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Abstract
Model compensation is a standard way of improving speech
recognisers’ robustness to noise. Most model compensation
techniques produce diagonal covariances. However, this fails to
handle any changes in the feature correlations due to the noise.
This paper presents a scheme that allows full-covariance matri-
ces to be estimated. One problem is that full covariance matrix
estimation will be more sensitive approximations, those for the
dynamic parameters are known to crude. In this paper a linear
transformation of a window of consecutive frames is used as the
basis for dynamic parameter compensation. A second problem
is that the resulting full covariance matrices slow down decod-
ing. This is addressed by using predictive linear transforms that
decorrelate the feature space, so that the decoder can then use
diagonal covariance matrices. On a noise-corrupted Resource
Management task, the proposed scheme outperformed the stan-
dard VTS compensation scheme.
Index Terms: Noise robust speech recognition, vector Taylor
series, joint uncertainty decoding.

1. Introduction
Robustly handling changes in the background noise conditions
is a major problem for speech recogniser systems. Resolv-
ing the mismatch between the training and test acoustic con-
ditions has been an active area of research for many years. It
is possible to use either feature enhancement or model com-
pensation techniques. The latter have yielded good results and
will be the focus of this paper. Standard model compensation
methods produce diagonal covariance matrices for the corrupted
speech distributions. However, feature correlations are known
to change due to variations in the background noise. For exam-
ple, in the limit as the noise masks the speech, the correlation
pattern will be that of the noise. To date, full covariance ma-
trix compensation has only been estimated using stereo data of
clean and noise-corrupted speech [1]. However stereo data is
seldom available. This paper examines full covariance compen-
sation where the noise model is estimated from a small amount
of noisy speech data.

The estimation of full covariance matrices is liable to be
more sensitive to approximations in the compensation process
than diagonal covariance matrices. It is standard practice in
speech recognition to append to the static coefficients extracted
from the audio signal dynamic coefficients that represent the
changes in the statics. These are computed from a window of
feature vectors around the current time instance. A popular ap-
proximation to compensate dynamic parameters is the contin-
uous time approximation [2], which assumes dynamic coeffi-
cients are the time derivatives at that instance. Though this has
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been successfully applied to compensating diagonal covariance
matrices [3, 4] it is not clear that is accurate enough for full
covariance compensation. To improve the dynamic parameter
compensation, this paper models the influence of the noise on
the static coefficients of consecutive time frames. A linear trans-
form of this window of features yields the dynamic parameters.
By computing the distribution over the window of features, it is
simple to derive the dynamic parameters distribution.

An additional problem is that when estimating full-
covariance matrix compensation , compensation and decoding
is computationally more expensive. To reduce the computa-
tional load during compensation, joint uncertainty decoding [3]
may be used. Here components are grouped together into base
classes and compensation is only required at this base class
level. There are typically far fewer base classes than compo-
nents. To handle the increase in computational load during de-
coding, predictive linear transforms [1] can be used. Base class-
specific linear feature space transformations that reduce corre-
lations, so that diagonal covariance matrices can be used for
decoding. However, this does again increase the computational
load during compensation [1].

The organisation of this paper is as follows. The next
section describes the noise compensation methods used. Sec-
tion 3 discusses how correlations can be compensated. Sec-
tion 4 discusses experimental results on a noise-corrupted Re-
source Management task.

2. Model compensation
The additive noise n and the convolutional noise h transform
the clean speech x, resulting in noise-corrupted speech y. In
the mel-cepstral domain (i.e. for MFCCs) the mismatch between
clean speech statics xs

t and the noise-corrupted speech statics ys
t

at time t is expressed by
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where C is the DCT matrix. It is standard practice in speech
recognition to append dynamic features to the observation vec-
tor. Both first- and second-order coefficients (y∆

t ,y∆2

t respec-
tively) are normally used. Thus the observation feature vector
is yt = [ ys

t
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t
T

y∆2

t

T
]T. For clarity of presentation

only first-order, delta, coefficients y∆ will be shown.
Model compensation alters the speech recogniser parame-

ters so they model the corrupted speech distribution. Each com-
ponent in the clean speech model is usually handled separately.
If the corrupted speech is distributed as N (µy,Σy)
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where the expectations are over the distribution of a component
of the clean speech model and the noise distribution. The speech
and noise are combined using equation (1). There is no closed
form for (2), so various approximations are used.

