �nd the optimalα[τ+1] that minimising the following convex
function using the cutting plane algorithm:

α[τ+1] ⇐ arg min
α

1

2
||α||22 +

C

R

R∑

r=1

[ linear︷ ︸︸ ︷
`[τ ](α)+ (6.34)

max
w 6=w

(r)
ref

{
L(w

(r)
ref,w) + log

∑

θ

exp
(
αTφ(O(r),w;θ)

)}

︸ ︷︷ ︸
convex

]
+

3. τ = τ + 1, go back to Step 1 until converge;
returnα[τ ] ;

Alternatively, the maximum margin training of HCRFs/SCRFs can be approxim-

ated by using one Viterbi segmentation instead of summing over all segmentations,

max
θ

αTφ(O,w;θ) ≈ log
∑

θ

exp
(
αTφ(O,w;θ)

)
(6.35)

Substituting equation (6.35) into equation (6.32) yields the objective function (6.9).

�us the proposed structured SVM with frame-level features (or segment-level fea-

tures) can be related to a maximum margin trained HCRF (or SCRF) with a Viterbi

segmentation and a zero-mean Gaussian prior.11

11As discussed in Sections 4.2 and 4.3 the only di�erent between HCRFs and SCRFs is their feature
functions. In HCRFs the frame-level features in (4.7) are used whereas in SCRFs segmental features can
be incorporated.
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6.5 Practical Issues

An e�cient and robust implementation of the training and inference algorithm is

important for continuous speech recognition systems. In this section several design

options are described that have a substantial in�uence on computational e�ciency.

In order to address robustness issues when estimating parameters of many context-

dependent phone classes from the limited amount of training data, the use of para-

meter tying is proposed in Section 6.5.1. A prior is introduced to reduce the number

of training iterations in Section 6.5.2. To reduce the memory cost, 1-slack optimisa-

tion is used as an alternative to n-slack optimisation in Section 6.5.3. To reduce the

training and decoding time, a lattice-based e�cient search and paralleization strategy

are proposed in Section 6.5.4.

6.5.1 Parameter Tying

For small vocabulary tasks, where whole-word generative models are used, the dis-

criminative model parameters may be associated with the individual words (Zhang

et al. 2010). When medium to large vocabulary CSR are considered there is an issue

with directly using this feature space with context dependent phones. �e set of all

possible models {vk}Mk=1 yields a very large joint feature space. Although in theory

this could be used, the number of discriminative model parameters becomes large.

Two approaches were originally proposed in (Ragni and Gales 2011b) to address this

problem, and are adopted in this work. �e �rst approach is to reduce the dimension

of the feature space ψ(·) by selecting a small set of “suitable” models. For example,

instead of using the full feature space, the matched-context feature space of a segment

O with the label a−b+c can be used here as

ψλ(O) =




log pλ(O|a−a+c)
...

log pλ(O|a−y+c)

log pλ(O|a−z+c)




M1

. (6.36)
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�is reduces the dimensionality of the feature spaceψλ(·) from the number of context-

dependent phones M to the number of monophones M1. �e second approach is to

reduce the dimension by tying the discriminative model parameterα using a phonetic

decision tree (Ragni and Gales 2011b). For example, if vi and vj belong to the same

leaf node in a decision tree, then α(vi) and α(vj) are tied. �is means their corres-

ponding features in the joint feature space can be merged. �us the dimensionality of

joint feature space reduced to M2 ×M1 + 1, where M2 is the number of leaf nodes

in decision tree. �is is illustrated in Figure 6.11.
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Figure 6.11 Selecting matched context and discriminative parameter tying. �e
triphone label “a-b+c” denotes the context-dependent version of the phone “b”
which is to be usedwhen the le� neighbour is the phone “a” and the right neighbour
is the phone “c”. �e matched-context for “a-b+c” is “a- ∗ +c”. �e joint feature
space is then constructed from the matched-context local features as illustrated
before in Figure 5.2.

6.5.2 Form of Prior

Section 6.4.2 has shown that when training standard structured SVMs, an implicit

assumption is made that the prior distribution of α is Gaussian, with zero mean

and identity covariance matrix. However, for some feature spaces such as the log-

likelihood feature space de�ned in equation (5.10), the prior mean,µ, should be non-

zero. One appropriate form of prior mean is the one that yields the HMM baseline
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performance12 where

arg max
w,θ

µTφ(O,w;θ) = arg max
w

log
(
p(O|w;λ)

1
αlm P (w)

)

�e value of prior mean,µ, should thus be one for the correct class, zero otherwise, for

example class v1, µ(v1) = [1, 0, . . . , 0]T. �is motivates the need for a more general

maximum margin training scheme that incorporate a general Gaussian priorP (α) =

N (α;µ,Σ) into structured SVM training. �us, the training in equation (6.9) can

be generalized to minimise

1

2
(α− µ)TΣ−1(α− µ) +

C

R

R∑

r=1

[
−max

θ(r)
αTφ(O(r),w

(r)
ref;θ

(r))

+ max
w 6=wref,θ

{
L(w

(r)
ref,w) +αTφ(O(r),w;θ)

}]
+

(6.37)

�is new expression is still concave-convex as long as the matrix Σ−1 is positive

de�nite. Note the matrix Σ−1 can always be decomposed and merged into the feature

space by using transformed features,

φ̄(O,w;θ) = Σ
1
2φ(O,w;θ).

In this work, the log-likelihood features are assumed to be consistently scaled, so that

Σ = CI is a reasonable approximation. In order to utilize the training framework

based on equation (6.9), it is necessary to transform the parameters ᾱ = (α− µ).

Reformulating equation (6.37) in the form of (6.9)

1

2
||ᾱ||22 +

C

R

R∑

r=1

[
−max

θ(r)

{
(ᾱ+ µ)Tφ(O(r),w

(r)
ref;θ

(r))
}

(6.38)

+ max
w 6=w

(r)
ref,θ

{
L(w

(r)
ref ,w) + (ᾱ+ µ)Tφ(O(r),w;θ)

}]

+

Minimising equation (6.38) can be solved using Algorithm 5 and a modi�ed version

of Algorithm 2. Similar to Algorithm 2, once the optimal reference alignment θ(r)
α is

12Raising a fractional power 1
αlm

on HMM likelihoods known as acoustic deweighting (Woodland
and Povey 2002).
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Algorithm 5: Structured SVM training with Gaussian prior
0. Initial: ᾱ = [0, 0, 0 . . .], µ = [1, 0, 0 . . .] ;

1. Fixing ᾱ, optimise the reference alignment θ(r)
α , ∀ r,

θ(r)α = arg max
θ(r)

{
(ᾱ+ µ)

T
φ(O(r),w

(r)
ref;θ

(r))
}
, (6.41)

2. Fixing θ(r)
α , optimise ᾱ by minimizing:

1

2
||ᾱ||22 +

C

R

R∑

r=1

[
− ᾱTφ(O(r),w

(r)
ref;θ

(r)
α ) (6.42)

+ max
w 6=w

(r)
ref,θ

{
L̄(w

(r)
ref,w) + ᾱTφ(O(r),w;θ)

}]
+

where L̄(w
(r)
ref,w) = µT∆φ(r) + L(w

(r)
ref,w).

ᾱ in problem (6.42) can be learned using Algorithm 1.

3. go back to Step 1, until converge returnα = ᾱ+ µ;

given, then equation (6.38) can be expressed as (6.42) which is exactly the same form

as (6.11) with a new score-augmented loss function,

L̄(w
(r)
ref,w) = µT∆φ(r)

︸ ︷︷ ︸
score loss

+ L(w
(r)
ref,w)︸ ︷︷ ︸

transcription loss

(6.39)

µT∆φ(r) can be viewed as an acoustic and language score loss, where

∆φ(r) = φ(O(r),w;θ)− φ(O(r),w
(r)
ref;θ

(r)
α ).

Inference with structured SVMs based on ᾱ can be written as

{wα,θα} = arg max
w,θ

(
(ᾱ+ µ)Tφ(O,w;θ)

)
. (6.40)

One interesting property of (6.38) is that even if ᾱ is not well trained, e.g., in

the early training iteration, with a proper µ the algorithm will still generate sensible

competing hypothesis and segmentation using equation (6.40). �is is particularly

helpful in reducing the convergence time in medium to large vocabulary CSR (see

Section 8 for more details).
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6.5.3 1-slack optimisation

�ere are two forms of cutting plane algorithms (Joachims et al. 2009), n-slack and

1-slack algorithms. �e algorithm described previously in Algorithm 1 is the n-slack

version. One issue of the n-slack algorithm is that, in theory, the n-slack algorithm

can add R constraints at every iteration (as shown in equation (6.7) of Algorithm 1:

αT
[
φ(O(r),w

(r)
ref)− φ(O(r),w

(r)
∗ )
]
≥ L(w

(r)
ref,w

(r)
∗ )− ξr, r = 1, . . . , R

where R is the size of training set. �is means that the training of structured SVMs

for large vocabulary continuous speech recognition is still a challenging problem (be-

cause each constraint contains a large dimensional joint feature vector). To reduce the

number of constraints in every iteration, the 1-slack algorithm (Joachims et al. 2009)

can be applied. �e �rst step of 1-slack algorithm is to reformulate the optimization

problems (6.4) as

min
α,ξ

1

2
||α||2 +

C

R
· ξ (6.43)

s.t. ∀
(
w

(1)
∗ , . . . ,w

(R)
∗

)
∈ W R,

αT
R∑

r=1

[
φ(O(r),w

(r)
ref)− φ(O(r),w

(r)
∗ )
]
≥

R∑

r=1

L(w
(r)
ref,w

(r)
∗ )− ξ

where ξ ≥ 0 is the only one slack variable shared across all constraints. Each con-

straint in equation (6.43) depends on a combination of
(
w

(1)
∗ , . . . ,w

(R)
∗

)
∈ W R.

�e equivalence between (6.4) and (6.43) can be observed by substituting slack vari-

ables into their objective functions:

1

2
||α||2 +

C

R

R∑

r=1

max
w

(r)
∗ ∈W

[
L(w

(r)
ref,w

(r)
∗ )−αTφ(O(r),w

(r)
ref) +αTφ(O(r),w

(r)
∗ )
]

+
=

1

2
||α||2 +

C

R
max(

w
(1)
∗ ,...,w

(R)
∗

)
∈W R

R∑

r=1

[
L(w

(r)
ref,w

(r)
∗ )−αTφ(O(r),w

(r)
ref) +αTφ(O(r),w

(r)
∗ )
]

+

Note that the max over the combination space W R in the second line distributes over

the independent summands
[
L(w

(r)
ref,w

(r)
∗ )−αTφ(O(r),w

(r)
ref)+α

Tφ(O(r),w
(r)
∗ )
]

.

�us it is equivalent to the �rst line. Based on equation (6.43), the 1-slack algorithm for
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structured SVMs is described in Algorithm 6. �e training process is similar to the n-

slack version in Algorithm 1. It iteratively constructs a working set W R of constraints.

In each iteration, it �nds the best competing hypothesis for each training utterance

(equation (6.45)), adds them to the working set, and computes the solution over the

current set W R (equation (6.44)). �is 1-slack algorithm stops when no constraint

can be found that is violated by more than the desired precision ε.

Algorithm 6: 1-slack Cutting plane algorithm for equation (6.4)

Input: {(O(r),w
(r)
ref)}Rr=1 , C and precision ε;

Initial empty constraint set: W R ← ∅;
repeat

/* solving the 1-slack QP using current constraint set */

(α, ξ)← min
α,ξ≥0

1

2
||α||22 +

C

R
ξ (6.44)

s.t. ∀
(
w

(1)
∗ , . . . ,w

(R)
∗

)
∈ W R :

αT
R∑

r=1

[
φ(O(r),w

(r)
ref)− φ(O(r),w

(r)
∗ )
]
≥

R∑

r=1

L(w
(r)
ref,w

(r)
∗ )− ξ

for r = 1..R do /*generating best competing hypothesis*/

w
(r)
∗ ← arg max

w

{
L(w,w

(r)
ref) +αTφ(O(r),w)

}
(6.45)

W R ← W R ∪
(
w

(1)
∗ , . . . ,w

(R)
∗

)
; /* put it in constraint set */

until /* no constraint can be found that is violated by more than ε */

αT
R∑
r=1

[
φ(O(r),w

(r)
ref)− φ(O(r),w

(r)
∗ )
]
≥

R∑
r=1
L(w

(r)
ref,w

(r)
∗ )− ξ − ε;

returnα

Note that the 1-slack algorithm adds at most a single constraint per iteration as

shown in Algorithm 6. Conversely, the n-slack algorithm can add R constraints at

every iteration. For example, in the AURORA 4 experiments in Chapter 8, 1-slack al-

gorithms produced less than 300 active constraints, whereas n-slack algorithms pro-

duced more than 50, 000 constraints a�er 20 iterations (still far from convergence).

�is makes n-slack algorithms impractical for large vocabulary CSR, since each con-
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straint includes a 2210 dimensional joint feature vector. 20 iterations ofn-slack optim-

isation required more around 18G of memory for AURORA 4. �is rapidly becomes

impractical using the current computer infrastructure. �us for AURORA 4 experi-

ments, only the result of 1-slack algorithm (with proper prior) is shown in Section 8.

�is trend can also be demonstrated using the AURORA 2 small vocabulary task, in

which either algorithms can be applied. For AURORA 2 the n-slack algorithm pro-

duces 642 support vectors and costs 922M memory, whereas 1-slack algorithm only

produces 29 support vectors and costs 83M memory. �is also means that in the 1-

slack algorithm the QP problem (6.44) on current working sets that need to be solved

in each iteration is much smaller and faster.

6.5.3.1 Caching

Another interesting property about 1-slack algorithm (Algorithm 6) is that the con-

straints depend on
R∑
r=1

[
φ(O(r),w

(r)
ref)− φ(O(r),w

(r)
∗ )
]

rather than the individual

φ(O(r),w
(r)
∗ ). �us, a competing hypotheses, w(r)

∗ , can be involved in the set of act-
ive constraints many times. To avoid the computational cost of repeatedly searching
for (the same) w

(r)
α in the large space (or lattice), the 10 most recently used features,

φ(O(r),w
(r)
∗ ), for each training sample are cached. �erefore the search process for

the best competing hypothesis (6.45) becomes

for r = 1, . . . , R do

w
(r)
∗ ← search equation (6.45) in the caches

end for

if

R∑

r=1

[
φ(O(r),w

(r)
ref)− φ(O(r),w

(r)
∗ )
]

remains then

for r = 1, . . . , R do

w
(r)
∗ ← search equation (6.45) in the full space (or lattices)

end for

end if
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�e aim of the caching strategy is to reduce the number of calls to search in the de-

coding space (or lattice).

6.5.3.2 Pruning

For both the n-slack and 1-slack algorithms, constraints added to the working set in

early iterations o�en become inactive later. �ese “inactive constraints” mean that the

constraint is not a support vector (Vapnik 1995), i.e. the corresponding dual parameter

αdual is zero. �is will be discussed in more detail in Chapter 7. �ose constraints that

remain inactive can be removed without a�ecting the �nal solution. �is is practically

useful since it leads to a smaller QP problem (equation 6.44) to be solved in later iter-

ations. In this work constraints that have not been active for more than 50 iterations

are pruned to reduce the memory cost and the size of QP problem.

6.5.3.3 Convergence
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Figure 6.12 Learning curves of structured SVMs. Dashed curve: training with
HMMsegmentationθλ. Vertical dash-dotted lines: optimising reference segment-
ation θ(r)

α (6.10). Solid curve: training with optimal competing segmentation θ
(6.11).
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According to �eorem 2 in (Yuille et al. 2002), iterating step 1 and step 2 of Al-

gorithm 2 is guaranteed to monotonically decrease the objective function (6.9) and

will converge to a minimum or saddle point. �e proof of the convergence is described

in Appendix b. An example of the criterion value for this algorithm against iteration

is shown in Figure 6.12 using the AURORA 2 data (see details about AURORA 2 in

Chapter 8). Every point in Figure 6.12 is a minimum solution of the QP problem (6.44)

in Algorithm 6 under the current set of constraints. �e criterion increases because

the cutting plane algorithm keeps adding constraints to the QP (Joachims et al. 2009)

to get closer to the “real” minimum. However when θ(r)
α is updated the objective

function drops because the linear part of (6.11) decreases13. �e gap between the solid

curve and dashed curve indicates the di�erences from optimising the segmentation,

θ in (6.11), compared to the one obtained from the generative model, θλ in (6.3).

6.5.4 Efficient search

�eoretically, the maximum margin training criterion discussed in Section 6.2 can be

directly applied to train the model parameters. In practice, to make these algorithms

applicable to larger vocabulary systems additional speed improvements are required.

�ere are three search sub-problems that must be solved e�ciently (see Fig. 6.15): the

best reference segmentation in equation (6.10) of Algorithm 2; the best competing

hypothesis in equation (6.6) of Algorithm 1; and the decoding with optimal segment-

ation in equation (6.14). �ese three search problems can be solved using the Viterbi-

style inference algorithm described in the Section 6.3.

6.5.4.1 Lattices constrained search

In small vocabulary speech recognition task, it is feasible to search all possible seg-

mentations and competing hypothesis in all three search problems (see Section 6.3).

However, it is not practical for larger tasks because of the large search space of all
13�e object drops also because the set of previous constraints discarded. Although in theory the

previous constraints could be kept, for implementation simplicity this was not performed.
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Figure 6.13 Inference based on the lattices using arc-level forward-backward al-
gorithm.

possible w and θ. Similar to discriminative training in (Povey 2003), numerator and

denominator lattices Lnum and Lden are generated to restrict the search space. �us

“all possible” segmentations/hypothesis are given by arcs/paths in the lattice. �en a

lattice-based search algorithm is used to �nd the best competing path among the lat-

tices. Figure 6.13 shows a lattice search where n is a node in the Lden, n′ is one of its

previous nodes, and ρn is the best path score at node n. �us, the best competing

path (hypothesis) in equation (6.6) can then be found using the following arc-level

recursion

ρn = max
n′∈Lden

{ρn′ + sn′→n} (6.46)

where sn′→n is the segmental score for the arc between n′ and n (see equation (6.23))

with an arc-level loss. Note that the MPE approximate loss (Povey 2003) can be com-

puted at the arc level (see further details in the next section). �is lattice based arc-level

Viterbi search is a degenerate version of (6.24). Similarly, equation (6.10) can also be

e�ciently searched in the numerator lattice Lnum.

6.5.4.2 Loss Function

Searching for the best competing hypothesis in equation (6.13) during training re-

quires the loss function L(w
(r)
ref,w) to be computed. In theory any loss functions,

e.g., Levantine distance, can be used. In this work, the MPE loss proposed by (Povey

2003) is applied. �is enables the lossL(w
(r)
ref,w) to be approximated at an arc-by-arc
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level,

L(w,w
(r)
ref) ≈

∑

arc

L(arc,w
(r)
ref;θ

(r))

where L(arc,w
(r)
ref;θ

(r)) is a segmental loss based on alignment θ,

L(arc,w
(r)
ref;θ

(r)) =





arc 6= sil→





#sub = max(1− c(arc), 0)

+#ins = max(t(arc)− 1, 0)

+#del = max(1− t(arc), 0)

arc = sil→ #ins = t(arc)

(6.47)

where t(arc) is the approximate total number of non-silence words (or phones) in

the reference that align with arc, and c(arc) is the approximate number of correct

words that align with word arc. �e total t(arc) ≥ 0 is found by summing, for

each reference word z in the utterance that overlaps with arc, the proportion of each

word z that overlaps with arc as a fraction of the length of the arc z. �e number

of correct words 0 ≤ c(arc) ≤ 1 is the largest amount of overlap between a word z

in the utterance that is the same word as arc, again as a fraction of the length of z.

Figure 6.14 gives an example of calculating the approximate loss for a single reference

and hypothesis sentence. In this case, the exact word-level Levenshtein distance and

the approximate loss are equal (both equal to 2). �us, each of these segmental loss

can be computed and incorporated into (6.46) for the lattice search.

one two three

Reference

one two two oh

Reference

Hypothesis

Proportion 1.0 0.8 0.2 0.15 0.85

(arc)t 1.0 0.8 0.35 0.85( )

(arc)c 1.0 0.8 0.2 0.0

ref(arc,w ) 0.0 0.2 0.8 1.0

Figure 6.14�e illustration of calculating the segmental loss.
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Figure 6.15 �e diagram of training and decoding for structured SVMs. �e blue
blocks indicate steps that can be parallelized.

6.5.4.3 Parallelization

For large scale applications, the computational load during training is dominated by

�nding the best competing hypothesis/segmentation. For the n-slack algorithm (Al-

gorithm 1), in order to run in parallel on many machines, the sequential update mode

of the standard cutting plane algorithm needs to be modi�ed to a batch-mode update.

�is can be implemented by holding the update of QP problem (equation (6.7)) un-

til constraints from every training utterance have been produced. Note that for the

n-slack algorithm, this parallelization may decrease the performance slightly (Zhang

and Gales 2011b)14. However the 1-slack algorithm (Algorithm 6) used in this work

can be easily parallelized without any degradation in performance. Paralleling the

loop for equation (6.45) will lead to a substantial speed-up in the training process. In

theory, it is also possible to parallelize the QP optimization (6.44) by several small

problems using low-rank approximation technics (Zhu et al. 2007). However, this is

not investigated in this work.
14Because in the sequential mode n-slack algorithm, α can be updated a�er every training sample.

�is allows the algorithm to potentially �nd better competing w for the subsequence samples, but it can
not be parallelized.
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6.5.5 Adaptation to Speaker and Noise Condition

In speech recognition, the acoustic conditions during training and testing are sel-

dom matched (due to inter-speaker variability, intra-speaker variability, background

noise and channel distortions). For HMMs, as discussed in Section 2.4.5, a range of

model adaptation researches have been devoted to handling this problem including:

maximum a posteriori (MAP) adaptation; linear transformation-based approaches;

model-based noise compensation; and feature enhancement. For details and refer-

ences see (Gales 2011; Gales and Young 2007). When applying these concepts to struc-

tured SVMs there are two options. First, the discriminative model parameters,αT =

[α(v1)T, . . . ,α(vM)T], can be adapted. However with very limited data in the target

domain, in these experiments a single utterance, this is very di�cult.

Alternatively, the HMM parameters λ associated with the joint feature space can

be adapted. �is is discussed in the feature adaptation framework in Section 5.1.3. �e

HMM parameters λ can be adapted using any model-based compensation scheme.

In this work VTS compensation described in Section 2.4.5.2 is used to handle back-

ground noise. �e noise model parameters are estimated using maximum likelihood

estimation (Liao and Gales 2006). �us in the target condition the parameters of

proposed structured SVMs α can be assumed to be speaker and noise-independent,

whereas the HMM parameters λ and joint feature spaces φ(O,w) are speaker and

noise-dependent.

6.6 Summary

�is chapter proposes a structured SVMs (SSVM) framework suitable for medium

to large vocabulary CSR. �e features described in Chapter 5 can be directly applied.

�ese features usually depend on the segmentation of the observations (Zhang et al.

2010; Zweig and Nguyen 2009). �is segmentation is itself a function of the model. A

Viterbi-like algorithm is described to obtain the optimal segmentation using the cur-

rent discriminative model parameters. �is chapter also describes an e�cient max-
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6.6. summary

imum margin training scheme based on lattices. Standard SSVMs are shown to be

related to maximum margin log linear model with a zero mean Gaussian prior of the

discriminative parameter. However, depending on the property of the feature space, a

non-zero mean may be more appropriate. An approach to incorporate a more general

Gaussian prior into SSVM training is detailed. An important feature is that the prior is

used in a form that allows the cutting plane algorithm to be directly applied. Using an

appropriate prior can reduce the convergence time in large scale application. Further-

more, in order to reduce the number of constraints during parameter optimisation on

larger tasks, 1-slack cutting plane algorithm is used rather than the standard n-slack

algorithm. To speed up the training process, caching and parallelization strategies are

also proposed.
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Chapter 7

Kernelized Structured

SVMs for Speech

Recognition

In the previous chapters various discriminative models for speech recognition have

been discussed, e.g., hidden Conditional Random Fields (HCRFs) (Gunawardana et al.

2005), segmental Conditional Random Fields (SCRFs) (Zweig and Nguyen 2009) ,

Conditional Augmented models (C-Aug) (Layton 2006) and Structured Support Vec-

tor Machines (SSVMs) (Zhang and Gales 2011b). However, all these models require

the joint feature spaceφ(O,w) to be explicitly de�ned and computed. �us, the com-

putational cost and memory requirement are at least propositional to the number of

features.

To avoid computing the possibly extremely high (or in�nite) dimensional features,

several methods based on the kernel trick have been developed (Shawe-Taylor and

Cristianini 2004). �ese methods handle the inner product in high-dimensional fea-

tureφ(O) of observation sequence O using a non-linear kernel function,K(Oi,Oj) =
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chapter 7. kernelized structured svms for speech recognition

φ(Oi)
Tφ(Oj). �us the similarity between two observation sequences can be meas-

ured based on the kernel function, instead of computing the high-dimensional φ(·)
and the dot product. Although kernel methods has been partially evaluated for frame-

level phoneme classi�cation tasks (Kubo et al. 2010; 2011), not much work has been

reported on maximum margin kernel methods for continuous speech recognition.

To kernelize these models in Chapters 4 and 6 for continuous speech recognition,

this chapter proposes a joint kernelK ((Oi,wi), (Oj ,wj)) = φ(Oi,wi)
Tφ(Oj ,wj),

which de�nes a similarity between observation-word sequence pairs, (O,w). �e

proposed joint kernel can be decomposed at the frame or segment level, which al-

lows e�cient maximum margin training and decoding. One elegant property of this

framework is the interface between the speech data and the learning algorithm is made

uniquely through the kernel function (as illustrated in Figure 7.1). �is modularity al-

lows developing general learning algorithms and designing suitable kernels for speci�c

problems independently. �e same algorithm will work with any kernel and hence for

data in any domain. Another advantage of kernelization is it allows nonlinear decision

boundary in the joint space. Although this chapter focuses on kernelizing the SSVMs,

the algorithms described here can be directly applied to kernelize any structured dis-

criminative models, e.g., hidden CRFs and segmental CRFs (Zhang and Gales 2013a).