If stereo data is available then single-pass retraining (SPR)
may be used to approximate (2). This may be viewed as
the “ideal” compensated system if the noise distributions are
known [5].

2.1. Vector Taylor series

Equation (1) can be approximated with a first-order vector Tay-
lor series (VTS) [6]. Evaluating the partial derivatives of f at
µs

n, µs
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h, (1) becomes
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The mean and covariance of the static corrupted speech then
become [7]
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Here, the noise model gives the distributions of n and h. n
(including the dynamic parameters) is assumed Gaussian with
mean µn and covariance Σn; hs = µh is assumed constant.
[6, 3] These distributions may be estimated using maximum-
likelihood estimation and some data in the testing noise condi-
tion.

To compensate dynamic parameters the continuous time ap-
proximation [2] is often used with VTS. This approximation as-
sumes that delta coefficients are derivatives of static coefficients
with respect to time t, so that
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2.2. Data-driven parallel model combination

Data-driven parallel model combination [5] (DPMC) is a Monte
Carlo method for estimating the distribution of the corrupted
speech. Samples are drawn from the distributions of xs and ns.
(1) then gives the value of ys for each sample. The expectations
in (2) are estimated using the samples of ys.

In the limit as the number of samples goes to infinity DPMC
yields an accurate distribution for the noise-corrupted speech
given the mismatch function. However, as a large number of
samples are necessary to train the noise-corrupted speech dis-
tributions, the computational cost is much greater than for VTS.

For dynamic coefficients computed with simple differences
a compensation scheme at alternative to (7) is possible [5]. Ex-
tra clean speech statistics are used. By adding the static coeffi-
cients from the previous time instance to the feature vector, so
that it becomes xt = [ xs

t
T x∆

t
T

xs
t−1

T ]T, the dynamic

coefficients for the noise-corrupted speech can be found by1
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The shape of covariance matrices also needs an extension to
provide enough data to compensate dynamics correctly. Ma-
trices with non-zero entries for cross-covariances between the
same coefficients in different time instances can be used [5].
This paper will refer to these as “striped”.

2.3. Joint uncertainty decoding

VTS and DPMC incur considerable computational cost since
they compensate components individually. A technique that
groups components into base classes and finds compensation
per base class is called joint uncertainty decoding (JUD) [3].
Varying the number of base classes gives a trade-off between
computational cost and accuracy. JUD compensation derives
from the joint distribution of the clean speech and the noise-
corrupted speech,
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This joint distribution can found using, for example, VTS or
DPMC [8, 3]. The output distribution for component m in base
class r follows from (10) and is of the form
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For the standard forms of VTS or DPMC diagonal
Σ

(r)
x ,Σ

(r)
y ,Σ

(r)
yx , are estimated, yielding diagonal Σ

(r)
bias

(and A
(r)
jnt ). Note, full joint distributions have previously been

estimated using stereo data, and give significant performance
improvements [1].

3. Covariance matrix modelling
The approaches discussed in the previous section have used di-
agonal covariances for the output distributions, or estimated the
full-covariance matrices from stereo data. In practice stereo
data are rarely available, so schemes that allow full covariance
matrix output distributions to be estimated from a noise model
are needed. These noise models can be either known, or esti-
mated from a small amount of noisy data [3]. This section de-
scribes the issues and approaches adopted to robustly perform-
ing model compensation to yield full covariance distributions
for the corrupted speech. In addition, the issues of the increased
computational cost of model compensation, statistics required,
and decoding are discussed.

3.1. Covariance matrix estimation

In theory the compensation schemes discussed can be used to
generate non-diagonal output distributions. VTS with the con-
tinuous time approximation, for example, gives
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1Normalisation of dynamic parameters is ignored for clarity of pre-
sentation.



This yields a block-diagonal structure (this is also true if the
second-order dynamics are included).

It is interesting that this form of covariance structure has
not been used, given the gains obtained using non-diagonal co-
variance matrices with stereo data. To illustrate why this may
be the case it is useful to examine the compensated models in
more detail. One approach to doing this is to use the average KL
divergence over all the components between the compensated
model-set and the “ideal” single-pass retrained system trained
on stereo data [5].

Compensation — VTS DPMC

ys 42.28 0.93 0.88
y∆ 2.52 4.32 0.49
y∆2

2.45 11.29 0.46

Table 1: Average KL divergence to a block-diagonal single-pass
retrained system for VTS (continuous time) and DPMC.