Data
Kernel

Function Gram Matrix

AlgorithmK
(
(·, ·), (·, ·)

)

Training
Algorithm

(O(1),w(1))

(O(R),w(R))

Models

…
…

…
…

…

G
α or αdual

Figure 7.1Kernelmethods o�er amodular framework. In the �rst step, a dataset is
processed into a Grammatrix. In the second step, a variety of learning algorithms
can be used to analyze the data, using only the information contained in the Gram
matrix. Note in binary SVMs, the dimension of Gram matrix is equal to the size
of training set R. In multi-class SVMs, the dimension becomes RM , whereM is
the number of classes. �is Chapter will show that the dimension of Grammatrix
in structured SVMs becomes in�nite.
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7.1 Maximum Margin Training with Kernels

7.1.1 Dual representation

Given an observation sequence, O = {o1, . . . ,oT } and the corresponding label se-

quence w = {w1, . . . , w|w|}, both training and decoding processes for many dis-

criminative models, e.g., segmental CRFs and structured SVMs, can be expressed as

an inner productαTφ(O,w) between model parameters and features.1 In the previ-

ous discussion this is computed by assuming that there is an explicit representation of

each of these. It is also possible to consider a more general form to compute the in-

ner product — using kernel functions (in the same way as non-linear SVMs (Vapnik

1995)). �is allows the “kernel trick” to be used to avoid explicitly computing and

saving the large feature space.

Similar to SVMs (Vapnik 1995), to kernelize the structured SVMs, it is necessary

to rewrite the 1-slack training Algorithm 6 described in Section 6.5.3 in the dual form

(Boyd and Vandenberghe 2009; Joachims et al. 2009). Note that the model para-

meters α are not trained directly in this case. Instead the dual variables αdual =
[
αdual1 , . . . , αdualτ , . . . , αdualn

]
are learned by solving the following dual optimization

of equation (6.44)

max
αdual
τ ≥0

− 1

2
αdualTGαdual +

n∑

τ=1

αdualτ Lτ (7.1)

s.t.
n∑

τ=1

αdualτ = C

where n is the number of training iterations in Algorithm 6, Lτ is the average loss at

iteration τ

Lτ =
1

R

R∑

r=1

L(w
(r)
ref,w

(r)
τ )

where w
(r)
τ is the competing word sequence for the rth utterance in the τth iteration.

1For simplicity the segmentation θ is ignored in this chapter. It can be easily involved without af-
fecting the kernelization described below.
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G = [gt,τ ]n×n is the Gram matrix with elements

gt,τ =
1

R2

[
R∑

i=1

(
φ(O(i),w

(i)
ref)− φ(O(i),w(i)

τ )
)]T

(7.2)

[
R∑

j=1

(
φ(O(j),w

(j)
ref)− φ(O(j),w

(j)
t )
)]

Note that the dual optimization (7.1) only depends on the Gram matrix G = [gt,τ ]n×n
2,

where gt,τ depends on the inner product of the joint feature vectorsφ(·), and thus can

be replaced by the joint kernel function K(·, ·),

gt,τ =
1

R2

R∑

i=1

R∑

j=1

[
(7.3)

K
(

(O(i),w
(i)
ref), (O

(j),w
(j)
ref)

)
−K

(
(O(i),w

(i)
ref), (O

(j),w(j)
τ )
)

−K
(

(O(j),w
(j)
ref), (O

(i),w
(i)
t )
)

+K
(

(O(i),w
(i)
t ), (O(j),w(j)

τ )
)]

where K (·, ·) is a joint kernel function

K
(
(O(i),w(i)), (O(j),w(j))

)
= φ(O(i),w(i))Tφ(O(j),w(j)) (7.4)

�e inner product in equation (7.4) is computed either explicitly or via the Kernel

function. Note that if only the linear kernel is used, it is typically more e�cient to

compute gt,τ in the form of equation (7.2). If nonlinear kernels are applied (e.g., ker-

nels that imply high-dimension features), the equation (7.3) may be more e�cient.

�e joint kernels are easier to describe analytically, since they express the correl-

ation between two (O,w) pairs (Weston et al. 2005). More details will be discussed

in Section 7.2. �us the interface between the speech data and the learning algorithm

is made uniquely through this joint kernel function. �e form of output parameter

αdual is described in the following section.

2It is more e�cient to store the Gram Matrix G instead all the joint features during the training.
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7.1.2 Kernel algorithm

�e kernelized training algorithm can be simply described in three steps. First, solve

the dual quadratic program (7.1) based on the current Gram matrix G. At iteration n

this will return ann-dimensionalαdual. Second, use thisαdual to �nd the “best” com-

peting hypothesis w
(r)
n+1 for each utterance r in parallel. �ese

{
w

(1)
n+1, . . . ,w

(R)
n+1

}

will be used to compute the losses and evaluate the kernel functions. �ird, accumu-

late the kernel values in equation (7.3) to compute [g1,n+1, . . . , gn+1,n+1]T and update

the Gram matrix by one more column and row as illustrated in Figure 7.2. �e process

is summarized in Alg. 7. �e algorithm is guaranteed to converge as long as the Gram

matrix G is positive de�nite.

gτt depends on K((O(i),w
(i)
τ ), (O(j),w

(j)
t ))g11 g12

G =

g21
Training 

Algorithm

…
…

…
…

gτt

αdual
1

αdual
2

αdual
τ

…
…

……

• Vast competing hypothesizes ⇒ Vast Gram matrix

• Every iter [τ ], adding one new row and column
using one new set of competing hypothesis

{
w1

τ , . . . ,w
R
τ

}

Figure 7.2 Gram matrix and kernel algorithm. �e training process is detailed
in Algorithm 7 and G = [gt,τ ]n×n is computed in equation (7.3). �e matrix is
in�nity large in theory. In every iteration the matrix is grow by one dimension.

Interestingly, in kernelized binary SVMs the size of Gram matrix GR×R is �xed

(as there are only two classes) (Vapnik 1995); however for kernelized structured SVMs

the size of Gn×n is in�nite in theory (as there are in�nite number of possible classes).

Note that the ideal Gram matrix is not full rank. Although there are in�nite possible

competing hypotheses, the number of the competing hypotheses that will a�ect the

results is limited as discussed in Section 6.2.1. �erefore, the training process can be

viewed as a selection of “important” rows and columns from the ideal in�nite Gram

matrix, by iteratively searching the “best” competing hypotheses. �us, during train-

ing the size of the Gram matrix Gn×n is dynamic and depends on the number of “best”

competing hypotheses has been found. In practice, the vectorαdual is usually sparse.
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Algorithm 7: Kernel algorithm for structured SVMs (dual version of Alg. 6)

Input: {(O(r),w
(r)
ref)}Rr=1 and joint kernel function K ;

repeat
/* Step-1: Solve current dual program */

αdual ← max
αdual
τ ≥0

− 1

2
αdualTGαdual +

n∑

τ=1

αdualτ Lτ (7.5)

s.t.
n∑

τ=1

αdualτ = C

/* Step-2: Find “best” competing hypothesis */
for r = 1..R do

w
(r)
n+1 ← arg max

w

{
L(w

(r)
ref,w) +αTφ(O(r),w)

}
(7.6)

whereαTφ(O(r),w) is implicitly computed in (7.8).

/* Step-3: Update Gram matrix G */
Use w

(r)
n+1 and (7.3) to compute a new column: [g1,n+1, . . . , gn+1,n+1]T,

Update Gn×n → G(n+1)×(n+1);
n = n+ 1;

until /* no new “best” competing hypothesis can be found */ ;
returnαdual

In analogy to binary SVMs, we can refer to those w
(1)
τ , . . . ,w

(R)
τ with non-zeroαdualτ

as Support Vectors. However, note that Support Vectors in the 1-slack formulation are

linear combinations of multiple examples.

To reduce the memory cost, in this work w
(1)
τ , . . . ,w

(R)
τ and the τ th row of Gram

matrix can be pruned when the correspondingαdualτ remains 0 for more than 100 iter-

ations. In this case the corresponding competing hypotheses are treated as “inactive”.

It is also possible to use a uniformly random sampling to select a subset of training

data in every iteration of step 2 in Algorithm 7. �us the kernel computation in gt,τ

can be signi�cantly reduced fromO(R2) toO(R′2) (Yu and Joachims 2008), whereR′

is the number of samples. �ere has also been extensive work on speeding up kernel

methods based on Gram matrix approximation for binary class�cation. �e Nystrom

method has been proposed in (Williams and Seeger 2001) to approximate the kernel
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matrix used for Gaussian Process classi�cation. Low-rank approximation has been

exploited to speed up the training of kernel SVMs (Fine and Scheinberg 2002). But

these are not examined this work.

7.1.3 Relationship between dual and primal parameters

In a similar fashion to SVMs, the model parameterα can be retrieved fromαdual by

linearly combining the joint features of the reference and competing hypotheses,

α =
1

R

∑

∀τ,r
αdualτ

[
φ(O(r),w

(r)
ref)− φ(O(r),w(r)

τ )
]

(7.7)

where r = 1, . . . , R and τ corresponds to all the support vectors (“active” competing

hypotheses). Using the dual parameters αdual, one can compute the inner products

of primalα and joint features via the kernel functions,

αTφ(O,w) =


 1

R

∑

∀τ,r
αdualτ

[
φ(O(r),w

(r)
ref)− φ(O(r),w(r)

τ )
]


T

φ(O,w) (7.8)

=
1

R

∑

∀τ,r
αdualτ

[
K
(

(O,w), (O(r),w
(r)
ref)

)
−K

(
(O,w), (O(r),w(r)

τ )
)]

Further details about equation (7.8) are discussed in Section 7.3.

7.2 Form of joint Kernels

To avoid working in the high-dimensional features space, in the previous section the

joint kernel is introduced to replace the inner product of joint features. �e purpose of

the joint kernel, K
(
(O(i),w(i)), (O(j),w(j))

)
, is to describe a non-linear similarity

between two observation-label pairs by mapping the pairs into a joint feature space.

Unlike traditional kernels which only encode the information about observations and

labels independently of each other, joint kernels can also encode known dependencies

between observations and labels. Joint kernels have already been studied in (Joachims

et al. 2009; Weston et al. 2005). In theory any function in the form of (7.4) can be
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treated as a joint kernel. However, this general utterance-level form may make the

training and decoding slow. To enable e�cient decoding, frame-level and segment-

level features were introduced in Chapter 5. �is section derives their corresponding

joint kernel functions.

7.2.1 Frame-level kernels

If the frame-level features φ(O,w;θ) in equation (5.2) are used (implicitly), the cor-

responding joint kernel function between utterances
(
O(i),w(i)

)
and

(
O(j),w(j)

)

can be derived as

K
(

(O(i),w(i)), (O(j),w(j))
)

=

(
Ti∑

t=1

φ(o
(i)
t , θ

(i)
t )

)T



Tj∑

t=1

φ(o
(j)
t , θ

(j)
t )




=




Ti∑

t=1




...

δ(θ
(i)
t = sw)ψ(o

(i)
t )

...







T


Tj∑

t=1




...

δ(θ
(j)
t = sw)ψ(o

(j)
t )

...





 (7.9)

where θt is the state label of frame t and sw indicates the state of word w. ψ(·) is

the features extract from frame-level observations (not depend on the labels). Two

examples ofψ(·) were shown in Section 5.1.1.1 and 5.1.1.2. �e frame-level joint kernel

can then be expressed as3

K
(

(O(i),w(i)), (O(j),w(j))
)

=

Ti∑

t=1

Tj∑

t′=1

δ(θ
(i)
t = θ

(j)
t′ ) k

(
ψ(o

(i)
t ),ψ(o

(j)
t′ )
)

(7.10)

where k(·, ·) could be any static kernels used for binary SVMs (Shawe-Taylor and

Cristianini 2004) (as also discussed in Section 3.2.1), e.g., linear kernels, polynomial

kernels and Radial Basis Function (RBF) kernels. Using the joint kernel in equation

(7.10) has three advantages. First, explicitly computing the joint featuresφ(O,w;θ) in

equation(5.2) can be avoided. Second, equation (7.10) implies a general way to expand
3For simplicity, the language features are ignored in the kernels. �e language scores can be easily

computed and merged into the acoustic scores using the transitional way. �is will not a�ect any training
and inference algorithms in this chapter.
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the feature space ψ(·) by embedding it into a static kernel k(·, ·). If a linear kernel

is applied, equation (7.10) will become (7.9). Alternatively, if a RBF kernel is applied,

an in�nite dimensional feature space is implied. If an arc-cosine kernel is applied, the

corresponding feature mapping can be viewed as an in�nite neural network (Cho and

Saul 2010). �ird, this joint kernel can be decomposed into a set of frame-level kernels

k. If the state labels θ(i)
t 6= θ

(j)
t′ , the term δ will be zero and there is no need to compute

the kernel k(·, ·). �is makes e�cient kernel-based decoding become possible (more

details are described in Section 7.3).

7.2.2 Segment-level kernels

If the segment-level features φ(O,w;θ) in equation (5.1.2) are used (implicitly), let

O = {O1, . . . ,Om, . . .} is the observation sequence and w = {w1, . . . , wm, . . .}
is the word sequence, where (Om, wm) is the mth segment, the corresponding joint

kernel function between utterances
(
O(i),w(i)

)
and

(
O(j),w(j)

)
can be derived as4

K
(

(O(i),w(i)), (O(j),w(j))
)

=



|w(i)|∑

m=1

φ(O(i)
m , w

(i)
m )




T

|w(j)|∑

m′=1

φ(O
(j)
m′ , w

(j)
m′ )




=




|w(i)|∑

m=1




δ(wm = v1)ψ(O
(i)
m )

...

δ(wm = vM)ψ(O
(i)
m )







T


|w(j)|∑

m′=1




δ(wm′ = v1)ψ(O
(j)
m′ )

...

δ(wm′ = vM)ψ(O
(j)
m′ )







(7.11)

whereψ(·) is the features extract from segmental observations. Two examples ofψ(·)
were shown in Section 5.1.2.1 and 5.1.2.2. �us the segment-level joint kernel can be

expressed as

K
(

(O(i),w(i)), (O(j),w(j))
)

=

|w(i)|∑

m=1

|w(j)|∑

m′=1

δ(w(i)
m = w

(j)
m′ ) k

(
ψ(O(i)

m ),ψ(O
(j)
m′ )
)

(7.12)

4For simplicity, the segmentation θ is ignored. It can be included in the kernels without a�ecting
any properties described in this chapter.
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where k(·, ·) could be any static kernels discussed in Section 3.2.1, e.g., linear ker-

nels, polynomial kernels and RBF kernels. Similar to the frame-level case, using the

joint kernel in equation (7.12) has same advantages. In this case, the joint kernel can

be decomposed into a set of segment-level kernels k. If the word (or subword) la-

bels w(i)
m 6= w

(j)
m′ , the term δ will be zero and there is no need to compute the kernel

k(·, ·). �is makes e�cient kernel-based decoding become possible (more details are

described in Section 7.3). �e relationship between the kernel k(·, ·) and joint kernel

K ((·, ·), (·, ·)) in (7.12) can be illustrated in Fig 7.3.
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K !→ φ(O,w)

Figure 7.3 An illustration of joint kernel and its joint feature space, where
K ((·, ·), (·, ·)) = φ(·, ·)Tφ(·, ·). On each segment mapping ψ(·) is used to
extract the segmental features. Two examples of ψ(·) are the log likelihood fea-
tures in Section 5.1.2.1 and derivative features in Section 5.1.2.2. �e RBF kernel,
krbf(·, ·), is applied on top of the segmental features.�e resulting in�nite features
are concatenated (implicitly) to yields the joint feature space φ (O,w).

7.3 Inference with Kernels

Similar to the inference discussion in Section 6.3, the Algorithm 7 described in previ-

ous section requires the following inference subproblem5:

• Inferring the most competing hypothesis using kernels for each training utter-
5Subsituting the equation (7.8) into the inference problems (6.13) and (6.14), equations (7.13) and

(7.14) can be derived.
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ance
(
O(r),w

(r)
ref

)
:

max
w 6=wref

{
L(w

(r)
ref,w) +αTφ(O(r),w)

}
=

max
w 6=wref

{
L(w

(r)
ref,w) +

∑

τ=1,...n
r′=1,...,R

αdualτ

[
K
(

(O(r),w), (O(r′),w
(r′)
ref )

)
−

K
(

(O(r),w), (O(r′),w(r′)
τ )

)]}

(7.13)

where w
(r′)
τ is the competing hypothesis of utterance r′ found in iteration τ . �e

similar problem arises in the decoding process of kernelized structured SVMs or ker-

nelized log linear models:

• Decoding a test utterance O based on kernels:

max
w

{
αTφ(O,w)

}
=

max
w

∑

τ=1,...n
r=1,...,R

αdualτ

[
K
(

(O,w), (O(r),w
(r)
ref)︸ ︷︷ ︸

reference

)
−K

(
(O,w), (O(r),w(r)

τ )︸ ︷︷ ︸
competing

)]

(7.14)

where w
(r)
τ |r=1,...,R

τ=1,...,n are the competing word sequences found in the training phase.

Relating this formulation to support vectors in the SVM classi�cation(Vapnik 1995),

here w
(r)
τ and w

(r)
ref can also be viewed as support vectors. Essentially, equations (7.13)

and (7.14) are the same inference problem. �is section focuses on the decoding prob-

lem in equation (7.14). �ere are two joint kernels in this equation. �e front can

be viewed as a similarity between test utterance and a training reference. �e other

can be viewed as a similarity between test utterance and the set of competing hypo-

thesis. Solving (7.13) can be implemented by extending the algorithms in the following

two subsections to indicate the loss L(w
(r)
ref,w). Incorporating this loss function has

already discussed in Section 6.5.4.2.
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7.3.1 Inference with frame-level kernels

When the frame-level kernels in (7.10) are used, the inference problem in equation

(7.14) can be expressed as

ŵ = arg max
w

∑

τ=1,...n
r=1,...,R

αdualτ

[
K


(O,w),

reference︷ ︸︸ ︷
(O(r),w

(r)
ref)


−K


(O,w),

competing︷ ︸︸ ︷
(O(r),w(r)

τ )



]

= arg max
θt∈{sw}

∑

τ=1,...n
r=1,...,R

αdualτ

[
T∑

t=1

Tr∑

t′=1

δ(θt = θ
(r)
t′,ref) k

(
ψ(ot),ψ(o

(r)
t′ )
)
−

T∑

t=1

Tr∑

t′=1

δ(θt = θ
(r)
t′,τ ) k

(
ψ(ot),ψ(o

(r)
t′ )
)]

(7.15)

where θt ∈ {sw} is the hidden state (or subphone) label of frame t and sw indicates

the state of wordw. θ(r)
t′,ref is the hidden state of frame t′ in the utterance (O(r),w

(r)
ref).

θ
(r)
t′,τ is the hidden state of frame t′ in the utterance (O(r),w

(r)
τ ). Note that the form of

frame-level kernel in (7.10) allows the computation ofk (·, ·) between two observations

in equation (7.15) can be skipped, if their state label are di�erent (term δ will be zero).

�is makes e�cient kernel-based decoding become possible.

LetTref(θt) andTτ (θt) denote all the frames in
{

O(r),w
(r)
ref

}R
r=1

and
{

O(r),w
(r)
τ

}R
r=1

that have the same state label with θt respectively. �us equation (7.15) can be simpli-

�ed as

arg max
θt∈{sw}

T∑

t=1

[
n∑

τ=1

αdualτ


 ∑

t′∈Tref(θt)

k (ψ(ot),ψ(ot′))−
∑

t′∈Tτ (θt)

k (ψ(ot),ψ(ot′))



]

(7.16)

�e search process (7.16) can be split into two part. First, for each frame t and each

state θt, the frame-level kernel scores need to be computed,

s(θt) =
n∑

τ=1

αdualτ


 ∑

t′∈Tref(θt)

k (ψ(ot),ψ(ot′))−
∑

t′∈Tτ (θt)

k (ψ(ot),ψ(ot′))




(7.17)
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�e second is obtaining the hidden state sequence, {θ1, . . . , θT } and word labels,

{w1, . . . , w|w|}. �is can be e�ciently implemented using the Viterbi algorithm (Vi-

terbi 1982).

Time

labels

t+ 1t

ρ
(θt+1)
t+1

ρ
(θt)
t

θ ∈ {sw}

−αdual
1

ot

∑

∑

∑

−αdual
1

...
...

∑

t′∈Tτ=n(θt=s1)

k (ψ(ot),ψ(ot′))
s(θt = s1)

s(θt = sM )

∑

t′∈Tτ=1(θt=s1)

k (ψ(ot),ψ(ot′))

∑

t′∈Tτ=n(θt=sM )

k (ψ(ot),ψ(ot′))

...

−αdual
n

...

: s(θt)

: αTφlm(θt−1, θt)
......

......

∑

t′∈Tτ=1(θt=sM )

k (ψ(ot),ψ(ot′))

......

......

−αdual
n

bias

bias

bias

......

......

1

M

j

Figure 7.4 Inference with farme-level kernels. Each big node (computing kernels)
can also be viewed as a nonlinear operation fτ,θt(ot) to the input vectorot, where
τ = 1, . . . , n is the index of support vectors (“active” competing hypotheses), θt is

the state label and bias1 =
n∑
τ=1

αdualτ

∑
t′∈Tref(θt=s1)

(ψ(ot),ψ(ot′)). Note that

this diagram can be related to the decoding process of hybrid systems with one
layer MLP.

Let ρ(θt)
t denote the best score for a state sequence θ = {θ1, . . . , θt} ending with

θt at time t. Given time t+ 1 and corresponding label θt+1, the score s(θt+1) can be

computed in equation (7.17). �e best score for a label sequence ending with θt+1 can

then be expressed in the recursive form,

ρ
(θt+1)
t+1 = max

θt∈{sw}

{
ρ

(θt)
t + s(θt+1)

}
(7.18)
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�e inference process is illustrated in the Figure 7.4. Note that the language score

αTφlm(θt−1, θt) described in Section 6.3.1 (or its kernelized form) can also be incor-

porated into equation (7.18). However this is not discussed in this chapter. By running

the above Viterbi search from time 1 to T the optimal label sequence and segment-

ation can be obtained by tracing back the frame-level labels that maximising ρ(θT )
T .

�e complexity of the above searching process isO(MT ) where M is the number of

hidden states (or subphones) of all the words in the dictionary. Pruning options such

as beam pruning (Young et al. 2006) can be directly applied.

7.3.2 Inference with segment-level kernels

When the segment-level kernels in (7.12) are used, the observation and word sequences

can be split into segment level. Let O(r) = {O(r)
ref,1, . . . ,O

(r)
ref,m, . . .} denote the ob-

servation sequence for utterance r and w
(r)
ref = {w(r)

ref,1, . . . , w
(r)
ref,m, . . .} denote the

corresponding reference, where (O
(r)
ref,m, w

(r)
ref,m) is their mth segment. Addition-

ally, let O(r) = {O(r)
τ,1, . . . ,O

(r)
τ,m, . . .} denote the observation sequence for utterance

r and w
(r)
τ = {w(r)

τ,1, . . . , w
(r)
τ,m, . . .} denote the corresponding competing hypothesis

found in training iteration τ , where (O
(r)
τ,m, w

(r)
τ,m) is theirmth segment. �e inference

problem in equation (7.14) can be expressed as

ŵ = arg max
w

∑

τ=1,...n
r=1,...,R

αdualτ

[
K


(O,w),

reference︷ ︸︸ ︷
(O(r),w

(r)
ref)


−K


(O,w),

competing︷ ︸︸ ︷
(O(r),w(r)

τ )



]

= arg max
w1,...,wm,...

∑

τ=1,...n
r=1,...,R

αdualτ

[ |w|∑

m=1

|w(r)
ref|∑

m′=1

δ(wm = w
(r)
ref,m′) k

(
ψ(Om),ψ(O

(r)
ref,m′)

)
−

|w|∑

m=1

|w(r)
τ |∑

m′=1

δ(wm = w
(r)
τ,m′) k

(
ψ(Om),ψ(O

(r)
τ,m′)

)]

(7.19)
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LetAref andAτ denote all the segments in the
{

O(r),w
(r)
ref

}R
r=1

and
{

O(r),w
(r)
τ

}R
r=1

,

respectively. �us the equation (7.19) can be simpli�ed as

arg max
w1,...,wm,...

|w|∑

m=1

{
n∑

τ=1

αdualτ

[ ∑

wm=w
(r)

ref,m′
m′∈A

k
(
ψ(Om),ψ(O

(r)
ref,m′)

)
−

∑

wm=w
(r)

τ,m′
m′∈Aτ

k
(
ψ(Om),ψ(O

(r)
τ,m′)

)]}

(7.20)

Equation (7.20) shows that the kernel-based decoding can be decomposed at the seg-

mental level. �us the word sequence w that maximises (7.20) can be e�ciently found

via a segment-level Viterbi search.

arc

Start
End

lattice L for a test utterance O

Aref

arc   
Aτ

numerator lattices of training set

denominator lattices of training set

∈

+

-

the

the

dog

duck

Figure 7.5 Inference with segment-level kernels based on lattices. Aref denotes
all the arcs in the numerator lattices. Aτ denotes those the arcs in the competing
hypotheses (paths in the denominator lattices) that were generated in training
iteration τ using equation (7.6).

In practice, similar to the discriminative training in (Valtchev et al. 1997), lattices

are usually generated during training and decoding to restrict the search space of w.

�e search process (7.20) can thus be split into two distinct terms. First given a seg-

ment (an arc in the decoding lattice), e.g., the arc between nodes e′ and e as shown in

Figure 7.5, the segmental kernel score need to be computed,

se′e =

n∑

τ=1

αdualτ

∑

arc=e′e
arc∈A

k(Oe′e,Oarc)−
n∑

τ=1

αdualτ

∑

arc=e′e
arc∈Aτ

k(Oe′e,Oarc) (7.21)
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�e second is to obtain the best path with maximum score in the lattice. �is requires

an arc-level Viterbi search,

ρe = max
e′∈L
{ρe′ + se′e} (7.22)

where e is a node in the test lattice L, e′ is one of its previous nodes, and ρe is the best

path score at node e as shown in Figure 7.5. se′e is the decomposed kernel scores for

the arc e′e shown in equation (7.21). �e search process is illustrated in Figure 7.5 and

summarized in the following algorithm.