Table 1 shows the average KL divergence between a VTS
block-diagonal system using the continuous time approxima-
tion and the block-diagonal SPR system. The additive noise
distribution (there is no convolutional noise) is known. Block-
diagonal statistics are used for both the clean speech and noise
models. It is clear from the table that VTS finds compensated
parameters close to the SPR system for the static features, but
that the dynamic parameters are not well compensated. Both
the delta and delta-delta parameters are further from the SPR
system than the uncompensated (clean) model set. The contin-
uous time approximation is not sufficiently accurate to generate
block-diagonal covariance matrices. The simple difference ap-
proximation in (9) could be used. However, this work uses an
alternative, more general method.

The key intuition to this method is that the distribution
of the dynamic coefficients can be computed exactly from the
distribution over consecutive static coefficients. Dynamic co-
efficients are computed from a window of static coefficients
with a linear transformation. The simplest form essentially re-
expresses (9):
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where D is the dynamic coefficient matrix and ye
t is the vector

of static coefficients in the appropriate window. It is straight-
forward to extend this to handle both linear-regression coeffi-
cients over a larger window, and second-order dynamics. If the
distribution of the extended noise-corrupted vector ye is given
by N `µe

y,Σe
y

´
then the mean and covariance of the corrupted

speech distribution for y are

µy = Dµe
y; Σy = DΣe

yD
T (14)

where D is the appropriate dynamic parameter matrix. This
work uses DPMC to draw samples from the extended clean
speech and noise distributions. These are combined together for
each of the time instances using (1). The Gaussian distribution
for ye can then be directly estimated.

Table 1 also shows the average KL divergence using DPMC
with extended feature vectors. Static parameter compensation is
similar to VTS. However, compensation for dynamic parameters
is far closer to the single-pass retrained system. In addition, this
approach can estimate full covariance matrices.

3.2. Practical implementation

A number of practical issues need to be considered when using
DPMC with extended feature vectors: the nature of the statis-
tics, noise model estimation, and the computational cost. The
first issue is the form of statistics required for the clean speech
and noise extended vectors. Clean full covariance matrices for
Σe

x can be stored and used. However, if first- and second-order
dynamic parameters use window widths of ±2 and there are d
static parameters this requires estimating a 9d × 9d covariance
matrix for every component. This is memory intensive, and
with large numbers of Gaussian components, singular matri-
ces and numerical accuracy problems can occur. One approach
to handling this problem is to use “striped” statistics (see sec-
tion 2.2): for each Gaussian component, the ith element of the
static coefficients for a time instance is assumed to be correlated
with only the ith element of time instances. This causes Σe

x to
have a striped structure with only 45d parameters rather than
9d(9d + 1)/2 for the full case.

The noise model cannot be estimated a priori. If the noise
is known, then it is possible to obtain a full covariance matrix.
However, if the noise must be estimated, as in [3], this is com-
plicated and computationally expensive. The simplest solution
is to assume that the noise is independent and identically dis-
tributed for all time instances. If the noise distribution is also
assumed to be diagonal, then the estimation scheme in [3] can
be directly used and the static elements simply duplicated for
each time instance.

As previously mentioned DPMC is computationally more
expensive than VTS. If the samples are drawn from the extended
vectors then this is even more expensive than standard DPMC.
To reduce the impact of this, joint uncertainty decoding with
DPMC can be used rather than DPMC. This means that distribu-
tions for the base classes, rather than individual components, are
required. This speeds up the compensation process. However,
the decoding stage will still be expensive: a full Σ(r)

bias results in
a full-covariance matrix decode. One option to address this is
to use predictive linear transforms [1]. Here a linear transform
A

(r)
pst for each regression class r is estimated in an maximum

likelihood fashion using the JUD statistics. This paper uses pre-
dictive semi-tied transforms (PST). (11) becomes
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With PST, the model compensation stage becomes more costly,
because all models must be updated, but decoding uses diagonal
covariance matrices and is thus fast.

4. Experiments
The compensation schemes described were evaluated on the
1000 word Resource Management database to which opera-
tions Room noise from the NOISEX-92 database was added at
20 dB. This task contains 109 training speakers reading 3990
sentences, 3.8 hours of data. All results are averaged over three
of the four available test sets, Feb89, Oct89, and Feb91, a total
of 30 test speakers and 900 utterances. State-clustered triphone
models with either 1 or 6 components per mixture were built
using the HTK RM recipe. 10 000 samples per distribution were
used for DPMC. Since the additive background noise is know, it



is possible to generated stereo data and use single-pass retrain-
ing to obtain “ideal” model compensated systems. It is also
possible to extract the true noise model.