Algorithm 8: Inference with segment-level kernels.

Input: observations O, lattice L
Output: word sequence ŵ (best path in L) with con�dence score

/* Initialization */
sort all the nodes in L in the order of time.
set score ρstart = 0

/* Forward propagation */
for each node e in L (in Forward direction) do

for each previous node e′ that connected to e do
compute se′e using equation (7.21)

update node score: ρe ← max
e′∈L
{ρe′ + se′e};

save previous node: Prev(e)← arg max
e′∈L
{ρe′ + se′e}.

/* Backward trace */
e← the end node
while e 6= start node do

retrive e′ ← Prev(e);
save word: ŵ← [e′e, ŵ]
e← e′

return ŵ, ρend

7.4 Relation To Prior Work

�e work presented in this chapter is a kernelized version of structured SVMs de-

scribed in previous chapter. However, many other models for speech recognition can
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also be kernelized. In the following we discuss the relationship of this work to some

of these alternative models.

7.4.1 Relation to kernelized log linear models

According to equation (6.30) and the previous discussion in Section 6.4.2, structured

SVMs can be viewed as maximum margin log linear models. �erefore the training

and inference algorithms proposed in this chapter can also be applied to kernelize

log linear models (Gales et al. 2012; Zhang and Gales 2013a). A kernelized log linear

model was also proposed in (Kubo et al. 2011). Note that the kernel in (Kubo et al. 2011)

was de�ned on the frame-level whereas the joint kernel in this work is de�ned on the

sentence-level. �e kernel algorithm in (Kubo et al. 2011) is based on MMI criteria,

whereas the algorithm here is based on maximum margin training. Furthermore, the

work in (Kubo et al. 2011) is actually a low-rank approximation of kernel methods

whereas in this paper the exact Gram matrix was used. To the best of our knowledge,

this work is the �rst attempt at a sentence-level large-margin kernel method for CSR.

7.4.2 Relation to classical kernel methods

�e joint kernels and the Gram matrix are already discussed in Section 7.1.1. It may also

interesting to emphasis the di�erences between the joint kernel and classical kernel

methods.

Kernel function In classical kernel methods, the kernel function K(O(i),O(j)) =

φ(O(i))
T
φ(O(j)) is used to measure the similarity between observation se-

quences regardless of labels. �is is partly because the initial research on kernel

methods focused on binary classi�cation tasks, of which the SVM is the typical

example. However, continuous speech recognition requires kernels to measure

a similarity between observation-label pairs, i.e.,K
(
(O(i),w(i)), (O(j),w(j))

)
=

φ(O(i),w(i))
T
φ(O(j),w(j)). �is joint kernel can encode more than just in-

formation about observations or label sequences independent of each other;
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it can also encode known dependences (or correlations) between observations

and label sequences. Rather than just being able to say whether two observa-

tions are similar (or class), the joint kernels o�er a way of telling in which parts

are they alike. �ey are able to specify which parts of the observations are more

likely to trigger which parts of the labels. �ese can be seen in equation (7.12).

Grammatrix In classical kernel methods for binary SVMs, the size of Gram matrix

GR×R is �xed. �e dimension of Gram matrix is equal to the size of training

setR. �is is because there are only two classes in this case. Each element in the

Gram matrix computes a similarity between two feature vectors. In multi-class

SVMs, the dimension of Gram matrix becomes RM , where M is the number

of classes (Crammer and Singer 2001). However, in joint kernel methods for

structured SVMs, the dimension of Gn×n is in�nite in theory. �is is because

there are in�nite number of possible classes (each class is a hypothesis for an

utterance). Each element in Gram matrix depends on similarities between four

sets of R joint feature vectors (see equation (7.3)). �e Gram matrix of joint

kernels is dynamic during training (it grows one dimension every iteration).

�e di�erences between two the Gram matrixes are shown in Figure 7.6.
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Figure 7.6 Comparison between joint kernels and trainditional kernels.

Support vectors In classical kernel methods, support vectors are the individual train-

ing examples φ(O(i)), where the corresponding αduali > 0. In joint kernel

methods, support vectors are the linear combinations of multiple examples,
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φ(O(i),w
(i)
τ )|i=1,...,R, where the correspondingαdualτ > 0 and τ is the training

iteration.

7.5 Summary

�is chapter proposes a kernelized method in structured SVMs for continuous speech

recognition. Kernelizing the structured SVMs has two advantages. First, it avoids

explicitly computing and storing the high dimensional features. Second, it intro-

duces nonlinearity to the decision boundary of the structured SVMs. �is chapter has

two main contributions. First, traditional kernels for speech recognition focused on

measuring the similarity between two observation sequences. �e proposed joint ker-

nels de�ne a sentence-level similarity between two observation-label sequence pairs.

Second, this chapter addresses how to e�ciently employ kernels in maximum mar-

gin training and decoding based on lattices. Future work will examine the RBF and

derivative kernels in the proposed framework.
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Chapter 8

Experiments

�is chapter describes the evaluation of the structured SVMs described in Chapter 6

for speech recognition. �e models are compared with several commonly used gener-

ative and discriminative models. To illustrate that the proposed structured SVMs can

be adapted to mismatched acoustic condition, the noise-corrupted corpus AURORA 2

and 4 were used. �e AURORA 2 corpus is used to contrast the performance of 1-slack

and n-slack algorithms, and to demonstrate the gains from optimising the segment-

ation and modeling the prior. �e AURORA 4 experiments are used to illustrate the

performance of the proposed SSVM framework for medium vocabulary speech re-

cognition. �e 5K Wall Street Journal (WSJ0) data, the clean part of AURORA 4, were

used to evaluate the performance of structured SVMs excluding the noise a�ects. Sev-

eral commonly used generative and discriminative models, e.g., HMMs, binary SVMs,

Multi-class SVMs and SCRFs are also examined for comparison.

8.1 AURORA 2 Task

�is section describes the experiments on the AURORA 2 tasks with word-based

models. AURORA 2 is a standard small vocabulary noise corrupted continuous digit

recognition task (Pearce and Hirsch 2000). �e vocabulary size, M , is only 12 (one

to nine, plus zero, oh and silence). �e utterances are one to seven digits long based
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on the TIDIGITS database with noise arti�cially added. �e training data is available

in two conditions: clean and multi-style. �e clean training data consists of 8440 di-

git strings up to 7 digits long spoken by 55 male and 55 female US-English speakers.

�e multi-style training data was obtained by arti�cially corrupting the clean training

data using 4 types of noise N1 to N4: subway, babble, car and exhibition hall. �e

SNR of ranged in 5 dB increments: 0, 5, 10, 15 and 20 dB. �e test set was obtained

by arti�cially corrupting digit strings spoken by 52 male and 52 female US-English

speakers in clean conditions using 8 types of noise where SNR ranged in 5 dB incre-

ments: 0, 5, 10, 15 and 20 dB. �e test set is split into 3 sets: A, B and C. Set A contains

clean data corrupted using the same 4 types of noises as the multi-style training data.

Set B contains clean data corrupted using 4 di�erent types of noise, namely restaurant,

street, airport and train station. In this case there exists a mismatch between training

and test data also for the multi-condition training. �is will show the in�uence on

recognition when considering di�erent noises from the ones used for training. Set C

contains half of the clean data corrupted by one type of noise from each set and a chan-

nel distortion. Subway and street are used as noise signals. �e number of utterances

in each set is 20002, 20002 and 10001 respectively.

8.1.1 Experimental Setup

8440 clean mixed-gender training utterances, about 4 hours total, from 110 speak-

ers, were used to train the acoustic generative models (HMMs). A 39 dimensional

feature vector, ot, is extracted consisting of 12 MFCCs appended with the zeroth cep-

strum, delta and delta-delta coe�cients. �e generative models, HMMs, used in this

experiment were 16 emitting states whole word digit models. �e HMM state output

distribution is a Gaussian mixture model (GMM) with 3 components and diagonal

covariance matrices. No language model was used, any length digit sequences were

allowed. �e HMM parameters were ML estimated described in Section 2.3.1 on the

clean training data. �e average WER performance of this, clean trained, HMM sys-

tem was 43.31%. �e �rst row in Table 8.1 shows the word error rate (WER) per-
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Model Set A Set B Set C Avg.

HMM 43.9 46.6 35.7 43.3
HMM-VTS 9.8 9.1 9.5 9.5

Table 8.1WER performance of Clean-trained and VTS-compensated HMMs on
AURORA 2 task. �e baseline generative system is HMM-VTS.

formance for clean trained HMMs in each test sets. In order to address the mismatch

in noise conditions between the clean training data and the noise-corrupted test sets,

the VTS model-based compensation (for details see Section 2.4.5.2) was applied fol-

lowing the procedure described in (Gales and Flego 2010). An initial estimate of the

background additive noise for each utterance was obtained using the �rst and last 20

frames of the utterance. �is was then used as the noise model for VTS compensation

and each utterance recognised. �is hypothesis was used to estimate a per-utterance

noise model in an ML-fashion. �e �nal recognition output used this ML-estimated

noise model for VTS compensation. �e second row in Table 8.1 shows the WER

performance for VTS-based HMMs in each test sets. Compared with clean trained

HMMs, a signi�cant improvement is observed in each test set for HMM-VTS sys-

tem. Note the word error rate for the clean, uncompensated, HMMs on test Set A was

43.9%. �ere is thus an 78% relative reduction in error rate by using VTS model-based

compensation on Set A. For reference, the detailed results of HMM-VTS baseline on

di�erent SNR and noise types of Set A are also shown in Table 8.2. As expected, as the

SNR decreases the WER increases. Due to the poor performance, the detailed results

of clean trained HMMs on di�erent noise types are no shown here.

To evaluate the bene�t of the proposed structured SVM framework, a range of

con�gurations were compared. �e baseline generative system was an HMM based

on VTS compensation. �ese compensated HMMs were also used to derive: the noise

robust joint feature space; the word-level segmentation for the binary and multi-class

SVMs (in the acoustic code-breaking framework described in Section 3.4); and the

lattices for the structured SVM training and inference. All three test sets, A, B and C,

were used for evaluating the schemes. For sets A and B, there were a total of 8 noise
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SNR Noise Type Avg

(dB) N1 N2 N3 N4
20 1.78 1.87 1.55 1.54 1.69
15 2.67 2.63 2.00 2.13 2.36
10 5.13 4.20 3.37 4.91 4.39
05 12.25 12.03 8.20 12.40 11.20
00 32.18 37.70 21.92 26.47 29.55
Avg 10.80 11.69 7.41 9.49 9.84

Table 8.2 Performance (WER %) of VTS-based HMMs on AURORA 2 test set A.

conditions (4 in each) at 5 di�erent SNRs, 0dB to 20dB. For test set C there were two

additional noise conditions at the same range of SNRs. In addition to background

additive noise convolutional distortion was added to test set C. Set A was used as the

development set for tuning parameters for all systems, such as the penalty factorC in

multi-class SVMs and structured SVMs.

�e parameters of structured SVMs were trained using the same subset of the

multi-condition training data as (Gales and Flego 2010): three of the four subsets (N2-

N4) and three of �ve SNRs (10dB, 15dB, 20dB). �is allows the generalisation of the

SVMs, SCRFs and structured SVMs to unseen noise conditions to be evaluated on test

set A as well as the test sets B and C, as no data from noise condition N1 and SNRs 5dB

and 0dB were used. Note this makes the experiments of SVMs, SCRFs and structured

SVMs hard to compare with other approaches where none of the multi-style training

data was used. However the baseline VTS experiments are comparable. For SVMs and

Multi-class SVMs the following segmental log-likelihood feature space (see details in

Section 5.1.2.1) is used

ψλ(O) =




log pλ(O|“one”)
...

log pλ(O|“zero”)

log pλ(O|“oh”)

log pλ(O|“sil”)




12

(8.1)
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where pλ(O|“sil”) is the likelihood of segment O for “silence” model in HMM set.

For SCRFs and structured SVMs, the following joint feature space (see details in Sec-

tion 5.3) is used

φ(O,w;θ) =




|w|∑
i=1
δ(wi = “one”)ψ(Oi|θ)

...
|w|∑
i=1
δ(wi = “sil”)ψ(Oi|θ)




144

(8.2)

whereψ(Oi|θ) is de�ned in equation (8.1).

8.1.2 Results and Discussion

�is section compares and discusses the results of a range of models and setups. First,

to illustrate the bene�t of modeling the structure in the whole utterance, unstructured

models–SVMs and Multi-class SVMs, and structured models–SSVMs, are compared

in Section 8.1.2.1. To demonstrate the in�uence of di�erent training criteria, SCRFs

trained using the Conditional Maximum Likelihood (CML) and Minimum Word Er-

ror (MWE) criteria and structured SVM trained using maximum margin criterion

are evaluated in Section 8.1.2.2. To evaluate re�ning algorithms of structured SVMs

described in Section 6.2.1.3, then-slack and 1-slack algorithms with �xed/optimal seg-

mentation are examined in Section 8.1.2.3. Finally, the results of kernelized structured

SVMs are discussed in Section 8.1.2.4. �is illustrates the bene�t of using nonlinear

feature expansion (implicitly).

8.1.2.1 Unstructured and Structured Models

As discussed in Chapters 3 and 6, structured models can capture the dependencies in

the whole utterance which may potentially lead to a better result than unstructured

models. To examine this, several unstructured and structured discriminative models

are evaluated and compared in Table 8.3. �e binary and multi-class SVM are unstruc-

tured models where the observation sequence is �rst segmented into words based on

HMMs and individual “segmented” words classi�ed independently. All discriminative
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models using the same 12-dimensional log-likelihood feature described in equation

(8.1). �e di�erence in performance between the structured SVM and binary/multi-

class SVM systems shows the impact of �xing the segmentation rather than including

structures in the model. Note that in binary/multi-class SVMs each segment is recog-

nized independently. In structured SVMs, the information from di�erent segments of

whole utterance are used together to make a decision for decoding. As shown in Table

8.3, modeling the structures in the whole sentence yields about 6% relative improve-

ment over the multi-class SVMs, since both systems e�ectively use the same feature

space.

Model # of Parameters Set A Set B Set C Avg.

HMM-VTS 46, 732 (λ) 9.8 9.1 9.5 9.5
SVM +792 (αwi,wj ) 9.1 8.6 9.3 8.9

MSVM +144 (αw) 8.3 8.1 8.6 8.3
SSVM +144 (α) 7.8 7.3 8.0 7.6

Table 8.3 AURORA 2 results (WER %) of VTS based HMMs, binary SVMs (in
Section 3.3.1) Multi-class SVMs (MSVM) (in Section 3.3.2), and structured SVMs
using n-slack algorithms (in Section 6.2.1). �e binary and multi-class SVM sys-
tems are based on the acoustic code-breaking framework discussed in Section 3.4.
Note that there are M(M−1)

2 binary SVMs, whereM = 12 is the number ofwords.
For all discriminativemodels,M -dimensional log-likelihood features described in
equation (5.1.2.1) are used.

It is also interesting to compare the multi-class SVM in equation (3.36) and binary

SVM voting schemes described in Section 3.3.1. Note that there are M(M−1)
2 binary

SVMs as shown in Table 3.2, where M is the number of words. Each binary SVM

is for a competing word pairs. As shown in Table 8.3, the multi-class SVM trained

using equation (3.36) yields a 9% reduction in word error rate when compared to the

majority voting of binary SVMs. �is is mainly because in multi-class SVMs training

all the class labels are considered (either as the “true” class or “competing” classes)

during the optimisaiton as shown in equation (3.36). However, in binary SVMs, only

two classes are considered each time during training as shown in equation (3.15).

�e overall gain from using structured SVMs over the VTS-compensated HMMs
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(baseline system) is over 20%. To illustrate the performance of structured SVMs ex-

cluding the a�ect of model compensation, the system based on the “uncompensated”

HMMs was also evaluated. �e performance was 37.8% on set A. Compared with the

“uncompensated” HMM baseline of 43.9% in Table 8.1, a consistent improvement is

achieved. �e results on di�erent noise condition can be seen in Table 8.4. As shown

in this table, the major improvement is coming from low SNR data. For reference, the

detailed results of structured SVMs based on VTS-HMM systems on Set A are also

shown in Table 8.5. Comparing Tables 8.5 and 8.2 shows the improvement of struc-

tured SVMs in di�erent SNR and noise types.

SNR Test Set A

(dB) With VTS Without VTS
HMM SSVM HMM SSVM

20 1.69 1.25 5.30 3.36
15 2.36 1.76 16.32 10.78
10 4.39 3.33 40.45 30.75
05 11.20 8.66 69.87 61.02
00 29.55 23.90 87.36 83.08
Avg 9.84 7.78 43.86 37.88

Table 8.4 Performance (WER %) of VTS-based or uncompensated HMMs and
structured SVMs.

SNR Noise Type Avg

(dB) N1 N2 N3 N4
20 1.38 1.36 1.16 1.08 1.25
15 2.15 1.78 1.55 1.54 1.76
10 3.90 3.17 2.51 3.76 3.33
05 9.00 10.19 6.68 8.79 8.66
00 22.87 30.44 20.19 22.09 23.90
Avg 7.86 9.39 6.42 7.45 7.78

Table 8.5 Performance (WER %) of Structured SVM (SSVM) on AURORA 2 test
set A.

Note that as shown in Table 8.3 the number of parameters in HMM and proposed
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structured SVM system are in the same range—more than 45, 000 for HMMs and

only 144 additional for structured SVMs. �us, the improvement obtained were not

just the result of increasing parameters.

8.1.2.2 Structured Discriminative Models

In this section, two forms of structured discriminative models, structured SVMs as

proposed in Chapter 6 and SCRFs described in Section 4.3, were evaluated. �e per-

formance of VTS-compensated HMM, SCRFs and structured SVMs with di�erent

training criteria is shown in Table 8.6. For structured SVMs and SCRFs, the same

joint feature space, described in equation (8.2), were used (see details in Section 5.3).

�e SCRFs were trained using Conditional Maximum Likelihood (CML) and Min-

imum Word Error (MWE) criteria (see Section 4.4) withL2 regularization. �e VTS-

compensated HMM was used to produce a pair of numerator word lattices, which

encodes the reference label sequence, and denominator word lattice, which encodes a

large number of possible label sequences, for each training sequence. �e numerator

lattices contained only the most likely Viterbi segmentation for the reference tran-

scriptions. �us in SCRF the summation over all possible segmentation was replaced

by maximisation (Ragni 2013). �e denominator lattices contained one or more align-

ments for each word sequence.

�e discriminative model parameters associated with all feature spaces were ini-

tialised in the way that the WER performance of the VTS-compensated HMM can

be achieved in the �rst iteration. For the log-likelihood feature in equation (8.1), the

discriminative model parameter associated with “correct” likelihood were initialised

to one and rest to zero (see details in Section 5.1.2.1). As shown in Table 8.6, for SCRFs

the use of MWE criterion o�ers small but consistent improvement over the CML cri-

terion. Examining the results in Table 8.6 also shows that the structured SVM achieved

the best results among all the systems. Comparing the CML and MWE trained SCRFs,

the structured SVM yields 7% and 3% relative improvement, respectively. Further

improvement can be achieved by structured SVMs using some of the algorithms de-
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scribed in Section 6.2.1.3. �e results will be discussed in the next section. For refer-

ence, the detailed results on di�erent SNR of Set A are also shown in Table 8.7.

Model Param. Criteria Set A Set B Set C Avg.

HMM-VTS 46, 732 ML 9.8 9.1 9.5 9.5

SCRF +144 CML 8.1 7.7 8.3 8.1
MWE 8.1 7.4 8.2 7.8

SSVM +144 MM (n-slack) 7.8 7.3 8.0 7.6

Table 8.6AURORA 2 results (WER %) of VTS based HMMs, SCRFs (see Section
4.3), and structured SVMs with n-slack algorithms (see Section 6.2.1). �e same
segmental features are used for SCRFs and structured SVMs. ML=maximum
likelihood, CML=conditional maximum likelihood, MWE=minimumword error
and MM=maximum margin.

SNR Set A Avg. of Set A, B and C

(dB) HMM MSVM SCRF SSVM HMM MSVM SCRF SSVM
20 1.7 1.5 1.4 1.3 1.6 1.4 1.4 1.2
15 2.4 2.0 1.9 1.8 2.4 2.0 2.0 1.8
10 4.4 3.6 3.5 3.3 4.3 3.6 3.6 3.4
05 11.2 9.2 8.9 8.7 10.7 9.1 8.8 8.5
00 29.6 25.1 24.9 23.9 28.5 25.4 24.5 23.5
Avg 9.8 8.3 8.1 7.8 9.5 8.3 8.1 7.6

Table 8.7 AURORA 2 results (WER %) of VTS based HMMs, MSVMs, SCRFs
(with CML training) and structured SVMs (with n-slack Algorithm) in di�erent
SNRs conditions.

8.1.2.3 Training Algorithms for Structured SVMs

In the previous sections, the structured SVMs were trained withn-slack algorithm and

�xed segmentation. In this section, structured SVMs trained with n-slack and 1-slack

algorithms with �xed/optimal segmentation are evaluated. Examining the results in

Table 8.8, the �rst two lines show that optimising the segmentation yields small, but

consistent, gains, in performance over using the HMM-based alignmentθλ, about 3%

relative reduction on average. Currently the performance gains from optimising the
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alignments are small. However this is felt to be due to the use of whole-word models

for the AURORA 2 task. �us the alignment is only de�ned at the word-level. �e

results in the second and third lines show the bene�t of using the 1-slack algorithm.

�e WER is almost the same1 as the n-slack algorithm but with far fewer support

vectors (29 compared with 629) and less memory cost (83M compared with 922M).

�is also means that in the 1-slack algorithm the QP problem (6.44) that need to be

solved in each iteration is much smaller and faster. �is makes 1-slack algorithms

more practical for large vocabulary CSR.

Small gains are also observed when training SSVMs with a general Gaussian prior

using 1-slack algorithm (last two lines in the table). �e mean of Gaussian prior was

set as the α learned using 1-slack algorithm (the second last line in the table). Note

that according to Section 6.5.2, the covariance matrix of Gaussian prior for parameter

α in this work is assumed to be a scaled identical matrix, Σ = CI . �us the hyper-

parameter C can be viewed as the variance of parameter α. With a proper µ, the

variance C can be very small. �is means the number of training iterations can be

signi�cantly reduced. In fact, this is main purpose of introducing algorithm 1-slack-

µ (Alg. 5). From another perspective, the hyper-parameter C is the penalty factor

used to control the balance between generalisation and training errors. Using a larger

C helps to reduce training errors but also will reduce the generalisation ability and

increase the training iterations. �e impact of penalty factor C in equation (6.4) for

structured SVMs are shown in Figure 8.1.

Training Algorithm θ # SV Set A Set B Set C Avg.

n-slack (Alg. 1) θλ 629 7.8 7.3 8.0 7.6
n-slack (Alg. 2+1) θα 642 7.6 7.1 7.8 7.4
1-slack (Alg. 2+6) θα 29 7.6 7.3 7.9 7.5
1-slack-µ (Alg. 5+6) θα 30 7.5 7.1 7.9 7.4

Table 8.8AURORA 2 results (WER%) of SSVMs trained using n-slack algorithm
without/with optimising θ and 1-slack algorithms without/with Gaussian prior
(Alg. 5+6). SV is short for support vectors.

1�e di�erence between the results of n-slack and 1-slack algorithms is coming from the rounding
error during optimisation.
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Evaluation of Structured SVMs 

Figure 8.1 E�ect of the penalty factor C in equation (6.4) of structured SVMs.
�e models are trained using n-slack algorithm with �xed segmentation.

8.1.2.4 Kernelized Structured SVMs

In this section, the kernelized structured SVM proposed in Chapter 7, was evaluated.

�e main purpose of this experiment is to illustrate that the training and decoding of

structured SVMs can be achieved without computing the high-dimension joint feature

space explicitly. �e kernelized training process is described in details in Alg. 7. It can

be summarized in three steps. First, construct the Gram matrix using the training data

with references and competing hypothesis currently found. Second, solve a quadratic

program based on the current Gram matrix G. At iteration this will return an dual

parameter αdual. �ird, use this αdual to �nd the “best” competing hypothesis for

each utterance in parallel. Note that, in kernelized binary SVMs the size of Gram

matrix GR×R is �xed (as there are only two classes); however for kernelized structured

SVMs the size of Gn×n is dynamic during training. It depends on the number of “best”

competing hypotheses has been found. To reduce the memory cost, in this work the

τ th row of Gram matrix can be pruned when the corresponding αdualτ remains 0 for

more than 100 iterations. In this case the corresponding competing hypotheses are

treated as “inactive”.
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Model Criterion Kernel Set A Set B Set C Avg.

HMM-VTS ML – 9.8 9.1 9.5 9.5
MSVM MM linear 8.3 8.1 8.6 8.3
SCRF CML linear 8.1 7.7 8.3 8.1

SSVM (Alg. 7) MM linear 7.9 7.3 8.0 7.7
SSVM (Alg. 7) MM 2nd-poly 7.6 7.1 7.9 7.5

Table 8.9 Results (WER %) of VTS based HMMs, Multi-class SVMs, SCRFs and
structured SVMs with linear and 2nd order polynomial kernels (see the form of
polynomial kernel in Table 3.1).

Several forms of joint kernels have been discussed in Section 7.2 and Table 3.1. In

this experiment, the following form of joint kernels is used,

K
(

(O(i),w(i)), (O(j),w(j))
)

=

|w(i)|∑

m=1

|w(j)|∑

m′=1

δ(w(i)
m = w

(j)
m′ )

(
ψ(O(i)

m )Tψ(O
(j)
m′ ) + 1

)2

(8.3)

where the bias c of the polynomial kernel in Table 3.1 is set to 1 and order d is set to

2. �e segmental feature ψ(·) is de�ned in equation (8.1). Examining the results in

Table 8.9 shows that the structured SVMs with 2nd order polynomial kernel achieved

the best results among all the systems. �is is mainly because the implicit polynomial

expansion on feature space can make some potentially linear non-separable data sep-

arable. �is can be seen from the Figure 3.5. �e overall gain from using kernelized

structured SVMs over the VTS-compensated HMM system is over 22%. �e gain

from using polynomial kernels over linear kernels is 3%2.