Statistics Compensation
Σx Σe

x Σy

Scheme Diag. Full
— — — 38.2 64.6
SPR — — 12.4 7.5
VTS diag. — 15.5 18.1*
VTS block — 14.4 15.5*
DPMC — striped 13.6 12.3
DPMC — full 13.0 10.8

Table 2: Word error rates for VTS and DPMC. Noise model from
known noise. * block-diagonal compensation.

Initial experiments were run using the single-component
system. This meant that full extended statistics could be ex-
tracted for DPMC. The known additive noise model used had
a diagonal covariance matrix (this gave slightly poorer perfor-
mance than a full covariance matric, but is simpler to estimate in
practice). Table 2 shows the word error rates of VTS and DPMC
compensation with different forms of clean speech statistics,
outputting diagonal or full models. VTS with diagonal clean
speech statistics and diagonal compensation (15.5 %) may be
viewed as the standard approach. When VTS generates block-
diagonal covariance compensation, performance decreases be-
cause of the continuous time approximation. The performance
of VTS improves slightly by using block-diagonal statistics. As
expected from table 1, DPMC produces better compensation
than VTS in all cases. Moreover, when DPMC estimates full
covariance matrices, performance improves over the diagonal
case. When striped statistics (see section 2.2) are used the gains
are not as large as the full system, especially when estimat-
ing full covariance matrices. However these statistics are more
compact and can be robustly for larger systems. The diagonal
system estimated from full clean speech statistics with DPMC
comes close to the SPR system, though when generating full co-
variances, not all of the performance gain that SPR displays is
seen. DPMC’s compensation (10.8 %) clearly performs better
than the standard diagonal VTS (15.5 %).

Statistics Comp.
Scheme Σx Σe

x Σy WER
VTS diag. — diag. 8.5
DPMC — striped diag. 7.5
DPMC — striped full 6.9
VTS-JUD diag. — diag. 9.5
DPMC-JUD — full diag. 8.6
DPMC-JUD — full full 7.9
PST — full — 7.8

Table 3: Word error rates for VTS and DPMC, and JUD and
predictive semi-tied. Unsupervised noise model estimation.

The previous experiments assumed the noise models were
known. Table 3 shows results from a system built with the
6 mixture components per state system, where the all the noise
parameters were estimated in an unsupervised fashion on the
test data for each speaker using VTS [3]. These estimates were
directly used for VTS. However for DPMC the extended noise

model distribution was generated by simply duplicating the
static VTS estimated noise distribution. For all cases the noise
models had a diagonal covariance matrix structure. For robust-
ness striped clean speech statistics were used in DPMC. The
top half of table 3 compares VTS and DPMC. Compared to the
uncompensated clean system performance (38.0 %), VTS gave
large gains. However, DPMC produces better diagonal compen-
sation than VTS. Further gains are obtained using DPMC to pro-
duce full covariance matrices (6.9 %). This is an absolute re-
duction of 1.6,% (19,% relative) compared to standard VTS.

The use of JUD to decrease the computational load was then
investigated. Here, the 9.5K components were clustered into
16 base classes. Robust estimates of full clean speech statistics
for these base-classes can be used DPMC, rather than striped
statistics. The bottom half of table 3 shows that full DPMC-
JUD (also diagonal DPMC-JUD) outperforms diagonal VTS-JUD
for estimating the joint distribution. To reduce the cost of full
DPMC-JUD decoding PST was used. Though more computation-
ally expensive at the compensation stage, the decoding cost is
about the same as standard diagonal JUD. In line with results
in [1], PST performed about the same as full JUD.

5. Conclusion
Standard model-based compensation schemes, such as VTS,
normally only produce diagonal covariance noise corrupted
speech distributions. This ignores any correlation changes in
the feature vector due to background noise. In this paper a
variant of DPMC that uses extended feature vectors is used to
generate full corrupted speech distributions that allows correla-
tion changes to nbe modelled. An important aspect of achieving
performance gains is a more accurate dynamic parameter com-
pensation scheme and the associated additional clean speech
statistics. To address the additional computational lod of the
scheme both JUD, to handle compensation costs, and PST, to
handle decoding costs, are described. Large performance gains
on a noise-corrupted Resource Management task were obtained.
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