Note that without kernelization, it is impractical to apply structured SVMs with a

polynomial kernel, since it requires computing and keeping all the high dimensional

joint features explicitly. However, in Alg. 7 only the Gram matrix is required. �e res-

ults of the structured SVM with linear kernel is slightly di�erent from the one shown

in Table 8.8. �is is due to two reasons. First, kernelized structured SVMs are based on

dual optimization, whereas the results in previous section are based on primal form.

�ere are rounding errors between two forms of optimisation. Second, only 1-slack
2 �is gain is statistical signi�cant based on a matched-parir signi�cance test at a 95% con�dence

level (Gillick and Cox 1989).
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variable and �xed segmentations are used in this experiment. �ese segmentations are

given by the lattices generated from HMM-VTS system. Optimising segmentations

and incorporating a general prior for kernelized structured SVMs will be investigated

in future work.

8.2 AURORA 4 Task

AURORA 4 is a medium vocabulary task based on the Wall Street Journal (WSJ) data.

�e training set is available in two conditions: clean and multi-style. �e clean train-

ing data is the WSJ0 subset of WSJ SI-284 data (Paul and Baker 1992) consisting of

7138 utterances spoken by 83 speakers and totalling 14 hours of speech. �e multi-

style training data was obtained by arti�cially corrupting the clean training data using

6 types of noise and two microphone conditions where SNR ranged 10-20 dB. �e

test set was obtained by arti�cially corrupting a subset of the development set of 1992

November NIST evaluation (Paul and Baker 1992) using 6 types of noise under two

microphone conditions where SNR ranged 5-15 dB. �e test set is split into 4 sets:

A, B, C and D. Set A contains clean data, set B contains data corrupted by 6 types of

noise, set C contains data corrupted by channel distortion (desk-mounted secondary

microphones recorded) and set D contains data corrupted by the noise and channel

distortion. �e average SNR in noise-corrupted data is 10 dB. �e number of utter-

ances in each set is 330, 1980, 330 and 1980 respectively.

8.2.1 Experimental Setup

In the previous experiments on Aurora 2 task, the acoustic model parameters were

associated with individual words. For the models used in Aurora 4 task, the acous-

tic model parameters are associated with individual context-dependent phones. Four

con�gurations of canonical HMMs were considered. �e �rst repeats the setup where

the HMMs were trained using clean data (SI-84 WSJ0 part, 14 hours) and then com-

pensated with VTS compensation. �e HMMs are cross-word context-dependent tri-
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phone models with 3 emitting states. �e state output distribution of the HMMs is a

GMM with 16 components and diagonal covariance matrices. �e HMM states were

tied into 3143 physical states using state-level phonetic decision tree clustering. In the

second, more advanced systems, VTS-adaptive training (VAT) was used to obtain the

canonical HMM (Flego and Gales 2009; Kalinli et al. 2009). In the third MPE and

VAT training was used to obtain the canonical HMM (Flego and Gales 2011). In the

�nal experiment clean trained HMMs without VTS were applied to demonstrate the

performance of structured SVMs excluding noise.

In each con�guration, the canonical/compensated HMM was used to produce a

word lattice. �e word lattice was phone-marked to segment each word arc into a

sequence phone arcs consistent with the underlying pronunciation. For each phone

arc, the acoustic model score, the context-dependent phone HMM log likelihood, was

replaced by the dot-product between the discriminative model parameters and the

corresponding feature vector. �e phone arc transitions were set to incorporate the

bigram language model and pronunciation probabilities.

To compare the SCRFs and structured SVMs, the same joint feature space is ap-

plied for both models,

φ(O,w;θ) =




|w|∑
i=1
δ(wi = v1)ψ(Oi|θ)

...
|w|∑
i=1
δ(wi = vM)ψ(Oi|θ)

logP (w)



, (8.4)

where {v1, . . . , vM} indicate all context-dependent phones in the dictionary, and the

match-context segmental feature ψ(Oi|θ) is used for each segment Oi|θ (see details

in Section 6.5.1). For example, if the label of segment Oi|θ is “k- ae +t”, the following

match-context segmental featureψ(Oi|θ) will be applied,

ψ(Oi|θ) =




log pλ(Oi|θ|“k−aa+t”)

log pλ(Oi|θ|“k−ae+t”)
...




P

, (8.5)
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where P is the number of monophones (P = 47 in this system). A large number

of context-dependent phones had limited or no examples in the multi-style training

data. In order to address robustness issues when training the SCRF and structured

SVM, the discriminative parameters can be tied between context-dependent phones

using model-level phonetic decision tree clustering (Ragni 2013). In this experiment,

monophone-level tying was applied to all context-dependent phones. �is mapped

{v1, . . . , vM} to 47 physical context-dependent phones. �us, e�ectively only 47 ×
47 + 1 dimensional features were used.

In the �rst three con�gurations, both the SCRFs and structured SVMs are trained

on the multi-style data. �e SCRF and structured SVM were trained within the feature-

space adaptation and compensation framework to yield noise and speaker independ-

ent discriminative model parameters. �e MPE criterion was used to yield estimates.

In order to train the SCRF and structured SVM, the multi-style training data was used.

�e VTS-compensated HMM was used to produce a pair of numerator lattice, which

encodes the reference transcription with one or more pronunciations, and denomin-

ator lattice, which encodes a large number of possible transcriptions with one or more

pronunciations, for each training sequence. �e numerator and denominator lattices

were phone-marked. Evaluation was performed using the standard 5000- word WSJ0

bigram model on four noise-corrupted test sets based on NIST Nov’92 WSJ0 test set.

Set B is used as the development set for tuning parameters of all systems.

8.2.2 Results and Discusssion

8.2.2.1 VTS-based systems

�e �rst con�guration used clean trained HMMs with VTS compensation. Table 8.10

shows the AURORA4 results of SSVMs trained with a general Gaussian prior (Al-

gorithm 5). �e mean of the prior was set as the parameters of CML trained SCRFs.

�e SCRFs (Ragni and Gales 2011b) and structured SVMs based on the same 2210

(47×47+1) dimensional joint features described in equations (5.17) and (5.10). Com-
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pared to the CML trained SCRFs, structured SVMs yielded a 3.4% relative reduction

in WER. For this task, the n-slack algorithm cannot be applied due to memory issues

(more than 18G required) described in Section 6.5.3. �e 1-slack algorithm without a

proper prior is also impractical as the number of iterations required for converge be-

comes very large for this size of feature space (over 1000 iterations were run without

convergence). �e only algorithm that can be applied is the proposed 1-slack-µ al-

gorithm (it converged in 258 iterations), as the prior yields sensible model parameters

when there are few constraints as described in Section 6.5.2. As discussed before, the

covariance matrix of Gaussian prior for parameter α in this work is assumed to be a

scaled identical matrix, Σ = CI (see Section 6.5.2). �us the hyper-parameterC can

be viewed as the variance of parameterα. �e 1-slack-µ algorithm allows the variance

C to be very small, if a proper µ is given. �is means the number of training itera-

tions can be signi�cantly reduced. For small vocabulary tasks, searching for the best

competing hypothesis and segmentation over all possible paths is feasible. However,

it is not practical to do this for AURORA4. �erefore the search space of all possible

w,θ here are restricted by the lattices. Given the lattices, the decoding complexities

of structured SVMs and HMMs are in the same order of magnitude.

Model Param. Criterion Test Set WER (%) AvgA B C D
HMM-VTS 3.98M ML 7.1 15.3 12.2 23.1 17.8

SCRF +2210 CML 7.2 14.7 11.1 22.8 17.4
MPE 7.3 14.7 11.2 22.7 17.4

SSVM +2210 MM (1-slack-µ) 7.4 14.2 11.3 21.9 16.8

Table 8.10 AURORA 4 Results based on VTS-compensated HMMs. For struc-
tured SVMs, 1-slack-µ means Algoritms 5+6. All possible hypothesis w and seg-
mentations θ are restricted by lattices generated by HMM-VTS.

8.2.2.2 VAT-based systems

�e second con�guration used a VTS adaptively trained (VAT) HMM system. Note

in this con�guration both the generative and discriminative models were trained on
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multi-style data. Table 8.11 shows the performance of the baseline VAT system, the

SCRFs (Ragni and Gales 2011b) and SSVMs based on the same 2210 dimensional joint

features. �ese features were extracted using the likelihoods of VTS adaptively trained

HMMs. Comparing the VAT in Table 8.11 (line 1) and the VTS in Table 8.10 (line 1)

shows gains of about 2% absolute. Compared to HMM-VAT system and SCRFs, the

structured SVMs gain on average about 4% and 2% relative improvements.

Model Criterion Test Set WER (%) AvgA B C D
HMM-VAT ML 8.6 13.8 12.0 20.1 16.0

SCRF CML 7.8 13.6 11.3 20.2 15.8
MPE 7.7 13.5 11.2 20.0 15.7

SSVM MM (1-slack-µ) 7.5 13.3 11.1 19.6 15.4

Table 8.11 AURORA 4 Results based on VAT trained HMMs. For structured
SVMs, 1-slack-µmeans Algoritms 5+6. All possible hypothesis w and segmenta-
tions θ are restricted by lattices generated by HMM-VAT.

8.2.2.3 Discrimiantive trained VAT-based systems

�e third con�guration used an MPE and VAT trained HMM system. In this con�g-

uration the generative and discriminative models were both discriminatively trained.

Table 8.12 shows the performance of baseline MPE-VAT HMMs and structured SVMs

based on the same dimensional joint features described in previous con�gurations.

Here the features were extracted using likelihoods of MPE-VAT HMMs. In compar-

ison with the MPE-VAT HMMs, the proposed SSVMs on average yield 2% relative

improvement.

8.2.2.4 Clean trained systems

In the fourth con�guration both generative and discriminative models were trained

and evaluated on the clean part of AURORA4 (the standard 5K WSJ0 setup). �is

con�guration is used to illustrate the performance of proposed SSVMs excluding the

noise a�ects. Structured SVMs were based on the same dimensional joint features de-
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Model Criterion Test Set WER (%) AvgA B C D
HMM-MPE-VAT MPE 7.2 12.8 11.5 19.7 15.3

SSVM MM (1-slack-µ) 6.9 12.7 11.2 19.4 15.0

Table 8.12AURORA4Results based onMPE-VAT trainedHMMs. For structured
SVMs, 1-slack-µmeans Algoritms 5+6. All possible hypothesis w and segmenta-
tions θ are restricted by lattices generated by MPE-VAT HMMs.

scribed in previous con�gurations. Here the features were extracted using likelihoods

of clean HMMs. �e WER (%) of the clean HMMs and proposed structured SVMs are

shown in Table 8.13. Note the HMM performance 7.3% in Table 8.13 is slightly worse

than 7.1%, the VTS set A result in Table 8.10, because VTS on clean data is actually

performing utterance-dependent normalisation. �e relative improvement is 7%.

Model Criterion Test Set WER (%)
HMM ML 7.3
SSVM MM (1-slack-µ) 6.8

Table 8.13WSJ0 Results based on clean trained HMMs. All possible hypothesisw
and segmentations θ are restricted by lattices generated by clean trained HMMs.
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Chapter 9

Conclusion

�is thesis investigated discriminative approaches for speech recognition. Previous

work in this area is extended in two important directions. First, instead of using CML

training which is commonly used for discriminative models, this thesis describes ef-

�cient maximum margin training framework for structured discriminative models.

Second, unstructured models, SVMs, are extended to sentence-level for continuous

speech recognition. We shown that the resulting models in both cases are the same

— known as structured SVMs. �e major contribution of this work is presented in

Chapters 6, 7 and 8. Chapter 6 describes a structured SVM framework suitable for

medium to large vocabulary continuous speech recognition. Chapter 7 describes ker-

nelized algorithms for structured SVMs.

An important aspect of structured SVMs is the form of features. Several previously

proposed features in the �eld are summarized in Chapter 5 for this framework . Since

some of these features can be extracted based on generative models, this provides an

elegant way to combine generative and discriminative models. To apply the structured

SVMs to continuous speech recognition, a number of issues need to be addressed.

First, features require a segmentation to be speci�ed. To incorporate the optimal seg-

mentation into the training process, the training algorithm is modi�ed making use of

the concave-convex optimisation procedure. A Viterbi-style algorithm is described for
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inferring the optimal segmentation based on the structured SVM parameters. Second,

structured SVMs can be shown as maximum margin log linear models using a zero

mean Gaussian prior of the discriminative parameter. However this form of prior is

not appropriate for all features. An extended training algorithm is proposed that al-

lows general Gaussian priors to be incorporated into the large margin training. �ird,

to speed up the training process, strategies of parameter tying, 1-slack optimisation,

caching competing hypotheses, lattice constrained search and parallelization, are also

described. Finally, to avoid explicitly computing in the high dimensional feature space

and to achieve the nonlinear decision boundaries, kernel based training and decod-

ing algorithms are also proposed. �e performance of structured SVMs is evaluated

on small and medium to large speech recognition tasks: AURORA 2 and 4. �e res-

ults show that the proposed structured SVMs achieved the best results among all the

examined generative and discriminative models, such as HMMs, SVMs and SCRFs.

9.1 Future work

�ere are many points discussed in this thesis that may bene�t from further investig-

ation. A number of suggestions for these future directions are given below.

• In this work the generative model parameters λ, are assumed to have been

trained. Joint learning {λ,α} in the maximum margin framework will be in-

vestigated in the future. �e theory of joint maximum margin training is brie�y

discussed in Appendix a.

• As discussed in Chapters 5 and 7, derivative features can capture long-term de-

pendent, discriminative information. Future work will also include evaluating

the derivative kernels for structured SVMs.

• Many recent works in speech recognition are based on DNN-HMM hybrid sys-

tem. One nature extension to this is to combine DNN with discriminative mod-

els. As discussed in Section 5.1.1, one general form of joint feature spaces for
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discriminative models is

φac(O,w;θ) =
T∑

t=1

φac(ot, θt) =
T∑

t=1




...

δ(θt = s)ψ(ot)
...


 ∀s

where the frame-level featureψ(ot) can be extracted using DNNs,

ψ(ot) =




...

PDNN(s|ot)
...


 ,∀s

�e parameters of the model can be learned using the structured SVM algorithms

proposed in Chapter 6 (e.g., Algorithm 6). �us the resulting system can be

called the DNN-SSVM hybrid system.

• According to the (Andras 2002), the SVM can be related to neural networks

with regularization. �e Figure 7.4 also suggests that the structured SVM can

be related to hybrid systems with a “shallow” (one layer) neural network. One

interesting extension of this work is to investigate the structured SVMs with

deep structures. �e concept of this model is illustrated in Figure 9.1. In the

�rst iteration, as shown in the top diagram of Figure 9.1, the structured SVM in

Chapter 6 with frame-level acoustic and language features can be learned. �is

step is like a max-margin sequential training of one-layer hybrid systems. In

the second iteration, �x the mapping parameters in the one layer, the second-

layer and state transition parameters can also be trained using structured SVM

algorithms. In the third iteration, as shown in the bottom diagram of Figure

9.1, �x the mapping parameters in the �rst two layers, the third layer and state

transition parameters can be trained in the same way. �is process can be con-

tinued until the number of “deep” layers is satis�ed. �e resulting model can be

called deep structured SVMs.
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Appendix A

Parameters Joint

Estimation of

Structured SVMs

Previously, in Section 6.2 the discriminative parametersα and generative parameters

λ are estimated separately using di�erent objective functions. In this section1, the

generative parameters and discriminative parameters are trained jointly,
{
λ̂, α̂

}
= arg min

λ,α
F(α,λ). (a.1)

where the objective function F(α,λ) is extended from equation (6.9)

F(α,λ) = C||α||2 + C ′||λ||2 +
1

R

R∑

r=1

[
−max

θ

(
αTφ(O(r),w

(r)
ref;θ,λ)

)
(a.2)

+ max
w 6=wref,θ

{
L(w,w

(r)
ref) +αTφ(O(r),w;θ,λ)

}]
+

where φ(O,w;θ,λ) could be any features described in Chapter 5. If the features

are not based on the generative models, e.g., log likelihood features and derivative
1�is section will be our future work and only the theory is discussed.
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features, it becomes φ(O,w;θ). Using the coordinate descent method, minimising

equation (a.2) with respective to λ and α can be convert to solve the following two

optimisation problems, alternatively,

α̂[τ ] = arg min
α

{
F(α,λ[τ ])

}
, (a.3)

λ̂[τ+1] = arg min
λ

{
F(α[τ ],λ)

}
. (a.4)

where [τ ] denotes the τ -th iteration and the estimation from the maximum likelihood

criterion (2.28) could be used as the initialization λ[0]. �e iteration will stop when

∆F(α[τ ],λ[τ ]) < ε.

Note that given theλ[τ ], equation (a.3) is actually the large margin training object-

ive function ofα in equation (6.9). �e term ||λ|| in equation (a.2) is the regulariza-

tion. According to (Keshet and Bengio 2008; Sha and Saul 2007), the parameters can

also be regularized through
∑
jm

trace(Λjm), where Λjm is reparameterization matrix

derived from {cjm,µjm,Σjm} of component m of state j in HMM,

Λjm =


 Σ−1

jm −Σ−1
jmµjm

−µT
jmΣ−1

jm µT
jmΣ−1

jmµjm + ϑjm


 (a.5)

ϑjm = log cjm −
1

2
log(|Σjm|)−

D

2
log(2π). (a.6)

�erefore givenα[τ ], the joint large margin training criterion for generative paramet-

ers λ in equation (a.4) can be expressed as

F(α[τ ],λ) = C ′
∑

j,m

tr(Λjm)+
1

R

R∑

r=1

[
−max

θ

(
α[τ ]Tφ(O(r),w

(r)
ref;θ,λ)

)
(a.7)

+ max
w 6=wref,θ

{
L(w,w

(r)
ref) +α[τ ]Tφ(O(r),w;θ,λ)

}]
+

Note that the large margin training in equation a.7 is di�erent from the large margin

training of HMM described in Section 2.3.5 (Sha and Saul 2007):

FLM−hmm(λ) = C ′
∑

j,m

tr(Λjm)+
1

R

R∑

r=1

[
− log p(O(r)|w(r)

ref;λ) (a.8)

+ min
w 6=w

(r)
ref

{
L(w,w

(r)
ref) + log p(O(r)|w;λ)

}]
+
.
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Comparing with the large margin HMM in equation (a.8), the joint large margin

training of λ in equation (a.7) is more general in two aspects. First, if the log like-

lihood features in Section 5.1.2 are used, each log likelihood in equation a.8 is just a

element of the features in equation (a.7). Second, to obtain a convex optimization for

large margin training, in (Sha and Saul 2007) the log likelihood is calculated through

the Viterbi path:

log p(O|w;λ) ≈
T∑

t=1

log a(st−1, st)−
T∑

t=1

zTΛstz (a.9)

where s = [s1, s2, . . . , sT ] is the state sequence for (O,w) generated by Viterbi

algorithm under the maximum likelihood criteria, aij is the transition probability,

z = [ot 1]T and Λ is de�ned in equation a.5. However, in equation (a.7) the segment-

ation θ is optimized under the large margin criteria as described in Section 6.2.1.3.

Note that zTΛstz in equation a.9 is linear in parameters Λjm. If the log likelihood

features in equation (5.1.2) are used, substituting equation (a.9) to every element of

features, the optimization in equation (a.7) will also become convex for generative

parameters λ. Comparing to Figure 6.6, the procedure of the joint training process is

demonstrated in the following diagram.

θα

φ(O,wref;θ) φ(O,w∗;θ) αλ̂
{
O(r),w(r)

}R

r=1

Training Set
Generative 

Models

Structured 

SVMs

Algorithm 2
Algorithm 1

w∗

argmin
λ

{
F(α[τ ],λ)

}

Figure a.1 �e joint training process for generative parameter λ and structured
SVM parameters α.
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Convergence of Training

Structured SVM with

Optimal Segmentation

For simplicity, the proof considers one utterance r only. Since the regularization term
1
2 ||α||22 and the summation of all the training utterances will not a�ect the convex-

ity, incorporating them in the following derivation is simple. �us, here our target is

minimising the following objective,

[
−max

θ(r)

(
αTφ(O(r),w

(r)
ref,θ

(r);λ)
)

︸ ︷︷ ︸
concave:N(α)

+ max
w 6=wref,θ

{
L(w,w

(r)
ref) +αTφ(O(r),w,θ;λ)

}

︸ ︷︷ ︸
convex:D(α)

]

(b.1)

Instead of solving the above non-convex problem, in Algorithm 1, given the current

α[τ ], we �rst optimise reference alignment θ(r) for training pair (O(r),w
(r)
ref) as

θ̂(r)[τ ] = arg max
θ(r)

α[τ ]Tφ(O(r),w
(r)
ref,θ

(r);λ) (b.2)
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optimal segmentation

Secondly, �xing θ̂(r)[τ ], Algorithm 1 optimiseα[τ+1] byminimizing the following con-

vex upper bound,
[
−
(
αTφ(O(r),w

(r)
ref, θ̂

(r)[τ ];λ)
)

︸ ︷︷ ︸
Linear: L(α)=∇N(α[τ ])Tα

+ max
w 6=wref,θ

{
L(w,w

(r)
ref) +αTφ(O(r),w,θ;λ)

}

︸ ︷︷ ︸
convex:D(α)

]

(b.3)

According to the Eq.(b.2), the linear part L(α) and numerator part N(α) has the

following relationship,

αTφ(O,wref, θ̂
[τ ]) = L(α) =

[
∇N(α[τ ])

]T
α =

[
∇max

θ

(
αTφ(O,wref,θ)

)
|α[τ ]

]T
α

(b.4)

Denoteα[τ+1] is the solution of above convex optimisation, we have

∇D(α[τ+1]) +∇L(α[τ+1]) = 0 (b.5)

Substitute Eq.(b.4) into Eq.(b.5), we have

∇D(α[τ+1]) +∇
{
∇N(α[τ ])Tα

}
= ∇D(α[τ+1]) +∇N(α[τ ]) = 0 (b.6)

Because numerator termN(α) is concave and denominator termD(α) is convex, for

anyα[τ ] andα[τ+1] we have,

N(α[τ+1])−N(α[τ ])

α[τ+1] −α[τ ]
≤ ∇N(α[τ ]) (b.7)

D(α[τ ])−D(α[τ+1])

α[τ ] −α[τ+1]
≥ ∇D(α[τ+1]) (b.8)

�erefore,

N(α[τ ]) +D(α[τ ]) ≥ N(α[τ+1]) +D(α[τ+1]) +
(
α[τ ] −α[τ+1]

)(
∇D(α[τ+1]) +∇N(α[τ ])

)

(b.9)

If α[τ ] and α[τ+1] are optimised using the Algorithm 1, they satisfy Eq.(b.6). Substi-

tute Eq.(b.6) into the above equation, we have

N(α[τ ]) +D(α[τ ]) ≥ N(α[τ+1]) +D(α[τ+1]) (b.10)

which means every iteration the newα[τ+1] will decrease the objective function.
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L. Tóth, A. Kocsor, and J. Csirik (2005). “On Naive Bayes in Speech Recognition.”
Journal of Applied Mathematics and Computer Science 15 (2), p. 287.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun (2005). “Large Margin
Methods for Structured and Interdependent Output Variables.” Journal of Machine
Learning Research 6, pp. 1453–1484.

L. F. Uebel and P. C. Woodland (1999). “An Investigation into Vocal Tract Length
Normalisation.” In Eurospeech.

V. Valtchev, J. J. Odell, P. C. Woodland, and S. J. Young (1997). “MMIE Training of
Large Vocabulary Recognition Systems.” Speech Communication 22, pp. 303–314.

206



R. C. van Dalen, J. Yang, M. J. F. Gales, A. Ragni, and S.-X. Zhang (2012). “Gen-
erative Kernels and Score-Spaces for Classi�cation of Speech: Progress Report.”
Tech. Rep. CUED/F-INFENG/TR676, Cambridge University. Available from:
http://mi.eng.cam.ac.uk/∼mjfg/Kernel.

V. N. Vapnik (1995). �e Nature of Statistical Learning�eory. Springer-Verlag, New
York.

V. Venkataramani and W. J. Byrne (2005). “Lattice Segmentation and Support Vector
Machines for Large Vocabulary Continuous Speech Recognition.” In Proceedings of
ICASSP. pp. 817–820.

V. Venkataramani, S. Chakrabartty, and W. J. Byrne (2003). “Support Vector Machines
for Segmental Minimum Bayes Risk Decoding of Continuous Speech.” In Proceed-
ings of ASRU. pp. 13–18.

O. Viikki and K. Laurila (1998). “Cepstral Domain Segmental Feature Vector Nor-
malization for Noise Robust Speech Recognition.” Speech Communication 25, pp.
133–147.

A. J. Viterbi (1982). “Error Bounds for Convolutional Codes and Asymptotically Op-
timum Decoding Algorithm.” IEEETransactions on Information�eory 13, pp. 260–
269.

V. Vural and J. G. Dy (2004). “A Hierarchical Method for Multi-Class Support Vector
Machines.” In Proceedings of ICML.

S. Watanabe, T. Hori, and A. Nakamura (2010). “Large Vocabulary Continuous Speech
Recognition using WFST-based Linear Classi�er for Structured Data.” In Proceed-
ings of Interspeech. pp. 346–349.

J. Weston, B. Schölkopf, and O. Bousquet (2005). “Joint Kernel Maps.” In IWANN. pp.
176–191.

K. Weston and C. Watkins (1999). “Support Vector Machines for Multi-Class Pattern
Recognition.” In Proceedings of European Symposium on Arti�cial Neural Networks.
vol. 4, pp. 219–224.

S. Wiesler, M. Nußbaum-�om, G. Heigold, R. Schlüter, and H. Ney (2009). “Invest-
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